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The noise generated by a porous or elastic edge is investigated analytically using a vortex
ring source in a quiescent fluid. Use of a vortex ring on a rectilinear path near an edge permits
the investigation of scaling behaviors for the radiated acoustic power that are analogous to those
derived for turbulence edge noise using the Wiener-Hopf technique. A solution methodology
based on Green’s functions solves for the scattered acoustic field and identifies parametric
groups to test the theoretical sixth- and seventh-power dependencies on the vortex ring speed
for the sound radiated by porous or elastic edges, respectively. The vortex-ring configuration
in a quiescent fluid is pursued to minimize the risk of corruption of the weak noise signal from
an elastic edge by secondary noise sources present in aeroacoustic wind tunnels.

I. Introduction
The seminal analysis of Lighthill [1] determined that a free-field turbulent eddy may be modeled as an acoustically-

compact quadrupole source for flows with a small characteristic Mach number. A compact turbulence source radiates
sound with an intensity proportional to U3M5 or U8, where U and M are the characteristic flow speed and the Mach
number, respectively. This famous ‘eighth-power law’ is modified when the turbulence source is near a solid surface.
For example, the acoustic efficiency increases by a factor of M−2 (i.e., the acoustic power scales as Π ∼ U6) for
acoustically-compact bodies [2] and by M−3 (i.e., Π ∼ U5) for turbulent eddies that are within an acoustic wavelength
of an edge [3, 4]. The directivity of the radiated sound changes accordingly with the acoustic power dependence on flow
speed, where a dipolar acoustic field for the U6 scaling becomes a cardioid for U5 behavior [3–5].

The efficient conversion of the energy in turbulence sources into radiated sound by rigid edges has continued to
motivate research into creative means to reduce leading- and trailing-edge noise in the aerospace community. One
candidate passive noise mitigation strategy is to make the edge compliant, whereby the interaction of the edge with
a turbulent eddy generated in the wing boundary layer is relaxed. Howe [6] carried out a Wiener-Hopf analysis to
investigate turbulence scattering by a semi-infinite elastic edge, which was extended by Jaworski and Peake [7] to
poroelastic edges. The latter work identified a new parametric regime where the acoustic power from elastic edges
would scale with the seventh power of the flow speed, i.e. Π ∼ U7, a factor of only M−1 stronger than a free-field
quadrupole. However, experimental confirmation of this scaling for elastic edges is not likely possible with conventional
aeroacoustic facilities, where secondary noise sources such as roughness noise [8–10] are likely to dominate the elastic
edge noise emission.

To circumvent this experimental limitation, an alternative approach using a moving vortex source is proposed to
inform an experimental campaign to test the U7 scaling. This approach stems from the analysis by Crighton [11] for a
line vortex passing round a half plane, which recovers the fifth-power velocity scaling determined earlier by Green’s
function [3] and Wiener-Hopf [4] analyses of turbulence noise scattering. Kambe et al. [12] employed the low-frequency
Green’s function for a rigid half-plane developed by Howe [13] to confirm the U5 scaling of noise generated by sending
a vortex ring on a rectilinear path near the edge of the half plane. Crucially, the vortex ring configuration of Kambe et al.
does not utilize a mean flow and therefore does not introduce the complication of creating secondary noise sources that
would corrupt a wind tunnel measurement.

The present work adapts the works of Kambe et al. [12] and Jaworski and Peake [7] to develop a vortex-ring
analogue to the poroelastic-edge noise problem. Special attention is paid to the limiting cases of porous-rigid and
elastic-impermeable plate conditions. This work seeks to identify parametric ranges for the design and testing of
a vortex-ring experimental apparatus to examine the validity of the U7 acoustic scaling prediction of Jaworski and
Peake [7]. The remainder of this paper is organized in the following manner. Section II outlines the mathematical
framework based on Green’s functions to produce separate estimates for the acoustic field emitted from a vortex ring
passing near porous or elastic edges, where the Kambe et al. [12] results for a rigid edge furnish a parametric check on
these analyses. Sections III and IV summarizes the main results from this study and presents concluding remarks.
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Fig. 1 Schematic of the half-plane (x < 0, y = 0) and the positions of point source y and observer x

II. Mathematical Formulation

A. Equation of vortex sound
Aerodynamic sound generated by low Mach number turbulence of uniform mean density is governed by the

inhomogeneous wave equation [14] (
1
c2

∂2

∂t2 − ∇
2
)

p = ρ0 div(ω ∧ v), (1)

which admits the solution

p (x, t) = −ρ0

∫ ∫
(ω ∧ v)(y, τ) ·

∂G(x, y; t − τ)
∂y

dy dτ , (2)

where p is the acoustic pressure, ρ0 is the mean fluid density, c is the isentropic speed of sound. ω is the vorticity
distribution in an ideal fluid neglecting viscous dissipation, v is the vorticity convection velocity, and G(x, y; t − τ) is
the time-domain Green’s function.

Following the procedure of Kambe et al. [12] by introducing a gradient Green’s function by the relation
∂G(x, y; t − τ)/∂y with the condition ∂G/∂n = 0 for y on the boundary surface S, we find an alternative expression for
the pressure in Eq. (2):

p (x, t) = ρ0
∂

∂t

∫ ∫
G(x, y; t − τ) · ω(y, τ) dy dτ , (3)

At sufficiently small Mach numbers, G(x, y; t − τ) may be approximated by the compact Green’s function, which is
described further in the following sections.

B. Green’s function for a semi-infinite plate
The present work studies the acoustic emission by a vortex ring moving near the edge of semi-infinite thin porous or

elastic plate that lies in the region −∞ < x < 0, y = 0, −∞ < z < ∞ of the rectangular coordinate system (x, y, z), as
shown in Fig. 1. To determine the expression of pressure p(x, t) in Eq. (2), the corresponding Green’s functions for
different plate properties must be determined.
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Suppose a Green’s function that be definition produces the solution at a distant point x = (x1, x2, x3) that results
from an impulsive point source of unit strength at position y = (y1, y2, y3) near the edge of a semi-infinite porous or
elastic plate. The Green’s function also must exhibit outgoing wave behavior and satisfy [14](

1
c2

∂2

∂t2 − ∇
2
)

G(x, y; t − τ) = δ(x − y)δ(t − τ), (4)

where the right hand side represents the impulsive point source that vanishes except at t = τ. By the reciprocal
theorem [15], the positions of source y and observer x may be interchanged, and we may solve for the sound field
observed at a near point y due to a monopole source at a distant point x. The problem thus reduces to the solution for
the Green’s function G as a function of observer positions y close to the edge, where is a diffraction problem that can be
solved in the manner described, for example, by Crighton and Leppington [4] or Jaworski and Peake [7]. It is shown that
near the edge of the plate that

G = G0 + Gs, (5)

where G0 and Gs are the time-domain velocity potentials for the incident field and the scattered field, respectively. The
time-domain Green’s function G is related to its Fourier transform Ĝ by

G(x, y; t) =
1

2π

∫ +∞

−∞

Ĝ(x, y; k)e−iωtdω, (6)

where k = ω/c is the wavenumber and ω is the angular frequency.
It is convenient to decompose Ĝ into the sum Ĝ = Ĝ0 + Ĝs, and the expressions of Ĝ0 and Ĝs are given in the

Appendix for different plate properties. Following the procedure by Kambe et al. [12], we apply the Fourier inversion
formula in Eq. (6), and the time-domain Green’s function for the incident field can be obtained in the series form

G0(x, y; t) =
1

4πx

(
δ(tr ) +

x · y

cx
Dtδ(tr ) +

(x · y)2

2c2x2 D2
t δ(tr ) + . . .

)
, (7)

where x = |x | and

Dm
t δ(t) =

1
2π

∫ +∞

−∞

(−iω)me−iωtdω, Dt =
∂

∂t
, tr = t −

x
c
. (8)

If G0 in Eq. (7) is substituted in Eq. (2), the first term contributes nothing to the sound field since it does not include
y, and the contribution from the second term of G0 is also zero due to the vanishing integral around the half-plane
surface. Therefore the total Green’s function G = G0 + Gs may be approximated to leading order by Gs only, provided
that the third term of G0 remains subdominant.

The Green’s function in time domain for the scattered solution in the acoustic far field will be discussed for two
cases: porous-rigid and impermeable-elastic edges.

1. Porous-rigid case
Substitute Eq. (56) in Appendix.A into into Eq. (7) gives, after integration,

Gs(x, y; t) =
1

2π 3
2 c
Φ 1

2
(Y )

sin θ0 sinψ0

µ
1
2 x

Dtδ(t∗), (9)

where Φ 1
2
(Y ) = Y

1
2 sin θ

2 corresponds to the velocity potential of a hypothetical irrotational flow around the edge,
t∗ = t − |x − y3k |/c , k = (0,0,1), and µ = αHKR/R is a parameter determining the porous effects. Specifically, αH is
the open area fraction of the the surface with pores of nominal radius R, and KR = 2KR/(πR), where KR is the Rayleigh
conductivity of the pore [7].

It is observed that Gs(x, y; t) is dominant to the third term of G0 in Eq. (7) as x →∞ in the far field. Therefore, the
total field Grp = G0 +Gs for the highly porous-rigid (µ/k � 1, as indicated in the Appendix) case can be approximated
by Gs in Eq. (9), i.e. Grp ≈ Gs . This form of Green’s function obviates that ∂G/∂y3 is subdominant to the magnitudes
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of the derivatives in other two directions, i.e., ∂G/∂y1 and ∂G/∂y2. Therefore, ∂G(x, y; t)/∂y can be approximated by
the two-dimensional vector,

∂G(x, y; t)
∂y

=

(
∂

∂y1
Φ 1

2
(Y ),

∂

∂y2
Φ 1

2
(Y ),0

)
1

2π 3
2 c

sin θ0 sinψ0

µ
1
2 x

Dtδ(t∗). (10)

Equation (10) may be reworked into a more useful form by introducing a stream function Ψ 1
2
(Y ) corresponding to

the potential flow Φ 1
2
(Y ),

Ψ 1
2
(Y ) = −Y

1
2 cos

θ

2
, (11)

which satisfies the Cauchy-Riemann equations,
∂

∂y1
Φ 1

2
(Y ) =

∂

∂y2
Ψ 1

2
(Y ),

∂

∂y2
Φ 1

2
(Y ) = −

∂

∂y1
Ψ 1

2
(Y ). (12)

Therefore, Eq. (10) can be rewritten as
∂G(x, y; t)

∂y
=

∂

∂y
× [Ψ 1

2
(Y )k]

1
2π 3

2 c

sin θ0 sinψ0

µ
1
2 x

Dtδ(t∗) (13)

Substitute Eq. (13) into Eq. (2) and apply the dynamic equation for the vorticity of the vortex ring,
∂ω

∂t
+ ∇ × (ω ∧ v) = 0, (14)

the final expression of the acoustic pressure in the far field can be represented by,

prp(x, t) = ρ0Dt

∫ ∫
ω3(y, τ)F(x,Y )Dtδ(t∗ − τ)dydτ,

= ρ0D2
t

∫
ω3(y, tr )F(x,Y )dy, (15)

where

F(x,Y ) =
1

2π 3
2 c

sin θ0 sinψ0

µ
1
2 x

Ψ 1
2
(Y ). (16)

Note that t∗ is replaced by tr = t − x/c in Eq. (15) in the limit x →∞ for a compact source.

2. Impermeable-elastic case
Similarly, the Green’s function for the acoustic field scattered by the elastic edge in time domain can be obtained by

substituting Eq. (58) into Eq. (7),

Gs(x, y; t) =
i

2π 3
2 c

3
2
Φ 1

2
(Y )

sin θ0 sinψ0

ε
1
2 x

D
3
2
t δ(t∗), (17)

This result is valid in the asymptotic limit kε−1/2 � 1, where ε is the intrinsic fluid loading parameter [7, 14, 16]
that depends only on the properties of the structure and fluid. By inspection, the total field Ge = G0 + Gs for the
impermeable-elastic case can also be approximated by Gs in Eq. (17):

Ge(x, y; t) =
i

2π 3
2 c

3
2
Φ 1

2
(Y )

sin θ0 sinψ0

ε
1
2 x

D
3
2
t δ(t∗), (18)

such that the pressure observed in the acoustic far field is

pe(x, t) = ρ0Dt

∫ ∫
ω3(y, τ)F(x,Y )D

3
2
t δ(t∗ − τ)dydτ

= ρ0D
5
2
t

∫
ω3(y, tr )F(x,Y )dy. (19)

where

F(x,Y ) =
i

2π 3
2 c

3
2

sin θ0 sinψ0

ε
1
2 x

Ψ 1
2
(Y ). (20)
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Fig. 2 Schematic of the vortex configuration and vortex path

C. Vortex ring model
Consider a thin-cored vortex ring, whose center moves in a plane perpendicular to the y3 axis, as shown in Fig. 2. O

is the coordinate origin located at the half-plane edge, and L is the nearest distance of the vortex ring path to the edge. It
is assumed that L is larger than the vortex radius a such that the vortex does not collide with the edge. The normal to the
plane of the vortex ring lies in the (y1, y2)-plane, and ξ axis denotes the vortex path direction. The η axis is taken to be
perpendicular to ξ in the counterclockwise direction. The origin of the (ξ, η, y3) coordinate system is located at the
vortex center. The vorticity of the vortex ring is assumed to be concentrated in the circle of radius a with a small vortex
core of radius δ (δ/a � 1). The vorticity components in (ξ, η, y3)-system are represented by

(0,−Γδ(ξ)δ(ζ − a) sin φ,Γδ(ξ)δ(ζ − a) cos φ), (21)

where ζ =
√
η2 + y2

3 , Γ is the strength of vortex ring. φ is the azimuthal angle of the vortex center from the η axis, and
ζ the radial coordinate in the (η, y3)-plane. It is worth noting that this model setup is the same as that by Kambe et
al. [12], which permits parametric comparisons against their analysis for a rigid edge.

1. Porous-rigid case
Substituting Eq. (21) in Eq. (15) yields,

prp
(
x, t +

x
c

)
= ρ0ΓD2

t

∫ 2π

0
F(ζ = a, ξ = 0;C(t))a cos φdφ, (22)

where C(t) represents the position of the vortex center at time t, and the dependence of F on x has been suppressed here
for simplicity. Following the procedure by Kambe et al. [12], F can be approximated by the two-term Taylor expansion
with respect to η,

F(ζ = a, ξ = 0;C) = F(C) +
∂

∂η
F(C)a cos φ, (23)

since F is independent of φ. Then we have∫ 2π

0
Fa cos φdφ = πa2 ∂

∂η
F(C) = Brpπa2vn(C) (24)
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where

vn =
∂

∂η
Ψ 1

2
(C) =

∂

∂ξ
Φ 1

2
(C), (25)

Brp =
1

2π 3
2 c

sin θ0 sinψ0

µ
1
2 x

. (26)

Thus, we find the acoustic pressure expression in the highly-porous parametric limit to be

prp
(
x, t +

x
c

)
=

ρ0Γ

2π 3
2 c

sin θ0 sinψ0

µ
1
2 x

D2
t [πa2vn(C)]. (27)

Note that πa2vn is the volume flux of the hypothetical potential flow Φ 1
2
passing through the vortex ring. It is now clear

that the sound pressure has the directivity proportional to sin θ0 sinψ0, and the temporal profile of the pressure is found
to be proportional to the acceleration of the volume flux through the vortex ring. The term D2

t [πa2vn(C)] must now be
evaluated to furnish scaling estimates of the acoustic emission.

Recalling that D2
t vn(C) = Dt [Dtvn(C)], the evaluation of Dtvn(C) is now pursued. Suppose that the vortex ring

moves rectilinearly with velocity Ue, where e is a unit vector with components (cosα, sinα) in the (y1, y2)-plane (cf.
Fig. 2) and the vortex path is sufficiently distant from the edge (L > a). This assumption of the rectilinear vortex motion
has been shown to be valid by Kambe et al. [12] for the sound problem of a vortex ring near an impermeable-rigid plane.
Following Kambe et al.’s method, the first derivative of vn is

Dtvn = Ue · ∇vn(C) = U(e · ∇)2Φ 1
2
(Y ), (28)

and

vn(C) =
∂

∂ξ
Φ 1

2
(Y ) = (e · ∇)2Φ 1

2
(Y ). (29)

It is convenient to introduce the complex variable z = y1 + iy2 = YeiΘ, then we have

(e · ∇)Φ 1
2
= Re

{
eiα

d f
dz

}
, f = Φ 1

2
(Y ) + iΨ 1

2
(Y ) = −iz

1
2 . (30)

Substituting Φ 1
2
(Y ) = Y

1
2 sin θ

2 into Eq. (30), we have,

(e · ∇)Φ 1
2
(Y ) = −

1
2

Y−
1
2 sin

(
1
2
Θ − α

)
, (e · ∇)2Φ 1

2
(Y ) =

1
4

Y−
3
2 sin

(
3
2
Θ − 2α

)
. (31)

Let the time origin to be the instant when the vortex ring is nearest to the edge with the distance Y = L. The vortex
position at time t can then be represented by

(Y cosΘ, Y sinΘ) = (Ut cosα ± L sinα,Ut sinα ∓ L cosα), (32)

where the upper sign holds for 0 ≤ α ≤ π, and the lower sign holds for 0 ≥ α ≥ −π.
Normalizing the lengths and time by L and L/U, respectively, we have

D2
t [πa2vn(C)] =

1
4
πa2U2L−

5
2 Dt

[
g

(
t
) ]
, (33)

where

g
(
t
)
= r−

3
2 sin

(
3
2
Θ − 2α

)
, (34)

r =
(
t2
+ 1

) 1
2
, Θ = tan−1

(
t sinα ∓ cosα
t cosα ± sinα

)
, t =

U
L

t . (35)
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The substitution of Eqs. (33), (34) and (35) into Eq. (27) yields the pressure,

prp
(
x, t +

x
c

)
=

a2ρ0ΓU2

8π 1
2 cL

5
2

sin θ0 sinψ0

µ
1
2 x

Dt

[
g

(
t
) ]
, (36)

where the velocity U of a vortex ring is determined by the well-known formula [17]

U =
Γ

4πa

(
ln

8a
δ
−

1
4

)
. (37)

From Eq. (36), the acoustic pressure for a rigid-porous edge scales as

prp ∼ U3L−
5
2 . (38)

The corresponding acoustic intensity Πrp is given by the following formula [18]

Πrp ∼
p2
rp

ρ0c
∼ U6L−5, (39)

where from Eq. (36) the acoustic intensity has a directional dependence on sin2 θ0 for a given source angular position ψ0.

2. Impermeable-elastic case
Similarly, the pressure formula for the impermeable-elastic case is

pe
(
x, t +

x
c

)
=

iρ0Γ

2π 3
2 c

3
2

sin θ0 sinψ0

ε
1
2 x

D
5
2
t [πa2vn(C)]. (40)

From Eqs. (28) and (29), the second derivative of vn is

D2
t vn = (Ue · ∇)2vn(C) = U2(e · ∇)3Φ 1

2
(Y ), (41)

and from Eq. (31), we have

(e · ∇)3Φ 1
2
(Y ) = −

3
8

Y−
5
2 sin

(
5
2
Θ − 3α

)
. (42)

Following the approach with Eq. (32) and choosing the same scaled length and time,

D
5
2
t [πa2vn(C)] = −

3
8
πa2U

5
2 L−3D

1
2
t

[
m

(
t
) ]
, (43)

where

m
(
t
)
= r−

5
2 sin

(
5
2
Θ − 3α

)
, (44)

The substitution of Eqs. (43), (44) and (35) into Eq. (40) yields the pressure,

pe
(
x, t +

x
c

)
= −

i3a2ρ0ΓU
5
2

8π 1
2 c

3
2 L3

sin θ0 sinψ0

ε
1
2 x

D
1
2
t

[
m

(
t
) ]
. (45)

The corresponding acoustic pressure for an impermeable-elastic edge in Eq. (40) is proportional to

pe ∼ U
7
2 L−3, (46)

and the acoustic power Πe is

Πe ∼
p2
e

ρ0c
∼ U7L−6, (47)

and the directivity has the same sin2 θ0 dependence as the highly porous-rigid case.
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(a) (b)

(c)

Fig. 3 Rigid-porous case: time histories of three functions f
(
t
)
, g

(
t
)
, and Ûg

(
t
)
for five inclination angles α of

the vortex path relative to the edge. f
(
t
)
= Dt

[
g

(
t
) ]

is the dimensionless acoustic pressure and has the same
behavior of Ûg

(
t
)
.

III. Results
In this section, the results for cases of porous edge and elastic edge are presented. The model setups for these edge

conditions permit direct comparisons against previous results for a rigid edge setup by Kambe et al. [12].

A. Porous-rigid case
The time history of the far-field acoustic pressure scattered by a highly porous-rigid case in Eq. (36) is governed by

f
(
t
)
= Dt

[
g

(
t
) ]
= Ûg

(
t
)
, (48)

where the three functions f
(
t
)
, g

(
t
)
, and Ûg

(
t
)
were plotted in Fig. 3 for five inclination angles α of the vortex path

relative to the edge (α = 0, − 1
4π, −

1
2π, −

3
4π, − π), as illustrated in Fig. 2. Note that the expressions of g

(
t
)
, Ûg

(
t
)
,

and the selections of α are the same as that presented by Kambe et al. [12] for the convenience of comparisons between
different cases. For the rigid case, the dimensionless acoustic pressure is the 1

2 th derivative of g
(
t
)
, but for the porous

case, the acoustic pressure is determined by the first derivative of g
(
t
)
such that the curve of f

(
t
)
is identical to that of

Ûg
(
t
)
(cf. Fig. 3 (a) (c)).
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(a) (b)

(c)

Fig. 4 Impermeable-elastic case: time histories of three functions f
(
t
)
, m

(
t
)
, and Ûm

(
t
)
for five inclination

angles α of the vortex path relative to the edge. f
(
t
)
= D

1
2
t

[
m

(
t
) ]

is the dimensionless acoustic pressure and
shows an intermediate behavior between that of m

(
t
)
and Ûm

(
t
)
.

B. Impermeable-elastic case
The corresponding time dependence of the acoustic pressure from an elastic edge with kε−1/2 � 1 is represented by

f
(
t
)
= D

1
2
t

[
m

(
t
) ]
=

1
2π

∫ +∞

−∞

(−iω)
1
2 m̂(ω)e−iωtdω =

∫ t

−∞

Ûm(s)

[π(t − s)]
1
2

ds, (49)

where the three functions f
(
t
)
, m

(
t
)
, and Ûm

(
t
)
were plotted in Fig. 4 for five inclination angles α of the vortex path

relative to the edge (α = 0, − 1
4π, −

1
2π, −

3
4π, − π). For the elastic case, the dimensionless acoustic pressure is the

1
2 th derivative of m

(
t
)
, and shows an intermediate behavior between that of m

(
t
)
and Ûm

(
t
)
.

It is worth noting that Kambe et al. [12] identified a symmetric acoustic pressure signal (proportional to f
(
t
)
) for a

rigid, impermeable edge when α = 0. However, the curves of f
(
t
)
shown in Figs. 3 and 4 show that symmetric pressure

signals occur for vortex path angles α = −π/2 and α = −π for the porous case and the elastic case, respectively.

IV. Conclusions
An analytical framework is developed to estimate the far-field sound from a vortex ring passing near a rigid-porous

or an impermeable-elastic edge. We adapts the works of Kambe et al. [12] for an impermeable-rigid edge condition,
which permits a parametric check and direct comparisons on this analysis of different edge conditions. The time-domain
Green’s functions for the porous and elastic cases are developed in this work by extending the vortex-ring analysis
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procedure by Kambe et al. [12] and integrating with it the asymptotic results for turbulence edge scattering for poroelastic
plates by Jaworski and Peake [7].

In contrast to the U5 acoustic power scaling law and cardioid directivity for turbulence and vortex sources near a
rigid half plane, the present analysis identifies a U6 scaling in a highly-porosity limit (µ/k � 1) and a U7 scaling for an
elastic case under a specific limit of fluid loading condition (kε−1/2 � 1). Both cases yield a dipolar directivity of
acoustic intensity, sin2 θ0. Furthermore, new scalings on the minimum distance of the vortex ring from the edges are
established, where L−5 and L−6 dependencies occur for the porous and elastic cases, respectively. The time-dependent
component of the scattered field depends strongly on the orientation of the vortex path relative to the edge, where the
particular impermeable, porous, and elastic cases examined each yield symmetric waveforms along different vortex-ring
paths. This time-dependent information for the scattered pressure signal and the accompanying scaling trends of acoustic
power on both the vortex ring speed U and offset distance from the edge L establish a basis for experimental validation
of poroelastic-edge noise suppression in particular parametric limits.

Appendix
Apply the Fourier inversion formula in Eq. (6), equation (4) becomes(

∇2 + k2
)

Ĝ(x, y; k) = −δ(x − y), (50)

where k and ω are related by k = ω/c denote the wavenumber and the angular frequency, respectively.
The Green’s function for the incident field is

Ĝ0(x, y; k) =
1

4π |x − y |
eik |x−y | . (51)

For observations at large distances x →∞, Ĝ0 can be expressed asymptotically as

Ĝ0(x, y; k) ∼ A exp[−ik(x̂1y1 + x̂2y2)], (52)

where

A =
1

4πx
exp(ik x − ik x̂3y3), (53)

and the direction of the observation point x is denoted by

x̂ = x/|x | = (x̂1, x̂2, x̂3),

x̂1 = sinψ0 cos θ0, x̂2 = sinψ0 sin θ0, x̂3 = cosψ0.

From the result of the scattered field for a poroelastic edge by Jaworski and Peake [7], the corresponding Green’s
function for the scattered field can be derived,

Ĝs(x, y; k) = −
1
2
iY1/2π−3/2B sin

θ

2
exp

[
ik x − ik cosψ0y3 +

π
4 i

]
x

as Y → 0, (54)

where Y = (y2
1 + y2

2)
1
2 and k = ω/c. B is a variable that depends on k, the properties of the poroelastic edge, and the

directivity of the incident field. The expression of B can be found in Eq. (4.16) by Jaworski and Peake [7]. Note that B
must be determined numerically for a poroelastic edge setup, but can be determined numerically when considering the
porous and elastic effects separately. Therefore, special attention is paid to the limiting cases of highly porous-rigid and
impermeable-elastic edge conditions as determined parametrically by [7] in the following sections.

A. Porous-rigid case
For the highly porous-rigid case (δ � 1, δ = µ/k), the variable B in Eq. (54) can be simplified as

Brp =
k sin θ0 sinψ0

K+(k cos θ0 sinψ0)
∼

k sin θ0 sinψ0

µ
1
2 e

iπ
4

, (55)
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where µ = αHKR/R is a parameter determining the porous effects. Specifically, αH is the open area fraction of the the
surface with pores of nominal radius R, and KR = 2KR/(πR), where KR is the Rayleigh conductivity of the pore [7].

The substitution of Eq. (55) into Eq. (54) lets the scattered field for the highly porous-rigid case be represented by

Ĝs(x, y; k) =
1

2π 3
2 c

Y
1
2 sin

θ

2
sin θ0 sinψ0

µ
1
2 x

(−iω) exp (ik x − ik cosψ0y3) . (56)

B. Impermeable-elastic case
For the impermeable-elastic case (kε−1/2 � 1, ε = ρ0k/(mk2

B)), the variable B in Eq. (54) can be simplified as

Be =
k sin θ0 sinψ0

K+(k cos θ0 sinψ0)
∼

k
3
2 sin θ0 sinψ0

ε
1
2

, (57)

where ε is the intrinsic fluid loading parameter [7, 14, 16] that depends only on the properties of the structure and fluid,
m is the plate mass, and kB is the in vacuo bending wavenumber.

Substitute Eq. (57) into Eq. (54), the scattered field for the impermeable-elastic case can be represented by

Ĝs(x, y; k) =
i

2π 3
2 c

3
2
Y

1
2 sin

θ

2
sin θ0 sinψ0

ε
1
2 x

(−iω)
3
2 exp (ik x − ik cosψ0y3) . (58)
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