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ABSTRACT: Chiral four-wave mixing signals are calculated using
the irreducible tensor formalism. Different polarization and
crossing angle configurations allow to single out the magnetic
dipole and the electric quadrupole interactions. Other config-
urations can reveal that the chiral interaction occurs at a given step
within the nonlinear interaction pathways. Applications are made
to the study of valence excitations of S-ibuprofen by chiral
stimulated X-ray Raman signals at the carbon K-edge and by chiral
visible 2D electronic spectroscopy.

1. INTRODUCTION
Chirality is the notable property of molecules lacking mirror
symmetry. This simple geometrical constraint has profound
implications on fundamental science,1 biological activity,2 and
drug synthesis.3 Numerous techniques have been implemented
to detect and discriminate opposite enantiomers with high
precision. These include now routine spectroscopies such as
circular dichroism (CD)4,5 or optical activity6 as well as more
advanced ones such as Raman optical activity (ROA)6 or
photoelectron CD.7 Differences of observables involving
various polarization configurations permit to cancel the achiral
contributions and single out the chiral ones. Most chiral-
sensitive spectroscopies suffer from an unfavorable signal-to-
noise ratio as the ratio of chiral to achiral signals is usually of
the order of a percent or less (the ratio of molecular size to the
optical wavelength).
The application of third-order nonlinear spectroscopies to

measure chiral signals has gained experimental and theoretical
interest over the past decades.8−11 Belkin and Shen12 have
focused on second-order χ(2) signals that vanish altogether in
an achiral isotropic sample. Most spectroscopic measurements
of matter chirality are carried out on randomly oriented
samples. In nonisotropic samples, important artifacts cover the
CD signals such as linear dichroism or birefringence and must
be dealt with.13 Here, we focus on molecules in the liquid or
gas phase where the molecular response must be rotationally
averaged. Rotational averagings of cartesian14 and spherical15

tensors are well established. We use the irreducible tensor
formalism15,16 to carry out the rotational averages. This is very
convenient as only the J = 0 tensor components do not vanish
upon averaging.
In this study, we demonstrate that chiral nonlinear signals

offer a way to control which chiral pathways contribute to the
final signals by using various polarization and pulse geometry
configurations. In particular, we show that signals involving the

chiral interaction at a given step along the interaction pathways
can be extracted. We have calculated chiral signals that depend
only on the magnetic dipole or on the electric quadrupole
interactions. These allow to assign explicitly the multipolar
nature of a given transition. This is of importance to describe
near field chiral interactions17,18 and for the emergence of X-
ray chiral sensitive signals where the relative magnitudes of
electric quadrupole and magnetic dipole may be very different
than at the visible and infrared frequency regimes.19

We focus on chiral four-wave mixing (4WM) signals. Several
polarization schemes can single out chiral contributions by
highlighting different types of interactions. In Section 2, we
first present 4WM spectroscopies in general terms using the
multipolar interaction Hamiltonian. We compute all possible
combinations of chiral-sensitive 4WM techniques and discuss
the averaging of signals using the irreducible tensor
representation of the 4WM response tensors. Finally, in
Section 3, we apply this formalism to study valence excitations
in the drug S-ibuprofen by stimulated X-ray Raman spectros-
copy (SXRS) and 2D electronic spectroscopy (2DES).

2. MULTIPOLAR REPRESENTATION OF 4WM
SIGNALS

We start with the multipolar radiation-matter coupling
Hamiltonian that includes the electric and magnetic dipoles
and the electric quadrupole
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m qH t t t tE B E( ) ( ) ( ) ( )int μ= − · − · − ·∇ (1)

We consider three 4WM techniques denoted kI, kII, and kIII
according to their phase matching direction

k k k kI 1 2 3= − + + (2)

k k k kII 1 2 3= + − + (3)

k k k kIII 1 2 3= + + − (4)

k1, k2, and k3 are the wavevectors of the time-ordered incoming
pulses. We use the vectors (u1, u2, u3) = (−1, 1, 1), (1, −1, 1),
(1, 1, −1) to represent the kI, kII, and kIII techniques,
respectively. In a three-level system, the kI and kII techniques
contain three pathways (excited state emission ESE, ground
state bleaching GSB, and excited state absorption ESA), while
kIII has only two ESA pathways. These pathways indicate
whether the molecule is back in the ground state after the first
two interactions (GSB) or in an excited state (ESE and
ESA).20

The heterodyne-detected 4WM signal generally contains
chiral and nonchiral components

S S S( ) ( ) ( )het achir chirΓ = Γ + Γ (5)

where Γ represents collectively the set of parameters that
control the multidimensional signal (typically central frequen-
cies, polarizations, bandwidths) as well as the wavevector
configuration (kI, kII, or kIII). The achiral contribution Sachir is
given by the purely electric dipole contribution9

S t t t t t t t

t t t t t t

t t t t

R

E E E

E

( )
2

d d d d ( , , )

( ( ) ( ) ( )

( ))

achir 3 2 1 3 2 1

s 3 3 2 3 2

1 3 2 1

∫Γ = −
ℏ

ℑ ·

⊗ − ⊗ − −

⊗ − − −

μμμμ

(6)

with

t t t
i

t t tR ( , , ) ( ) ( ) ( )3 2 1

3

left 3 2 1μ μ μ μ= −
ℏ

⟨ ⟩μμμμ − − −
i
k
jjj

y
{
zzz

(7)

Rμμμμ is a sum of pathways with four electric dipoles. At the
lowest multipolar order, the chiral contribution Schiral contains
either one magnetic dipole or one electric quadrupole and is
given by

S t t t t

R B E E E R E E E E

R E B E E R E E E E

R E E B E R E E E E

R E E E B R E E E E

( )
2

d d d d

( ( ) ( )

( ) ( )

( ) ( )

( ) ( ))

chiral 3 2 1

m s 3 2 1 q s 3 2 1

m s 3 2 1 q s 3 2 1

m s 3 2 1 q s 3 2 1

m s 3 2 1 q s 3 2 1

∫Γ = −
ℏ

ℑ

· ⊗ ⊗ ⊗ + · ∇ ⊗ ⊗ ⊗

+ · ⊗ ⊗ ⊗ + · ⊗ ∇ ⊗ ⊗

+ · ⊗ ⊗ ⊗ + · ⊗ ⊗ ∇ ⊗

+ · ⊗ ⊗ ⊗ + · ⊗ ⊗ ⊗ ∇

μ μμ μ μμ

μμ μ μμ μ

μμμ μμμ

μμμ μμμ

(8)

where we have omitted the time variable for conciseness. The
multipolar matter correlation functions are given by:

mt t t
i

t t tR ( , , ) ( ) ( ) ( )m 3 2 1

3

left 3 2 1μ μ μ= −
ℏ

⟨ ⟩μμμ − − −
i
k
jjj
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zzz

(9)

qt t t
i

t t tR ( , , ) ( ) ( ) ( )q 3 2 1

3

left 3 2 1μ μ μ= −
ℏ

⟨ ⟩μμμ − − −
i
k
jjj

y
{
zzz

(10)

The four magnetic dipole and the four electric quadrupole
response functions in eq 8 are obtained by permuting the
position of the m or q within each interaction pathway. The
subscripts (left) and (−) indicate Liouville space super-
operators.21 The Liouville space superoperators are defined by
their action on Hilbert space operators as left ≡ and

right ≡ . We further define their linear combinations ±,
which correspond to commutators and anticommutators in
Hilbert space as ≡ ±± . Such operators allow to
keep track of interactions on the ket or bra side of the density
matrix.
Assuming a slowly varying electric field envelope, we can

express the magnetic fields and the electric field gradients as

E t t( ) ( )i i iϵ= (11)

B kt t
c
u( ) ( )

1
i i i i iϵ= ̂ ∧

(12)

kE t t iu
c

( ) ( )i i i
i

i iϵ
ω

∇ = ̂ ⊗
(13)

where ϵi is the polarization unit vector of the ith pulse electric
field and i is the pulse temporal envelope.
The chiral contributions to 4WM are defined for rotationally

averaged samples and will be calculated using irreducible
tensor algebra.16 In this formalism, cartesian tensors are
expanded in irreducible tensors, that is, tensors transforming
according to the irreducible representations of the rotation
group SO(3): T = ∑τJτT

J where τ is the seniority index, which
depends on the coupling scheme of matter quantities
constituting the response tensor. This formalism is a
generalization of the decomposition of a matrix into its trace,
an antisymmetric part, and a traceless symmetric part. For
4WM signals, we apply it to rank 4 and 5 cartesian tensors.
Irreducible tensors up to irreducible rank J = 5 appear in the
decomposition of the matter and field tensors. The strength of
the formalism resides in that only the isotropic J = 0 tensors
contribute to the rotationally averaged signals and thus need to
be calculated.16,22 The signal is given by an irreducible tensor
product of the matter response function R and the field tensor
F

R F R F( 1)
J M J

J
M JM J M∑ ∑· = −

τ
τ τ

=−

−

(14)

The field tensor F is kept general here and in practice will be
described by a direct product of four field functions E, B, or
∇E. For example, the response tensor Rmμμμ and Rqμμμ are
contracted with B ⊗ E ⊗ E ⊗ E and ∇E ⊗ E ⊗ E ⊗ E,
respectively.
The rotationally averaged contraction between matter and

field response tensor is obtained by retaining only the J = 0
terms

R F R F R F

R G

( ) J J J J

J J

av dip E
0

elec
0

dip M
0

mag
0

quad E
0

quad
0

∑· = +

+
τ

τ τ τ τ

τ τ

‐
= =

‐
= =

‐
= =

(15)

where the general expression for the matter and the field
tensors are given in Appendix A and in the Supporting
Information, Section S1. The field tensors τFelec

J=0 and τFmag
J=0 are

calculated from the rank 4 cartesian tensors, while the τGquad
J=0 is

calculated from the rank 5 tensors involving ΔE.
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As is done in CD or ROA, combinations of various
polarization configurations can lead to the cancellation of the
achiral electric dipole contribution and provide a measure of
the chiral response function. The electric dipole invariant
tensor components have even parity, while the magnetic dipole
and electric quadrupole ones have an odd parity.
Unlike the linear CD, nonlinear 4WM signals offer multiple

possible cancellation scenarios of the achiral components,
which can be combined in order to enhance the desired
features of the signal. There are four possible chiral
polarization configurations (denoted α, β, γ, and δ) for each
of the phase matching directions (ki = kI, kII and kIII), leading
to 12 possible schemes, see eqs 17−20. Each of them further
depends on the crossing angles of the incoming pulses. There
are thus many ways to access the chiral response functions with
various degrees of control.
The four polarization schemes are given by

S S L L L L S R R R Rk( , ) ( , , , ) ( , , , )ichir het hetα = − (16)

S S L R L R S R L R Lk( , ) ( , , , ) ( , , , )ichir het hetβ = − (17)

S S L L R R S R R L Lk( , ) ( , , , ) ( , , , )ichir het hetγ = − (18)

S S L R R L S R L L Rk( , ) ( , , , ) ( , , , )ichir het hetδ = − (19)

where the arguments of Shet(es,e3,e2,e1) indicate the polarization
of pulses Es, E3, E2 and E1 and ki = kI, kII or kIII.
We shall show that it is possible to experimentally select

signals occurring solely through magnetic dipole or through
electric quadrupole interactions. It is also possible to identify
signals whereby the chiral interaction occurs at a given step in
the interaction pathways.

3. RESONANT CHIRAL SXRS AND 2DES SIGNALS IN
S-IBUPROFEN
3.1. Ibuprofen Quantum Chemistry. The valence

electronic excited states of S-ibuprofen (Figure 1a) were
computed using multiconfigurational self-consistent field
(MCSCF) calculations at the cc-pVDZ/CASSCF(8/7) level
of theory using the MOLPRO package.23

The core-excited states were calculated at the cc-pVDZ/
RASSCF(9/8) level by moving one by one the 1s carbon
orbitals into the active space and freezing them to a single
occupancy. The second-order Douglas−Kroll−Hess Hamil-
tonian was used to account for relativistic corrections.24 The
valence and core excited states stick spectra compared with
experiment25,26 are displayed in Figure 1b,c.
3.2. Chiral SXRS. We now employ the polarization

configurations developed earlier to compute the chiral
stimulated X-ray Raman spectra, at the carbon K edge, as
sketched in Figure 2. This pump−probe technique involves
two ultrashort X-ray pulses, Figure 2a, whose variation with
their delay carries information on the valence excitation
manifold. Each X-ray pulse induces a stimulated Raman
process in the molecule (Figure 2b) and its broad bandwidth
allows to pump or probe many valence excited states in a single
shot with high temporal resolution. The core resonance allows
to control which atoms are excited and probed, and the signal
thus carries information about the valence excitations in the
vicinity of the selected core.
The signal can be read off the loop diagrams displayed in

Figure 2c and reads

E E

E E

E E

S T i t s s s t t s

t G t G s G s G s G t s s s t
t s s t s s s

t G t s s G s G s G s G t s t
t s t s s

( )
2

d d d d ( ) ( )

( ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ))

SXRS

3

3 2 1 2 2 3

0 3 2 1 3 2 1 0

1 3 2 1 3 2 1

0 2 1 1 2 3 3 0

1 2 1 2 1

∫
μ μ μ μ

μ μ μ μ

Ψ Ψ
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= −
ℏ

ℑ
ℏ

* −

⟨ | − − − | ⟩
* − − − − −

+ ⟨ | − − − | ⟩
− − −

† † †

† † † † †

i
k
jjj y

{
zzz

(20)

By expanding this expression in molecular eigenstates,
transforming the fields into the frequency domain and taking
the Fourier transform over T, we obtain the following
expressions for the electric dipole contribution to the signal

S E E
I I

( )
2 ( ) ( )

iSXRS 2
2

1
2

4
ecc

gc c e ec cg
2,c g 1,cg

eg
∑ μ μ μ μ

ω
Ω = | | | |

ℏ
ℑ

Ω Ω
Ω − + ϵ′

′ ′
† † ′

(21)

I i z

z

I i z

z

( )
e
2

e ( erfi( ))
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1
( /2 i )

( )
e
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e ( erfi( ))
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1
( /2 i )

c g
z
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z

2,

/4

2
2 2

2
2

2 c g

1,

/4

1
2 1

1
1

1 cg

2
2
2

2
2

2
2
2

1
2

σ

σ
ω ω

σ

σ
ω ω

Ω = +

= − + Ω − + ϵ

Ω = +

= − + Ω − + ϵ

σ

σ

′

−Ω
−

′

−Ω
−

(22)

where I1,cg(Ω) and I2,c′g(Ω)) are the lineshape functions
associated with the first and second X-ray pulses respectively.

Figure 1. (a) Molecular structure of S-ibuprofen. (b) Experimental
UV absorption from Moore et al.25 (blue) and stick spectrum
calculated at the cc-pVDZ/CASSCF(8/7) level. (c) Experimental X-
ray absorption26 (blue) and stick spectrum at the cc-pVDZ/
CASSCF(8/7). The dashed red curve is computed from the stick
spectrum by convoluting with Lorentzian lineshapes and a step
function accounting for ionization contributions.
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The other contributions are obtained by replacing one of the
electric dipoles in eq 21 with a magnetic dipole or with an
electric quadrupole, following eq 8.
SXRS is a kII technique carried out with two noncollinear

pulses. This constrains the angles of the 4WM pulses defined
above to θs = θ3 = 0 and θ2 = θ1 = θ. Furthermore, the
polarizations are not independent and es = e3 and e2 = e1. We
find the following two possible chiral signals

S S LLLL S RRRR( , , ) ( , ) ( , )cSXRS cSXRS cSXRSαΩ Γ = Ω − Ω
(23)

S S LLRR S RRLL( , , ) ( , ) ( , )cSXRS cSXRS cSXRSγΩ Γ = Ω − Ω
(24)

Γ denotes all control parameters {θ, ω1, ω2, σ1, σ2} with θ
the crossing angle between the two pulses, ω1 and ω2 are the
pulses’ central frequencies, and σ1 and σ2 are their Gaussian
envelope standard deviation.
In Figure 3a,b, we present the chiral stimulated X-ray Raman

spectroscopy (cSXRS) spectra for the two polarization
configurations α and γ and a crossing angle θ = π/4. In Figure
4, we display the same signals for various pulses’ crossing

angles. Using the irreducible tensor formalism, we have
calculated the contributions to the chiral signals for each
polarization scheme and crossing angle. Many interaction
pathways are contributing for each signal and in Figure 3c, we
present the relative multipolar contribution of each state to the
final signal at their resonant frequencies. Other examples are in
the Supporting Information and a Mathematica code is
provided to compute the contributions for any chosen
configuration.
Combining measurements with different crossing angles for

the various chiral techniques (α or γ) allow to extract few
selected contributions. For example, Figure 5 shows SXRS
signals in which the chiral interaction occurs only during the
first pulse

Figure 2. (a) Pulse configuration for SXRS. (b) Jablonski energy
levels contributing to the SXRS signal. g is the ground state, e is the
valence excited state manifold, and c is the core excited state one. (c)
Ladder diagrams for SXRS. To account for the lack of time ordering
of the interactions with the first pulse, each of these diagrams
contributes twice to the signal. Upon Fourier transforming over the
time delay, only the left diagram contributes to positive frequencies.

Figure 3. (a) cSXRS(Ω, α) signal of ibuprofen. Blue: both X-ray
pulses are centered at the chiral carbon 1s core-excitation transition
energy (283.8 eV). Orange: the first pulse is tuned at the chiral carbon
1s core transition and the second pulse is tuned at the carbon in the
propyl group (286.6 eV). The dashed and dotted curves are the total
SXRS signals with LL and RR polarization configurations,
respectively. The total SXRS signals are normalized and the cSXRS
are multiplied by 5. (b) cSXRS(Ω, β) signal with similar pulse central
frequencies. The dashed and dotted curves are the total SXRS signals
with LR and RL polarization configurations, respectively. (c) Relative
multipolar contributions from each state to the total SXRS signals.
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(25)

or during the second pulse

S S

S S

i
R R R
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, , 3
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(26)

3.3. Chiral 2DES. We next apply the 4WM polarization
schemes to 2DES of S-ibuprofen. 2DES has been used to
resolve excitonic couplings and energy transfer in molecular
aggregates. It can further separate homogeneous and
inhomogeneous contributions to absorption lineshapes. Here,
we apply it to S-ibuprofen using phenomenological relaxation
and compare with the SXRS signals that also probe the valence
excited manifold. 2DES lacks the element-sensitivity of the X-
rays but offers additional polarization and crossing angle
controls because each interaction corresponds to a different
pulse.
We focus on 2DES non-rephasing (kII technique) signals

whose diagrams are given in Figure 6. The correlation
functions and SOS expressions of the 2DES signals are given
in the Supporting Information.

The freedom to independently select the polarization
scheme and crossing angle for each of the four interactions
results in a huge number of possible techniques. Here, we
focus on a single case and other combinations can be
computed using the Supporting Information. The chiral
2DES signal can be made to be sensitive to the electric
quadrupole interaction only.

S T

S T LLLL S T RRRR

( , , , )

( , , , ) ( , , , )
c2DES 1 2 3

2DES 1 2 3 2DES 1 2 3

αΩ Ω

= Ω Ω − Ω Ω
(27)

Using θ1 = π/2, θ2 = −π/2, and θ3 = π/2 as crossing angles,
the pathways that contribute to the final signal are

S T
R R

( , , , )
3 3

12 10c2DES 1 2 3
1 q 2 qαΩ Ω =

−μ μμ μ μμ

(28)

Figure 7 compares the electric dipole contribution (a,b) with
the quadrupole-sensitive c2DES signal. The dominant states in
the achiral contribution (at 4.5 eV) are different from the ones
in the chiral electric quadrupole one (at 4.3 eV). In SXRS, the

Figure 4. cSXRS(Ω, γ) for different crossing angles: π/4 (top), π/2
(middle), and 3π/4 (bottom). Central frequencies are the same as in
Figure 3.

Figure 5. Sum of cSXRS signals with different crossing angles’
extracting pathways with a chiral interaction only during the first pulse
(in blue, eq 25) or during the second pulse (in orange, eq 26).

Figure 6. Ladder diagrams for 2DES.
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4.3 and 4.53 eV transitions were giving the main contributions
to the signals. On the other hand, in the chiral 2DES signal
displayed in Figure 7, which contains only quadrupolar
interactions, the 4.53 eV is contributing weakly.

4. CONCLUSIONS

Chiral 4WM signals can combine the detailed molecular
information of 4WM techniques with the inherent structural
aspects of chirality. Their standard interpretation based on the
multipolar expansion truncated at the magnetic dipole and
electric quadrupole order is complicated by the many possible
interaction pathways. We have used the irreducible tensor
formalism to calculate each contribution to the signals for
various circular pulse configurations.
Applications are made to two chiral-sensitive 4WM

techniques, SXRS and 2DES. The former is more restricted
as multiple interactions occur with the same pulse but it allows
to add the extra element-sensitivity of the X-rays. 2DES on the
other hand is a well-established optical or UV tabletop
technique that has better control of the crossing angles and
pulses polarizations.
Some polarization configurations are identified, which

permit to isolate specific contributions in which the chiral
interaction (with the magnetic dipole or with the electric
quadrupole) occurs at a chosen step within the interaction
pathway. We have further shown how to extract chiral
contributions involving only the magnetic dipole or the
electric quadrupole.

■ APPENDIX A

Chiral-Sensitive 4WM Signals

τRdip‑E
J=0 and τRdip‑M

J=0 are rank 4 tensors that have the following
rotational invariants

A B C D A B C DR
1
3
( )( )J

0
0

0 0 0= {{ ⊗ } ⊗ { ⊗ } } = · ·=

(29)

A B C D

A B C D

R
1
3
( ) ( )

J
1

0
1 1 0= {{ ⊗ } ⊗ { ⊗ } }

= ∧ · ∧

=

(30)

A B C DR J
2

0
2 2 0= {{ ⊗ } ⊗ { ⊗ } }=

(31)

A C B D A B C D A D B C
1
5

1
2
( )( )

1
3
( )( )

1
2
( )( )= · · − · · + · ·i

k
jjj

y
{
zzz

(32)

where A, B, C, and D can be either an electric dipole μ or a
magnetic dipole m interaction. Each of these invariants gets
contracted with the corresponding field invariants τF

J=0

p p p p p p p pF( , , , )J0 s 3 2 1
0

s 3 0 2 1 0 0= {{ ⊗ } ⊗ { ⊗ } }=

(33)

p p p p p p p pF( , , , )J1 s 3 2 1
0

s 3 1 2 1 1 0= {{ ⊗ } ⊗ { ⊗ } }=

(34)

p p p p p p p pF( , , , )J2 s 3 2 1
0

s 3 2 2 1 2 0= {{ ⊗ } ⊗ { ⊗ } }=

(35)

where pi = ϵi or ki
c i iϵ̂ ∧ . τRquad‑E

J=0 is a rank 5 tensor that has two

rotational invariants

qR J
0 quad E

0
1 1 0μ μ μ= {{ ⊗ } ⊗ { ⊗ } }‐

=
(36)

qR J
1 quad E

0
2 2 0μ μ μ= {{ ⊗ } ⊗ { ⊗ } }‐

=
(37)

The relevant field tensors are

Figure 7. (a) Achiral 2DES non-rephasing spectrum on an isotropic average (eq 30 in the Supporting Information) of S-ibuprofen calculated in the
dipolar approximation. (b) Chiral 2DES defined in eq 27 with crossing angles θ1 = π/2, θ2 = −π/2, and θ3 = π/2. This choice of polarization and
crossing angles singles out only electric quadrupole interaction in the chiral interactions. The right panels show the main features on an expanded
scale.
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a b c k d

a b c k d

G i

i

( , , , )J0
0

1 2 1 0

⊗

= {{ ⊗ } ⊗ { ⊗ { ⊗ } } }

=

(38)

a b c k d

a b c k d

G i

i

( , , , )J1
0

2 2 2 0

⊗

= {{ ⊗ } ⊗ { ⊗ { ⊗ } } }

=

(39)

where a, b, c, d = ϵi. We assume that the heterodyning pulse
propagates along z (hence k̂s = e0). The three exciting pulses
are noncollinear, forming an angle θi with the y axis. This
corresponds to the most common experimental situation
where multiple pulses parallel to the optical table are incident
on the sample with a small angle between them. We further
assume that the electric field polarization ϵ1, ϵ2, ϵ3 are left- or
right-polarized in the laboratory frame. In the irreducible basis
{e1, e0, e−1}, the polarization vectors are given by

e e
1
0
0

0
0
1

L R= =
i

k

jjjjjjjjj

y

{

zzzzzzzzz

i

k

jjjjjjjjj

y

{

zzzzzzzzz (40)

where eL and eR are the left- and right-handed polarization
vectors for a plane wave propagating along z. For noncollinear
pulses, the Wigner J 1= matrix can be used to obtain the
corresponding left and right polarizations. The vectors (eL, eR,
ez) form an orthonormal basis with the following properties

e e e e

e e e e e e

e e e e e ei i

0 1
L R R L

L L R R L R

z L L z R R

* = − * = −
· = · = · = −

× = − × = (41)

Equation 41 allows to get the polarization vectors b of the
magnetic field

b e e
c
1

L/R z L/R= ×
(42)

In the Supporting Information, we give the nonvanishing
tensor components corresponding to different polarization
schemes and the general tensor expressions for arbitrary
polarization vectors in terms of Clebsch−Gordan sums.
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1 Non-colinear pulse configuration

General expression for the rotationally invariant irreducible tensor components of the

rank 4 and rank 5 field tensors invariants are provided explicitly in this section using the

definition of the irreducible tensor product: {A⊗ B}JM = ∑mA
C JM

jAmA jB M−mA
AjAmA BjB M−mA

where C JM
jAmA jB M−mA

is a Clebsch-Gordan coefficient.

Electric dipole or magnetic dipole tensor components

0F(ps, p3, p2, p1)
J=0 = ∑

ij
C00

1i1−iC
00
1j1−j[ps]

i[p3]
−i[p2]

j[p1]
−j (1)

1F(ps, p3, p2, p1)
J=0 = ∑

ijk
C00

1i1−iC
1i
1j1i−jC

1−i
1k1−i−k[ps]

j[p3]
i−j[p2]

k[p1]
−i−k (2)

1



2F(ps, p3, p2, p1)
J=0 = ∑

ijk
C00

2i2−iC
2i
1j1i−jC

2−i
1k1−i−k[ps]

j[p3]
i−j[p2]

k[p1]
−i−k (3)

Electric quadrupole tensor components

0G(a, b, c, d⊗ e)J=0 = ∑
ijkl

C00
1i1−iC

1i
1j1i−jC

1−i
1k2−i−kC1l1−i−k−l[a]j[b]i−j[c]k[d]l[e]−i−k−l (4)

1G(a, b, c, d⊗ e)J=0 = ∑
ijkl

C00
2i2−iC

2i
1j1i−jC

2−i
1k2−i−kC1l1−i−k−l[a]j[b]i−j[c]k[d]l[e]−i−k−l (5)

The d ⊗ e represents the k ⊗ ε is the main text. Since the electric quadrupole is a

J = 2 irreducible tensor by definition, only the J = 2 component of d ⊗ e enters into

the irreducible tensor products given above. Eqs. 4 and 5 are used to compute the field

tensors that get contracted with the J = 0 components of Rµµµq. Similarly, 0/1G(a, b, d⊗

e, c)J=0, 0/1G(a, d⊗ e, b, c)J=0 and 0/1G(d⊗ e, a, b, c)J=0 are defined for contractions with

Rµµqµ, Rµqµµ and Rqµµµ respectively.

2 Quantum chemistry details

Molecular orbitals included in the active space of the the cc-pVDZ/CASSCF(8/7) valence

excited state computation are displayed in Fig. 2. The ground state and the first 9 excited

states were computed using this active space. There relative energies from the ground

state energy was obtained as: (0.0484956, 0.0604728, 0.10202, 0.167855, 0.16981, 0.177436,

0.181381, 0.208095, 0.229564) atomic units. A global energy shift of 0.167 au to match

the experimental spectrum was applied. Details of the molpro code can be shared upon

reasonable request.

The norm of the multipolar transition matrix elements is displayed in Fig. 1. The

2



states e1, e2 and e3 have neglectable electric dipole transition matrix elements are thus

dark states. These states are not discussed further in this study.
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Figure 1: Norms of the transition multipoles matrix elements from the ground state to
each of the calculated excited states.

Main Configuration State Functions (CSF) for each states are now given:

Ground state

2222000: 0.9494771

State e1

222/\ 00: 0.6601039 22/20\0: -0.5920438

State e2

2/2200\: 0.7762152 222/00\: -0.3304313 2/22\00: -0.2996679

3



State e3

222/0\0: 0.6509050 22/2\00: 0.6238821

State e4

22/20\0: 0.5071633 222/\00: 0.4184930 /222\00: -0.4079125

222/0\0: 0.2354199 2/22\00: 0.2305255

State e5

22/2\00 0.6272697 222/0\0 -0.5673681

State e6

/222\00: 0.4715856 /2220\0: 0.3697852 222/\00: 0.3631566

22/20\0: 0.3484628 22/\/\0: 0.2534831 22/\200: 0.2309925

State e7

/2220\0: 0.5949174 /222\00: -0.3073049 22/\020: 0.2481364

2220020: 0.2300734 2220/\0: -0.2286009 22/20\0: -0.2151185

222/\00: -0.2016753

State e8

2/2\0/\: -0.3961695 2/220\0: 0.3510396 2/2/0\ \: -0.3189000

22200/\: -0.2875625 222/00\: 0.2738819 2/\2/0\: -0.2581666

State e9

2/22\00: 0.4754603 2/2\/0\: -0.3402749 2/2/\0\: -0.2871956

2/\20/\: -0.2778902 2220/0\: -0.2379281
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Figure 2: Molecular orbitals included in the active space. The HOMO orbital is MO56 and
the LUMO one is MO57.

3 SXRS integrals calculation

Reading out the SXRS diagrams and summing over electronic states gives:

SSXRS(Ω) =
2
h̄4=∑

ecc′

∫
dω2dω1

(E∗2(ω2)E2(ω2 −Ω)E∗1(ω1)E1(ω1 + Ω)µgc′µ
†
c′eµecµ†

cg

(ω2 −ωc′g + iε)(Ω−ωeg + iε)(ω1 + Ω−ωcg + iε)

+
E∗2(ω2)E2(ω2 −Ω)E1(ω1)E∗1(ω1 −Ω)µec′µ

†
c′gµ†

ecµcg

(ω2 −Ω−ωc′g + iε)(Ω + ωeg + iε)(−ω1 + Ω + ωcg + iε)

)
(6)
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In the following, we specialize only in the first term that gives the positive frequency

of the signal, and the goal is to calculate the following integral:

I2(Ω) = |E2|2
∫ +∞

−∞
dω2

E∗2(ω2)E2(ω2 −Ω)

ω2 −ωc′g + iε
(7)

Defining ωc and σ2 as the normalized Gaussian envelope parameter the integral, we

have:

I2(Ω) = |E2|2
∫ +∞

−∞
dω2

(1/
√

2πσ2)e−(ω2−ωc)2/2σ2
2 (1/
√

2πσ2)e−(ω2−ωc−Ω)2/2σ2
2

ω2 −ωt + iε
(8)

3.1 Integral calculation

We first calculate

I =
∫ +∞

−∞
dx

e−x2

x− x0
=
∫ +∞

−∞
dx(x+ x0)

e−x2

x2 − x2
0
= x0

∫ +∞

−∞
dx

e−x2

x2 − x2
0
= 2x0

∫ +∞

0
dx

e−x2

x2 − x2
0

(9)

We now define

I(a) = 2x0

∫ +∞

0
dx

e−ax2

x2 − x2
0

(10)

The integral that we want to calculate is I(1). By deriving over a, we can write down the

following equation on I(a):

∂

∂a
I(a) + z2

0 I(a) = −z0

√
π

a
(11)

Solving the ODE gives

I(a) = I(0)e−az2
0 − 2

√
πe−az2

0

∫ √az0

0
dz ez2

(12)
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I(0) is obtained by calculating directly the integral:

I(0) = 2x0

∫ +∞

0
dx

1
x2 − x2

0
= iπsign(=z0) (13)

And finally, anticipating that sign(=z0) = −1 for our later case, we have

I = I(1) = −iπe−z2
0 − πe−z2

0erfi(z0) (14)

3.2 Application to SXRS

Returning back to I2(Ω), we first write the product of the two Gaussian as a single one:

1√
2πσ2

e−(ω2−ωc)2/2σ2
2

1√
2πσ2

e−(ω2−ωc−Ω)2/2σ2
2 =

e−Ω2/4σ2
2

2πσ2 e−(ω2−(ωc+Ω/2))2/σ2
2 (15)

In I2(Ω), we make the change of variable z = (ω2 − (ωc + Ω/2))/σ2, dω2 = σ2dz and

defining

z0 = − 1
σ2
(ωc + Ω/2−ωt + iε) (16)

Then, the integral can be carried out using Eq. 9, and we get:

I2(Ω) = −|E2|2
e−Ω2/4σ2

2

2σ2 e−z2
0(i + erfi(z0)) (17)

Putting this into the signal definition, we get the final signal expression:

SSXRS(Ω) = |E2|2|E1|2
2
h̄4=∑

ecc′
µgc′µ

†
c′eµecµ†

cg
I2,c′g(Ω)I1,cg(Ω)

Ω−ωeg + iε
(18)
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with

I2,c′g(Ω) =
e−Ω2/4σ2

2

2σ2
2

e−z2
2(i + erfi(z0)) with z2 = − 1

σ2
(ω̄2 + Ω/2−ωc′g + iε)

(19)

I1,cg(Ω) =
e−Ω1/4σ2

2

2σ2
1

e−z2
1(i + erfi(z1)) with z1 = − 1

σ1
(ω̄1 + Ω/2−ωcg + iε)

(20)

4 Expressions for 2DES signals

4.1 The impulsive limit

The signals expressions can be further simplified by assuming impulsive pulses. Signals

are then given by:

Sachir(T3, T2, T1) = −
2
h̄
=Rµµµµ(T3, T2, T1) • (εs ⊗ ε3 ⊗ ε2 ⊗ ε1) (21)

Schiral(Γ) = −
2
h̄c
=

(−Rmµµµ • bs ⊗ ε3 ⊗ ε2 ⊗ ε1 − Rqµµµ • (iωsk̂s ⊗ εs)⊗ ε3 ⊗ ε2 ⊗ ε1

+u3Rµmµµ • (εs ⊗ b3 ⊗ ε2 ⊗ ε1) + u3Rµqµµ • (εs ⊗ (iω3k̂3 ⊗ ε3)⊗ ε2 ⊗ ε1)

+u2Rµµmµ • (εs ⊗ ε3 ⊗ b2 ⊗ ε1) + u2Rµµqµ • (εs ⊗ ε3 ⊗ (iω2k̂2 ⊗ ε2)⊗ ε1)

+u1Rµµµm • (εs ⊗ ε3 ⊗ ε2 ⊗ b1) + u1Rµµµq • (εs ⊗ ε3 ⊗ ε2 ⊗ (iω1k̂1 ⊗ ε1)) (22)

where we have introduced the magnetic field polarization bi = k̂i ∧ εi.
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5 Sum-Over-States expressions for 2DES

The 2DES signal is usually split into two contributions, the rephasing (kI technique) and

the non-rephasing (kII technique) signals.

The rephasing signal is given by

Srephasing
2DES (T1, T2, T3) =

2
h̄4<

∫
dtdt3dt2dt1

E∗s (t)E3(t− t3 + T3)E2(t− t3 − t2 + T3 + T2)E∗1(t− t3 − t2 − t1 + T3 + T2 + T1)

×
(
〈〈µ|G(t3)µ

†
leftG(t2)µ

†
rightG(t1)µright|ρ−∞〉〉+ 〈〈µ|G(t3)µ

†
rightG(t2)µ

†
leftG(t1)µright|ρ−∞〉〉

− 〈〈µ|G(t3)µ
†
leftG(t2)µ

†
leftG(t1)µright|ρ−∞〉〉

)
(23)

In the impulsive limit, each pulse is given by:

E∗s (t) = δ(t)e∗s eiωst (24)

E3(t− t3 + T3) = δ(t− t3 + T3)e3 e−iω3(t−t3+T3) (25)

E2(t− t3 − t2 + T3 + T2) = δ(t− t3 − t2 + T3 + T2)e2 e−iω2(t−t3−t2+T3+T2) (26)

E∗1(t− t3 − t2 − t1 + T3 + T2 + T1) = δ(t− t3 − t2 − t1 + T3 + T2 + T1)e∗1 eiω1(t−t3−t2−t1−T3−T2−T1)(27)

Summing over states and Fourier transforming over T1 and T3 leads to

Srephasing
2DES (Ω1, T2, Ω3) = −

2
h̄4<e∗s e3e2e∗1

( µg′e′µe′gµg′eµege−iωgg′T2−Γgg′T2

(−Ω3 −ωe′g′ + iΓe′g′)(−Ω1 + ωeg + iΓeg)

+
µg′e′µg′eµe′gµege−iωe′eT2−Γe′eT2

(−Ω3 −ωe′g′ + iΓe′g′)(−Ω1 + ωeg + iΓeg)
−

µe f µ f e′µe′gµege−iωe′eT2−Γe′eT2

(−Ω3 −ω f e + iΓ f e)(−Ω1 + ωeg + iΓeg)

)
(28)
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The non-rephasing signal is given by

Snon-rephasing
2DES (T1, T2, T3) =

2
h̄4<

∫
dtdt3dt2dt1

E∗LO(t)E3(t− t3 − T3)E2(t− t3 − t2 − T3 − T2)E∗1(t− t3 − t2 − t1 − T3 − T2 − T1)

×
(
〈〈µ|G(t3)µ

†
leftG(t2)µleftG(t1)µ

†
left|ρ−∞〉〉+ 〈〈µ|G(t3)µ

†
rightG(t2)µrightG(t1)µ

†
left|ρ−∞〉〉

− 〈〈µ|G(t3)µ
†
leftG(t2)µrightG(t1)µ

†
left|ρ−∞〉〉

)
(29)

Snon-rephasing
2DES (Ω1, T2, Ω3) = −

2
h̄4<e∗s e3e∗2e1

( µge′µe′g′µg′eµege−iωg′gT2−Γg′gT2

(−Ω3 −ωe′g + iΓe′g)(−Ω1 −ωeg + iΓeg)

+
µg′eµg′e′µe′gµege−iωee′T2−Γee′T2

(−Ω3 −ωeg′ + iΓeg′)(−Ω1 −ωeg + iΓeg)
−

µe′ f µ f eµe′gµege−iωee′T2−Γee′T2

(−Ω3 −ω f e′ + iΓ f e)(−Ω1 −ωeg + iΓeg)

)
(30)
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