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Global warming causes the poleward shift of the trailing edges of marine
ectotherm species distributions. In the semi-enclosed Mediterranean Sea, con-
tinental masses and oceanographic barriers do not allow natural connectivity
with thermophilic species pools: as trailing edges retreat, a net diversity loss
occurs. We quantify this loss on the Israeli shelf, among the warmest areas in
the Mediterranean, by comparing current native molluscan richness with the
historical one obtained from surficial death assemblages. We recorded only
12% and 5% of historically present native species on shallow subtidal soft
and hard substrates, respectively. This is the largest climate-driven regional-
scale diversity loss in the oceans documented to date. By contrast, assem-
blages in the intertidal, more tolerant to climatic extremes, and in the cooler
mesophotic zone show approximately 50% of the historical native richness.
Importantly, approximately 60% of the recorded shallow subtidal native
species do not reach reproductive size, making the shallow shelf a
demographic sink. We predict that, as climate warmes, this native biodiversity
collapse will intensify and expand geographically, counteracted only by Indo-
Pacific species entering from the Suez Canal. These assemblages, shaped by
climate warming and biological invasions, give rise to a novel ecosystem’
whose restoration to historical baselines is not achievable.

1. Introduction

The unprecedented speed of global warming recorded in the last few decades
and the projections for the near future are an increasing threat to marine biodi-
versity [1,2]. One of the most evident consequences of warming is changes in
species distributions, especially of ectotherms that more fully occupy the
extent of latitudes within their thermal tolerance limits [3,4]. Ranges are expected
to expand at the leading (poleward, cold) edge and contract at the trailing (equa-
torward, warm) edge [5]. Along continental margins, such changes in species
distributions cause ecosystem reconfigurations that can be as drastic as a tran-
sition from kelp forest to persistent seaweed turfs, as shown for Western
Australia [6].

A particularly critical situation occurs when such contractions happen in semi-
enclosed basins like the Mediterranean Sea where land masses and oceanographic
barriers constrain the arrival of southern species from contiguous biogeographical
provinces as would have occurred along open continental margins. In this
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scenario, a net loss of species richness—a ‘biotic attrition’ [7]—is
expected to occur, leaving taxonomically and functionally
depleted biota behind.

The Israeli shelf is one of the warmest areas in the
Mediterranean Sea and has experienced a temperature increase
of approximately 3°C in the 1980-2013 period, reaching today a
summer surface temperature of 32°C [8,9]. It is almost 4000 km
away from the Gibraltar Strait that connects the Mediterranean
Sea to the Atlantic Ocean, the origin of the Mediterranean biota
after the Messinian crisis [10]. Moreover, the northwest African
region from Gibraltar south to 20°N latitude (approx. 2000 km
of the coastline) has a summer maximum temperature of just
22.3°C [11]. This solid thermic barrier isolates the Mediterra-
nean Sea from the geographically adjacent West African
tropical species pool, which repeatedly served as donor of the
thermophilic biota that entered the basin during the warmest
interglacials of the Pleistocene [12]. This biotic isolation sets
the scene for the largest marine biotic attrition ever recorded
under a warming climate. In 1869, however, an artificial
connection, the Suez Canal, overcame biogeographical con-
straints and put the basin in direct contact with the tropical
Red Sea species pool. Hundreds of species have flooded the
basin, the so-called Lessepsian invasion [13,14].

We here quantify historic and current native and non-
indigenous species richness along the approximately
200-km-long Israeli shelf from the intertidal to mesophotic
depths. We test the hypothesis that a massive collapse of
native molluscs has occurred following the extreme warming
of the last few decades, while non-indigenous species thrive.
We focus on the phylum Mollusca whose taxonomic and
functional diversity makes it a good descriptor of benthic
assemblages [15-17] and whose durable shells enable the
reconstruction of historical species richness from death assem-
blages, overcoming the lack of directly observed baseline data.
Additionally, we measured body size to determine if native
and non-indigenous species reach reproductive size and thus
form stable or ephemeral populations. The consequences of
our results for biodiversity conservation are discussed in the
face of accelerating global warming [18].

2. Materials and methods

(a) Study area and current and historical datasets

We collected 109 benthos samples at 16 stations along the
entire Mediterranean Israeli shelf in the localities and with the
devices listed in electronic supplementary material, table SI.
In the intertidal, we manually scraped 1 m? quadrats per sample.
In the rocky subtidal down to 25 m, we used suction sampling on
1 m® quadrats per sample, while in the rocky mesophotic (92 m)
we used a rock dredge [19]. In the soft subtidal (10-40 m) and meso-
photic (77-83 m) zones, we collected with a van Veen grab. With the
exception of the mesophotic, samples were collected in both spring
and autumn to cover intra-annual variation. We sieved samples
with a 0.5 mm mesh to retain small species, fixed them in ethanol
and picked living individuals. Nudibranchs and other shell-less
molluscs were not considered. Body size was measured with a
ZEISS SteREO Discovery V. 20 microscope and the associated soft-
ware. We used a calliper for large species (>2 cm). We measured
only species with at least 10 living individuals to have a minimum
significant sample size for analyses. Only 2 (5%) of the species in the
mesophotic samples satisfied this requirement, and this habitat was
thus excluded from measurements. In the case of very abundant
species (several hundred /thousands of individuals), we randomly

selected 30 specimens per station. Species with not fully settled tax-
onomy (e.g. Chamidae and Ostreidae) or morphology that does not
enable unambiguous body size measurement (e.g. Vermetidae)
were excluded from measurements. The maximum size for native
species and Mediterranean populations of non-indigenous ones
was obtained from the literature.

Due to the absence of datasets that precede the major impacts in
the basin, we reconstructed the historical species richness from
death assemblages, the taxonomically identifiable molluscan
remains encountered in the seabed [20]. Due to their slow degra-
dation in the sea, death assemblages act as archives that
accumulate information on species, ecological and functional
composition over decades to millennia and ultimately enable
reconstructing baselines at any spatial scale [21]. Death assem-
blages were extracted from samples after drying. Before picking
the empty shells, the sediment was split, in order to have
subsamples with approximately 1000 shells per station. Pelagic,
freshwater and terrestrial species were not considered. The abun-
dance of bivalves and polyplacophorans was divided by 2 and 8
(the number of their skeletal parts), respectively, to obtain compar-
able abundances to living individuals [22]. Due to the particular
substrate, intertidal samples did not contain a death assemblage.
In this case, we compared the living assemblage with a checklist
based on the literature and experts” advice (electronic supplemen-
tary material, table S2). Identification was conducted at the species
level. Our work is based on approximately 62 000 specimens repre-
senting 371 species. The dataset and the literature sources are
available in the electronic supplementary material.

At each subtidal sampling station, we quantified the age distri-
bution of shells comprising the death assemblages by radiocarbon
dating 9-15 valves. We focused on three native bivalve species that
were still extant in the study area. Shells were dated by accelerator
mass spectrometry (AMS), using powdered carbonate targets
[23,24]. The 149 obtained radiocarbon ages were converted to
calendar ages. We report all ages in calendar years before the
year of sample collection. The dating and calibrating procedures
are described in detail in the electronic supplementary material.

(b) Data analysis

We quantified assemblage species richness with the coverage-
based estimator developed by Chao & Jost [25] using the
iNEXT package [26]. This estimator obeys the replication prin-
ciple and thus behaves intuitively in ratio comparisons. Species
diversity loss was quantified by computing the ratio between
the current (living assemblages) and the historical (death assem-
blages) richness at equal coverage (completeness), using the
observed richness of the assemblage with greatest coverage and
the rarefied richness of the sample with the lowest one. Com-
pared with traditional diversity estimates at fixed sample size,
coverage-standardized richness ratios more faithfully represent
the true diversity relationship of any two communities [25].

We tested the statistical significance of these ratios by com-
puting bootstrap-derived distributions. For each station and
habitat type, we merged abundances of living and death assem-
blages into a single dataset and resampled it to obtain a living
and a death assemblage with the same original sample size
(100 iterations). Under the null hypothesis that current and
historic richness did not differ (ratio=100%), we estimated
p-values by computing the number of bootstrapped values
smaller than the observed value with a percentile approach [27].

The difference between the maximum size of individuals in
the literature and the maximum size measured in our samples
was divided by the literature maximum size to standardize for
variation in body size among species, and then box-plotted.
We compared the medians of native and non-indigenous species
with the Wilcoxon test. We obtained monthly seawater tem-
perature from the Global Ocean Sea Physical Analysis and
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Forecasting Product of the European Union Copernicus Marine
Service (GLOBAL_ANALYSIS FORECAST PHY_001_024 at
https://marine.copernicus.eu/). The dataset has a spatial resol-
ution of 1/12° (approx. 8 km) and 50 depth levels. Sea surface
and mesophotic temperature were recorded at 0.5 and 92 m
depth, respectively. The shapes and medians of annual tempera-
ture distribution (averaged over 2016-2019) were compared with
the Kolmogorov—-Smirnov and Wilcoxon tests, respectively. All
analyses were conducted in the R statistical environment [28].

3. Results

(a) Quantification of diversity loss

Current native molluscan richness in shallow subtidal
habitats does not exceed 26% of the historical richness at indi-
vidual stations (p <0.01 at all stations; figure 1a). By pooling
stations at the habitat scale, these values are 12% and 5%
(both p<0.01) on soft and hard substrates, respectively
(table 1). In the intertidal, current native richness ranges
between 30 and 67% of its historical values and is 50% at
the habitat scale. In the mesophotic zone, native richness
ranges between 23 and 122% of the historical one, with 60%
of the samples showing a ratio not statistically distinguish-
able from 100% (p<0.01). The current richness in the
mesophotic is probably an underestimation because it is
based on samples collected in a single season.

By contrast, the non-indigenous component of the assem-
blages shows a good match between current and historical
richness: the ratio ranges between 25 and 82% (52% at the habitat
level) for soft substrates and between 58 and 147% (91% at the
habitat level) for hard substrates. In half of the stations, this
ratio is statistically indistinguishable from 100%. At all stations,
this ratio is higher than that of the native species. In the interti-
dal, the ratio ranges between 33 and 100% and is 100% at
the habitat level. The mesophotic samples did not contain a
significant non-indigenous component to run the analysis.

In the subtidal, non-indigenous species grew to consi-
derably larger relative size than native species (Wilcoxon
W=102, p=0.001 and W=38, p=0.01 on soft and hard sub-
strates, respectively; figure 1b). Here, on both types of the
substrate, approximately 60% of the native species attained a
maximum size smaller than half the maximum size reported
in the literature, whereas non-indigenous species had just
16% and 19% of species smaller than half the maximum size
on the soft and hard subtidal substrates, respectively. By con-
trast, in the intertidal, all native species grew larger than half
the literature maximum size; the size of the two non-indigenous
species reached 8% and 74% of the literature values.

The death assemblages had very diverse ages (table 1). On
southern soft substrates, their median age spanned between
125 and 1461 years, demonstrating that they capture pre-
Lessepsian conditions. Northern soft and hard substrates
showed much younger median ages spanning between 24
and 56 years. Mesophotic death assemblages had a median
age of 941 and 23 years on soft and hard substrates, respectively.

4. Discussion
(a) Biodiversity collapse and its causes

The native molluscan biodiversity on the shallow Mediterra-
nean Israeli shelf has collapsed. Although our sampling

design included stations across the whole 200-km-long coast-
line (covering different sedimentological and oceanographic
conditions) and a diverse array of habitats, effective sampling
methods, a very fine mesh size and multiple seasons, we did
not record 88% and 95% of historically present native species
on shallow subtidal soft and hard substrates, respectively.
This is the largest regional-scale diversity loss in the oceans
recorded so far [29], and extends the recent observations of
species declines to a whole phylum, over a regional scale
and a 0 to 90m depth gradient [9,30,31]. Additionally,
approximately 60% of the detected native species in the
shallow subtidal did not reach half the maximum adult
size, a proxy of size at first reproduction (see review in the
electronic supplementary material, chapter 1.4). Accordingly,
most of them form ephemeral populations of juvenile indi-
viduals with no or little reproduction potential, probably
sourced by larvae coming from different sectors of the
basin and/or deeper waters. The shallow Israeli shelf
has become a ‘black hole sink’ for native molluscs, where
there is immigration but no back-migration to source popu-
lations [32]. These results fit the hypothesis that increasing
seawater temperatures renders the warmest parts of the
Mediterranean unsuitable for native species, which are
mostly of temperate to boreal affinity [10], as recently
shown for fishes [33].

The intertidal and mesophotic assemblages did not
show such a marked biodiversity loss, due to their different
resistance and exposure, respectively, to warming, although
the population of the ecologically important intertidal reef-
building gastropod Dendropoma anguliferum collapsed to
near regional extinction [9]. Due to periodic exposure to air
or direct sun irradiation, intertidal organisms have adapted
to withstand a broader temperature range than recorded in
the surrounding water and air [34]. The limpet Patella caerulea,
one of the most abundant species in our samples, showed an
Arrhenius breakpoint temperature (above which cardiac
activity drops off dramatically) of approximately 36°C in
Sicily, after being collected in winter with a mean seawater
temperature of 16.4°C [35]. The periwinkle Melarhaphe
neritoides, another common species in our samples, experi-
enced heat coma at 38°C and death at 46.3°C in Wales, UK,
after having been collected in summer with a seawater temp-
erature of approximately 15°C [36]. These limits may be higher
in the warmer parts of the distributional range [37]. By con-
trast, even shallow subtidal species show lower temperature
limits than phylogenetically closely related intertidal ones:
on the Mediterranean coast of France, the subtidal cockle
Acanthocardia tuberculata showed a median lethal temperature
after 48 h (LTs) of 28.6-30.8°C, significantly lower than the
32.7-34.6°C of the intertidal Cerastoderma glaucum collected
in coastal lagoons [38]. The subtidal Donax semistriatus
showed an LTs, of 28.9-30.9°C, significantly lower than the
31-33.1°C of Donax trunculus from the same lagoons [39].
Interestingly, both of Ansell’s papers showed that juveniles
have a greater thermal tolerance than adults. Mesophotic eco-
systems experience considerably lower temperatures than the
shallow subtidal (figure 2). At these depths, seasonal fluctu-
ations have low amplitude, and despite current temperature
increases, species still live well within the thermal tolerance
limits of native Mediterranean assemblages.

Potential alternative causes of the massive biodiversity
loss documented here may be the competition with non-
indigenous species, pollution and disease-driven mass
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Figure 1. (a) Distribution of ratios between current and historical richness of the native (blue) and non-indigenous (red) molluscan components on the Medi-
terranean Israeli shelf (n: observed number of species). The mesophotic samples do not have a significant non-indigenous species (NIS) component. Current
native spedies richness is markedly low in the shallow subtidal, and non-indigenous richness always higher than native richness in the same habitat. (b) Difference
between literature and sample maximum size of the native (blue) and non-indigenous molluscan components (red) on the Mediterranean Israeli shelf (n: number of
measured species). Negative values mean that the maximum size we recorded is smaller than that in the literature, the opposite for positive values. In contrast to
the intertidal, where the six species here analysed constitute 75% of the diversity, the mesophotic samples had only 2 (5%) species with sufficient sample size and
were excluded from the analysis. The figure shows that in the shallow subtidal, approximately 60% of the native species do not reach half the maximum size, a
proxy for size at first reproduction. By contrast, all intertidal native species were larger than this threshold. Additionally, most NIS were also larger than the size at
first reproduction, marking a distinct reproductive potential compared with native species. (Online version in colour.)
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yearly seawater temperature range (2016—2019)
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Figure 2. Yearly seawater temperature range (averaged over 2016—2019) in
the Western (Malaga) and Eastern (Tel Aviv) Mediterranean, and in the Gulf
of Suez, northern Red Sea. The surface temperature in Tel Aviv is indistin-
guishable from that in the Gulf of Suez (Kolmogorov—Smimov D = 0.25,
p = 0.869; Wilcoxon I = 68, p = 0.843) and much higher than in the meso-
photic zone (K-S D=0.67, p=10.008; W =30, p=0.015). The latter is
indistinguishable from the median temperature in Malaga, Western Mediter-
ranean (K-S D=042, p=0256; W=66, p=0.755), although
characterized by a much more restricted seasonal amplitude. (Online version
in colour.)

mortalities. Competitive exclusion of native by invasive species
has been claimed to be strongly impacting biodiversity, and
there are indeed multiple examples of competitive exclusion
of natives by invaders in terrestrial (e.g. [40,41]) and marine eco-
systems (e.g. [42,43]), but species traits and environmental
context will eventually determine the actual relationships
among native and non-indigenous species, and whether exclu-
sions indeed occur [44-48]. The hundreds of Red Sea species
that have established populations on the Israeli shelf [49]
have been similarly claimed to have caused the extirpation of
some native species (e.g. [50,51]). However, recent studies
showed that successful non-indigenous fishes preferentially
occupy different functional niches than native ones, providing
so far little support for active competitive exclusion of function-
ally similar species [52-55]. Additionally, the preliminary
results of an ongoing functional trait study by our team of
the same mollusc assemblages analysed here suggest little
potential for active resource competition between native and
non-indigenous assemblage components in the shallow
subtidal [56]. Conversely, competition, in combination with
warming, may have assisted native population collapses of
other taxonomic groups in the region, such as sea urchins [57].

Pollution effects on populations of benthic assemblages
span from changes in structure to demise and local extinction
[58]. Although discharges into the environment (mostly
sewage sludge) occur at multiple sites along the Israeli
coastline, Haifa Bay is the single pollution hotspot due to
heavy metal contamination, still present due to contaminated
groundwater even 20 years after the cessation of discharges
[59]. Because of this potential bias, Haifa Bay was not included
in our sampling design (electronic supplementary material,
figure S1). A known cause of molluscan decline is the exposure
to endocrine disruptors, such as the organotins tributyltin and

triphenyltin, which cause imposex, the superimposition of n

male sexual characters onto females, impairing reproduction
[60]. Before the ban by the International Maritime Organization in
2008, these compounds were common in anti-fouling paints and
occurred predominantly in ports and marinas. Their strongest
effects were thus local: sterile neogastropods were recorded up
to 1 km from two Mediterranean Israeli marinas [61]. By contrast,
the pattern of loss we describe here occurs at broader spatial
scales, and our sampling design excluded organotin contami-
nation hotspots (electronic supplementary material, figure S1).
Additionally, although imposex has been recorded in 268 gastro-
pod species so far, the majority (213 species, 80%) were
neogastropods [62], and although it occurs in bivalves too, it
apparently does not affect their recruitment [63]. Our results,
however, show massive loss among all molluscan taxa (electronic
supplementary material, table S6).

Mass mortality events of marine invertebrates are increas-
ing in frequency [64]. Nonetheless, all the 21 disease-driven
events reported by Fey et al. affected a single species. Consist-
ently, the iconic pen-shell Pinna nobilis, one of the world’s
largest bivalves, has undergone a mass mortality across the
whole Mediterranean Sea since 2016 caused by the parasite
Haplosporidium pinnae [65] which, however, did not affect
the co-generic Pinna rudis or other bivalve species. Along
the entire Israeli rocky shore, a mass mortality event of the
highly abundant non-indigenous mussel Brachidontes pharaonis
occurred in the summer of 2016 for yet unknown reasons,
wiping out the entire population, but not other intertidal mol-
luscs [66]. It is therefore unlikely that diseases could have
erased the phylogenetically diverse molluscan assemblages
here studied. Additionally, if pollution and diseases played a
role in the native species collapse, it is unclear why they did
not affect non-indigenous species. Finally, fishing does not
affect molluscan assemblages because shelled molluscs are
not harvested on the Israeli shelf.

A potential confounding factor is that shells are preserved
in surficial marine sediments for decades to millennia,
depending on individual species’” shell durability and local
sedimentation rates [67]. Consequently, death assemblages
may contain also species that disappeared before modern
human pressures, inflating the baseline historical richness
and the perceived magnitude of biodiversity loss. In such a
case, biodiversity loss would positively correlate with the
median age of death assemblages. Our radiocarbon dating
results do not support this hypothesis. On shallow soft
substrates, where the median age spanned between 24 and
1461 years (table 1), the magnitude of diversity loss did not
correlate with the median age (Spearman r=0.17, p=0.74).
Additionally, the hard substrates had even younger median
ages (between only 26 and 56 years), but their diversity loss
is greater than on soft substrates. Such low median ages
imply that the assemblages were considerably richer just a
few decades ago and that the biodiversity collapse has
occurred in very recent times, as also suggested by Rilov [9].

(b) Perspectives for the future Mediterranean Sea

The shallow subtidal Israeli shelf has experienced a directional
shift from assemblages composed of Mediterranean species to
assemblages dominated by tropical non-indigenous ones, to
the degree that they are unrecognizable by an observer
who is familiar with Mediterranean biota. Assemblage
restructuring (massive loss of native species and replacement
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by non-indigenous ones) similar to what we show here for
molluscs was also observed for soft bottom fish assemblages
and rocky reef communities in the same region [30,50]. The
easternmost Mediterranean Sea hosts the warmest sectors of
the basin along with some endemic species and clades, e.g.
in vermetid gastropods [68] and macroalgae [69]. Such entities
may be driven to global extinction as the environmental con-
ditions in the basin continue to change at a faster pace than
adaptation. We argue that a similar loss of native biodiversity
may be under way also in other parts of the eastern Mediterra-
nean that are less thoroughly monitored, and the projected
increasing sea temperatures may cause its geographical
spread to the western and northern Mediterranean Sea [70,71].

At the same time, the disappearance of native biodiversity
paves the way for an even larger-scale biological invasion
from the Red Sea. Tropical species are successful invaders
in temperate areas if they manage to survive winters and
acquire sufficient resources during the warmer periods [72].
Seawater warming is facilitating invaders on both aspects:
on the one hand, temperatures on the Mediterranean Israeli
shelf are now not dissimilar from those in the Gulf of
Suez, the closest donor area (Kolmogorov-Smirnov D = 0.25,
p =0.869; Wilcoxon W= 68, p=0.843; figure 2); on the other
hand, the disappearance of native species may increase the
resources available to Red Sea invaders. Together, both factors
create ‘niche opportunities” for non-indigenous species while
decreasing the biotic resistance of recipient assemblages
against invasions [73,74]. From this perspective, even though
the Lessepsian invasion was caused by the construction of
the Suez Canal and its subsequent enlargements, its current
magnitude may be a consequence of warming.

The eastern Mediterranean shallow subtidal ecosystem is
rapidly becoming a ‘novel ecosystem’ sensu Hobbs et al. [75]
because of both considerable abiotic (due to climate warming)
and biotic (due to the Lessepsian invasion) environmental
transformations over broad spatial (hundreds of km) and
temporal (multiple decades) scales. This new state is probably
irreversible. The massive native biodiversity collapse we
describe here has occurred under recent climate change con-
ditions, but ocean warming will continue even if the global
mean surface air temperature can be stabilized at or below
2°C, due to the inertia of the ocean system [76]. Moreover,
there are no plans to interrupt the connectivity of the Mediter-
ranean Sea with the Red Sea, and we can expect that
non-indigenous species will become even more numerous
and dominant, while their eradication is unrealistic. Addition-
ally, our results suggest the need of effective protection of the
mesophotic zone (e.g. from fishing and the construction of
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