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ABSTRACT
Statistical network models allow us to study the co-evolution

between the products and the social aspects of a market system,
by modeling these components and their interactions as graphs.
In this paper, we study competition between different car mod-
els using network theory, with a focus on how product attributes
(like fuel economy and price) affect which cars are considered
together and which cars are finally bought by customers. Unlike
past work, where most systems have been studied with the as-
sumption that relationships between competitors are binary (i.e.,
whether a relationship exists or not), we allow relationships to
take strengths (i.e., how strong a relationship is). Specifically,
we use valued Exponential Random Graph Models and show that
our approach provides a significant improvement over the base-
lines in predicting product co-considerations as well as in the
validation of market share. This is also the first attempt to study
aggregated purchase preference and car competition using val-
ued directed networks.
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1 INTRODUCTION
To make rational product design decisions, there is an in-

creasing need for a better understanding of the dynamic interac-
tions among different stakeholders in a market system. Among
all types of interactions, competitive relations between similar
products from multiple producers is one of the most important
ones. For example, in the auto market, electric vehicles (EVs)
are emerging as competitors of traditional vehicles and other al-
ternative fuel vehicles. In 2017, the Chinese market accounted
for more than half of all global EV sales, a 53% increase com-
pared to 2016 [1]. However, only 4% of the EVs sold in China
originated from the U.S. [2]. To improve U.S. global competi-
tiveness, U.S. automakers must design EVs that are tailored to
the preferences of Chinese customers. Not only does the success
of a new EV design depend on its engineering performance, but
it must also consider the dynamic competition among multiple
competitors.
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TABLE 1: Comparison of our work with past work on using network approaches for customer preference and car competition modeling
Paper Network Type Undirected Directed Weighted Goal

Wang et al. (2015) [3] Multidimensional X X 5 Introducing multidimensional network representation
Wang et al. (2016) [4] Unidimensional X 5 5 Forecasting the existence of cars’ co-consideration relationship
Fu et al. (2017) [5] Bipartite X X 5 Modeling consider-and-then-choice behaviors
Sha et al. (2018) [6] Unidimensional X 5 5 Comparing ERGM model with Dyiad model
Wang et al. (2018) [7] Unidimensional X 5 5 Predicting product co-consideration relationships
Bi et al. (2018) [8] Bipartite X 5 5 Studying spatiotemporal heterogeneity of customer preferences
Xie et al. (2019) [9] Unidimensional X 5 5 Dynamic ERGM model
Sha et al. (2019) [10] Bipartite X 5 5 Comparing network models with Discrete Choice Analysis

This Paper Unidimensional X X X Modeling product competition using weighted networks

Competition has been traditionally studied using game-
theoretic models [11, 12] to support engineering designs that in-
volve multiple decision-makers. In terms of enterprises’ deci-
sions, the studies generally focus on three types of strategies:
(1) pricing strategy [13], (2) design configuration decisions in
either single product design [14] or product line design [15],
(3) strategic decisions on product innovation [16]. However, ex-
isting work does not explicitly take into account customer prefer-
ences and product design features in the formulation of payoff or
utility function. Moreover, the competition analyzed in existing
literature typically involves two or a handful of players instead of
the entire market. As a result, the impact of complex market re-
lations among entities beyond the competitors being investigated
cannot be assessed. To address these issues, an approach that can
model both customer preferences and complex competitive rela-
tions are needed. In the following, we briefly examine the work
done in network-based customer preference modeling that aims
to quantitatively model complex relations in a market system.

Customer preference modeling emphasizes the understand-
ing of how customers make trade-offs among multiple attributes
when making purchase decisions [17, 18]. While customer pref-
erences can be modeled using many approaches [19], the net-
work analysis approach has proven effective in facilitating un-
derstanding of customer-product relations [20, 21]. Compared
to traditionally used utility-based approach [22], network ap-
proaches exhibit advantages in considering decision dependency,
attributes collinearity, customer irrationality and missing infor-
mation of choice set. Recent studies of network approach ex-
plored the capability of statistical network models (Exponential
Random Graph Models - ERGMs) in studying customers’ con-
sideration behaviors [23], forecasting the impact of technolog-
ical changes on market competitions [4], modeling customers’
consideration-then-choice behaviors [5], and predicting prod-
ucts’ co-consideration relations [6, 7].

Despite various attempts of using network models and the-
ories in better understanding the driving factors in customers’
consideration and choice behaviors, existing studies have several
limitations. First, the networks are simplified as binary networks
meaning that the weights/strength of links is neglected. Part of

FIGURE 1: We use valued-ERGM network models to study car
competition for consideration stage (left network) and choice
stage (right network). The nodes represent cars in these network
illustrations and links are competition strength.

the reasons for such treatment was due to the authors’ initial fo-
cus on firstly understanding the feasibility of using networks in
modeling customer preferences. However, the link strength is
an important aspect for understanding product competitions as
well as customer preferences. This is because the prediction of
link strength will enable designers to more precisely evaluate the
effects of potential designs on the market demand compared to
merely predicting the existence of links. For example, if a thresh-
old is set to binarize the network links, then any links with a
strength lower than the pre-defined threshold will not be con-
sidered. To probe into the question of how much a competition
relation between two products could be changed because of the
change of designs or customer preferences, the link strength must
be explicitly modeled. Second, most, if not all, past research on
network models on car competition analysis do not use directed
networks for modeling the final choice decision of a product, but
instead only focus on the first stage of decision making, where
customers consider a set of products. Our work attempts to ad-
dress these limitations. Unlike past approaches, our work is the
first to use weighted networks as well as study both choice (di-
rected network) and consideration (undirected network) using it.
Table 1 summarizes the existing works of using network analysis
in customer preference modeling and how our work differs from
them.

The new approach we propose in this study is based on
valued-ERGM models that allow a link between nodes to carry
weights and such a link can be either directed or undirected. In
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a unidimensional car competition network, we study both cus-
tomers’ consideration and choice behaviors by establishing two
types of networks as illustrated in Figure 1 – an undirected net-
work, in which links represent co-consideration relationship and
a directed network, in which directed links between cars which
are co-considered indicates customers’ aggregated preference to-
wards the final choice (or purchase) decisions. The relaxation
of the binary link assumption enables us to better understand
production competitions. We also demonstrate a way to repre-
sent choices between different products using a directed network.
As a summary, the objectives of this research are two-fold: a)
to extend valued-ERGM to both weighted co-consideration and
choice networks for modeling product competitions; and b) to
evaluate the benefits of valued-ERGM for studying the attribute
and network effects, and for network prediction when node at-
tributes (product design) change.

2 TECHNICAL BACKGROUND
Exponential Random Graph Model (ERGM), a statistical

analysis technique which serves as a formal representation of
the network formation process [24], has been a popular choice
in social network research. ERGMs provide a probability for ev-
ery possible network that can be formed from a fixed number of
nodes. This leads to a probability distribution on the set of all
possible networks with the same number of nodes [24]. Math-
ematically, ERGMs can be expressed as a function of a set of
input parameters (which can be node properties, edge properties,
network structure attributes etc.) [25], as shown below:

Pr(Y = y) =
exp(θ T ·g(y))

κ(θ ,y)
(1)

In this equation, network structure Y is treated as a random vari-
able and an observed network y is the network data the researcher
has collected and regarded as one realization from a set of pos-
sible networks. The probability of the observed network struc-
ture is determined by network statistics g(y), which can include
attributes of nodes, attributes of links as well as network struc-
ture attributes, and corresponding model parameters θ (a vector).
κ(θ ,y) is a normalizing constant, to make the function a realistic
probability value. Eq. 1 suggests that the probability of observ-
ing a specific network structure is proportional to the exponent
of a weighted combination of network statistics [9]. To estimate
the parameters (or learn the model from existing data), a Markov
chain Monte Carlo (MCMC) procedure using maximum likeli-
hood estimation [26] is typically used. The estimated parameters
θ indicate the importance of different network statistics in the
formation of links in a network. By analyzing the magnitude and
statistical relevance of θ , one can interpret the factors which may
be important in the network formation process.

ERGMs has several advantages over traditional statistical
models. For instance, unlike traditional logit models [27], they

allow the interdependence among network edges, which is more
realistic in many network formation processes. ERGMs also pro-
vide a flexible statistical inference framework that can model the
influence of both exogenous effects (e.g. nodal attributes) and
endogenous effects (e.g. network structures and the relationship
between nodes, such as 3-way product competition) on the prob-
ability of forming a connection between nodes.

A limitation of traditional binary ERGM is that it cannot
model real-world networks with weighted links (e.g. flight con-
nection intensity between two airports). If one wishes to model
a weighted network with a traditional ERGM, they have to first
binarize the network with a link weight threshold. This process
converts each edge to a binary 0 or 1 link so that the ERGM
can take the resultant network as input. This dichotomization
step may lead to biases and information loss, which can eventu-
ally affect network prediction. Valued-ERGM [28], a technique
recently developed in social network modeling addresses this
limitation by modeling the strength of links rather than merely
their presence or absence. For a given set of discrete variables, a
valued-ERGM is expressed as:

Pr(Y = y) =
h(y)exp(θ T ·g(y))

κ(θ ,y)
, y ∈ Y (2)

where Y is called the support and κ(θ ,y) is a normalizing con-
stant, to make the function a feasible probability value. By com-
paring Eq. 1 with Eq. 2, one may notice two major differences —
the presence of a support Y term and a reference distribution h(y)
term.

Different from binary ERGMs, the support of a valued-
ERGM is over a set of valued graphs, which is often infinite or
uncountable [29]. One cannot enumerate all possible weighted
networks with real-valued link strengths. Thus in a weighted
network case, we need to consider what the strength of connec-
tions are and how they are distributed. This brings in the need of
specifying a reference distribution, which determines the sample
space and baseline distribution of link values. The sample space
is the set of possible networks given the size and density of the
observed network. A reference distribution simply answers the
question of what might the link distribution looks like in the ab-
sence of any model terms. The ability to model valued links has
greatly advanced network research as it enables researchers to
conduct more nuanced examinations of network patterns. More-
over, similar to traditional ERGMs, valued-ERGMs are capable
of modeling networks with both undirected links and directed
links.

Valued-ERGMs have been employed in various applications
ranging from policy studies [30], organizational communica-
tion [31] to disease transmissions [32] and global migration [33].
An important step of using valued-ERGM is to first specify
meaningful links between nodes and define a way to measure the
link strength. The definition of link strength often depends on
the domain, and in the past, researchers have determined it based
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on factors ranging from the level of interactions between two
nodes [30], the strength of friendship [31], or the total duration of
human contact [32]. These links, although valued, are typically
discrete in a small range such as {0,1,2,3}. Existing methods
in the social science area cannot be directly used in our study to
model the valued product association networks due to: a) the link
strength in the product competition networks has a substantially
large range. This infinite sample space increases the complexity
of the task; and b) existing studies mainly concentrate on inter-
preting the models, whereas we focus on both interpretation and
prediction. Therefore, a new approach and validation methods
for a rigorous evaluation of valued-ERGM models are needed.

3 METHODOLOGY
In a product market, the number of customers considering a

pair of products (u and v) or choosing one product over the other
reflects the in-between competitive strength. To capture the prod-
uct competition strength based on customers’ considerations and
choices, we build weighted product competition networks and
model them with valued-ERGMs. In this section, we outline the
typical steps required for statistical modeling of a weighted com-
petition network, which contains three main steps: 1. Create a
weighted network, 2. Train a valued-ERGM model and interpret
the effects of the parameters on competition, and 3. Make pre-
dictions about competition among products in the future.

While the key contribution of this work is in the choice of
the modeling method, we will describe the step-by-step process
of building a weighted network and analyzing it in this section.
We will use cars as an example to illustrate the method, but the
concepts can be generalized to many other product designs.

3.1 Weighted Product Competition Network Con-
struction

Networks are capable of mathematically and graphically
representing the product competition structure based on survey
data. To capture different stages of a customer’s decision-making
process, we build two different unidimensional networks, which
we call the “co-consideration network” and the “choice net-
work”. The first is an undirected network that represents the al-
ternatives in the consideration stage and the second is a directed
network, which represents the customer’s aggregated choice be-
havior.

Defining link strengths for a co-consideration network A
unidimensional product network can reveal product market com-
petition by describing products’ co-consideration or preference
relationship. In both networks, a product (in this case, a car)
corresponds to a node. Each node is associated with a set of at-
tributes like price, fuel consumption and engine power. In the
co-consideration network, we define an undirected link between

node u and node v, if there exists at least one customer who con-
siders both cars u and v together. The number of customers who
consider the two cars together is set as the weight of the link
(wu,v) between nodes u and v.

Defining link strengths for a choice network In the choice
network, a directed link from node u to node v is established if
there exist customers who considered car u and v together but
finally bought v instead of u. The total number of customers who
bought car v despite considering car u denote the link strength
from u to v and vice versa.

We denote both networks as G = (V,ε,W ), where V , ε and
W represent nodes, edges and weights respectively. Figure 1 pro-
vides a simplified illustration for both the unidimensional consid-
eration and choice networks that we investigate. The thickness
of the link between two nodes is proportional to its strength (i.e.
the number of customers who consider or choose the product),
and the size of the node is proportional to the popularity of the
product.

Descriptive network analysis Descriptive network analysis
helps designers explore some major characteristics of the net-
work, like which products are popular, how dense the network
is, without going into the statistical relationship of nodes and
links, It requires the computation of topological measures to as-
sess the position of nodes and the implication of structural ad-
vantages [3].

A few descriptive metrics for analyzing a unidimensional
weighted car competition network are network weight distribu-
tion, centrality and clustering coefficient. The values of weights
wu,v, which measures the competition strength between pairs of
cars (u and v), can be considered as a fundamental element in
the weighted network analysis. The probability distribution of
weights P(w) indicates the overall competition strength, i.e., the
frequency of a pair of cars being co-considered in an undirected
network. We can also calculate the centrality of a node, which
may mean different things for different networks. For an undi-
rected consideration network, the centrality is measured by the
strength of a node, which is defined as s(i) = ∑

j∈V (i)
wi j (V (i) is

the node-set of node i’s neighbourhood). It is a measure of how
popular the car is. Note that as this is a measure of popularity in
consideration network, it is possible that a model is popular (con-
sidered by many people) in the consideration stage but still has a
low market share. In the directed choice network, the in-strength
of a node sin(i) equals to the sum of weights of all directed in-
ward links, which is a measure of popularity in the final purchase
decisions. Further, the fraction of a node’s in-strength to the total
in-strength of all the nodes ( sin(i)

∑
n
j=1 sin( j) ) for directed networks rep-

resent the market share of the car. Finally, we are also interested
in observing if there are cliques of cars, which have high compe-
tition among them. To measure this, we use the weighted global
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clustering coefficient, which measures the overall network inter-
connected triplets [34]. A cluster is defined as a group of nodes
with high weight links between each other and with low weight
links to other nodes in the network. Therefore, a high clustering
coefficient indicates interconnected communities (car competi-
tions within market segments) are more common in the network.
While descriptive analysis provides broad insights about the net-
work structure, it does not throw light on how different attributes
affect link formation, which we will discuss next.

3.2 Network Modeling and Interpretation
In this paper, we use the valued-ERGM to model both

undirected consideration networks and directed choice networks,
such that the link strength can be captured within the network
structures. As described in Eq. 2, the input of valued-ERGMs are
a reference distribution h(y) and a vector of selected input terms
g(y) (such as car price, fuel efficiency) and a few characteristics
for weighted network structures (such as network density).

Defining a reference distribution The reference distribution
h(y) acts as our prior belief about the network based on the
known distribution of link weights, which refers to the distri-
bution of the co-consideration strength and pairwise preference
strength among car competition networks. While Binomial dis-
tribution is typically used for binary networks, other choices like
the Poisson, Geometric, Bernoulli, Uniform and Standard Nor-
mal distribution are possible for a weighted network. The exact
choice of prior belief depends on the application domain and the
data distribution.

Defining input variables Many of the variables used as input
in a valued-ERGM model are similar to the ones used in binary
ERGM models, and can be classified into three categories: net-
work configurations, main effects, and homophily effects [6].
Network configurations measure the network structure effects,
main effects correspond to nodal effects of the product attributes,
and homophily effects are the similarity or difference between
the attributes of two nodes. Unlike any dyad-independent bi-
nary ERGM statistic expressed as gk = ∑(i, j)∈Y xk,i, jyi, j , where
yi j is allowed to have values either 0 or 1, in the valued-ERGM,
yi j has a larger range of choices. As for the network configura-
tion terms, valued-ERGM can handle network sparsity, mutual-
ity, individual heterogeneity and triadic closure via various input
model terms [35].

Interpreting valued-ERGM parameters The result of the
valued-ERGM is a set of estimated coefficients and associated
p-value (significance level) for all variables. Network configura-
tion effects indicate the tie independence, i.e. formation of ties
due to the presence of other ties [36]. The estimation of those ef-
fects can be seen as evidence of the prevalence or absence of cer-

tain structures (such as edge density, transitivity and star effects)
in a network. For example, a negative significant estimation of
“edges” shows that the competition network has a low density.
The impact of main attributes refers to how an attribute might
influence a car’s propensity to form a link in a co-consideration
network and to receive or send a link in a choice network. We ex-
amine selected car attributes, and the result will enable designers
to determine whether cars with a higher price, lower fuel con-
sumption are more likely to be considered by customers and win
a competition. The homophily effects test the hypothesis that
cars with more similarities on different attributes are likely to
be co-considered, which is a common explanation established in
social relations and further extended to our car competition net-
works.

3.3 Market Competition Prediction
While statistical network models are typically used to inter-

pret what factors lead to link formation or dissolution, predicting
what the network will look like in the future is useful for man-
ufacturers to make strategic decisions. In practice, if manufac-
turers can predict how the competition between car models will
change when certain node attributes (product design) is changed,
they can use this information to forecast the effect of changes in
their models and to position their products strategically among
competitors. Using the estimated parameters of input variables
of observed car competition networks, we can predict unseen net-
works in the future, with new car attributes as input.

Based on valued-ERGM equation Eq. 2, the distribution of
network models is determined by a base network structure, esti-
mated parameters, input variables, and a reference distribution.
If we want to simulate a trained network, we can substitute new
car attributes to the trained model and derive the distribution of
predicted network structures (with valued link strength) and draw
samples from it, where each sample is a simulated network. In
our validation study, we draw such simulated network samples
based on the trained valued-ERGM model. By aggregating a
large number of network samples, we create a single network,
which represents the central tendency (highest probable network)
of all simulated networks. We use this aggregated network as our
prediction and compare it with the known network in the future
to show our model’s accuracy.

Future predictions using aggregated simulations can be
made for either the co-consideration network or the choice net-
work. In the predicted co-consideration networks, the number
of competitors with corresponding competition strength is fore-
casted, which helps a manufacturer in understanding their overall
market position. For the predicted choice networks, along with
the market position, the manufacturers also get an understanding
of which car models are their main competitors. In the next sec-
tion, we show how the methods and the process discussed so far
can be applied to two real-world datasets of vehicles.
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4 CASE STUDIES
Cars are an expensive good, and customers often consider

many alternatives before deciding which car to buy. This deci-
sion can be influenced by many factors, like your budget, what
are your driving needs, what must-have and good-to-have fea-
tures you want in a car, which cars are currently popular in
your vicinity, which cars are owned or suggested by your friends
and family, what past experience you had with particular brands
etc. From a manufacturer’s perspective, it is important to under-
stand their competition and develop strategies to improve market
share. Consider two brands with similar number of units sold per
year. Car A has low sales figures, and is rarely even considered
by any customer while making their purchase decision. In con-
trast, car B is considered by most customers looking to buy a car,
but most customers eventually buy a competitor car C, instead
of car B. Despite similar sales figures, car A’s strategy of market
share improvement may be very different from car B’s strategy
(which can be focused on the competitor). How can one throw
light on such complex interactions between products?

We argue that many, if not all, of these factors can be cap-
tured by network models. Specifically, in this section, we demon-
strate the use of the valued-ERGM approach to study the Chinese
car market. We use a car survey data provided to us by the Ford
company as a test example. Network modeling can be applied to
different stages of decision making of a customer, and different
types of network models. We show two case studies, covering
different aspects of graph structures and decision making. The
first case study focuses on the initial stage of customer decision
making and uses an undirected co-consideration network model.
In this case, cars compete with each other to be simultaneously
considered by a customer. The second case study focuses on the
final stage of decision making using a directed final choice net-
work model. In this case, cars that are co-considered by a cus-
tomer compete with each other to “win” (or be purchased) from
their competitors.

4.1 Data Description
Our dataset contains customer survey data from 2012 to

2016 in the China market. In the survey, there were more than
40,000 respondents each year, who specified which cars they pur-
chased and which cars they considered, before making their final
car purchase decision. Each customer indicated at least one, and
up to three cars which they considered. The dataset, resulting
from the survey, also contains many attributes for each car (e.g.
price, power, brand origin and fuel consumption) and many at-
tributes for each customer (e.g. gender and age).

4.2 Case study 1: Car Co-Consideration Network
In this case study, we use valued-ERGM models to throw

some light on competition between cars in the consideration
stage of a customer’s decision making process.

Step 1: Network construction and Characterization To
study car co-consideration, we start by creating a car co-
consideration network based on customers’ survey responses in
the 2013 survey data. The network consists of 296 unique car
models as network nodes. The link between a pair of nodes
(denoting cars) is allocated the weight equal to the number of
customers who considered both the car models together in their
consideration set. Figure 2 shows an example of a small part of
the co-consideration network. In this example, cars “Great Wall
Hover” and “Honda Dongfeng CRV” appear together in the con-
sideration set of 18 customers in 2013 and 30 customers in 2014,
showing that their competition has increased in one year. In con-
trast, cars “VW SVW Tiguan” and “Honda Dongfeng CRV” ap-
pear together in the consideration set of 201 customers in 2013
and 192 customers in 2014. This shows that their competition has
decreased in one year, although both cars are still more popular
(sum of all link strengths connected to a node) than the “Great
Wall Hover”.

FIGURE 2: An example of co-consideration network between
three cars changing from one year to another.

Table 2 presents a summary of our network’s descriptive
characteristics. Network density shows that among all possibly
connected car models, 15.7% of them are being co-considered,
and an average of 5.511 customers consider any connected car
models (average link strength). The average degree means that
on average, each car competes with 23.2 other cars. The average
weighted degree indicates a car is considered by 127.9 customers
on average. The global clustering coefficients of 0.623 gives us
an overall indication of clustering and suggests that car models
tend to engage in a multi-way competition. We observe from
the distribution of link strengths (including non-existing links de-
noted by zero strength), that 98.17% values are lower than ten,
and the distribution has a long-tail with a few large values. When
comparing it to existing statistical distributions that can be used
to initialize a valued-ERGM, its shape matches the most with the
positive part of a standard normal distribution. We further verify
this observation by our experiments, where using a standard nor-
mal distribution provided the best results in model fit. We use it
to report all our results.

To create the ERGM network model, we select the set of
most important car attributes based on the selection criterion used
in a previous study [6] to associate with network nodes, includ-
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TABLE 2: Summary of Co-Consideration Network Descriptive Characteristics

No. Nodes Network Density Ave. Strength Ave. Degree Ave. Weighted Degree Global Clustering Coefficient

296 0.157 5.511 23.2 127.9 0.623

ing price, engine power, fuel consumption, market segment, im-
port, and car make origin. This allows us to compare our re-
sults with past work too. We apply log transformation to price
(in Chinese Yuan RMB) and engine power (in brake horsepower
BHP) to normalize the range of attribute values and reduce the
large outlier effects. Fuel consumption is calculated by the ra-
tio of consumed gasoline (in liters) to driving distance (in 100
km), and a smaller fuel consumption value speaks for higher fuel
efficiency. The market segment is a categorical variable that con-
tains 17 car segments. These segments are provided by Ford.
Import and make origin are related to car’s brand information,
and 35.1% of cars are imported from Europe, the United States,
Japan and South Korea and 64.9% of cars are domestically pro-
duced in China.

Step 2: Network modeling and Interpretation In the im-
plementation of the valued-ERGM model, we assign the se-
lected car attributes to network nodes and the occurrences of co-
considerations to the link strengths. Based on the shape of link
strength distribution, we select the standard normal distribution
as the reference distribution specified in valued-ERGM models
The input variables can be divided into two categories: main ef-
fects and homophily effects. The whole set of input variables can
be found in Table 3. We use the statistical network analysis pack-
age “Statnet” in R programming, in which the valued-ERGM is
integrated [37].

Table 3 shows the estimated coefficients from fitting the
valued-ERGM models. The sum/intercept variable serves as a
constant term in valued-ERGM and it estimates the likelihood
of two cars’ co-consideration strength without any knowledge
about the cars’ attributes. All the input variables, except the main
effect of power, are statistically significant with p values lower
than 0.05. As all the variables are normalized to a similar order
of magnitude, the differences in coefficients denote their rela-
tive importance in the model fit. We observe that the coefficients
corresponding to the homophily effects are larger than those of
the variables within the main effects. This indicates that the ho-
mophily effects may play a more important role in two cars being
co-considered. Among the main effects, the coefficient of import
effect is negative but the coefficients of brand origins from differ-
ent countries are positive, which implies customers tend to con-
sider domestically made cars with foreign brands, such as Ford
Changan Focus, Honda Dongfeng Civic. Variables like price,
power and fuel consumption are not as significant as the other
main effects. Among the homophily effects, the market segment
matching and brand origin matching are significant. This may

TABLE 3: Estimated Coefficients of the Co-consideration Net-
work

Input Variables Est. coef.

Network structural effect
Sum/Intercept - 1.64***
Main effect (nodal attributes)
Import - 0.30***
Price (log2) 0.07***
Power (log2) - 0.006
Fuel consumption (per 100 BHP) - 0.01***
Brand origin (the US) 0.29***
Brand origin (Europe) 0.19***
Brand origin (Japan) 0.09***
Brand origin (Korean) 0.15***
Homophily effect (dyadic attributes)
Market segment matching 0.44***
Brand origin matching 0.22***
Price difference (log2) - 0.20***
Power difference (log2) 0.08***
Fuel consumption difference - 0.04***

Note: *p<0.05; **p<0.01; ***p<0.001

reveal that car models within the same market segment and the
same brand origin tend to be co-considered by customers. Fur-
ther, a statistically significant large negative coefficient of price
difference shows customers prefer to consider cars in a similar
price range. This observation aligns with our intuition, as a cus-
tomer may consider cars within his/her budget.

Step 3: Validation and Prediction We perform three different
types of validation to examine both the model fit and the predic-
tion power, as elaborated below:

Trained model prediction is similar to the link strengths in
the training data. We start model validation by simulations on
the current network structure based on the estimated coefficients
of selected model terms. More concretely, we create 100 sim-
ulated networks with 2013 car co-consideration network struc-
tures and estimate parameters in Table 3, then take the average
of link strength values for each pair of nodes and denote it as
the aggregated simulated car co-consideration strength. As a re-
sult, the link strength comparison of the simulated network and
the original network reveals the goodness of the model fit. Fig-
ure 3 (Top) plots the link strengths of the true network with the
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aggregated simulated network obtained from our trained ERGM
model. We observe that two sets of link strengths are positively
correlated, where a perfect y = x line may indicate a perfect fit.
We observe a Pearson coefficient of 0.995 and the coefficient of
determination (R2) of 0.990, which is strong evidence of good
model fit.

FIGURE 3: Goodness of fit using link strength comparison be-
tween the trained network and simulated network. Top: Link
strengths of the trained network with the aggregated simulated
network for 2013. Bottom: Link strengths of the true network
with the aggregated simulated network for 2014 (unseen future
data).

FIGURE 4: Precision and Recall Curve of Network Prediction.
We observe that irrespective of different cut-off values, valued-
ERGM models have a higher precision and recall than binary
network used as a baseline from [6]

Trained model predicts link strengths of future unseen data
reasonably well. In practice, the benefit of training a statisti-

cal model is to predict the future behavior of networks and not
the network that has already been realized. While the market
competition between different car models varies yearly, we test
whether our fitted co-consideration model can be utilized to pre-
dict the co-consideration relationship in the future market. Fig-
ure 2 illustrates an example of the real market evolution, it can be
observed that in 2014 Great Wall Hover gains more customers’
consideration, and the strong co-consideration relationship be-
tween VW Tiguan and Honda CR-V decreases slightly. Our ex-
amination of the model’s predicting power uses a similar method
of network aggregation as used in the validation on the training
data, but with the input of 2014 car attributes as the updated net-
work nodes. With a similar simulation process, we derive the
aggregated predicted co-consideration network for 2014 market
data, and compare it with the actual co-consideration network in
2014. The scatter plot of actual link strength and predicted link
strength is reported in Figure 3 (bottom), with a high R2 of 0.790
and Pearson coefficient as 0.896. More importantly, we observe
that though there exist some deviations between prediction and
true link strength when the link strength values are low in magni-
tude, the prediction is better for large link strengths. In practice,
large link strengths are more important to predict correctly, as
they indicate the competition between major players in a mar-
ket. In addition, the weighted network model is also beneficial
to designers who eager to know the outcomes of design vari-
able changes. When we conduct the model validation, we have
been using the weighted network model to predict the competi-
tion relation evolution when design variables changes from 2013
to 2014. Likewise, with its predictive ability, one can simulate
the weighted network model with changed design variables (de-
sign intervention), and foresee the resulted competition market.
Thus, the model can provide some foresight for car manufactur-
ers to make strategic decisions.

Valued-ERGM has higher precision and recall compared to
baseline binary models We want to further compare the pre-
diction result with the previous binary non-weighted network
baseline [6]. However, for comparison, we have to convert a
simulated weighted network to a binary network using some cut-
off value for link strengths. We use four different cut-off values
and after creating a binary network, we compare the predicted
co-consideration network and the actual one. This comparison
allows us to measure the precision (the fraction of true positive
predictions among all positive predictions) and recall (the frac-
tion of true positive predictions among all positive observations)
as the metrics to evaluate the performance of our method. A
higher value of precision and recall indicates a better predictive
model.

To find a few cutoff values for comparison, we use the quan-
tiles from the actual network link strength distribution, which
are 0.10, 0.30 and 0.40 and the mean value (0.55). For the pre-
dicted link values, due to the unbalanced nature of the data (most
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of the link strength values are zero), we set the cutoff value of
the link strength by different thresholds and draw the precision
and recall curve for each cutoff values. The baseline model is
reported in the past work [6], which used a binary ERGM has
a precision value of 0.543 and a recall value of 0.311. As can
be seen from Figure 4, the precision-recall curves for all cut-off
values using the valued-ERGM model is higher than the baseline
model. This demonstrates that the valued-ERGM network mod-
eling technique has a significantly better precision and recall for
predicting binary co-consideration networks too, which provides
evidence that it can be utilized for better understanding of market
competition.

4.3 Case Study 2: Crossover SUV Choice Network
In this case study, we use valued-ERGM models to throw

some light on competition between cars in the choice stage of
a customer’s decision making process. We specifically focus on
crossover SUV car market segment and describe the steps next.

Step 1: Network construction In the second case study, we
focus on market competition among crossover SUVs, such as
Ford Edge and Mazda CX-7, which are designed with the body
and space of an SUV but the platform of a sedan and have
received increasing attention in the car market. There are 14
crossover SUV models in 2013 survey data, and we have col-
lected all the survey data of which customers have either con-
sidered or chosen a crossover SUV model in that year (1975
customers in total). The directed choice network is established
based on the customers’ purchase behavior as described in the
previous section and all competitors in the network are divided
into four segmentation groups: Sedan, SUV, Luxury or Sport and
Crossover SUV. The visualization of the choice network is plot-
ted in Figure 5, where the node sizes of crossover SUVs reflect
the number of customers who have purchased it.

Overall, there are 217 car models in the crossover SUV
choice network. All the links are directed and point to the “win-
ner” in a competition of customers’ decision making. The aver-
age link strength is 2.431 corresponding to the average number
of customers’ purchases among all co-considered cars. A distinct
characterization of the choice network is that the in-strength of a
node is correlated to its market share.

Step 2: Network modeling and Interpretation The proce-
dure of network modeling of a choice network shares many sim-
ilarities with that of a co-consideration network in the valued-
ERGM package. However, as the choice behavior is not symmet-
ric between pairs of nodes, the model terms are further specified
for inward nodes or outward nodes. Specifically, the main effects
in Table 4 refer to the nodal attributes of the inward nodes, hence
we can learn the important attributes of the “winners” and find
possible reasons behind the popularity of a car model. Besides,

FIGURE 5: A force directed graph visualization of the choice
network for Crossover SUVs. We observe that most crossover
SUVs compete with Sedans and SUVs.

TABLE 4: Estimated Coefficients of the Choice Network

Input Variables Est. coef.

Network structural effect
Sum/Intercept 0.19
in-2-star (Popularity) 0.002***
Main effect (inward node attributes)
Import 0.01
Price (log2) -0.02.
Power (log2) 0.02
Fuel consumption (per 100 BHP) 0.01*
Brand origin (the US) 0.005
Brand origin (Europe) 0.002
Brand origin (Japan) 0.003
Brand origin (Korean) 0.01
Homophily effect (dyadic attributes)
Market segment matching 0.04**
Brand origin matching 0.04***

1 Note: .p <0.1; *p<0.05; **p<0.01; ***p<0.001

we have added a network structural effect - “in-2-star”, which
measures the uncentered covariance of in-dyad values incident
on each node. More precisely, it accounts for the in-strength het-
erogeneity and is used to represent the popularity of a car model.

Table 4 shows the estimated coefficients from fitting the di-
rected valued-ERGM models. The network structural effects and
homophily effects play an important role in a directed network.
A significant and positive estimation of in-star effects indicates a
high heterogeneity of the node in-strength distribution and there
are some car models more popular than the others (because the
more edges on a node, the more two stars an additional edge will
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create). An evidence of this interpretation can be found in Fig-
ure 6 that in crossover SUV market, Chevrolet Captiva and Toy-
ota Highlander account for more than 40% of the market share.
As a choice network also implicitly contains customers’ consid-
eration information as they link two co-considered cars together,
the estimation of homophily effects implies the positive relation-
ship between car similarities and the tendency of they are co-
considered. Moreover, many of the main effects don’t have a
significant p-value, but their signs are consistent with common
sense as people prefer a car model with a lower price (negative)
and a stronger power (positive). What is interesting about the
data in the main effect category is that higher fuel consumption
has a positive impact on customers’ choice. One possible ex-
planation for this observation is that the customers who consider
or purchase crossover SUVs seek a better off-road performance
instead of purchasing the car with lesser fuel consumption.

Step 3: Validation with pairwise competition comparison
We validate our model using two methods — predicting pairwise
competition and estimating the market share of each car. We first
evaluate the model fit at the pairwise competition level. Given
the original network structure, one can recognize the “winner”
in each pairwise competition by detecting the customers’ choice
prevalence. For example, among 25 customers who have consid-
ered both car A and car B, there are 15 customer prefers car A and
10 customers prefer car B, and then A is denoted as the “winner”
in “A-B” competition. After simulations of the choice network
structure based on the fitted model, the aggregated (i.e. averaged)
simulated link strength can be used as the judgment of pairwise
competitions. The result shows that the simulated choice net-
work can estimate 72.06% of the pairwise competitions correctly.

Validation with market share comparison In a directed
choice network, the in-strength of node sin(i) is related to its
market share as we explained before. Hence, we can further
validate the choice network by comparing the simulated market
share for each crossover SUV with the true market share in the
network data. Specifically, the in-strength fraction ( sin(i)

∑
n
j=1 sin( j) ) is

calculated for the crossover SUVs in an observed choice network
and serves as the actual market share, then the simulated market
share is derived from the average in-strength of the nodes within
100 simulations. The comparison of actual market share, simu-
lated market share and uniform market share (which assumes all
crossover SUVs have the same market share and serves as a base-
line) is plotted in Figure 6. Compared to the baseline of uniform
market share, the simulated market share has a R2 value equals to
0.939, which indicates that approximately 94% of the observed
variation can be explained by the fitted choice network model.

While valued-ERGM shows a reasonably good fit at the pair-
wise relative competition and the market share, we found that it
did not predict well the absolute value of weights in the choice
network, both for the current and future markets. We suspect

that this is due to the limited choice of reference distributions
in standard software packages which were not representative of
our true distribution. In future work, we will explore ways to
improve valued-ERGM for better prediction of both unseen data
and edge strengths.

FIGURE 6: Valued-ERGM prediction of crossover SUVs market
share aligns with the true market share.

5 DISCUSSION
While the valued-ERGM model provides many advantages

over existing statistical models, it still has many theoretical and
practical challenges to be widely adopted by car manufacturers.
We discuss a few of these limitations next and discuss how they
pave the path to future research directions.

Helping engineering design decisions using valued-ERGM
One of the goals of using valued-ERGM model is to demonstrate
how the approach can help in understanding the important fac-
tors that influence product competition. These factors can help
a decision-maker in making strategic decisions, which include
changes to the product. However, it is important to note that
while the theoretical model allows one to estimate the impor-
tance of any attribute, the analysis for specific case studies also
depend on what product data is available and whether there exist
any true relationships between product attributes and customer-
purchase decisions. To understand this, let us consider three hy-
pothetical situations. In the first situation, customers make a pur-
chase decision based only on the size of the car engine. Using an
valued-ERGM model, the analysis results show that the size of
the engine (or power – which is correlated with it) have a signif-
icant coefficient. In such cases, the network model will directly
inform a car manufacturer that increasing the engine size will
help them gain more market share. The same applies if the cus-
tomers consider multiple attributes. In the second situation, we
assume that the customers make a purchase decision based only
on the quality of the automotive air-conditioning system. If the
data we analyze does not include air conditioning as a design at-
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tribute, the results will be meaningless due to the lack of data.
The only remedy for this situation is to collect the data which
can capture the relevant attributes, and then use them to assist
car manufacturers in making decisions. In the third situation, we
assume that customers base their purchase decisions on factors
that are not design-related, such as social or cultural influence.
In such cases, the coefficients of all design attributes may not
have statistical significance, which indicates that the improved
design factors will not help automakers gain more market share.
Hence, the guidance provided to a manufacturer is to not waste
resources on improving factors which do not have an impact.

In our case studies, we believe that all the three scenarios
discussed above might be playing a role — we find some design
attributes which impact design decisions and have statistically
significant values, we also discover that the dataset is limited and
lacks information about designs of parts within a car and finally,
many design attributes which we studied did not have statistically
significant values, indicating that those factors may not play a
role in customer decisions.

From our current results for both case studies, we uncover a
few factors which impact engineering design decisions for prod-
uct consideration. Specifically, in the co-consideration network
of case study 1 (Table 3), we observe that a car designer seek-
ing to improve the chances of their car models to be considered
by customers must reduce fuel consumption (which relates to
engine efficiency). Although factors like price, power and fuel
consumption have significant values, they do not directly provide
clear design guidance for a car manufacturer. In the choice net-
work of case study 2 (Table 4), the model results help decision-
makers with strategic planning as well. For example, in the
crossover SUV market, the improvement of fuel consumption
is not important in customers’ purchase decision. Instead, it is
helpful to reduce price to improve market share. We notice, that
our dataset lacked design-based attributes about individual com-
ponents in the cars, which may have played a huge role in the
customer decisions. In future work, we aim to gather product
attributes for a new customer product using crowdsourcing.

Trade-off between feature engineering and model inter-
pretability In valued-ERGM models, we start with a large col-
lection of features. These features can be node-specific (e.g.car
fuel efficiency, price), edge-specific (e.g.difference in price, simi-
lar car models) or network-specific (e.g.popularity, density). The
choice of what features to use has a large impact on the good-
ness of fit of the model, coefficients for each attribute as well as
the statistical relevance. While we use automated methods for
feature selection (which largely select features that are uncorre-
lated), the process is largely manual. In contrast, one can use
modern deep learning models, which learn hierarchical feature
representations for each item to minimize a loss function. The
deep learning models are largely a black-box and are hard to in-
terpret, which is one of the key reasons of our using ERGMs,

the statistical network models, for assisting car manufacturers.
In the future, we aim to find the middle ground of reducing de-
pendence on selecting features and explore the interpretability
of deep learning models with newly developed analysis, such as
SHapley Additive exPlanations (SHAP) [38].

Training large scale models Valued-ERGM models are typi-
cally appropriate for small to medium-sized graphs, with a few
attributes. From our experience, one cannot train such a model
for tens of thousands of edges and hundreds of node attributes.
For large datasets, the MCMC approach to estimate parameters
does not converge. This leads to an important limitation for car
manufacturers, who now want to make the most of huge datasets
but still want statistical models that can help them understand
what is happening under the hood. While there is some re-
cent work on developing scalable ERGMs [39], extending them
to valued-ERGMs can help alleviate the scalability problem for
large datasets.

Another alternalte option is to use Graph Neural Networks
(GNNs) to model large graphs. However, using GNNs has two
problems. First, most GNNs are inherently transductive and can
only generate embeddings for a single fixed graph. These trans-
ductive approaches do not efficiently generalize to unseen new
products. Secondly, it is difficult to isolate the importance of de-
sign attributes in link formation using GNNs as the network em-
beddings also encode some of the attribute information. Hence,
ERGM models are more suitable for studies requiring inductive
models. In future studies, we will explore a few inductive GNN
methods like GraphSAGE and compare them to valued-ERGM
models.

Temporal domain of network analysis The temporal domain
of the network evolution is an important topic in the product
competition area, where the network structure evolves with time
as new products or design features are introduced. Researchers
have used binary STERGM models to study the competition be-
tween cars in dynamic networks [9]. In our preliminary liter-
ature review, we identified that the weighted STERGM models
have not been proposed in the network literature yet. This may
be because of the difficulty in modeling the network prior. In the
current work, we predict the future network, by assuming that no
new car is introduced, although the value of car attributes may
change. While weighted dynamic networks were not the focus
of this paper, we agree with the reviewer’s advice and will fur-
ther explore it to study the dynamic effect of network in future
work.

6 CONCLUSION
In this paper, we exhibit how valued-ERGM models can be

used to model directed and undirected car competition networks
with non-binary link strengths. The method enables designers
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to estimate the major factors that affect customers’ considera-
tion and choice behavior, and which can help in predicting future
market competition when a manufacturer changes some product
attributes. The scientific contributions and novelty of this work
are as follows:

1. We extend the newly developed valued-ERGM in social net-
work modeling into product competition network modeling,
which enriches the knowledge base of product design mod-
eling techniques.

2. By developing a procedure of weighted network construc-
tion, interpretation and validation, we demonstrate that
valued-ERGM models provide a better model than binary-
ERGM, as measured by model fit and prediction accuracy
for car competition.

3. As a first attempt of unidimensional network modeling for
analyzing aggregated choice behavior, we demonstrate a
way to represent choices between different cars using a di-
rected unidimensional network, which enables us to capture
both consideration and choice preferences in a unidimen-
sional network.

The case studies in this paper show how network models are used
to systematically analyze large real-world networks. For the first
case study, which analyzes the co-consideration competitions be-
tween 296 cars, we show that homophily effects, affecting the
differences between two cars, are more important than the main
effects in predicting link strengths. Cars are generally found to
compete more with other cars from the same market segment,
same brand origin and similar price range. Moreover, the model
has exhibited the predictive ability to provide some foresight for
car manufacturers to make strategic decisions. From the second
case study, which focuses on the crossover SUV market, we ana-
lyze a network of 217 cars and find that cars which are considered
by more people are also purchased more often. In future work,
we aim to analyze how valued-ERGM can help study new do-
mains and further investigate ways to integrate feature learning
methods like deep learning with valued-ERGM models while re-
taining their interpretability. Improving the scalability of these
models to larger datasets and using them for dynamically evolv-
ing car competition is another interesting avenue of research.
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