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ABSTRACT

A set of nonlinear spectroscopic measurements with quantum light is presented. It involves a strong pump with frequency w,, and a weak
probe at @), interacting with a solid state target to generate a conjugated beam @, = 2y, — @), via nondegenerate four-wave mixing. The
%) susceptibility can be measured by the noise spectra of the intensity difference of the squeezed beams. We discuss three spectroscopic
setups based on squeezed light: first, single four-wave mixing in a single crystal; second, cascading scheme involving two crystals; third, an
SU(1, 1) interferometer based on two separate four-wave mixing processes. We further investigate the microscopic noise and optical losses in

all three setups. Simulations are presented for silicon-vacancy color centers in diamond.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009575

Four wave mixing (FWM) is a nonlinear optical process that
underlies diverse applications to spectroscopy, photonic quantum
computation, and communication. In spectroscopy, three photon
fields drive electronic transitions, giving rise to the fourth signal field,
satisfying momentum and energy conservation. In Raman quantum
memories,” " several pulses are used to store information in the
system, which is then retrieved by another pulse. FWM is also used to
generate entangled photons’ or squeezed light” * pulses with applica-
tions to quantum information processing,” imaging,'’ and sensing."’
Strong quantum correlations of light fields created by FWM have been
demonstrated in hot alkali vapors'”'* and solid state systems.'’
Recent progress in nonlinear spectroscopy with nonclassical light'***
demonstrates the use of quantum light sources to study the matter
response."” FWM-generated light carries information about the mate-
rial system through its third order susceptibility > given by Eq. (1).
It can be detected using either classical transmission spectra given by
Eq. (4) or the quantum measurement via the relative squeezing spectra
given by Eq. (5). Squeezed light beams allow us to perform high preci-
sion measurements beyond the shot-noise limit, which is especially
important in the case of weakly absorbing materials. In the standard
quantum optics treatment of squeezed light generation, the material
susceptibility is taken as a frequency-independent prefactor. This is
justified when all fields are far off-resonant with respect to matter.

Resonant nonlinear spectroscopy investigates material properties,
which requires an explicit treatment of the matter response via
frequency-dependent nonlinear susceptibilities. We shall discuss the
three setups shown in Fig. 1, which are based on a single FWM (a),
two FWMs in a cascade (b), and SU(1, 1) interferometers (c).

We focus on the four-level double-lambda scheme with levels g,
s, e, and f [see Fig. 1(d)]. The third-order susceptibility that governs
FWM is derived by third-order perturbation expansion in the radia-
tion/matter coupling represented by a set of Feynman diagrams given
in Fig. S1 of supplementary material, which includes four terms,

Z le(i])(_wprv _wdzwpu)' (1)
p=a,bgq=I1II

X(3)(_wpr7 —q; ZCUpu) =

The two “a” terms are

3 Hig Mg Mjs s 3) Hig Mg Mis s

CD I w vl P Dl sy vl
jk=ef TkgTs8TIE jk=ef ThkgTsgTIg

where Aj = wp, — wjy + igs Ay = py — 0pr — 05 + e and

A;g = 2Wpy — Wpr — Wjg +i7;, j = ¢, f. Contributions of diagrams

bl and bII can be obtained by interchanging ), — . and Ay

— Ags, where Ay = py — 0 — g + gs Vmm M, 1 = g5, € are the
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FIG. 1. Schematic of the proposed measurements. (a) Single FWM, (b) cascaded
two FWMs, (c) SU(1, 1) interferometer, and (d) four-level diagram for the FWM in
the SiV~ centers in diamond. Parameters used in the simulations are summarized
in the supplementary material.

dephasing rates of the dipole transitions, and the energy conservation
Wpr + ¢ = 20y, is explicitly taken into account. Contributions of
diagrams 4, ii, and iii are accounted by permutations of j and k in the
expressions [see Eq. (S3) of the supplementary material].

The setup for a single FWM experiment is shown in Fig. 1(a). A
strong pump beam with frequency ), and a weak probe beam with
frequency ,, mix at the surface of the solid state platform. A conju-
gate beam at frequency w, = 2wy, — w,, is generated by the FWM
process and is collected together with the reflected probe beam on a
frequency mixer. The selected two wavelengths are finally sent into the
two arms of the interferometer. Two detectors measure intensity of
each (probe and conjugate) as well as their relative noise (squeezing)
via balanced homodyne detection. While the input pump and the
probe fields are classical, the amplified probe and the generated conju-
gate beams have quantum correlations. Detection of the output-probe
and conjugate fields in coincidence reveals the material response
governed by a susceptibility (1), which depends on the energies of the
four eigenstates in Fig. 1(d) and their dephasing rates. It has been dem-
onstrated that squeezing can manifest when the FWM is off-resonant
with the excited states (e.g., e and f) since resonant electronic excitation
results in absorption losses rather than gain.'” Following the standard
treatment of squeezing,”’ we use the input-output relations in Egs.
(S4) and (S5) of the supplementary material for the probe and conju-
gate beams. Using the number operator for the incident probe

Ny = &éi"”&l(,","), we shall calculate the output photon numbers

(Npr(wpr, Opu)) =~ G(—wy,, fwc;pr,,)(N()), 3)
(N (@pr, wpy)) [G(pr,, —¢; 20,) — 1} (No),

where
G(—wpr, —¢; 202p,) = cosh’ [|Ax(3)(—wpr, —o; 2wpu)|] (4)

is the FWM gain, A oc §? L is the normalization constant, L is a prop-
agation length inside the crystal, and &, is the classical amplitude of

scitation.org/journal/apl

the pump beam. Thus, by measuring the probe intensity, one can
directly detect 7(3).*"

In addition to the FWM gain, one can measure the noise figure
(NF) of the intensity difference that characterizes the degree of squeez-
ing of the probe and the conjugate fields. It is defined as the relative
intensity noise divided by the sum of the shot-noise figures of the two
beams,”’

SN(CUpn wpu) _ VaAr(NPr f\]c) o 1
(Npr) +(N¢)
where G is given by Eq. (4). Sy < 1 indicates quantum squeezing,
whereas Sy > 1 represents classical correlations. Note that in the
absence of additional sources of noise, both gain G and squeezing Sy
provide equivalent measures of the susceptibility 7%). Below, we show
that this is not the case once additional noise in detection or imperfect
transmission is taken into account.

Closer to material resonances, other processes may compete with
the FWM and reduce the optical gain. For instance, spontaneous emis-
sion from either e or fto state s initiated by a pump photon or a similar
process with final state g can give rise to a pair of photons with the
same energy of the probe and conjugate beams. These photons are
indistinguishable by their frequencies, and since they have not been
generated by FWM, they are not phase matched and, therefore, uncor-
related and constitute a quantum noise. To describe such noise contri-
butions, one typically uses Langevin theory.”” While this level of
theory certainly helps quantify phenomenologically the effects of noise,
spectroscopic applications will require a microscopic theory of the
noise induced optical losses. Including noise, the input/output relation
for the field operators now reads”’

&pr 7 \/ rlprapr + A/ 1- ’/Ipr&pr: ©)

Elc - \/77_5&5 +4/1—= 714:5567

— N6
2G(—wpr, — 3 200p,) — 1 )

where 17, = cos (r:)?, k = pr, ¢ is a loss amplitude due to the noise,
which represents the fraction of the field amplitude transmitted
through the sample. 2By X,((l) (—x, wpy) = rre'%e is a susceptibility due
to the noise, where both ry, = |{;| and ¢, are real functions, k = pr, c.

B ~ L is a normalization constant. The susceptibilities x‘f,p and xﬁ”

are given by
o _ Fshtig a _ Fghts

Apr = y X = —_— .
2 Ay 2 AN~ Ay

The noise operators X, and X, satisfy the boson commutation rules
(%), &;] = 1. Using Eq. (6), we obtain for the average photon number,

7)

(Npr(wpuv Wpr)) = ﬂpr(_wpra 0pu) G(=pr, —0c; 20p,)(No)
(N (@pr, 0pu)) = 0(— 0, 0py) [G(—wpr, =05 20py,) — 1] (Ny),
®)
and the FWM gain is given by Eq. (4). The NF is now given by
2(G = 1)(Glyr —1)* =)

Sy=1+
N 1y G +1.(G— 1)

&)

Note that for a sufficiently large gain G, noise can make Sy > 1 for
Ny # 1. However, if the noise in both quantum-correlated beams is
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balanced such that optical loss amplitudes are identical 17, = 1. = 1,
then the quantum correlation persists

2(G-1)

Sy=1-p=2)
N 61

<1 (10)
Balanced losses can be achieved if the susceptibilities XED and Xl(,lr) are
the same. Note that a FWM with noise is essentially a % process
where we have factorized a pure FWM governed by ) from the
noise described by x(l), where the latter describes the losses after
FWM. While it looks like the balanced losses, it always yields higher
squeezing degree if 1 is independent of frequencies according to
Eq. (10). However, simulations of the noise spectrum may yield the
opposite result in certain frequency regimes.

The following simulations use the four-level system shown in
Fig. 1(d), which represents the diamond surface containing an ensem-
ble of the silicon-vacancy color centers (SiV ). The details of the ab ini-
tio theory used for the simulations along with simulation parameters
are given in the supplementary material. The simulated photolumines-
cence spectrum shown in Fig, 2(a) agrees with experiment,”” and has
four features.””** Figure 2(b) shows the Gain spectrum given by Eq. (8)
for the probe field for a fixed pump frequency. For w,, = w1 = wg,
which will hereafter be referred to as a “low frequency,” there are two
weak closely spaced energy cross-peaks between w,, = 2w, — wg
and oy, = W] — 0. Similarly at wp, = w, (“high frequency”),
the three stronger peaks are one cross-peak between w,, =
Wes, Wpr, = 3 — Wy and two peaks at @y, = 2w, — wp and
Wpr, = 20 — We. It follows that optical losses reduce the gain
according to Eq. (8) such that the frequency gain at the cross-peak
with @, disappears and the losses indicated by G <1 in the green
curve in Fig. 2(b) appear instead, while the low frequency features at
wpr1 and the high frequency peak at w,, and w,, remain
almost intact as depicted by the red and green curves, respectively.
These observations are a consequence of the noise spectra displayed

0 Weg ) L] D Ofg
wfs fg - - = wynolosses  * ) — =~ Wpu Wy
2 w..r N wy with losses || ] .
-5 0.02 es 2 4 wp with losses |\ i P
N 5 h -
s S il @y,
< 0.01 |
3 i
0 i
1.684 1.686 1.688 1.69 1.684 1.685 1.686 1.687 1.688
Wpr (eV) Wpr (eV)
(a) (b)

Gain (no losses) Gain (with losses)

1.688 4 -

1.687

N

Wy (V)
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@pr (€V)
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FIG. 2. (a) The simulated photoluminescence excitation spectrum at T=5K of the
Si-vacancy ensemble, (b) 1D probe cite gain spectrum given by Eq. (3) for a single
FWM vs the probe frequency at two different values for the fixed pump frequency
Wpy = 12, Where oy = 1.686415 eV and w, = 1.6877 eV. (c) and (d) 2D
probe gain spectrum vs w,, and w,, without and with optical losses [see Eq. (8) at
By = 0.01A], respectively. The dashed lines mark resonances indicated in the
inset of Fig. 3(b). The gain normalization constant in Eq. (1) is A= 1.735.
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in Fig. 2S(a) of the supplementary material, where in the vicinity of
the peaks at w1, Wpr3, and wy4, the losses are negligible. On the
other hand, the cross-peak at (w,,,, @,) has strong noise, which sig-
nificantly reduces the signal. The apparent symmetry of the noise
spectra with respect to w,, and w,, arises due to the fact that spon-
taneous emission into the probe photon occurs at the nearly equal
pump energy, which corresponds to the noise affecting primarily
diagonal w,, ~ w,,. Since two out of four peaks in Fig. 2(b) are
cross-peaks, it is convenient to depict spectra as a 2D spectrogram
[see Figs. 2(c) and 2(d)], which are commonly used in photon echo
time-domain measurements.”” The FWM considered here is a CW
frequency-domain technique; however, the 2D spectrograms can be
interpreted similar to those of the photon echo. Four horizontal
dashed lines at wp, = e, W, Wes, wf and two vertical dashed lines
at Wy, = g, wf represent single-photon resonances for the pump
and probe fields, respectively. Three diagonal dashed lines corre-
spond to the two-photon resonances: wp, — Wy = Wgg, 20py — Wpy
= Wy, and 2wy, — Wy = wy. The absence of off diagonal peaks
indicates no coherent superposition between fand e states due to the
narrow bandwidth of the applied fields. These resonances have been
already discussed in Figs. 2(a) and 2(b). The contour plot color bar
in Figs. 2(c) and 2(d) indicates a similar drop of the maximum inten-
sity from G ~ 5 down to zero at w,,, due to the strong noise, while
gain remains intact for other resonances at @y, , @y, and w,;,.

We next turn to the NF given by Eq. (5). Similar to the gain
shown in Fig. 2(b) for a fixed Opy = ), j=1, 2, the NF shown in
Fig. 3(a) has four peaks corresponding to wy, , k = 1,2, 3,4. This can
be seen more clearly from the 3D plot shown in Fig. 3(b), which shows
that the squeezing almost vanishes away from the resonances
corresponding to the blue and solid black curves in Fig. 3(a). The
unbalanced optical losses due to the noise affect the peaks at w1 and
pra, while peaks at @3 and w,, are affected only slightly, as indi-
cated by red and dotted black curves in Fig. 3(a). This follows directly
from the noise spectrum, which has a complex spectral dependence,
overlapping with the %(® resonance structure (see Fig. S2 of the

Single FWM Single FWM no losses

~
n
classical

S
“
quantum

Wpy (V) 1685

1.684
(b) Wpr (V)
Single FWM balanced losses

1.688

; 0.8

. § a8z 0.6
=

0.4 3 1686 04

1.685 0.2

1.684 1.685 1.686 1.687 1.688
Wpr (eV)

1.684 1.685 1.686 1.687 1.688
Wpr (eV)

(c) (d)

FIG. 3. (a) The same as Fig. 2(b) but for the 1D NF given by Eq. (5). (b) 3D spectra
of the NF vs ), and e, (c) and (d) NF with unbalanced (17, # 1) and balanced
(npr = 1) losses, respectively. The rest of the parameters are the same as in
Fig. 2. The noise normalization used is B, = B, = 0.02.
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supplementary material). Figure 3(c) shows the NF given by Eq. (9)
where unbalanced losses result in the classical regime Sy >1 for reso-
nances mp,1 and @y, along the main diagonal @, — W, = g, while
the quantum regime Sy < 1 is observed for w,,, and w,, along diago-
nals wp, = 2wy, — Weg and Wy, = 2y, — . In addition to the four
peaks resolved by the gain measurement, the three new cross-peaks
show up between wp, = e and wyrs = Wy, — Oy, Wp, = Wp and
Wpr6 = Wpy — Mg, and W7 = 2wy, — 0. The emergence of new
well-resolved resonances clearly demonstrates the benefits of quantum
Sy measurements over the classical gain detection. The maximum
squeezing also changes from 0 to 0.2, showing that the noise reduces
the degree of quantum correlations. The corresponding case with bal-
anced losses Eq. (10) shown in Fig. 3(d) shows an extended regime of
the quantum correlations along the main diagonal @, — W)y = wg.
For instance, in the vicinity of the Wpr1 and Wpra cross-peak, balanced
losses yield 0.5 vs 1 for the unbalanced case indicated by the turquoise
line in Fig. 3(a).

One can further improve the detection of quantum correlations
by cascading multiple FWM processes. For instance, one can allow the
pump and probe beams to pass through another material sample initi-
ating the second FWM, while the conjugate beam from the first FWM
serves as a reference [see Fig. 1(b)]. Together with the conjugate beam
from the first FWM, the output probe and conjugate from the second
FWM constitute a triple output, which can show squeezing between
all three beams. The input-output relation of the cascaded two FWM
scheme is given by Egs. (S8) and (S9) of the supplementary material.
The output squeezing between the three beams is then given by:'*"*

S 7Var(NPr27Nc27NC1)7 1
N3 — < = = = .
<prz> + <N52> + <N51> 2GZGI -1

(11)

Note that for moderate to high gain, the triple squeezing can be sub-
stantially higher than that for a single FWM. This has been confirmed
experimentally.”* If both FWM are identical G, = G, = G, we have
Snz = (2G* — 1)71. Figure 4(a) shows that two cascaded FWM

SU(1,1) unbalanced losses

Cascading unbalanced losses
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S N
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FIG. 4. Top: comparison of the 2D NFs between cascading Sys given by Eq. (11)
(@) and SU(1, 1) Swo given by Eq. (12) for identical cells. Bottom: effects of the
squeezing phase in Eq. (12) vs o, at fixed wy, = 1.68705 eV. The rest of the
parameters are the same as in Fig. 2.
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subjected to unbalanced noise have slight improvement compared to
the single FWM shown in Fig. 3(c). This is because spectral features
corresponding to Sy < 1 become more pronounced, indicating that
spectral resolution is improved from the single FWM to the cascading
scheme and is further enhanced in the SU(1, 1) setup. The correspond-
ing expression for the balanced losses case is given in Eq. (S52) of the
supplementary material.

We now turn to the SU(1, 1) interferometer”® shown in Fig. 1(c),
whose operation can be viewed as a transformation under the Lorenz
group.”’ After the first FWM, both probe and conjugate beams are
directed into the second FWM and generate another probe-conjugate
squeezed output. This arrangement can be used for interferometry
and has been shown to yield a higher contrast than, eg,
Mach-Zehnder interferometer.”” The input-output relation of the cas-
caded two FWM scheme is given by Eqs. (S15) and (S16) of the
supplementary material. This results in the NF for the second FWM,
which yields:"”

1
(2G, — 1)(2G, — 1) + 4,/G,G5 (G, — 1)(G, — 1) cos 0
(12)

where 0_ = 0, — 0;. For identical FWMs G; = G, =G, 0_ =0,
this reduces to Sy, = [2(2G — 1)> — 1]' < Sy, which yields higher
squeezing compared to a single FWM. Note that unlike the cascading
scheme, the squeezing in the SU(1, 1) interferometer depends on the
squeezing phase, which makes it suitable for interferometric
measurements.

Figure 4(b) shows that SU(1, 1) with unbalanced losses yields a
lower maximum degree of quantum correlations compared to cascad-
ing (0.4 vs 0.2). At the same time, in the vicinity of the resonances at
@y, j =1 — 7, quantum correlations emerge in the larger vicinity of
cross-peaks upon squeezing down to 0.4. We can further investigate
the squeezing phase dependence in the SU(1, 1) interferometer.
Figure 4(c) shows that quantum squeezing occurs in the vicinity of
Wpr = s, O, and wp,3 manifested as a double-dip structure with a
peak (with Sy > 1) at the exact resonance for the entire range of 0_
from 0 to 27 except in the vicinity of §_ = n. The resonance line-
width decreases from 0 to 7 and increases from 7 to 27. The maxi-
mum degree of quantum squeezing reaches ~0.5. The
corresponding expressions are given in Eq. (S59) of the supplemen-
tary material. Figure 4(d) shows that in the absence of noise, the
double-dip structure becomes narrower at the exact resonance with
quantum squeezing ~0.4, while the area around 0_ = & with Sy >
1 is reduced as well. Thus, adjusting the squeezing phase can further
improve spectral resolution of the quantum measurement. This con-
trol knob is not available in the classical gain measurements.

In summary, we proposed a set of multidimensional spectro-
scopic measurements with nonclassical light. Quantum squeezing gen-
erated in FWM is used as a spectroscopy tool for the media where
FWM is generated. By scanning the pump and probe frequencies, a
2D signal corresponding to the classical (gain) or quantum (NF) mea-
surement reveals the internal structure of the multilevel quantum sys-
tem. While gain measurements are sensitive to noise, squeezing is
noise resistant with the balanced losses, which allows us to retain high
spectral resolution of the measurement optical. The proposed spectro-
scopic technique applies to solid state systems, such as SiV", as well as
to the GHz spectral range and the gas phase,”” or other spectral

Sn2 =
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regimes.”® Furthermore, while the nonlinear response can be investi-
gated in single particle systems with high sensitivity,”” our main goal is
to apply the FWM techniques in quantum sensors™’ to study Raman
transitions” of large biological macromolecules, where inhomoge-
neous broadening, environmental fluctuation effects, and a rich spec-
trum of internal degrees of freedom result in congested spectra, which
are difficult to resolve. Combination of multiple FWMs in either cas-
cading or SU(1, 1), which are routinely used to improve quantum
squeezing, provides an additional control knob for improving spectral
resolution of the multidimensional measurement and can further
counteract internal losses.”” The proposed technique offers a class of
measurements that are not limited to two-photon absorption and use
different mechanisms of generation of quantum light not limited to
the entangled two photon light sources.

See the supplementary material for the details of the microscopic
calculations of the signals.
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S1. THE EFFECTIVE SUSCEPTIBILITY

The field/matter interaction Hamiltonian is

Hpuy = / Aoy (Eu(t,1) + Eya(t1) + Hos Epr (£, 1), (S1)

where the classical pump field E,,(t,r) = Eye~“r* T and the probe and conjugate are

quantum fields given by

[2mhw; . v , .
Ej(t, I') _ 7TV J (dje—zwjt—i-zkj-r + d;elet_ijT), ] =pr,c (82)

The third-order susceptibility is derived by third-order perturbation theory which can

be visualized by the loop diagrams shown in Fig. S1. In diagrams ia and ¢b the initial
state is the ground state g, whereas in diagrams iia and i:b s is the initial state. At high
temperatures both ¢ and s state are almost equally populated. Skipping the derivation
details, the quantum state of light generated via FWM is given by |[Yrwar) = Ult)o where
|1))o is the incoming state of light before the FWM. The unitary evolution operator U =
exp (éaf.al/2 —h.c.), and & = AX®(—wpr; —we, 2wpy), where Gy, () is the annihilation

operator of the probe (conjugate) photon. The third order susceptibility Eq. (1) has total
twelve terms described by the diagrams shown in Fig. S3 A which read

S2



3
Xz(a)l<_wp7"7 ~We; 2py) =

Z Meg/j’:s:ufsﬁb}g
(2wpu — Wpr — Wrg + 177g) (Wpu — Wpr — Wsg + 1Ysg) (Wpu — Weg + 17eg) ’

e,f
O (o ) Heghestysig
Xiar1(=Wpry —We; 2Wpu) ; (We — Wrg — 1779) (We — Wpu — Wsg — Psg) (Wpu — Weg + 7eq)”
(3) , Heghleshfsihsg
A —Wpry, —We; 2w w) — : . . )
XZbI( p P ) ; (2wpu — We — ng + Z’yfs)(Wpu — We — Wgs + Z’Ygs)(Wpu — Wes + 2765)
3) HeghesH sty

Xapr1(—Wpry —We; 2Wpy, ) = _ . : 5
ivr1(—Wprs —0e; 2Wpu) (Wpr — Wes — 1Ves) (Wpr — Wpu — Wys — 17Ygs) (Wpu — Wrs + 1)

e.f
Xbsor (=W, =i 2pu) = Z (2Wpy — Wpr — Weg + z‘veg)(w,k = EZGS—':W + Y5g) (Wpu — Weg + 1%eg)
XE?CBII(_WPT’ —Wei 2Wpu) = ze: (We — Weg — 1Yeg) (we — o‘J/::g|—2 lbﬁjj ‘i Ysg) (Wpy — Weg + 17eg)’
XS(ZU(_WPT’ —We; 2Wpu) = ; (Wpr — Wes — 1Yes) (Wpr — ’L/j:j‘ﬂ/;eig— 17gs) (Wpu — Wes + 1Ves)
Xz(?i)aI<_wP7"’ —We; 2Wpu) = ; (2wpy — Wpr — Wy + i’yfg)(wjfjf |jj|p/jfi|1sg + Ysg) (Wpu — Wrg + 15g)
XEZLH(_WPT’ e o) = ; (We — wyrg — i7fg) (We — CL/:Zg‘j |‘:sz:ﬁ “sg) (Wpu — Wrg +17rg)
ng)bl(_wpr’ —We; 2wpu) = ; (2wpy — we — wys + i’)’fs)(%}jfﬁ ’ZLMiSEgs + 1995 ) (Wpu — Wys + 17fs)
Xz(?i)bll(_wpr’ —We; 2Wpu) = ; (Wpr — wis — i77s) (Wpr —|5£j ’i/g:f— Vgs) (Wpu — Wrs + 17ps)
(S3)
which can be recast in a simple form of Eq. (2) of the main text.
S2. THE GAIN AND SQUEEZING COMPUTATIONAL DETAILS
A. The cascading scheme
The input-output relation of the first FWM given by
Gpr1 = U GprolUs = cosh(s1)aprg + €% sinh(sy)aly, (54)
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Figure S1. Left:level diagrams with the corresponding schematics of the field-matter interactions.

Right: set of diagrams corresponding to the third order susceptibility.

al = Ulal,Uy = 7 sinh(sy ) a0 + cosh(sy )al,. (S5)
Similarly we have for the second FWM:
i

Apro = UgdprlUg = cosh(sa)ay1 + e sinh(sg)dio, (S6)

dZZ = UgleUg = e 02 sinh(sg)a,1 + COSh(Sg)&;B, (S7)

where the conjugate beam input is a vacuum state via da.,a.,, where the difference highlights
that the vacuum states of the two FWMs are independent. Using Eqs. (S4) - (S5) one can
further recast Eqs. (S6) - (S7) as

lpry = Gy "Gy + [GY(G1 = )26 + (G — 1)1 e, (58)

il = (Gy — 1)V2GY e a0 + [(Gy — V(G — 1)20=0) L GYPal, (99)

where G; = cosh2(sj), j = 1,2. One can calculate the output of the second FWM which

yields

(Nypo) = GG (Ng),  (Nu) = (Gy — 1)G1(Ny). (S10)
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From the single FWM we obtain

Var(N,,) = G?Var(Ny) + G(G — 1)(IN), (S11)
Var(N,) = (G — 1)?Var(Ny) 4+ G(G — 1)(Ny), (S12)
CoVar(N,,, N.) = G(G — 1)Var(Ny) + G(G — 1)(Np), (S13)

It follows from Eqs. (S11) - (S13) that Var(N,,, — No) = Var(N,,,) = G1(2G; — 1). This

results in the noise figure for the second FWM probe-conjugate output:

Var(Np,.g - NCQ) . 2G1 -1
(Npr2) + (Neg)  2G2— 1

N2 —

(S14)

Note that the quantum regime is achieved only if the gain in the second FWM is larger than
the first Go > G;. The triple output noise figure is derived similarly and is given by Eq.
(11) of the main text.

B. The SU(1,1) interferometer

In the SU(1,1) interferometer, after the first FWM both probe and conjugate beams are
directed into the second FWM. The input-output relation for the second FWM is

Gpra = Ul iy Uy = cosh(sy)ap, + €% sinh(sg)al,, (S15)

al, = = Ujal, Uy = €7 sinh(s2)d,m + cosh(sy)al,, (S16)

where the subscript of the conjugate field in the right hand side of equations is 1 since it
is coming directly from the first FWM. Using Eqs. (S4) - (S5) one can further recast Egs.
(S15) - (S16) in the form

ipra = (GG + (G = 1)2(Gy — 1)2e/ 7 ]a,
+[GYA(Gr = 1)26® 4 (Gy — 1)2GY 2], (S17)

al, = [(Ga — D)V2G e + G2 (G1 — 1)2e ™y
+[(Gy — DY(Gy — 1)) 4 Gy G al,, (S18)
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We next turn to the output photon number operators of the second FWM
Koo = |GG 1 (Ga — 1)V2(Gy — 1) V2602,
ch _ \(G2 . 1)1/26%/26492 + G;/2(G1 o 1)1/2€—i91|2N0_ (819)

This results in the noise figure for the second FWM probe-conjugate output given by Eq.
(12) of the main text.

S3. GAIN AND SQUEEZING IN THE PRESENCE OF NOISE AND OPTICAL
LOSSES

Following the discussion in the main text, interactions with the vacuum modes are de-

scribed by the Hamiltonian
Hy = (pjg + pis) Ei(t) + Hee., j=e, f (S20)

where the positive frequency component of the vacuum field is defined as £, (t) = 3, @l}ke””’“t
where I;k is an annihilation operator of a vacuum photon with frequency . We treat the
interaction with the vacuum field as well as probe/conjugate fields to first order governed

by the susceptibility x"). We define an effective second-order Hamiltonian
I:[up - ZBkX](gl)(_Vka)i)L&k +H.C., (821)
k

where By ~ L is the normalization constant. The resulting susceptibility is given by

(1) _ /’L]S/’L;g
X r (_W ry W u) - E . " s (822)
P pee (Wpu — Wig + 1) (Wpu — Wpr — Wsg +17s)

]:67f
(1) N Njgﬂ}k's
Xe (_www u) - 2 ; . (823)
! j;:f (We — wpu — Wsg + 17s) (Wpu — wys + 875 — s))

The sum over spontaneous modes ¢ and pr is eliminated by assuming that the detection
selects the corresponding frequency. While the ordinary linear susceptibility contains a single
Green’s function that represents the excited state dynamics, the storage state s dynamics
as initial (conjugate) or final (probe) state gives rise to the second Green’s function in

corresponding susceptibilities. We thus obtain

[:Ivk = BkX](gl)(_wk’ wpu)dkbj.;k + H'C'7 (824)

S6



where b is a quantum operator for the photons with frequency wy,,. Note that when the pump

photon is tuned midway between ground state g and s for real dipole moments p;; = pu;

asSUMINg Wes > Ve > Vs )"(I(,}n)(—wp,«,wpu) ~ —Xgl)(—wc,wpu). As will be shown below this

would correspond to balanced losses.
Keeping all orders in the effective Hamiltonian we define the quantum state of light after

interacting with vacuum modes as

(Vo) = Unk|rwar), (S25)

where the evolution operator for interaction with vacuum modes is given by
7: ~ /\T Z N ~
Uwi = exp —§Ckakbwk + §Ckakbwk] , (S26)

and (, = 2x,(§1)(—wk, Wpu) = T where both rj, = || and ¢y are real functions.

A. Single FWN

The input/output relation for the field operator is given by Eq. (6) - (S32) of the main

text:
Qpr —> A/Mprlpr + /1 — NprZpyr, (S27)
&c — \/mdc + 1- nc‘%m (828)
where 7, = cos(ri)?, j = pr, c is a loss amplitude which represents a fraction of the

probe/conjugate field transmitted through the sample. The spectra of 7, and 7. are shown
in Fig. S2.
We have the substitution z; = —iei‘bﬂ'l;j to make it look like the common beam splitter

algebra. Note that, the phase of the noise is absorbed in the operators z;. The noise

1

operators satisfy the boson commutation rules [i"j,;%j

f
J

] = 1. Since #; represents vacuum
modes we have (z;2}) = 1, <§:;§7j> = 0. Since the noise represents vacuum fluctuations,
rather than squeezed vacuum fluctuations, all the signals calculated below contain quantities
like (@ip which are phase independent. Using the field-noise input-output relations (6) we
obtain for the average photon number and its variance

A

<Npr> = nprG<N0>> <NC> = nc(G - 1)<N0> (829)

S7



Noise spectrum for probe Noise spectrum for conjugate
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Figure S2. Spectra of the loss amplitude 7, - (a) and 7. - (b).

A~ A

Var(Npr - NC) = UngaT(Npr) + Npr (1 = N ) (Npr) + ﬁfVar(Nc) + 1e(1 = 1c) <NC>
— QnPTnCCoVar(NpT, NC) (S30)

Using Eqs. (S11) - (S13) we obtain for the noise figure is given by Eq. (9) of the main text.

B. The cascade setup

After the first FWM, the incoming field operators a,, and a. are subject to input-output
relations (S4) -(S5). Then operators G, and G, undergo interactions with vacuum modes

governed by

d;rl = V/Mpr1Gpr1 + /1 = Npr1Zpra, (S31)

a’/cl =V ncldcl + V 1-— 77015%01- (832)
The probe field &;m enters the second FWM where the input-output relations yield

Qo = cosh(sy)dl | + €% sinh(sy)al,, S33
P prl c0

al, = e " sinh(s;)al,, + cosh(sy)al. (S34)
Finally the interaction with the vacuum modes in the second FWM yields
dprZ = /MpraGpra + V L — NpraZpra, (835)
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&/02 =V 7702&02 + V 1— 7702:2'02- (836)

The noise figure for the output of the second FWM can be derived as follows:

Var(N.,, — Niy) = 125Var(Np2) + 12 (1 — 1r2) (Npra) + 0% Var(Nea) + 121 — 700) (Neo)
— QUPTQnCQCOVar(NpTQ, NCQ). (S37)

Using Egs. (S11) - (S13) we obtain

Var(Ny2) = GaVar(N/ ) + Ga(Go2 — 1)(N/ ), (S38)
Var(Neo) = (G — 1)?Var(N), ) + Go(Ga — 1)(N!,), (S39)
COV(NPTQ, Ncg) GQ(GQ - 1)Var( prl) + GQ(GQ - 1)( pr1> (840)

Similar to Eq. (S37) we obtain
Var(N),) = 02 Var(Nort) + Tt (1= 1) (Nt} (N2 = 0prt (N (S41)

Using Eq.(S11) again gives
Var(Np1) = GiVar(No) + G1(Gr — 1)(No) = G1(2Gy — 1)(No),  (Npa) = Gi(No). (542)

Summarizing Eqgs. (S37) - (S42) we obtain

Var(N!,, — N! 2(1 4 (G1 — D)mpr) (R — 202,,G
Sny = arE pr2 A,c2) — 14 ( ( 1 )nzi 1)(”2— Npr2 2)’ (843)
<Npr2> <N02> N2+

where no1 = 1,,0G2 £ Ne2(G2 — 1). Note that Syo > 1 for various parameter regimes which
results in amplified noise. However under balanced loss conditions in the second FWM:
Npr2 = Tz We obtain

277pr2(G2 —1—-(G1— 1)77pr1)

Sy =1—
N2 2G2—1 )

(S44)

which yields Syo < 1 under 7,1 < (G2 —1)/(G; — 1) which yields quantum regime. In the
absence of noise 71,2 = 1,1 = 1 Eq. (S44) further reduces to Eq. (S14).

The noise figure for the triple output measurement can be calculated similarly. Note that

Var(NI’M Néz - Nél) Var(N;rz Néz) + Var(Nél) - 2COVar( Néza Nél)v (S45)

pr2

S9



where the first term is calculated above, second term reads
Var(N}y) = n4 Var(Ne) + ne (1 = ne)(Nea), (546)
where
Var(Ne1) = (Gy — 1)*Var(Ng) + G1(Gy — 1)(No) = (Gy — 1)(2G1 — 1)(No),  (S47)

(N,1) = (Gy — 1)(INy).The third term in Eq. (S45) can be recast as

CoVar(N/ 2 — N, N.,) = CoVar(NWQ, N',) — CoVar(N’y, N,), (S48)
where
CoVar(Nz’wQ, Nél) = nprgCOVar(NpTg, Né ) =~ nPTQGQCOVar( o> Nél) (549)
CoVar(N/y, N',) = neCoVar(N,, N')) ~ 1,(Gy — 1)CoVar (N o> N). (S50)
Using Eq. (S37) and Eq. (S13) we obtain
CoVar(Nprl, N') = 11 CoVar (Npet, Noy) = 2057 G1(Gy — 1)(N). (S51)

Summarizing Eqgs. (S45) - (S51) we obtain for the noise figure for identical FWM in the
balanced losses when 7,9 = N2 = 12 and 1p,1 = N1 = With gy =y =nand G, = G, = G

we obtain

2n(G DG =1 —nGE —n)]
G—-1+nG2G—-1) ’
which yields Syy < 1 for low-to-moderate noise level G < 1/[1 — n(3 — n)] yielding the

Sny =1+

(S52)

quantum regime. Note, that in the absence of noise Eq. (S52) further reduces to Eq. (11) of
the main text. It will be interesting to investigate under which circumstances the quantum
regime can be achieved while the noise in each FWM is unbalanced but the noises in different

F'WMs satisfy some special conditions.

C. The SU(1,1) interferometer

When both output fields from the first FWM become the seeds for the second FWM,
one has to modify the input-output relations (S33) - (S34) to include the seed from the first
FWM:

(pra = cosh(sz)ay,; + €2 sinh(sy)a.l, (S53)

S10



al = e sinh(sy)ay,, + COSh(SQ)&/cTI, (Sh4)

C2

while the remaining transformations given by Eqs. (S31) - (S32), and (S35) - (S36) hold.
Note that since both the probe and conjugate beams from the first FWM seed the second
FWM, one cannot use the simple algebra in Eqs. (S11) (S13) to determine variances of the
second FWM output fields. Instead,they need to be derived separately. We further assume
01 = 6, = 0 for simplicity. More general expression for arbitrary squeezing phases will be

given below. We first notice that

A~

Va’r(N;TQ - NéQ) = 77p7"2var(Npr2) + Mpr2(1 — 77pr2)<Npr2> + 7702var(Nc2) + Nea(1 — 7762)<N02>
- 2npr27702COV(Npr27 NCQ)‘ (855)

Note that in the operator form:

Nppo = GoN! |+ (G — 1)(N + 1) + GY*(Gy — D)Y2(@,,al, +al,a)), (S56)
Nio = (Go — )(NLy + 1) + GoNIy + Gy (G — DY2(a),00l, + a)a)), (S57)

where the last two terms do not vanish and must be kept exactly. Using this we note that

A A~ ~

Var(Npr2) = (N2,) — (Npo)?,  Var(Ne) = (N2) — (Neo)?,
Cov(Nya, Nuo) = (NpyaNeg) — (Npra) (Neo). (S58)

Skipping all the technical details we finally obtain for the noise figure in the identical 2
FWDMs: Norl = Nel = NMpr2 = Ne2 = 1N and Gl = G2 = G-

21 —n+ GG (1 —n) +n(4G —1) - 3)]

=1—
Sz 1+8G(G —1)

(S59)

which shows possible ranges of the gain where the squeezing Sy < 1 is quantum.

S4. SIMULATION PARAMETERS FOR S:V~ IN DIAMOND

The silicon-vacancy color centers (SiV ™) formed by the strong spin-orbit (SO) interac-
tions split of the orbital levels by w,, = 48GHz and wy. = 259 GHz [1, 2|. For simplicity
we only consider transitions corresponding to 2Si centers , and neglect transitions corre-

sponding to 2957 and 3°Si. Starting with the 4 x 4 Hamiltonian Hy for the SiV~ [2] using

S11



eV units. The diagonal elements of Hy are the energies of ground level (w,) and wy, w, and
wy calculated using purely spin polarized Density Functional Theory (DFT) with Perdew
Burke Ernzerhof (PBE) [3] functional and the split-valence 6-31G basis set. The electronic
transition dipole energies between relevant states (labeled as fieg, fles, ftfs, fLrg) Were calcu-
lated with same level of theory. All calculations were done in Gaussian09. Considering an
ohmic environment and assuming that the environment couples to the Hermitian system
operators, the dynamics of density matrix elements using Redfield master equations [4] were
calculated using python 3.7 invoking the QuTiP toolbox [5]. The simulation parameters
are: four states energies: w, = 0, ws = 0.0020678 eV, w, = 1.68781465 eV, wy = 1.68848572
eV; transition dipole moments (in a.u.): pe, = 0.001595, pes = 0.001615, pps = 0.00162,
pre = 0.00123, dephasing rates that allow to fit the absorption profile [6] o = 7.23 x 107°
eV, Yeg = 1370, Yes = 2.15%, V59 = 0.9%, V55 = 1.757%, vsg = 1.6579, central frequency of
the pump pulse wgu = 1.6881 £ 0.0009 eV.
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