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Data-Driven Dynamic Network
Modeling for Analyzing the
Evolution of Product Competitions
Understanding the impact of engineering design on product competitions is imperative for
product designers to better address customer needs and develop more competitive products.
In this paper, we propose a dynamic network-based approach for modeling and analyzing
the evolution of product competitions using multi-year buyer survey data. The product co-
consideration network, formed based on the likelihood of two products being co-considered
from survey data, is treated as a proxy of products’ competition relations in a market. The
separate temporal exponential random graph model (STERGM) is employed as the dynamic
network modeling technique to model the evolution of network as two separate processes:
link formation and link dissolution. We use China’s automotive market as a case study to
illustrate the implementation of the proposed approach and the benefits of dynamic
network models compared to the static network modeling approach based on an exponential
random graph model (ERGM). The results show that since STERGM takes preexisting com-
petition relations into account, it provides a pathway to gain insights into why a product
may maintain or lose its competitiveness over time. These driving factors include both
product attributes (e.g., fuel consumption) as well as current market structures (e.g., the
centralization effect). With the proposed dynamic network-based approach, the insights
gained from this paper can help designers better interpret the temporal changes of
product competition relations to support product design decisions.
[DOI: 10.1115/1.4045687]
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1 Introduction
In a dynamic market environment, product competition changes

over time [1], e.g., due to release of new products, withdrawal of

outdated products, technological progress, and social changes. For
example, the market share of US brands in the Chinese auto
market fell from 12.2% in 2017 to 10.7% in 2018, and according
to Refs. [2,3]2 a possible reason for this decline is due to the
delayed refresh of the US lineups, which implies the negative
effect of untimely design improvement on product competition.1Corresponding author.
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2https://www.autonews.com/article/20180810/GLOBAL/180819982/ford-s-china-
sales-fall-32-july-on-lack-of-fresh-models
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The change of customer preferences is another potential cause for
the evolution of product competition. Fuel-efficient cars have
been more desirable since the energy crisis of the 1970s as custom-
ers become more sensitive to rising gas prices [4]. Since early
2000s, higher fuel efficiency has contributed to the increasing com-
petitiveness of hybrid vehicles [5]. Therefore, a thorough under-
standing of the dynamic changes in market competition is of
great significance in many engineering design scenarios, such as
product feature competition (e.g., whether to upgrade design fea-
tures of an existing car and by how much) and new product posi-
tioning (e.g., whether to develop a new car model to fill a specific
market niche).
Existing research on product competition has primarily focused

on investigating the strategic factors that influence the competitive-
ness of products. For example, Talay et al. [6] employed the para-
metric hazard model to investigate the factors influencing the
survival of auto companies in the US automotive market. They
found that rather than the quality of its innovations, it is a firm’s
ability to keep up with its competitors that determines its chances
of survival in the marketplace. This again demonstrates the signifi-
cance of investigating the competition relations of products.
Roberts [7] applied the autoregressive profit model to examine
the relationship between product innovation, competition, and prof-
itability in the US pharmaceutical industry. They found the positive
relationship between a firm’s ability to avoid competition (i.e., to
sustain the competitive position of each innovation over time) and
the persistence of its above-normal profit outcomes. Economic
growth model [8] and game theoretic models [9,10] have been
adopted for understanding the dynamics of product competition.
However, these methods are not able to directly model the influence
of engineering attributes and existing competition relations on
future product competitions. Thus, they may not provide sufficient
insights into the impact of design improvement on maintaining
competition relations.
To understand the impact of product design change on competi-

tion relations, recent studies have explored the use of network anal-
ysis to model product competitions [11,12]. Network-based
approaches model products as nodes and the co-consideration rela-
tions (competition) between products as links. Here, the product
co-consideration network is treated as a proxy of a competition
network in a market. By taking the dependencies among links into
consideration, network-based approaches are effective in modeling
complex and interdependent relations [13,14]. In previous research,
a unidimensional network-based approach based on the exponential
random graph model (ERGM) [15] has been developed to study
product competitions in the form of product co-considerations [12]
and used to assess the impact of technological changes (e.g., turbo
engine) on product competitions and customers’ co-consideration
behaviors [16]. Later, the unidimensional network-based approach
was extended to a multidimensional network structure where cus-
tomer social relations were included to study their influence on het-
erogeneous customer preferences [14].
Despite the strength of these earlier developed network models

[11,12,14,16–18], they are static in nature that ignore the
dynamic change of product competitions over time. The models
are limited in explaining why a product may maintain or lose its
competitive advantage over time. To overcome the limitations of
existing methods, we propose a dynamic network modeling
approach to study the evolution of product competition relations.
Specifically, we utilize the separable temporal ERGM (STERGM)
[19,20] for dynamic network modeling based on the following
reasons:

• First, existing degree-based generative dynamic network
models (e.g., small world network [21], scale-free network
[22], and the dynamic stochastic block model [23]) are
limited in modeling the influence of nodal and edge character-
istics (e.g., customer demographics and relation strength) on
the change of network structures [24]. In contrast, inferential
techniques such as STERGM [19] examine both growing

and shrinking dynamics, i.e., how the explanatory factors
influence the formation of new links and the dissolution of
old links. Compared to the stochastic actor-oriented model
[25], another widely used longitudinal network model which
treats nodes as actors who make active decisions, STERGM,
is more advantageous for our purpose because it is a
link-oriented model that can include nodes which are not
actors, e.g., products in our work [26].

• Second, in the social network literature, STERGM has been
utilized for modeling various dynamic social relations, such
as the evolutions of social networks of politicians [27] and
international trade networks [28]. Researchers have found
that both exogenous factors (e.g., economic characteristics of
countries) and preexisting network structures (e.g., reciprocity
for bilateral trade relations and triadic closure effects for trilat-
eral trade relations) influence international trade networks over
time [28]. Thus, STERGM allows us to investigate how preex-
isting competition relations influence product competitions in
addition to the impact of product features.

• Third, STERGM is an extension to the static ERGM. There-
fore, the results from STERGM and ERGM can be compared
and related to further advance our understanding of product
competition relations.

However, STERGM has never been employed for studying
dynamic product competitions. Our objective in this paper is to
extend STERGM from social network analysis to studying the
impact of engineering design and existing market competitions on
the evolution of product competition relations. A data-driven
approach is developed to create the STERGM using multi-year
buyer survey data. The network links are formed based on the like-
lihood of two products being co-considered using the choice set
information gathered from buyers. Here, co-consideration is a situa-
tion that a customer concurrently considers multiple products in
cross-shopping activities [29]. We choose co-consideration to rep-
resent competitiveness in this research because a product will not
be purchased by customers if not considered first.
In the existing literature, STERGM only models the same set of

nodes over time in dynamic networks [27,28]. However, for product
competitions, the sets of products (or nodes) in different years vary
because new products appear in the market and existing products
exit the market from time to time. To overcome this difficulty, we
leverage the concept of “structural zeros” [30] to address the
varying product consideration set from year to year in dynamic
network modeling. Results from STERGM are used to explain
what factors drive two products into competition and why a compet-
itive relationship is preserved or dissolved over time. The insights
gained can help designers develop more competitive product, thus
better address customer needs. They may also support companies’
strategic decision-making, such as branding, product positioning,
and marketing.
The paper is organized as follows. Section 2 provides the techni-

cal background of network analysis, the static network modeling
technique (ERGM), the dynamic network modeling technique
(STERGM), and the “structural zeros” concept. In Sec. 3, a
general approach for modeling dynamic product competition rela-
tions based on STERGM is introduced and illustrated using the
data associated with China’s SUV (sport utility vehicle) market.
The process of preparing the dataset, identifying modeling attri-
butes, and handling varying vehicle nodes in dynamic network
modeling are explained. The results of STERGM are presented
and compared with the results of the static network modeling
approach (ERGM). To assess the results, model fit evaluation is per-
formed at both the link level and the network level. Section 4 dem-
onstrates how the proposed approach can predict future product
competitions compared to ERGM using precision–recall (PR)
curve and support decision-making in vehicle design. Section 5
concludes with reflections on the implications of this approach for
engineering design and future research opportunities.
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2 Technical Background of Dynamic Network Analysis
and Modeling
Network analysis has been recognized as an essential method for

analyzing and modeling complex systems in a wide variety of fields
such as biology, computer science, social science, and engineering
[14,31–33]. With network analysis, the structure of a system is visu-
alized and simplified as a graph, where nodes represent entities in the
system and edges/links represent relationships between entities. In
this section, two statistical network models for network analysis,
i.e., ERGM and STERGM, and the “structural zeros” concept are
introduced.

2.1 Exponential Random Graph Model. ERGM is a flexible
statistical inference framework, which assumes an observed
network y as an instance of random networks Y given by the distri-
bution in Eq. (1)

Pr(Y = y) =
exp(θT · g(y))

κ(θ, y)
(1)

where θ is a vector of correspondingmodel parameters, and κ(θ, y) is a
normalizing constant to guarantee that the equation is a proper proba-
bility distribution. In the context of this work, network Y captures
product competition relations, which are identified based on product
co-considerations from the customer survey (see more details in Sec.
3.1).g(y) is a vector of network statistics of interest including attributes
of nodes, attributes of links, aswell as network structure attributes [14].
Figure 1 provides three exemplary network structures that can be
modeled by ERGM. Equation (1) suggests that the probability of
observing a specific network structure is proportional to the exponent
of aweighted combination of network statistics. The estimatedERGM
parameters θ indicate the importance of the network statistics to the
formation of links in a network. For example, a positive θ of the
shared partner structure in an ERGM for the vehicle competition
network implies that if twovehicles competewith someother vehicles,
they are more likely to compete with each other.
The estimated ERGM parameters θ can also be used to calculate

the log-odds of the formation of certain links, i.e., how likely a link
exists between two nodes given their nodal attributes and the struc-
ture of the remaining network as shown in Eq. (2)

Logit Pr(yij = 1|y−ij) = log
Pr(yij = 1|y−ij)
Pr(yij = 0|y−ij)

= θT · (g(y|yij = 1) − g(y|yij = 0)) = θT · δij(y)
(2)

where yij is the link between nodes i and j, y−ij is the network exclud-
ing the link between nodes i and j, and δij(y) is the difference of the
network statistics between the network where the link between nodes
i and j exists (i.e., g(y|yij= 1)) and the network where the link between
nodes i and j does not exist (i.e., g(y|yij= 0)). If we get positive
log-odds for nodes i and j, this indicates that having a link between
them is more likely than not having the link and vice versa.

2.2 Separable Temporal Exponential Random Graph
Model. As an extension of ERGM, STERGM is established to
model dynamic networks. Shown in Fig. 2, STERGM treats the
evolution from the network at time t (Y t) to the network at time
t+ 1 (Y t+1) as two separate processes: (1) link formation in
which new links are created following Pr(Y+= y+ |Y t;θ+) and
(2) link dissolution in which old links follow Pr(Y−= y−|Y t;θ−).
Here, θ+ and θ− denote the parameters of the formation model
(Y+) and the dissolution model (Y−), respectively. The network
at time t+ 1 is constructed by applying the changes in Y+ and
Y− to Y t following Eq. (3):

Y t+1 = Y− ∪ (Y+ −Y t) (3)

For each discrete time step, the process of formation and dissolu-
tion is independent conditional on the network at time t. This means

Pr(Y t+1 = yt+1|Y t = yt ; θ) = Pr(Y+= y+|Y t = yt ; θ+)

· Pr(Y−= y−|Y t = yt; θ−)
(4)

Relating STERGM with ERGM, the probability distribution of
the formation model and the dissolution model is expressed as

Pr(Y+= y+|Y t = yt; θ+) =
exp(θ+T · g(yt+1, yt))

κ(θ+, yt)
(5)

and

Pr(Y−= y−|Y t = yt; θ−) =
exp(θ−T · g(yt+1, yt))

κ(θ−, yt)
(6)

The normalizing denominators κ(θ+, y t) and κ(θ−, y t) are the sum
of network statistics of all possible formation and dissolution net-
works, respectively. Here, these formation and dissolution networks
only include possible variations to Y t (i.e., the additions and sub-
tractions). In contrast, the normalizing denominator of ERGM
includes all networks from an empty network to a complete
network (i.e., a network in which all nodes are linked with each
other).
Similar to ERGM, STERGM can include both exogenous (e.g.,

nodal attributes) and endogenous (network structures) variables in
network modeling. This enables the prediction of products’ future
competition relations considering the market’s present competition
structure and the influence of design changes. In addition, not only
can STERGM identify the design features contributing to the for-
mation of competition between two products but it can also identify
the features influencing the dissolution of competitions. For
example, when assessing the influence of certain SUV-relevant
attributes on vehicles’ competitiveness given the current market
structure, if the estimated effect of the third-row seat feature is pos-
itive and statistically significant in the formation model, it implies
that improving the design by including third-row seats would
make the SUV more likely to be co-considered against its compet-
itors. In the dissolution model, if the estimated parameter of fuel

Fig. 1 Exemplary network structures in a vehicle competition
network. The two-star structure indicates whether a car will
have two distant competitors. The triangle structure indicates
whether three cars compete with each other (three-way competi-
tion). The shared partner structure indicates whether two cars
sharing the same set of competitors will be co-considered. Fig. 2 Evolution dynamics of product competition
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consumption (FC) is negative and statistically significant, it means
that better fuel economy in the SUV would make its competing rela-
tionships more likely to not dissolve (that is, persist).

2.3 Structural Zeros. STERGM is typically used to model the
evolution of dynamic networks with the same set of nodes at differ-
ent time points. This is not suitable for modeling competitive
dynamics among a set of products that vary from one year to
another (i.e., inconsistent set of nodes). To address this challenge,
we utilize the concept of structural zeros. Given a unidimensional
network consisting of N nodes, this network can be presented by
a N×N matrix with entries of binary indicator 0 or 1. Structural
zeros are a way to predefine zero inputs in the matrix to restrict
those relations among nodes in the network that are logically inca-
pable of having links [34]. For instance, a car introduced at time t+
1 cannot logically have a competitive relationship with another car
that existed at time t. Therefore, the distribution of the dynamic
network at time t+ 1 can be written as

Pr(Y t+1 = yt+1|Y t = yt; Rt = rt; θ) (7)

where Rt∈ℝN×N is binary matrix corresponding to Y t and rt is a
realization of Rt, such as

r =

0 1
1 0

1 0 0
1 0 1

1 1
0 0
0 1

0 0 1
0 0 0
1 0 0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (8)

where blocks denoted as 0 are structural zero blocks which enforce
y15, y51, yx4, y4x, and yxx (x= 1, 2, …, 5) to be 0 in Y t+1, while the

other entries denoted as 1 indicate that corresponding relations in
Y t+1 have no restrictions (i.e., they are free to change to 0 or
remain as 1). Figure 3 shows an exemplary network following this
matrix.
Thus, the dynamic network model based on structural zeros can

be represented as

Pr(Y t+1 = yt+1|Y t = yt; Rt = rt; θ)

=
exp(θ+T · g(yt+1, yt))

κ(θ+, yt , rt)
· exp(θ

−T · g(yt+1, yt))
κ(θ−, yt , rt)

(9)

where possible networks of Y+ and Y− in κ(θ+, y t, rt) and κ(θ−, y t,
rt) have been reduced because of rt.
The ability to restrict the value of certain cells in a matrix using

structural zeros has been applied in different areas, such as para-
metric models [35], control systems [36], and social networks
[37,38]. For example, in social network area, Robins et al. [37]
used structural zeros to represent the relationship of paired
persons in a romantic relation network that is not closely associ-
ated romantically. In customer preference modeling, Fu et al.
[18] and Sha et al. [39] used structural zeros to constrain customers
from purchasing products outside their consideration sets in a
bipartite network-based approach for modeling customer prefer-
ences over two stages (consideration and purchase). Snijders
et al. [25] used structural zeros to deal with the missing data in
friendship networks. In this paper, we employ this concept to
handle the issue of nodes that are not present across all time
periods.

3 Utilizing STERGM to Model Evolution of Product
Competitions
3.1 Overview of the Dynamic Network Analysis

Approach. Figure 4 illustrates the procedure of utilizing
STERGM for analyzing the evolution of product competitions in
market. The detailed description of each of the three steps is pro-
vided as follows.
Step 1: Network construction and descriptive analysis. Product

competition relationship is identified in this work based on the
survey data of co-considerations, i.e., the products in the same con-
sideration set before a customer makes the final choice. In the com-
petition network, whether the competition relationship exists is

Fig. 3 A random network example incorporating structural
zeros shown in Eq. (8)

Fig. 4 Overview of the proposed approach
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determined by the lift criterion [17]. As one of the standard metrics
of association rules [40], lift can be used to measure the strength of
the association between two products based on how often they
appear in the same consideration set. The calculation of lift and
the criterion for link formation are illustrated in Eq. (10)

Lift(i, j) =
Pr(i, j)

Pr(i) · Pr(j) ,

yij =
1, if lift(i, j) > threshold
0, otherwise

{ (10)

where Pr(i, j) is the probability of products i and j being
co-considered by customers, Pr(i) is the probability of individual
product i being co-considered with other products, and yij is the
competition link between product i and product j. The lift value
measures the likelihood of competition between two products
given their respective frequencies of considerations and indicates
the dependence of the two products being considered. If the lift
between product i and product j is greater than a threshold, then
the competition link between these two product nodes exists. The
threshold is determined based on whether the formed network suf-
ficiently addresses the purpose of study, robustness analysis, as well
as the convergent requirements of the model. In this paper, we set
that the threshold equals to 1 to capture two products that
compete more likely than expected in random [12]. The robustness
analysis using threshold at 1, 3, 5, and 7 was conducted and no sig-
nificant changes in network characteristics and the trend of model
results are observed. Figure 5 provides an illustrative unidimen-
sional undirected vehicle competition network, in which the
numbers represent the lift values. A larger lift value between two
vehicles indicates that they have higher likelihood being
co-considered by customers, i.e., there is a stronger competitive
relationship between them. Descriptive analysis and visualization
of the obtained network can provide an intuitive understanding of
the nodal attributes and network structures.
Step 2: Dynamic network modeling. After generating the product

competition networks in different time periods, chosen as one year
per period, we can construct the formation and dissolution networks
between each pair of two temporally consecutive networks (see
Fig. 2) and use STERGM to investigate the evolution of network
structures. The results of descriptive analysis in Step 1 can help
the selection of explanatory factors in network statistics g(y t+1,
y t). For example, an obvious trend or significant change of attributes
in different years and in different vehicles may imply the signifi-
cance of influence. These attributes may be considered as explana-
tory factors in the next step. In addition, the selection of explanatory
factors also depends on a modeler’s interest. To deal with the
varying nodes, structural zeros were utilized in STERGM to gener-
ate the dynamic network model (see Eq. (8)). Figure 6 shows how
this method works for the link formation process by using three

networks, represented by adjacency matrices, in time t− 1, t, and
t+ 1 (i.e., Yt−1, Yt, Yt+1) as an example. The formation network
between Yt−1 and Yt is noted as Y+

t−1, and the formation network
between Yt and Yt+1 is noted as Y+

t . The structural zeros method
contains the following steps:

(a) Combine all possible formation networks (Y+
t−1, Y+

t in this
example) in one matrix. If we need to model four-year net-
works, there will be three formation networks, i.e., three
diagonal sub-matrices in Fig. 6(a). Since STERGM only sup-
ports consistent sets of nodes in principle, here the matrices
of Y+

t−1 and Y+
t include the union set of nodes from Yt−1,

Yt, Yt+1, which means the sizes of these two sub-matrices
are the same as shown in Fig. 6(a). Apparently, the whole
matrix is symmetric with zero diagonal cells (self-
competitions are not considered).

(b) Fill zeros to specific diagonal sub-matrices of Fig. 6(a) to
ensure that those new nodes appearing in the other years
have no links. For example, the sub-matrix Y ′+

t−1 in
Fig. 6(b) only includes the vehicles appearing in Yt−1, and
Y ′+

t only includes the vehicles appearing in Yt.
(c) To ensure that the model captures the effect for both pre-

served and created nodes, the new nodes in the second
year of a two-year formation network which are not consid-
ered in Fig. 6(b) will be included in Fig. 6(c). For example,
the difference between Y ′′+

t−1 in Fig. 6(c) and Y ′+
t−1 in

Fig. 6(b) is the new nodes appearing in Yt.

Upon completion, the matrix in Fig. 6(c) will replace the original
matrix in Fig. 6(a) in fitting the formation model of STERGM.
Figure 7 gives an example of how to use this method in a
dynamic network containing three time periods where the bolded
zeros represent the structural zeros in the formation model. Here,
we focus on the formation process for illustrative purpose, and
the dissolution process follows the same procedures except that
the dissolution networks are used.
Step 3: Interpretation, evaluation, and application. STERGM

can be estimated by methods commonly used in ERGM such as
maximum likelihood and generalized moments [28]. In this paper,
conditional maximum likelihood estimation was utilized to model
the transition between two networks and estimate the coefficients
in STERGM. The estimation results should be evaluated based on
both model fitting and model interpretability. In addition, the coef-
ficients of product attributes are interpreted from a dynamic per-
spective. The model is evaluated and verified in both the link
level and the network level to make sure the results are credible.
Insights gleaned from how product competitions change over
time can be used to support product upgrades and new product
development strategies in engineering design. In this paper, we
apply our approach to predicting future product competitions and
conversely examining the influence of engineering attributes on
the competitiveness of a product.

3.2 Dataset for a Case Study on China’s Crossover SUV
Market. To demonstrate the proposed approach, we carried out a
case study using the data from a recognized new car buyer survey
from 2013 to 2015 in China’s auto market [18]. The dataset in
each year consists of 50,000–70,000 new car buyers’ responses
about approximately 400 unique car models. Respondents were
asked to list up to three vehicles including final choice they consid-
ered when purchasing a car. By using each individual buyer’s con-
sideration set, the lift value between any pair of car models can be
calculated following Eq. (10) based on which the co-consideration
network is constructed. Customer demographics, such as income,
city of residence and education, and car attributes, such as price,
power, and fuel consumption, are reported in the survey and verified
by the company. In each year, the survey was collected every four
months. However, we use yearly data in this paper to avoid the sea-
sonal effects on customers’ choice behaviors. We followed previous
research in organizing the market survey dataset. More details of

Fig. 5 An illustrative vehicle competition network. Each link
represents a competition relationship between two cars. The
numbers are the lift values. The thickness of a link is proportional
to the value of lift.
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data collection, cleaning, and preprocessing can be found in Refs.
[12,14,17]. In this case study, we focus on market competitions
among crossover SUVs. A crossover SUV, such as an Audi Q7,
BMW X6, or Ford Edge, is a vehicle with the body and space of
an SUV but made using a platform shared with sedan. Crossover
SUVs inherit the advantages of spacious interiors from vans, the
off-road performance of SUVs, and the light-weight and fuel
economy of sedans. Our interest is to demonstrate the factors that
influence two crossover SUVs entering and ceasing a competitive
relationship.

3.3 Descriptive Analysis. We utilize the customers’ consider-
ation reported in the survey data to calculate the lift value (see Eq.
(10)) for all competitions between car models. We constructed three
competition networks corresponding to years 2013, 2014, and 2015.
There are 115, 139, and 119 car models from 2013 to 2015 consid-
ered, respectively, in our study (including crossover SUVs and
other conventional or SUV vehicles co-considered with crossover
SUVs) and 600 pairs of competitions in each year. Figure 8 illustra-
tively shows a vignette of a partial competition network in 2014 and
2015 with 10 vehicle models. The size of a node is proportional to
its degree and the nodes with green color represent car models that
were selected for log-odds calculation in Sec. 3.5 (this is to verify
the STERGM modeling results at link levels). The blue line indi-
cates newly formed competitive links in 2015 while the gray lines
indicate the dissolved ones. The lift value marked on each link
shows the strength of the competition and indicates the dependence
degree of two competing products. For example, in Fig. 8, Audi
FAW Q5 (Q5) competes with three cars—Toyota GAIG

Highlander (Highlander), Dongfeng Yulong Luxgen Grand 7
(Luxgen Grand 7), and BMW X6 (X6). For a customer considering
the Q5, in 2014, the Highlander is the most likely co-considered car
whereas in 2015 the closest competitor changes to X6.
Table 1 provides the mean value and standard deviation (in

brackets) of vehicle attributes (except ratings for seat position and
legroom) from 2013 to 2015 for all pairs of competing vehicles
versus all possible pairs of competing vehicles. The major differ-
ence is that the car models in the set of “all possible pairs of com-
peting vehicles” do not necessarily hold a direct competition
relation (e.g., car A and car B are not competitors, but they both
compete with car C). Based on our previous research in choice mod-
eling and product competitions [11,14,41], three categories of
vehicle attributes are considered in modeling: (1) regular vehicle
attributes such as the price, power, and fuel consumption of vehi-
cles; (2) comparative vehicle attribute, reflecting their difference.
For example, the price difference between two competed vehicles
allows us to investigate whether vehicles with similar or different
attributes are more likely to compete with each other; and (3) SUV-
relevant attributes, such as seat position. In total, nine vehicle attri-
butes are considered including price, power, FC, turbo, make origin,
all-wheel drive (AWD), seat position, legroom, and third row.
Among them, price and power are preprocessed using log2 transfor-
mation to handle their non-normal distributions. Turbo, AWD, and
third row are binary variables describing whether such an attribute
is available in a car or not. Seat position and legroom are based on
customer satisfaction Likert-scale ratings from 1 (dissatisfy
strongly) to 4 (satisfy strongly). Median values were used in
Table 1 for seat position and legroom since it is more appropriate
than mean value for a Likert ordinal scale (then the standard

Fig. 6 Structural zeros used in STERGM for dynamic network with varying sets of nodes.
(a) Combining all possible formation networks in one adjacency matrix. (b) Utilizing structural
zeros to restrict the relations between nodes in current year and new nodes in other years.
(c) Releasing the restriction of new nodes in the second year to capture the effect for created nodes.

Fig. 7 An illustrative example for the structural zeros method in the formation model. (a) A
dynamic network example containing five nodes 1–5 and three networks Y1, Y2, and Y3 in three
time periods t, t+1, and t+2. (b) Corresponding adjacency matrix of formation networks based
on (a), in which smaller rectangular regions of diagonal sub-matrices represent Fig. 6(b) and
larger regions represent Fig. 6(c).
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deviation is not needed) [42,43]. Table 1 shows that the mean
values of price, power, fuel consumption, vehicle attributes differ-
ence, and third row are lower on average in competing vehicles
than that in all possible pairs of competing vehicles. Some
vehicle attributes changed from 2013 to 2015; for example, the
mean value of power for all possible pairs of competing vehicles
increased from 7.25 to 7.35 and fuel consumption decreased from
10.13 to 9.96.

3.4 Results of Dynamic Network Modeling. The R package
“tergm” is used to fit the STERGM models [44]. As shown in
Table 2, the explanatory variables in our dynamic network models
correspond to two types of variables: endogenous variables (i.e.,
network structures) and exogenous variables consisting of the
main effects and homophily effects of vehicle attributes. The main
effect measures the impact of the existence or value of a vehicle attri-
bute on the probability of a competition link, whereas the homophily
effectmeasures the impact of the similarity (or difference) of the attri-
butes of two vehicles on the probability of a competition link [11].

In this study, we consider three network structure statistics [45]:
Edges, which estimates the likelihood that two cars will compete
with each other randomly. It can be treated as a “base rate” similar
to the intercept term in a regression. Geometrically weighted edge-
wise shared partner (GWESP) is referred to as the shared partner
structure in Fig. 1 and measures the closure effect of the network
and geometrically weighted degree (GWD) measures the centraliza-
tion effect of the network (i.e., the evenness of degree distribution).
In this study, the decay parameter forGWESP andGWDwasfixed to
0.5 for simplifying the computation. In a vehicle competition
network, a positive coefficient of GWESP means it is very likely
for two cars to compete with each other if they share the same set
of competitors. A positive coefficient of GWD means most cars
have similar numbers of competitors. A negative coefficient of
GWD means some cars are much more likely to have a much
larger number of competitors than the rest. As such it reflects a “cen-
tralization effect” in the competition network. The Akaike informa-
tion criterion (AIC) [46] was used as the estimator to measure the
relative quality of the network model in this paper. Lower AIC
value indicates better quality of a model.

(a) (b)

Fig. 8 An example of partial vehicle competition networks evolving from (a) 2014 to (b) 2015

Table 1 Descriptive analysis of competing vehicle pairs versus all possible pairs of competing vehicles

Pairs of competing vehicles All possible pairs of competing vehicles

2013 2014 2015 2013 2014 2015

Regular vehicle attributes
Price (Yuan) (log2) 16.95 (0.94) 17.37 (1.22) 17.04 (0.99) 17.43 (1.22) 17.55 (1.37) 17.52 (1.32)
Power (BHP) (log2) 7.03 (0.42) 7.20 (0.52) 7.18 (0.41) 7.25 (0.56) 7.28 (0.58) 7.35 (0.55)
FC (L per 100 km) 9.24 (1.79) 9.82 (2.07) 9.36 (1.73) 10.13 (2.3) 10.07 (2.17) 9.96 (2.09)
Turbo 0.14 (0.28) 0.28 (0.39) 0.37 (0.37) 0.19 (0.33) 0.28 (0.39) 0.39 (0.40)
Origin (US) 172 (14%) 239 (16%) 138 (15%) 23 (20%) 21 (15%) 18 (15%)
Origin (EU) 188 (15%) 366 (25%) 111 (12%) 20 (17%) 36 (26%) 27 (23%)
Origin (JP) 183 (15%) 167 (11%) 107 (12%) 19 (17%) 17 (12%) 18 (15%)
Origin (KR) 275 (22%) 128 (9%) 59 (7%) 17 (15%) 14 (10%) 10 (8%)
Origin (CN) 438 (35%) 566 (39%) 485 (54%) 36 (31%) 51 (37%) 46 (39%)
Vehicle attribute difference
Price difference 0.47 (0.39) 0.49 (0.43) 0.44 (0.36) 1.40 (1.01) 1.57 (1.13) 1.52 (1.09)
Power difference 0.25 (0.21) 0.25 (0.22) 0.27 (0.21) 0.64 (0.47) 0.67 (0.49) 0.63 (0.46)
FC differences 1.08 (0.94) 1.08 (0.94) 1.04 (0.86) 2.61 (1.95) 2.48 (1.80) 2.42 (1.71)
SUV-relevant attributes
AWDa 0.14 (0.29) 0.26 (0.36) 0.22 (0.30) 0.23 (0.36) 0.26 (0.37) 0.24 (0.36)
Seat position 3 3 3 3 3 3
Legroom 3 3 3 3 3 3
Third row 0.10 (0.29) 0.14 (0.35) 0.12 (0.33) 0.16 (0.36) 0.16 (0.37) 0.20 (0.40)

aAWD, all-wheel drive.
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Three STERGM models (A, B, and C) are created with different
model specifications. In model A, we only consider the main effect
of regular vehicle attributes and homophily effects, and results are
used as the baseline for comparison. Model B includes the main
effect of regular vehicle attributes, homophily effects, and
network effects. In model C, we consider all endogenous and exog-
enous variables including main effect of SUV-relevant attributes.
The reduced AIC value from model A to model B in Table 2 indi-
cates model improvement due to the introduction of network struc-
ture effects. This means that network structure effects play an
important role in forming new competitions and preserving existing
competitions. Furthermore, the improvement in model quality from
model B to model C indicates that the inclusion of SUV-relevant
attributes is essential in explaining the formation of competitions.
However, introducing SUV-relevant attributes did not incremen-
tally explain the dissolution of competitive links as evidenced in
the AIC of model C compared to model B. Overall, model C is con-
sidered as the best fitted model.
When examining the results from the STERGM formation model

of model C, the coefficients of two network structure effects are sig-
nificant. The positive sign of “closure effect” indicates that a new
competition is more likely to form between two vehicles if they
shared the same set of competitors previously. The negative sign
of “centralization effect” denotes that new competitive links are
more likely to form between vehicles that have been in competition
with many other car models already. Among the regular vehicle
attributes, the effect of Korean brand origin is significant. Its nega-
tive sign indicates that, compared to domestic vehicles, vehicles
from Korea are less likely to form new competitive links from
2013 to 2015. Although the main effects of price, power, FC, and
turbo show no significance in the model for the information of com-
petitive links, the homophily effects of price and fuel consumption
and the main effects of SUV-relevant attributes such as AWD,
legroom, and third row are significant. The coefficient of the price
difference is −1.32 which indicates that vehicles tend to form
new competitions with those having a smaller difference in price.

For example, if the price of a car is twice of another car,3 the
log-odds of their competition will be 1.32 lower than the
log-odds of competition between two cars with the same price
[12]. In addition, two vehicles with a lower difference in FC are
also more likely to create a new competition between them as
time goes by. The positive coefficients of AWD and legroom
mean vehicles with all-wheel drive feature and higher legroom
rating score are more likely to establish new competition relations
with others. In contrast, the negative coefficient of third row indi-
cates that vehicles equipped without third row are more likely to
form new competitions with other competitors than vehicles with
third row.
When examining the results from the link dissolution model of

model C, it is important to note that the estimations measure the per-
sistence of competition not disappearance. As shown in Table 2, the
estimates of closure effect, price difference, and vehicles from
American brands significantly influence the preservation of existing
competitions. The interpretation of the dissolution model is some-
what similar to the formation model except that one is for the for-
mation of new competitions while the other is for the old/existing
competitions. For example, the estimate of the closure effect
being 0.40 indicates that existing competitions are more likely to
persist over time if two vehicles share the same set of competitors.
To better understand the differences between STERGM and

ERGM, we compare the results of the two models in Table 3. It
is noted that the statistical significance of the attributes in ERGM
is different from one year to another. In many cases, it is also differ-
ent from the significance obtained from STERGM. These differ-
ences can be explained by the fact that ERGM is a static network
modeling approach based on single-year data, assuming there are

Table 2 Results of the STERGM fitting for dynamic competition networks from 2013 to 2015

Model

Formation Dissolution

Aa Bb Cc A B C

Network effects
Edges 5.83*** −1.55 −1.91 9.35 7.11 −2.08
Closure 0.88*** 0.85*** 0.41** 0.40**

Centralization −0.77** −0.66* 0.26 0.50
Main attributes effects
Price −0.16 0.01 −0.12 −0.28 −0.18 −0.36
Power −0.18 −0.11 −0.10 −0.24 −0.35 −0.33
Fuel consumption 0.08* 0.03 0.05 0.22 0.21 0.16
Turbo 0.24** 0.11 0.11 0.06 −0.07 −0.11
Make origin (US) −0.03 −0.15 −0.10 0.29 0.33 0.65*

Make origin (EU) 0.10 −0.03 0.03 0.58 0.44 0.68
Make origin (JP) −0.07 −0.18 −0.09 0.09 −0.09 0.06
Make origin (KR) −0.31** −0.32*** −0.24* −0.18 −0.11 −0.01
AWD 0.37*** 0.70
High position 0.19 0.09
Legroom 0.42* 2.36
Third row −0.31*** −0.09
Homophily effects
Price difference −1.71*** −1.31*** −1.32*** −1.56*** −1.41*** −1.40***
Power difference −0.30 −0.18 −0.14 0.60 0.79 0.58
Fuel consumption difference −0.29*** −0.25*** −0.25*** −0.26 −0.21 −0.15
AIC 122971 122731 122678 1872 1863 1864

aModel A, only consider regular attributes and homophily effects.
bModel B, consider regular attributes, homophily effects, and network effects.
cModel C, consider all attributes.
*p< 0.05.
**p< 0.01.
***p< 0.001.

3Note that log2 transformation was used to deal with the attribute values. For
example, if we have three cars A, B, and C. Their original price is p1, p2, and p3, sepa-
rately. Let p1= p2 and p3= 2*p1, then the log-odds of existing a competition relation
between A and B will be θ × 0= 0. But the log-odds of existing a competition relation
between A and C will be θ × |log2(p1)− log2(p3)|= θ=−1.32.

031112-8 / Vol. 142, MARCH 2020 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/142/3/031112/6649149/m
d_142_3_031112.pdf by N

orthw
estern U

niversity, Yaxin C
ui on 19 M

ay 2021



no preexisting network relations (i.e., no competition at all),
whereas STERGM is a dynamic network modeling approach
focused on detecting the changing pattern that best describes the
formation and dissolution of competitions conditional on the preex-
isting competitions.
The differences in the model coefficients of ERGM over time

(2013–2015 as shown in Table 3) imply the change of customer
preferences from one year to another. For instance, the coefficient
for fuel consumption difference is insignificant in 2013 but
becomes significant in both 2014 and 2015 with a value of −0.20
and −0.23, respectively. On the other hand, the significant coeffi-
cient (−0.25) of fuel consumption difference in the STERGM for-
mation model indicates that based on the three-year data, lower
fuel consumption difference has a positive influence on forming
new competitions. Therefore, to some extent, the STERGM
results are able to capture the change of ERGM results. It is also
found that the significance of some attributes is different between
ERGM and STERGM. For example, seat position is shown to be
significant in 2014’s static ERGM modeling but insignificant in
influencing the formation of new competitions or preservation of
old competitions over time compared to other main attributes.

3.5 Results Evaluation. To evaluate the results in Sec. 3.4,
link-level evaluation and the goodness-of-fit evaluation analysis at
the network level are performed.

3.5.1 Link-Level Evaluation. Link-level evaluation compares
the log-odds of those hypothetical links (i.e., those links do not
exist in observed networks and are solely for testing purposes) to
the log-odds of the real links in observed networks. In general,

newly formed competitions in observed networks (i.e., real links)
are expected to have higher log-odds than those hypothetical
links. The vehicles represented by green nodes in Fig. 8 are selected
for the link-level verification. Table 4 provides the value of signifi-
cant variables in model C for these vehicles.
By inserting the estimated coefficients obtained from Table 2 into

Eq. (2), the log-odds of a link forming conditional on the rest of
network can be calculated:

Logit Pr(Y+
ij =1) = θT · δ+ij (y) = 0.85 × δGWESP − 0.66

× δGWD − 0.24 × δOrigin(KR) − 1.32 × δPrice diff. − 0.25

× δFC diff. + 0.37 × δAWD + 0.42 × δLegroom − 0.31

× δThirdrow (11)

Plugging the attribute values from Table 4 into Eq. (11), we cal-
culate the log-odds of real links compared with a hypothetical link
to verify the accuracy of our model; results are illustrated in Fig. 9,
using the same set of vehicles shown in Fig. 8. It is observed that the
real links (e.g., the competition link between Highlander and Buick
SGM Lacrosse) reach higher log-odds than the hypothetical links
(e.g., the dash link between Highlander and Buick SGM Excelle
GT) in 2015. This indicates that the STERGM results successfully
capture the influence of exogenous variables (e.g., fuel consump-
tion, price difference, power difference, fuel consumption differ-
ence, and make origin) and endogenous variables (e.g.,
centralization and closure effect) on the formation of vehicle com-
petitions shown in Fig. 8.

Table 3 Comparing results of ERGM versus STERGM for competition networks from 2013 to 2015

ERGM STERGM

2013 2014 2015 Formation Dissolution

Network effects
Edges 7.04* −2.18 2.40 −1.91 −2.08
Closure 0.77*** 1.00*** 0.87*** 0.85*** 0.40**

Centralization −0.49 0.23 −0.84* −0.66* 0.50
Main attributes effects
Price −0.29* −0.18 −0.24* −0.12 −0.36
Power −0.11 −0.12 −0.01 −0.10 −0.33
Fuel consumption 0.03 0.07* 0.10* 0.05 0.16
Turbo −0.18 0.09 0.07 0.11 −0.11
Origin (US) 0.13 0.13 −0.14 −0.10 0.65*

Origin (EU) 0.54*** 0.33** 0.13 0.03 0.68
Origin (JP) 0.54*** 0.23* −0.09 −0.09 0.06
Origin (KR) 0.50*** −0.08 −0.22 −0.24* −0.01
AWD 0.53*** 0.34*** 0.40*** 0.37*** 0.70
High position −0.01 0.56* −0.08 0.19 0.09
Legroom 0.22 0.37 0.36 0.42* 2.36
Third row −0.25* −0.17 −0.36*** −0.31*** −0.09
Homophily effects
Price difference −1.40*** −1.15*** −1.57*** −1.32*** −1.40***
Power difference −0.58* −0.44* 0.35 −0.14 0.58
Fuel consumption difference −0.10 −0.20*** −0.23*** −0.25*** −0.15
AIC 64,672 61,255 63,363 122,678 1864

Table 4 The value of vehicle attributes for selected vehicles

Model name Price FC Make origin AWD Legroom Third row

Buick SGM Excelle GT 16.69 8.17 American 0 3.09 0
Buick SGM Lacrosse 17.80 11.08 American 0 3.11 0
BYD S6 16.47 9.65 Chinese 0 3.13 0
Dongfeng Yulong Luxury Grand 7 17.83 11.72 Chinese 0.5 3.19 0
Toyota GAIG Highlander 18.05 11.23 Japanese 0.5 3.19 1
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3.5.2 Network-Level Evaluation. The goodness-of-fit analysis
at the network level evaluates the model by comparing the simu-
lated networks from the estimated models with observed networks
in terms of the distributions of certain endogenous variables such as
the degree of nodes and GWESP as well as exogenous statistics. In

this case study, degree, edgewise shared partner, and geodesic dis-
tance were selected to evaluate whether simulated networks will
reproduce the statistics in an observed network. We use competition
network in 2014 as the target data for STERGM simulations.
Figure 10 provides the results of 1000 simulated competition
network of 2014 with STERGM (using competition network in
2013 as the starting network) for examining the explanatory vari-
ables. The vertical axis in each plot represents the logit (log-odds)
of the relative frequency, the solid line represents the statistics for
the observed network, the boxplots indicate the median and inter-
quartile range of the simulated networks, and the light-gray lines
represent the range in which 95% of simulated observations fall.
We see that most observed value lies in the 95% range of simulated
observations which indicates that STERGM performs relatively
well in both the formation model and the dissolution model.

4 Predictability and Application in Vehicle Design
In this section, we first compare the performance of STERGM

(dynamic model) versus ERGM (static model) in predicting future
product competitions. We then present how the proposed approach
can be used to inform vehicle design decisions to make a car model
more competitive in the market.

4.1 Predictability of Dynamic Model Versus Static Model.
Compared to ERGM, STERGM is capable of capturing the

Fig. 9 The log-odds results of two newly formed links and a
hypothetical link (the dash line) in the competition network
from 2014 to 2015

Fig. 10 Goodness-of-fit plots of STERGM using competition network in 2014 as the target data.
(a) Formation model and (b) dissolution model.
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influence of existing network structures on the formation of future
networks. In addition, STERGM is capable of modeling the forma-
tion of new links and the dissolution of old links separately. There-
fore, STERGM has a higher predictive power than ERGM.
In the following demonstration, for STERGM, we use the models

obtained with the datasets from 2013 to 2015 to predict the vehicle
competition relations in the 2016 market. For ERGM, we use the
model obtained with the 2015 dataset for prediction. The structural
zeros method was utilized in STERGM to handle the emerging or
delisted vehicle models from 2015 to 2016. In our dataset, 249
car models were observed over the two years, in which 119
models are observed in 2015 and 202 models are in 2016. The
change of vehicle competition from 2015 to 2016 is illustrated in
Table 5. We see that 17% (76/450) of the competitions in 2015 is
preserved in 2016. In both ERGM and STERGM, the values of
new vehicle attributes in 2016 and the existing network effects
(market structures) in 2015 are utilized for prediction. Compared
to other threshold curves, PR curve has been demonstrated by
Saito and Rehmsmeier [47] to be especially informative for an
imbalanced dataset in which the number of negatives (or positives)
outweighs the number of positives (or negatives) significantly,
which is the case we face (most cells of the adjacency matrix are
zeros since no links exist there). Therefore, we use it to measure
the capability of ERGM and STERGM in predicting the 2016
vehicle association (competition) network. In the PR curve, preci-
sion is the fraction of true predictions among all predictions,
recall is the fraction of true predictions among all observations,
and area under the PR curve (AUC) indicates predictive perfor-
mance [47] (larger is better).
Figure 11 shows the PR curve with the decision threshold set

from 0 to 1 [48] under two situations: (1) compare the predicted net-
works with the observed network and (2) compare the predicted for-
mation network and the dissolution network with the observed

formation network and the dissolution network separately. When
using STERGM and ERGM, formation and dissolution network
are derived from the differences in the original 2015 and predicted
2016 networks. Figure 11(a) shows that STERGM performs better
than ERGM as it has a larger AUC. Figure 11(b), while consistent
with the results from Fig. 11(a), provides additional insights into the
network formation and dissolution processes. Specifically, from
Fig. 11(b), we observe that (1) STERGM is better than ERGM in
both network formation prediction as well as network preservation
prediction. (2) The prediction for preserved links outperforms the
prediction for newly formed links in almost all range of the PR
curve. This makes sense because the degree of freedom of dissolu-
tion network (450 pairs) is much lower than formation network
(50,590 pairs). (3) The gap between STERGM and ERGM for pre-
served links is much larger than that for formed links, which indi-
cates the advantage of STERGM for considering the influence of
existing market structures on future competitions.
In summary, Fig. 11 is consistent with our expectation that

STERGM has a higher predictive capability than ERGM in predict-
ing future networks. The latter offers static modeling that assumes
there is no preexisting links in the network.

4.2 Application in Vehicle Design. Numerous studies have
identified the importance of enhancing the competitiveness of
product through design and technology innovation in improving
the performance of firms and national economics [49,50]. In this sub-
section, we demonstrate how the developed approach can examine
the influence of engineering attributes on the competitiveness of a
product. These insights can potentially support engineering design
and help inform design decisions, e.g., whether to upgrade the
design features of an existing vehicle model and by how much, in
order to make it more competitive in the market. Here, we take the
crossover SUV model “Ford Changan Edge” (Ford Edge) as an
example to study how the adjustment of Ford Edge’s engineering
attributes will affect its competitiveness in China’s auto market.
Table 6 shows the change of vehicle attributes of Ford Edge in

the Chinese market from 2015 to 2016. Attributes such as turbo,
make origin, and AWD stayed the same, price and customers’
ratings for high position and legroom increased, and others such
as power, fuel consumption, and the third row decreased. This
change indicates that the upgrade of Ford Edge focused on improv-
ing the driving comfort and fuel economy in these two years. We
can also observe an increasing price from 2015 to 2016.
Given the above information,wepredict the competitiveness of the

modifiedFordEdgeusing the STERGMmodel. The competitiveness

Table 5 The market competition changes from 2015 to 2016

Competition in
2016

No competitions
in 2016 Total

Competition in
2015

76 pairs of
vehicles

374 pairs of
vehicles

450 pairs of
competitions

No competitions
in 2015

856 pairs of
vehicles

49,734 pairs of
vehicles

50,590 pairs of
vehicles

Total 932 pairs of
competitions

50,108 pairs of
vehicles

51,040 possible
competitions

Fig. 11 The precision–recall curves of STERGM and ERGM: (a) Combined and (b) separated
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of a vehiclemodel is measured by the degree centralitymetric, which
is defined as the number of links connected upon a node (i.e., the
number of competitions that a vehicle has) [51]. Therefore, those
vehicles with more competitors (i.e., they are co-considered with
more other vehicles) are considered as more competitive in the
market. Based on the significance of dynamic modeling results
obtained in Sec. 3.4, price, fuel consumption, legroom, AWD, and
“third row” are selected as changing design attributes. We assume
the values of the first three continuous attributes can be changed up
to+15% and−15% of their original values, and for categorical attri-
butes, AWD can be changed to 0, 0.5, or 1 and “third row” to 0 or
1. AWD= 0.5 stands for a car model with both AWD and
non-AWD versions. These changed attributes are taken as inputs to
the STERGM model and 100 predicted competition networks in
2016 are generated and the average value is used to assess the com-
petitiveness of Ford Edge among the 100 predicted networks. Note,
our study only considers one variable change at a time and no
dynamic (game) effects among competitors are considered.
Figure 12 shows the average trend of vehicle competitiveness with

fixed AWD or third row. We can observe that increasing legroom
rating can generally make Ford Edge to be more competitive in
2016, which is consistent with dynamic modeling results in Sec.
3.4. In addition, Fig. 12 indicates that, inmost cases, 95% of the orig-
inal price (17.32 after log2 transformation) can achieve the
maximum competitiveness of Ford Edge. This result implies that
product competitiveness does not always change monotonously
with the price. In order to increase the competitiveness of vehicles,
auto companies should improve their products from multiple
aspects rather than relying on lowering price exclusively. Different
from price and legroom, we cannot see obvious change of vehicle
competitiveness when fuel consumption varies. Therefore, fuel
economy does appear to be a crucial influencing factor for improving

Ford Edge’s competitiveness in 2016 China’s auto market. The
impact of varying AWD and “third row” is shown in Figs. 12(a)
and 12(b). In summary, Fig. 12 implies that reasonable price (approx-
imately 95% of the original value), larger seat space, better traction,
and control rather than more seats or better fuel economy are more
likely to increase the competitiveness of Ford Edge.

5 Conclusion
The major contribution of this study is the development of a data-

driven dynamic network analysis approach for modeling the evolu-
tion of product competition relations. Even though a network-based
approach was previously adopted in modeling vehicle competitions
to overcome the limitations of discrete choice analysis (DCA)
[29,52], this is the first attempt to systematically analyze and
model product competitions based on longitudinal market data
and dynamic network analysis. The structural zeros method is lever-
aged to tackle the issue of varying product sets from year to year in
modeling dynamic competitions. Different from our previous study
on multi-year analysis using cross-sectional network data, this
research provides insights into the factors (such as product attri-
butes, homophily effects, and network structure effects) that drive
changes of product competitions.
Our proposed STERGM approach has the advantage of modeling

the impact of endogenous variables as well as exogenous variables
on the formation and dissolution of product competitions sepa-
rately. A three-year customer survey from China’s auto market
was utilized and three crossover SUV-oriented competition net-
works were constructed to illustrate the benefits. By utilizing the
structural zeros method, we addressed the challenge of modeling
network dynamics when the nodes vary from year to year. We
observe a significant improvement of model fit after the network
structural effects are introduced into the dynamic model. Our veri-
fication at both the link level and the network level further demon-
strates the model fit.
Our work also illustrates the difference between the static ERGM

and the dynamic STERGM. In summary, ERGM is a static network
modeling approach assuming there are no preexisting network rela-
tions (i.e., no preexisting competition at all), whereas STERGM is a
dynamic network modeling approach focused on detecting the
changing pattern that best describes the formation and dissolution
of competitions conditional on the preexisting competitions.

Fig. 12 The change of predicted degree for Ford Edge with varied price, FC and legroom, and fixed original AWD or third-row
value: (a) Fixed third row=0 and (b) fixed AWD=0.5

Table 6 The attributes of Ford Changan Edge in 2015 and 2016

Attributes 2015 2016 Attributes 2015 2016

Price (log2) 18.18 18.23 AWD 0.5 0.5
Power (log2) 7.919 7.917 High position 2.99 3.21
FC (L/100 km) 11.80 11.67 Legroom 3.06 3.31
Turbo 1 1 Third row 1 0
Origin US US
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Our study demonstrates the benefits of using dynamic STERGM
over static ERGM for predicting the impact of product design
change on a competition network structure. Specifically, the preci-
sion–recall test shows a higher predictive power of the STERGM
compared to ERGM. Our work also demonstrates the capability of
the developed approach to examine the influence of engineer-
ing attributes on the competitiveness of products. Therefore, the
dynamic network modeling approach is more effective to support
engineering design decisions and companies’ strategic decision-
making when improving existing products or releasing new
products.
It should be noted that the scope of this work is limited to study-

ing the impact of engineering design attributes on the dynamic evo-
lution of a competition network. In reality, other factors such as
positioning, marketing, distribution, and retail channels may have
an impact. Even though these factors are inexplicitly captured in
the network structure effects and random errors in our current
ERGM modeling, explicit modeling of these factors as attributes
of network nodes is more desirable when the associated data are
available. In addition, since our approach utilized a projection
from two-mode network (bipartite graph) to a one-mode network
(unidimensional network), the model may somewhat overestimate
the triadic closure effect in the network [53]. Nevertheless, our
network is not just a direct projection from customer-product
system but using lift function as a criterion to determine whether
there is a link between two cars. Based on our dataset, it is difficult
to say whether GWESP used for triadic closure will overestimate
the closure effect of the competition network. In future work, we
will conduct further studies to understand this issue. Besides, our
future work will also focus on examining the use of the developed
approach for different types of network, such as choice network,
weighted network, and multidimensional network.
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