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Abstract. We consider the Frobenius algebra of functions on the critical set of the master
function of a weighted arrangement of hyperplanes in Ckwith normal crossings. We construct
two potential functions (of first and second kind) of variables labeled by hyperplanes of the
arrangement and prove that the matrix coefficients of the Grothendieck residue bilinear form
on the algebra are given by the 2k-th derivatives of the potential function of first kind and the
matrix coefficients of the multiplication operators on the algebra are given by the (2k + 1)-st
derivatives of the potential function of second kind. Thus the two potentials completely
determine the Frobenius algebra. The presence of these potentials is a manifestation of a
Frobenius like structure similar to the Frobenius manifold structure.

We introduce the notion of an elementary subarrangement of an arrangement with normal
crossings. It turns out that our potential functions are local in the sense that the potential
functions are sums of contributions from elementary subarrangements of the given
arrangement. This is a new phenomenon of locality of the Grothendieck residue bilinear form
and multiplication on the algebra.

It is known that this Frobenius algebra of functions on the critical set is isomorphic to the
Bethe algebra of this arrangement. (That Bethe algebra is an analog of the Bethe algebras in
the theory of quantum integrable models.) Thus our potential functions describe that Bethe
algebra too.

1. Introduction

It is well known that the algebra of functions on the set of solutions of the Bethe ansatz
equations plays an important role in the study of quantum integrable systems since in many
cases the algebra of functions is isomorphic to the Bethe algebra of Hamiltonians of the
system, see for example [NS, MTV1, GRTV, R]. An interesting problem is to describe the
algebra. In this paper we consider the model case of the algebra of functions on the critical
set of the master function associated with a family of arrangements with normal crossings.
Such algebras appear in the KZ-Gaudin type integrable systems, see for example [SV, RV]. We
describe the algebra of functions on the critical set together with the Grothendieck residue
bilinear form in terms of derivatives of two potential functions in the spirit of Frobenius
structures.
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1.1. Statement of results. Denote |/ = {1,..,n}. Consider C" x Ck with coordinates (zt) =

(z1,...,Zn t1,..,tk) and the projection t: C? * Ck™ Cn. Fix n nonzero linear functions on Ck, gj= bl;t1
+ -+ + bty j € J. Assume that {gj}je span the dual space
(CK)*. Define the functions fj= gj+zjon C" xCk. We obtain on C" xCkan arrangement

¢ 11 }‘:‘=I, where Hjis the zero set of f;. Let U(C) := C"x Ck- UjegsHjbe the
complement. For every x € C, the arrangement C restricts to an arrangement C(x) on 7-1(x)

~= Ckwith the complement U(C(x)) := 71(x) N U(C). For almost all x € Ckthe arrangement
C(x) is with normal crossings. The subset A c C", where this does not hold, is a hypersurface
and is called the discriminant.

Aset={i1,.,ix} € Jis called independent if gi,...girare linearly independent. Denote Jindthe
set of all independent k-element subsets of J.

Let a = (ai,..,an) € (C*)"be a system of weights such that for any x € C" - A the weighted
arrangement (C(x),a) is unbalanced, see Section 2.10, e.g. ™ & 2y s unbalanced, also a
generic system of weights is unbalanced. The master function of the weighted arrangement
(Ca)is

(1.1) Pealz,t) i= Zr. L log ..i'-.

For x € Cn - A all critical points of ®c,q|z=x with respect to the variables t, are isolated, and the
sum u of their Milnor numbers is independent of the unbalanced weight a and the parameter
x € C"- A. The main object of this paper is the y-dimensional algebra

: n .)d’c’ it .
O(Cea) = OWIC()) [ (52 ‘_; ..., a-)
(1.2) A Ot
of functions on the critical set of the master function ®caq|z=x, see Section 3.4. Define (1.3)
;7] ride . ,
= | e OICe(s1.a)s J.
P [IJ_ wry C (C C(x).a) JE

The elements {p;}je) generate O(Cc(x),q) as an algebra. The elements {pi1 :**pi}{i,. iteyms generate
0O(Ccw),a) as a vector space. The Grothendieck residue defines a nondegenerate bilinear form
(, Jecwaon O(Cc,a). The algebra (O(Cc),a),(, )cewa) is a Frobenius algebra.

The main result of this paper is a construction of two functions P, Q on C" -A called the
potentials of first and second kind, respectively. The potentials have the following properties.

Theorem 1.1. Let x € C"-A. Then for any two independent subsets {i,...,it},{11,... Ik} € ] and any

io € J, we have
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Formula (1.4) determines the Grothendieck residue bilinear form (, )ccw.in terms of the
potential of first kind. Formula (1.5) determines the operators of multiplication by
generators {pj}je/in terms of the potential of second kind.
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H>
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Figure 1

Example. For the arrangement of four lines shown in Figure 1 and given by equations ¢z + z1
=0,t2+22=0,t1+23=0, t1+ t2+ z4= 0 we have

| [-:| + 3 — :.]JI |:.'::__| + z5— 2 L-:I'I
= 2 =+ o + g 4 1y ("I’l”'-:”l 1 f (latgily T
i failgily [.'J| — .','-_s}j |:-3| + 25 — .','|}"')
iy + i1y 2! 2 '
- - -~ 4 - . = ad
f [vl + zZ3 — v-!jl \[vg+.,:{ — Z4)
(2 = I'I"|H_5f|"l.|t|l3| + et _‘:i] 1! +{Iz|’:’_yl']';]“[:-‘.:+f:1 - fhl ]!
(103030 N N (21 — .:j_]2 {21+ 23— -31_]!
+————In(z — =) :
gy —+ {1y 21 21
. . i . ] . — ] g |. ' .
Theorem 1.1 in particular says that (‘r"“"f’-’””u----- (m+aztagtaalimstes) and it does not
i S LA ELEE]
depend on x € C7— A, and (V1P PP G0 = ST e,

In this example the potentials are sums of terms corresponding to subarrangements
consisting of three or four lines. It turns out that this is the general case. In Section 4.1 we
introduce the notion of an elementary arrangement in Ckof type A = (A1,..,Am), An € Z>0, A1 + ++
+ Am=k. In particular, such an elementary arrangement consists of k + m hyperplanes, and an
elementary arrangement in Ckhas at most 2k hyperplanes. We show that the potentials are
sums, over all elementary subarrangements, of the prepotentials of the subarrangements
taken with suitable weights, see Corollary 6.4 and Theorem 7.1. The fact that the potentials
are sums of contributions from elementary subarrangements indicates a new phenomenon
of locality of the Grothendieck residue bilinear form and multiplication on

O(CC(X],G).
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The existence of the potentials of first and second kind locally on C?-A was established in
[HV].

1.2. Frobenius like structure of order (n,km). The potential of the second kind is an analog
of the potential in the theory of Frobenius manifolds. A Frobenius manifold is a manifold with
a flat metric and a Frobenius algebra structure on tangent spaces at points of the manifold
such that the structure constants of multiplication are given by third derivatives of a
potential function on the manifold with respect to flat coordinates, see [D, M]. As an analogy
of that, for our family of arrangements the structure constants of multiplication are given by
2k + 1-st derivatives of the potential of second kind, see Theorem 1.1.

The notion of potentials of a family of arrangements was introduced and studied in [V5,
V7,HV]. In [V5] the potentials were constructed for the families of generic arrangements, that
is, such that the linear functions gi,..,gixare linearly independent for any distinct iy,...,ik € J. In
[V5, V7, HV] different axiomatizations of the structure leading to the existence of the
potentials were given. In particular in [HV] Frobenius like structures of order (n,k,m) were
introduced. Our case of a family of arrangements corresponds to the case of order (n,k,2).
Under the axioms of [HV] the existence of the potential of second kind was deduced in [HV]
from a surprising elementary study of finite sets of vectors in a finite-dimensional vector
space W. Given a natural number m and a finite set {w:} of vectors, a necessary and sufficient
condition was given to find in the set {wi} m bases of W. If m bases in the set {w:} are selected,
then some elementary transformations of such a selection are defined. It was shown in [HV]
that any two selections are connected by a sequence of elementary transformations. These
structures are fundamental and one may expect a matroid version of them.

1.3. Bethe algebra. Given a family of weighted arrangements in Ckas in Section 1.1, one

considers the Gauss-Manin differential equations for associated k-dimensional

i-» - .F. i _ o
hypergeometric integrals, Hipe; (2) Kj(2)(z), 5 € J, 2 € C A, where Ki(z) are

suitable linear operators on the space of singular vectors Sing 4V, see Section 3.3. For every
x € C" - A, the operators Kj(x)j € J, commmute and are symmetric with respect to the
contravariant bilinear form S@ on Sing «V . The unital subalgebra of End(Sing V') generated
by the operators Kj(x),j € J, is called the Bethe algebra of the weighted arrangement (C(x),a).
This algebra is the analog of the Bethe algebra in the theory of quantum integrable systems,
see [V4]. It is known that the Bethe algebra together with the bilinear form S is isomorphic
to the pair consisting of the algebra of multiplication operators on O(Ccw)«) and the
Grothendieck residue bilinear form (, )ccwe. Thus Theorem 1.1 gives us a description of the
Bethe algebra in terms of the derivatives of the potential functions, see Theorem 6.1 and
Corollary 7.4.

Our construction of potential functions is based on the isomorphism of the Bethe algebra
and the algebra of functions on the critical set.
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The Bethe algebra of our family of arrangements is an example of the Bethe algebra of a
quantum integrable system. One may expect to determine glimpses of Frobenius like
structures in the Bethe algebras of standard quantum integrable systems.

1.4. Exposition of material. In Section 2 we remind general facts about arrangements. In
Section 3 we consider families of arrangements. In Section 4 we introduce elementary
arrangements and define potential functions. In Section 5 we prove an important formula for
the orthogonal projection m : V - Sing oV with respect to the bilinear form S$@. Based on that
formula we prove the first part of Theorem 1.1 in Section 6 and the second part of Theorem
1.1 in Section 7.

The second author thanks the MPI in Bonn for hospitality during his visit in 2015-2016,
C.Hertling and B.Dubrovin for useful discussions. We also thank C.Hertling for indicating a
mistake in the initial draft of the paper.

2. Arrangements

2.1. Affine arrangement. Let k,n be positive integers, k < n. Denote J = {1,..,n}.
Consider the complex affine space Ck with coordinates ti,.,tr. Let C = (H))je, be an
arrangement of n affine hyperplanes in Ck. Denote U(C) = Ck- Ujg/Hj, the complement.

An edge X« C Ckof C is a nonempty intersection of some hyperplanes of C. Denote by J«C ] the
subset of indices of all hyperplanes containing X«. Denote l«= codimcXe. We assume that C is
essential, that is, C has a vertex, an edge which is a point.

An edge is called dense if the subarrangement of all hyperplanes containing it is
irreducible: the hyperplanes cannot be partitioned into nonempty sets so that, after a change
of coordinates, hyperplanes in different sets are in different coordinates. In particular, each
hyperplane of C is a dense edge.

2.2. Orlik-Solomon algebra. Define complex vector spaces A?(C), p = 0,... k. For p = 0, we set
Ar(C) =C. For p > 1, Ap(C) is generated by symbols (Hj,...,Hj,) with ji € ], such that (i) (Hj,....Hj»)
= 0 if Hj,...,Hj,are not in general position, that is, if the intersection Hix N ... N Hj,is empty or
has codimension less than p; (ii)

(H; H; )= (1" (Hj, ... H

Sl "t

T,‘Jill:: ].-IfI‘Jl'leL!rj

e }

f"') for any element o of the symmetric group Xp; (iii)

oo Hiy 1) =0 for any (p + 1)-tuple Hj,..., Hj,1 of hyperplanes in C
which are not in general position and such that HxN ... N Hjp.16= Q.
Ay Y Ami
The direct sum “4{€ ?.'-'—IAP'L) is the Orlik-Solomon algebra with respect to multipli-
cation (Hjl,...,ij) . (ij+1,...,ij+q) = (I-Ijl,...,ij,I-ij+1,...,ij+q).

2.3. Aomoto complex. Fix a point a = (ai..an) € (C)" called the weight. Then the
arrangement C is weighted: for j € ], we assign weight aj to hyperplane H;. For an edge Xa,
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define its weight a«= Pje]a aj. We denote aj= Pje]aj and w@ = Pje] aj-(Hj) € A1(C). Multiplication
by w(@ defines the differential d(@: Ap(C) = Ar+1(C), x 7= w@ - x, on A(C).

2.4. Flag complex, see [SV]. For an edge Xo, I« = p, a flag starting at X«is a sequence Xao D Xm
D -+ D Xop= Xo 0f edges such that lo;=j for j = 0,..,p. For an edge Xo,

we define (F«)zas the free Z-module generated by the elements Fa,.,a=«1abeled by the

elements of the set of all flags starting at Xo. We define (Fa)z as the quotient of (F«)z by the
submodule generated by all the elements of the form

E W W VX3 X 'il.'l.|_ 0 P T N1 OIS [ P

(2.1) e
Such an element is determined by j € {1,..,p - 1} and an incomplete flag Xa0> ... D

Xoj-12D Xaji1D ... D Xap= Xawith lui=1.

We denote by Fa,.,a, the image in (F«)z of the element Fa,..a. For p = 0,...,k, we set (

FPCllg = ®x.to=pFalz, FHC) = (FPIC))z @ C, F(C) = ’-:kl-};lfﬁfc ). We define the
differential dz: (Fr(C))z— (Fr*1(C))zby

de @ Fapay, — Y Fogop.
(2.2) L.'-. 3y Xap2Xp o

d?; = 0. Tensoring dz with C, we obtain the differential d : F»(C) — Fr*1(C). In particular, we
have HP(F(C),d) = HP((F(C))zdz) ® C.

We have H?(F(C),d) = 0 for p 6= k and dimH*(F(C),d) = |x(U(C))|, where x(U(C)) is the Euler
characteristic of the complement U(C), see [SV, Corollary 2.8]
2.5. Duality. The vector spaces A?(C) and FP(C) are dual, see [SV]. The pairing A?(C) @ Fr(C)

— Cis defined as follows. For Hj,,..,Hj,in general position, set F(Hj,... Hj,) = Fao,.,a, where Xao=

F(Hjsqy...,Hjow)) for some o € Sp, and h(Hj,...,Hjp), Fa,.,aoi = 0 otherwise.

An element F € FX(C) is called singular if F annihilates the image of the map d@: Ax-1(C) —»
AKk(C), see [V3]. Denote by Singa F¥(C) c Fk(C) the subspace of all singular vectors.

2.6. Contravariant map and form, see [SV]. The weights a determines the contravariant
map

(23) S(a) : Fp(C) 4 Ap(C), Feo,...ap—7 Xajl "'Cljp(Hjl,...,I‘ij),
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where the sum is taken over all p-tuples (Hj,....Hj) such that Hjs D Xam,..., Hj, D Xa,. Identifying
Ar(C) with Fr(C)*, we consider the map as a bilinear form, S@: Fr(C) @ Fr(C) — C. The bilinear
form is called the contravariant form. The contravariant form is symmetric. The
contravariant map (2.3) defines a homomorphism of complexes S@ : (F(C),d) = (A(C),d@),
see [SV, Lemma 3.2.5].

2.7. Generic weights.

Theorem 2.1 ([SV, Theorem 3.7]). If the weight a is such that none of the dense edges has
weight zero, then the contravariant form is nondegenerate. In particular, we have an
isomorphism of complexes S : (F(C),d) = (A(C),d@®).

Notice that none of the dense edges has weight zero if all weights are positive.

If the weight a is such that none of the dense edges has weight zero, then the isomorphism
of Theorem 2.1 and the graded algebra structure on A(C) induce a graded algebra structure
on F(C).

2.8. Differential forms. For j € J, fix defining equations fj= 0 for the hyperplanes Hj, where f;
= bljt1 +---+bk; tk +zjwith bij,z; € C. Consider the logarithmic differential 1-forms wj;= dfj/fjon Ck.
Let A"(C) be the exterior C-algebra of differential forms generated by 1 and wj, j € J. The map
A(C) - A™(C), (Hj) =7 wj, is an isomorphism. We identify A(C) and A™(C).

dy = d,, e dc*Tf:I.

|“’-.-). Then wi A - A wir=

For I ={iy,..,ix} ], denote ey

Ttk ) A - A dl

2.9. Master function. The master function of the weighted arrangement (C,a) is

(2.4) dea=X  gjlogf;
Jj€J

Cen = {u e U(C)

il

a multivalued function on U(C). Let it [”) = 0 for i = 1,..,k} be the

critical set of ®ca.
2.10. Isolated critical points. For generic weight a € (C*)», all critical points of ®cq are

nondegenerate and the number of critical points equals |y(U(C))|, see [V2, OT1, Si].
Consider the projective space Pk compactifying Ck. Assign the weight ae = —Pjej aj to the

hyperplane H« = Pk -Ck. Denote by C the arrangement (Hj)jeju» in Pk The weighted

arrangement (C,a) is called unbalanced if the weight of any dense edge of C" is nonzero, see
[V4]. For example, (C,a) is unbalanced if all weights (aj)jeare positive.
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If (C,a) is unbalanced, then all critical points of ®cqare isolated and the sum of their Milnor
numbers equals [y(U(C))|, see [V4, Section 4].

2.11. Residue. Le O(U(C)) be the algebra of regular functions on U(C) and
Ieo={2ea | i=1,... k) cOWIC

Lty )) the ideal generated by first derivatives of ®cq. Let
O(Cca) = O(U(C))/Icabe the algebra of functions on the critical set and [] : O(U(C)) = O(Cc.a),
f—=7 [f], the projection. We assume that all critical points are isolated. In that case the algebra
0(Cc,a) is finite-dimensional and the elements [1/f], j € ], generate O(Cc.q) as an algebra, see
[V4, Lemma 2.5].

Let R: O(Cca) — C be the Grothendieck residue,

) |. _|II ]. /l I,|r f-'lf] .""'-. e -""‘-. fl'l.ll,'h
! — — & e (Dari vk ) k ol LR
JII ] LQ’.‘[ * | "'IReS ]_[| 1 it ; L= l_[_.l 1 it .

| B,
L

Here T is the real k-cycle defined by the equations | =& j=1.. "I", where j are

small positive numbers, see [GH]. Define the residue bilinear form (, )cc. on O(Cca) by

(If1.IgDcca= R([fl[g])- This form is nondegenerate, see [AGV], and ([f][g],[h])cca= ([f].[g][h])cca
for all [f],[g],[h] € O(Cc.a), thus (O(Cca),(, )cca) is a Frobenius algebra.

2.12. Orthogonal projection. Let 7! : FkK(C) — Singq F¥(C) be the orthogonal projection with
respect to S(@.

If the weight a € (C¥)"is unbalanced, then dFk-1(C) = Singq F¥(C)+, where dFk-1(C) c F¥(C) is
the image of the differential defined by (2.2) and Singa F¥(C)+ < F¥(C) is the orthogonal
complement to Singa F¥(C) with respect to S, see [V6, Lemma 2.14]. Define the map
(2.5) vc: FK(C) » 0(Cca), F7-[f],

where fis defined by the formula S(@(F) = fdt1 A -++ A dt. Clearly, vc(Singa F¥(C)1) = vc(dF+-1(C))
=0, since w@ = 0 on Cca.

Theorem 2.2 ([V6]). If the weight a € (C*)"is unbalanced, then the map ve |
Singq FK(C) = 0O(Ccq) is an isomorphism of vector spaces. The isomorphism vc identifies the
residue form on O(Cca) and the contravariant form on SingFk(C) multiplied by (-1)%,

S@(f,g) = (-1)*(vc(H,ve(g))ccafor £g € Singa FK(C).

Remark. If the weight a € (C*)" is unbalanced, then the isomorphism pc induces a

Sing, FEI

commutative associative algebra structure on Sing «F*(C). Together with the contravariant
form S(@|sing.Frit is a Frobenius algebra. The algebra of multiplication operators on Sing «F*(C)
is called the Bethe algebra of the weighted arrangement (C,a). This Bethe algebra is an analog
of the Bethe algebra in the theory of quantum integrable models, see, for example, [MTV1,
MTV2, V3, V4].
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2.13. Integral structure on O(Ccq) and Sing «Fk(C). If the weight a is unbalanced, the formula
A . LIS i
Hr(F(C),d) = HP((F(C))zdz)®C and the isomorphismr{ |-‘ii“:--. ey H(F(C).d)

= Sing «F(C) = O(Cc.a) define an integral structure on O(Cc.q). More precisely, for a k-flag of

edges Xao D Xa1 D +++ D Xax, let S(a)(Fao...ar) = fao,..axdt1 A -+ A dtk. Denote by

Corollary 2.3 ([V6]). If the weight a is unbalanced, then the set of all elements {Wa,..,«}, labeled
by all k-flag of edges of C, spans the vector space O(Cca). All linear relations between the
elements of the set are corollaries of the relations

(26) X Wao,...,aj-1,B,aj+1,...,ap=a = 0,
XB Xaj-1DXpD Xaj+1

X

Wa,...ap = 0, XXy X5
¢f. formulas (2.1), (2.2).

Similarly, for a k-flag of edges Xao D Xa1 D +++ D Xu, let va,..axbe the orthogonal projection of

Corollary 2.4 ([V6]). If the weight a is unbalanced, then the set of all elements {vas,.,«}, labeled
by all k-flag of edges of C, spans the vector space Sing «Fk(C). All linear relations between the
elements of the set are corollaries of the relations

(2.7) X Vao,...,aj-1,B,aj+1,...ap=a = 0,
Xp,Xaj-12XpD Xaj+1

X

Vay,...,ap8 = O, XpXapD Xp

cf. formulas (2.1), (2.2).

called the marked elements. The relations (2.6), (2.7) are called the marked relations.

2.14. Combinatorial connection, I. Consider a deformation C(s) of the arrangement C, which
preserves the combinatorics of C. Assume that the edges of C(s) can be identified with the
edges of C so that the elements in formula (2.1) and the differential in formula (2.2) do not
depend on s. Then for every s, the elements {wa,..a(s)} span O(Ccs)a) as a vector space with
linear relations (2.6) not depending on s. This allows us to identify all the vector spaces

g1

O(Cc(s),a)- In particular, if an element w(s) € O(Cc(s)q) is given, then the derivative i« is well-
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defined. This construction is called the combinatorial connection on the family of algebras

connection.
Similarly we can define the combinatorial connection on the family of vector spaces Sing
aF¥(C(s)).

2.15. Arrangement with normal crossings. An essential arrangement C is with normal
crossings, if exactly k hyperplanes meet at every vertex of C. Assume that C is an essential
arrangement with normal crossings.

A basis of Ar(C) is formed by (Hj,....Hj»), where {j1 < -+ < jp} are independent ordered p-
element subsets of J. The dual basis of FP(C) is formed by the corresponding vectors
F(Hj,..,Hj»). These bases of A¢(C) and F?(C) are called standard. We have

(28) F(I‘Ij1,...,1‘]jp) = (_1)|G|F(de(1),-..,1_1jg(p)), foro e 2p.

For an independent subset {ji,..jp}, we have S@(F(Hj,..H;),F(Hj,...Hj»)) = aj +--aj, and
SW@(F(Hj,...,Hjp),F(H,...,.Hi)) = 0 for distinct elements of the standard basis. If a is unbalanced,

then the marked elements in O(Cc,q) are

i, i
Wy, g =i

(2.9) i TR T

where {i1,..,ix} runs through the set of all independent k-element subsets of /. We have

.....

F(Hi,.... Hi) with the skew-symmetry property Vieay,..is= (—1)°Vi,...ifor o € Zxand the marked
relations Pje]Vj,iz,...,ik: 0 labeled by independent subsets {i,..., ik}

For any independent ordered subset ji,....jp € ] we denote Fj,..j,= F(Hj,....Hj») € FP(C) and set
Fj,..jp= 0 if j1,...jpis a dependent subset.
Corollary 2.5. The orthogonal complement Sing «F¥(C) is generated by the elements
Pje] Fji,..i1 labeled by independent subsets {i1,..,ik-1} € J, and an element of F¥(C) lies in Sing

aFk(C) if and only if it is orthogonal to all the elements Pjej Fji,.ik-1.

3. Family of parallelly transported hyperplanes

3.1. Arrangement in C"xCk, Consider Ckwith coordinates ti,..., tk, C* with coordinates z1,...,,z,

the projection 7 : C* x Ck —» Cn Fix n nonzero linear functions on Ck g =

bity 4+ -+ Wity j € J iy

‘where; = €, Assume that the functions {gj}je), span the dual
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space (CK)*.

Define n linear functions on C" x Ck, fi= gj+ z; j € J. Consider the arrangement of hyperplanes
C = {Hj}jgyin C" x Ck, where H;is the zero set of fj, and denote by U(C) = C" x Ck - Ujg/H, the
complement. For every x =€ C7, the arrangement C induces an arrangement C(x) in the fiber

7-1(x) ~= Ck Then C(x) consists of hyperplanes {Hj(x)};e/, defined in Ckby the equations g; + x;
= 0. Thus {C(x)}xec:is a family of arrangements in Ck, whose hyperplanes are transported
parallelly to themselves as x changes. Denote by U(C(x)) = Ck- Ujeg/Hj(x) the complement. For
almost all x € Ckthe arrangement C(x) is with normal crossings. The subset A ¢ C"where this

does not hold, is a hypersurface called the discriminant. On the discriminant see, for example,
[BB, V4].

3.2. Combinatorial connection, II. For any x1,x2 € C" - A, the spaces FP(C(x1)), Fr(C(x?)) are
canonically identified if a vector F(Hji(x1),... Hj,(x1)) of the first space is identified with the
vector F(Hji(x2),..,Hj,(x?)) of the second, in other words, if we identify the standard bases of
these spaces.

Assume that a weight a € (C*)"is given. Then each arrangement C(x) is weighted. The
identification of spaces FP(C(x1)), FP(C(x?)) for x1,x2 € C" —-A identifies the corresponding
subspaces Singq F¥(C(x1)), Singa F¥(C(x2)) and contravariant forms.

Assume that the weighted arrangement (C(x),a) is unbalanced for some x € C" - A, then
(C(x),a) is unbalanced for all x € C"— A. The identification of Sings F¥(C(x)) and

Singq FK(C(x2)) also identifies the marked elements vj,..ix(x1) and vj,..ix(x%), see Section 2.15.
For x € Cn-A, denote V = Fk(C(x)), Singa V = Singa FX(C(x)), vj1,...jx= Vj..ji(x). The triple (V,Singa

1,5@), with marked elements vji,..ji, does not depend on x under the identification.
As a result of this reasoning we obtain the canonically trivialized vector bundle

(3.1) txecn-a FK(C(x)) ~ Cn- A,

with the canonically trivialized subbundle txec:-a Singa F¥(C(x)) — C" - A and the constant
contravariant form on the fibers. This trivialization identifies the bundle in (3.1) with the
bundle (C"- A)xV — C"- A and identifies the subbundle txecs-a Singa F¥(C(x)) = C"— A with the
subbbundle

(3.2) (Cn-A) x (Singa V) » Cn - A.

The bundle in (3.2) is called the combinatorial bundle, the flat connection on it is called
combinatorial, see Section 2.14 and [V4, V5].

3.3. Gauss-Manin connection on (C" - A)x(Sings V') — C" - A. The master function is ®ca=

Pje] ajlogfj, a multivalued function on U(C). Let k € ¢~ The function e®co/x defines a rank one
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local system L« on U(C) whose horizontal sections over open subsets of U(C) are univalued
branches of e®c/x multiplied by complex numbers, see, for example,
[SV, V2]. The vector bundle

txeco-a Hk(U(C(x)),Lr|u(cx)) = Cn— A

is called the homology bundle. The homology bundle has a canonical flat Gauss-Manin
connection.
For a fixed x € C"- A, choose y € Hi(U(C(x)),L«|v(cx))- The linear map {y} : A¥(C(x)) » C, w

7- Ry e®co/kw), is an element of Sing «F¥(C(x)) by Stokes’ theorem. It is known that for generic

k any element of Sing «F¥(C(x)) corresponds to a certain y and in that case this construction
gives the integration isomorphism

(3.3) Hrk(U(C(x)),Lk|ucxy) — Singa F¥(C(x)),

see [SV]. The precise values of k, such that (3.3) is an isomorphism, can be deduced from the
determinant formula in [V1].

For generic k the fiber isomorphisms (3.3) define an isomorphism of the homology bundle
and the combinatorial bundle (3.2). The Gauss-Manin connection induces a connection on
the combinatorial bundle. That connection on the combinatorial bundle is also called the
Gauss-Manin connection.

Thus, there are two connections on the combinatorial bundle: the combinatorial
connection and the Gauss-Manin connection depending on k. In this situation we consider
the differential equations for flat sections of the Gauss-Manin connection with respect to the
combinatorially flat standard basis. Namely, let y(x) € Hk(U(C(x)),L«|ucw))) be a flat section of
the Gauss-Manin connection. Let us write the corresponding section Iy(x) of the bundle (C" -

I(x) =3 inaependene 02 (x)F(H; ..., H, ), Div(z) = ]"_I_”;"'f'-'--’”u-;,l Mo Aowy,
A) x Sing oV — C"- A in the combinatorially flat standard basis,.
1 k
We may rewrite it as Iy(x) = P independent Iyju,...jx(X) Vj1...jkSince Iy(x) € Sing V. For

{j1<---<jk}c]

o ASwnl) LU )
I = P]jL---,jijl,...,jk and j € J, we denote 9:;  —~ i Yivedk This formula defines the

combinatorial connection on the combinatorial bundle.
The section Iy satisfies the Gauss-Manin differential equations
rﬂuﬁl Ki(z)I(x), J e J,
(3.4) 0z
where Kj(x) € End(Sing «V). See a description of the operators Kj(x), for example, in [OT2, V2,
V4].

3.4. Critical set. Denote by Cc.qthe critical set of ®cqin the Ck-direction,
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f,i'fil[- n o

9t U =0 fori=1,..k.

A

35) ) Cea {{-r.u_:l elUC)cC"xC

Let O(Cc),q) be the algebra of regular functions on Cc(x),q = Cc.a N T71(x). Namely, for x € C»,
Al .
L.I. I I }I‘

—. 1

let Icx)a be the ideal in O(U(C(x))) generated by @i - . We set O(Ccw,a) =
O(U(C(x)))/Icx).a- Assume that the weight a is such that the pair (C(x),a) is unbalanced for

some x € C"— A. Then we obtain the vector bundle of algebras txecr-a0(Ccx,a) ~ C"— A. For x €
Cn— A, recall the isomorphism

vir) == vegn : Sing  F*(C(x) = O(Ceiay )
(3.6) Sing  F*(C(x)
of Theorem 2.2. This ‘fiber’ isomorphism establishes an isomorphism of the bundle
txecr-a0(Cc(,a) = C"— A and the bundle (C" - A) x (Singa V') — C" - A. This isomorphism
together with the combinatorial and Gauss-Manin connections on the bundle (C?- A) x (Singa

V) - C"- Ainduces two connections on the bundle of algebras txeci-a0(Cc,a) ~ C*— A, which

also are called the combinatorial and Gauss-Manin connections, respectively.

Theorem 3.1 ([V4]). If the pair (C(x),a) is unbalanced for x € C" - A, then for all j € ], we have

([”.j] t_r) ovir)=wvir)o K;(x)
(3.7) 1 )

e e ] on OCri.0) . : .
where ' f: 1" is the operator of multiplication by /: e Ygnd Kj(x) € End(Sing oV') is

the operator defined in (3.4).

Remark. Recall that aj/fj = 0®Pcq/0zi and the elements [aj/fj], j € ], generate the algebra
O(Cc(x),a)- Theorem 3.1 says that under the isomorphism v(x) the operators of multiplication
[aj/fi]*x on O(Cc),q) are identified with the operators Kj(x) in the GaussManin differential
equations (3.4). The correspondence of Theorem 3.1 defines a commutative algebra
structure on Sing 4V, the structure depending on x. The multiplication in this commutative
algebra is generated by the operators Kj(x),j € J. The correspondence of Theorem 3.1 also
defines the Gauss-Manin differential equations on the bundle of algebras in terms of the
multiplication in the fiber algebras, see these differential equations in [V6, Theorem 3.9].

1

. Lk 2
3.5. Formulas for multiplication. Recall that for j € J, we denote Fi [ ] "] ©

(3.8) X dji,..i-1pj = 0. jeJ

For a subset I = {i1,... ik+1} C J denote
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K41 .
z) = E 1) s -
(3.9) Ir.rll. ; _.' 1 l:- »:I '_llr Al geeeadgamen iz |'
Lemma 3.2. We have

L kb, L i ot Wi
-"l"r*'\'ll_[_.l L fi _Z_J (=1) . 4 "".-""""""]'_'[“' 1 m#j f;

J. i $41/4 — = Yy N
Proof. We have Lﬂ -f P = %)y G = 0. That implies the lemma.

(3.10)

Corollary 3.3. Assume that a subset {i1,..,ik+1} C ] consists of distinct elements and contains a
k-element independent subset. Then we have an identity in O(Cc(x),a):

: f - _ Ty gyt . )
(3.11) Jivsciind (2] Pia - Pig Z__.-Jf D™ as w5 e

Proof. The corollary follows from Lemma 3.2.

4. Elementary arrangements

4.1. Definition. Consider a k-dimensional vector space X with coordlnates t1,t2,...tk. Let A =

(A1,12,..,Am) be a collection of positive integers such that 2_i-1 i Assume
that we have a collection of non- 1ntersect1ng index sets Jn, h = 1,..,m, each with |Ja] = An+ 1

elements. Denote /A = Ui Juy A" = Ay 4 - Ay, AT =0,
Let C={Hi}icnbe a weighted arrangement of affine hyperplanes in X with normal crossings.
Each hyperplane Hihas weight aiand is defined by an equation gi(tz,...,tx)+zi=
0, where®: pI ity tis an element of the dual space X*and zi € C. Define a
subspace Xn*(J2) = span{m hi i ob X . We have a filtration
(4.1) Xih)cXg(h) o X (L) X7

The arrangement Cj,is called elementary of type A if
(i) Forany h € {1,.,m} we have dim X7 (/1) — A",
(ii) Forany h € {1,..,m}, anyj € Jx andd = {UL i} = {J 1, we have dim(span{gi}ea) = Ah.
In Figure 2 the first elementary arrangement is of type A = (2) and the second is of type A =
(1,1) with J1 = {1,2},J2 = {3,4}. In this section we always assume that Cjis an elementary

arrangement.
>< >< H1
H
] // 0
H> H3z Hs Ha

Figure 2. Elementary Arrangements in Dimension 2.
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4.2. Distinguished Elements. For h = 1,..,m, let Kn = {j1,...,j»:} be an ordered Arelement subset
of Jn. Recall the notation Fk.= F(Hj,...,Ha) € F*(Cp). The elements of the flag space F¥(Cp) of

the form

Fxi,..km= Fxi A Fa A +++ A Fkn € Fi (Cp),

are called the distinguished elements of the elementary arrangement Cj.

Lemma 4.1. Counted up to permutation of indices potentially changing sign, there are exactly
net bAn 1] distinguished elements of Cj.
For example, in Figure 2 the distinguished elements of the first arrangement are +F1,2,+F2;3,
+F13and distinguished elements of the second are:br' 1.3: = Fia, £Fa3, 5, !

Let Jy = {11’!2 ----- .J’-;:.,II} , and let h..'.' o
Arelement subset of Jn. The element

A+l . Agz+1 .
s(Cy,) (E l+ (—1)* "'"‘_.':) A (Z (=) ;,) AL

Mkl o
(4.2) o (Z D age ‘r'hj;.,_.) € Fr(C,)

is called the singular element of Cj.

be an ordered

Lemma 4.2. We have s(C:) € Sing oFk(Cp).

Proof. By Corollary 2.5, the element s(Cp) lies in Sing a4F¥(Cp) if and only if it is orthogonal to
each of the elements Pje/E,il,...,ik_l labeled by independent subsets I = {i1,...,ik-1} < Ja. If {i1,...,ik-1}
C Jais independent, then there is [ € {1,..,m} such that [InJi| = Ai-1 and |I N Ja| = Anfor h 6= L.

Then it is clear that S(a)(S(C]A),PjEJ Fji.,..i-1) = 0 as the sum of two opposite terms coming from
the I-th factor in formula (4.2).

The singular element s(Cj) has the following properties. It is defined uniquely up to
multiplication by 1, and this sign depends on the ordering put on each subset Ji». Each
destinguished element of Cj;, considered up to sign, enters the singular element exactly once.

Example. In Figure 2 the singular element of the first elementary arrangement is *(asFi,2+
azF31+ ai1F2;3) and the singular element of the second is *(azF1 - ai1F2) A (a3Fa— asF3).

k 1 r &
4.3. Decomposing Determinants. Recall the elements ¥ — > it € A
Iy ....jn = det {hlir}:;.r

, used in

defining the hyperplanes Hj, and the notation’ 1,
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Let s1,..,Sk be a basis of X* adjacent to the filtration 1L S in (4.1), i.e., let s1,..,Skbe
such that for any h = 1,..,m, the elements s3,..,s1.form a basis of Xn*(J1). Additionally, we select
s1,..,Sksuch that the change of basis matrix from ts,...,tkto s1,..,skhas determinant one.

& :
Let % — 2oici ‘t '5‘2, be the expansion of gjwith respect to the new basis, then for any ji,...,jk
i .
€ Jawe have det("je]rm_— — i v and cii=0forallj € Ju, i > Ah.
For h = 1,..m, let/n — 1K' 4%, tbe an ordered An-element subset Of]h Consider K =

(K1,K2,..,Km) as an ordered k-element subset of /.. The matrix (f = ’ is lower block-
i=ARTLp,, AN

Ch = ()
triangular. Define the diagonal Ax xAs-blocks as the matrices A VR it
Lemma 4.3. Let K be constructed as above. Then, die = [z, det O

4.4, Auxiliary Arrangements. For h = 1,..,m, let Yn be a vector space of dimension An» with
coordinates s1,h,....smh. For j € Jn, let gjnbe elements of ¥ n* given by the formula

yd—1 .'—I
g — X € =g

1k where Con 7 0 and the i * are the coefficients introduced in
Section 4.3.

Define Cjn = {H;n}je/nto be the following weighted arrangement of affine hyperplanes in Yh.
Each hyperplane Hjrhas weight ajand is defined by the equation gjs(s1,h,...,.smh) + zj= 0, where
zjand aj are the same as in Section 4.1. We call Cjn the auxiliary arrangement of type h
associated with the elementary arrangement Cj.

A
For an ordered Ar-element subset I = {ju... ju} C Jndenote @73 = Aet(ey JTh) et

_ -y -y
=10t Tat1t, By the construction, the linear combination

T-.'u,ll l_.||| . . | X . a1
(=07, . dn193lies in Xp*-1. Choose some numbers®-J © Y21 such that

the linear combination
Ap 1
i i+1 - Y —
(4.3) Z._1 (—1) “r_.'-_. Fiveenrdng +1:ih 5] | Z_,gu’_"l',.r,t gy =0
. - -1 -
as an element of the space X*. Such numbers exist since®:J & “i— i span *7—1. Denote

Apt1 .
. = (—1 d. = 22 4 12
(44) .||Lf._:.._. M iy | FupeeeaFisedag + i je Ui. |I"l' I .l.

We call the function

P = [es, a; {-"FL'HJ-]-M'
(2 TY L R S
(4.5) i diy, #100
a prepotential of first kind of the auxiliary arrangement Cj. We call the function Pcp =
[ . F « a prepotential of first kind of the elementary arrangement Cj.. We call the
functlon

w6 Qe |n|'~_f;>,_1\_,J1_LI ]f’Lr.-_.t
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a prepotential of second kind of the elementary arrangement Cj. The prepotentials are not
unique due to the choice of the numbers ejabove.

4.5. Elementary subarrangements. Let us return to the situation of Section 3. Forx € C"- A
consider the weighted arrangement C(x) with normal crossings.

Let Cn(x) = {Hi(x)}iepbe an elementary subarrangement of the arrangement C(x) of type A
= (Ay..,Am). Recall that /» — Yili /i C J with subsets Jn satisfying properties described in
Section 4.1. According to those properties if a subarrangement Cpu(x) = {Hi(x)}ien is an
elementary subarrangement of C(x) for some x € C" - A, then the subarrangement Cj(x°) =
{Hi(x9)}ieps, associated with the same Jj, is an elementary subarrangement of C(x%) for every
x0e Cn-A.

Example. If C(x) is a generic arrangement, then all elementary subarrangements are of type
A = (k), they are given by k + 1-element subsets of J.

Since C(x) is with normal crossings we have a natural embeddings of graded exterior
algebras F(Cn(x)) € F(C(x)) and an embedding of spaces Sing aF¥(Ci(x)) c Sing 4AF¥(C(x)). In
particular, the singular element s(Cj(x)) of Cnu(x) can be considered as an element of Sing
AFK(C(x)).

Recall that for h = 1,..,m, there are auxiliary arrangements Cj,n(x) associated with C(x). For
h=1,.,m -1, we define the weight of the auxiliary arrangement Cj,n(x) with respect to C(x)
as the sum a(Ji/,h) = Pie] suchthat gi6exn(j2) @i and the weight of the elementary subarrangement
Cn(x) with respect to C(x) as the product a(JnJ) =

m—1 F
ay - [Ty a (D J, ‘r*). We define the potentials of first and second kind of the family of
arrangements C(x), x € C" - A, to be respectively the following functions on C" - A:

1
Plax Iyl = E P iy Tyl
e ERICIE L T ACy b 5
T ffl:.]r}',._)r:l "IJ. n

(4.8) “ - (. ) 2ot

(4.7)

where the sums are over all elementary subarrangements Cj(x) of C(x) and Pp(x),Q5(x) are
the prepotentials of first and second kind, respectively, of the elementary subarrangements
Cn(x) of the arrangement C(x). The potentials are not uniques, since the prepotentials are not
unique, see Section 4.4.

Example. The second arrangement in Figure 2 has three elementary subarrangements with
Jabeing {1,3,4} or {2,3,4} or {1,2} U {3,4} of types A = (2),(2),(1,1), respectively. The potential
of second kind for that arrangement is
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(21, 22, 23, 24) = aqagaqg In( f (21, 22, Z '|".I.*.-'Ir'“--F--I]-lI-r'-"l'zi‘i"-"-l}::'L
| ] g By =y IRE= LT | h I:l!-]:'l w1y =2y =4} -LI |T|'||I|:1I!'Jr_5_,|'l'.|r|_|}._‘l

(frasapa(z2, 23, z4))*
-|-1 |;I'|i|-_l_:jH|:|I_ If'lr-|_;_f.].z

+ agagaq Inl fras.4.1(22, 23, 24))

(s In( fry. (21, 22)) [_f'[|.::-|_u[.s_-|].1ff|--T:']\J"? (fi12p0q3.4y.20215 22 23, ) )*
—”.; n " L1234} 1l =1, <3} 2!|;r|il]::f|'l-‘_r:]]2 ?!(d.i:jr-lrl:'é'}'j

J

c.f. this formula with the formula in the example of Section 1.1.

The potentials P,Q for families of generic arrangements were constructed in [V5], c.f. [V7].
Lemma 4.4. For any independent subset {s1,..,Sk-1} C ], we have

il o
Z.I{ J”r-';'hl' -1 E ZJ: I-III'.iI.I.||_~--| ..... &) _E ”.

(4.9)

= lll .;J,l";:.-l:":__: - Jr {-‘IERE'J:"{:;
Proof. It is enough to prove that 2y B 8z 2 i Girsri dz =0 for
every elementary subarrangement Cj(z) of C(x). To prove that, it is enough to prove that

|..|'_||-I.'_.|,\l'_|I

Z..-.L-f LT dz; =0 for any h, see formula (4.4), but that is clear.

5. Orthogonal projection

5.1. Formula for orthogonal projection. Recall the objects of Section 3. For x € C"-A, we
denoted V = F¥(C(x)), Singa V = Singa FX(C(x)), Fj...jx = Fjr...jix(x). Let m : V — Sing oV be the
orthogonal projection with respect to S@.

For an ordered independent subset I = {ii,..,ix} C J, let EI be the set of all elementary
subarrangements Cn(x) of C(x) which have Fas a distinguished element. Let Cn(x) € Erbe
such a subarrangement. Let s(Cu(x)) be the singular element of Cj(x) considered as an
element of Sing «V. The singular element is defined up to multiplication by +1. We fix the sign
so that the distinguished element Fienters s(Cn(x)) with coefficient 1.

Theorem 5.1. For an independent ordered subset I = {ix,...,ix} € ] we have

oE — 1 s S ir "
m(Fr) L{ o (e)eEr alUn, .”.-\I_E,_;_.‘lz.r )) € Sing V.

(5.1)
Corollary 5.2. The space Sing 4V is generated by singular elements of elementary

subarrangements.

Notice that the singular element of an elementary subarrangement in Ckis a linear
combination of at most 2k basis vectors Fn,.ix € V , while the dimension of V could be

arbitrarily big and grow with n.

Example. For the second arrangement in Figure 2, we have
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1

mlFy4) = (rr Foia4asFy,+ayF 1 a) 4 (aaFyy +asFlya + ayFa '3)
W3 ) a) + az + as + a [ 14°3.4 147°4.1 1£1,3) a3 4 14,2 Iy

]

m(Fa3) = ([ff;F::+ +agFy 4 + agFyq)
it <+ o 4+ g + 0y
1 .
- I'rr]F;—r.l-zf'_h-:I.."\_IZHIFS—H_SFL:I),
g + gy B '

where (a1Fz - azF1) A (a4F3 - a3F4) = aiaaF23 — a1a3F2,4 - azasF13 + aiazFi4.

5.2. Proof of Theorem 5.1. Recall that every element of the form Pjej Fin,.,ik11s orthogonal to
Sing 4V . In order to construct m(F1) from Frwe add to Fra linear combination of elements of

the form Pje] Fjn,.,ik1 SO that the result is a linear combination of the singular elements of

elementary subarrangements Cj(x). That means that the result lies in Sing «V by Lemma 4.2.
The transition from Fito m(Fi) is done in k steps and this reasoning is by induction on the
number m appearing in the presentation A = (A1,..,Am). As the first step we add to Fra linear

combination of elements of the form Pjej Fjn,.,k-1and transform F;to the sum
T S(Cay () + Ry

Pcu(x)EE:with"""_' afJy.J) , where R1is a remainder. Then we add a new linear

combination of elements of the form Pje] Fjn,.i-1and transform the result to the sum
— L "i[C,I’_."{.-!']] + Hs

Pcﬂ(x)eE,with”*‘-‘='=2 aldy e , and so on. After m steps the result will be the right-hand
side in (5.1) and there will be no remainder.

We illustrate that reasoning by considering the case k = 3. We construct the orthogonal
projection of the element F1,2,3, which could be an arbitrary basis vector of V after reordering
hyperplanes. Formula (5.1) says
(5.2) m(F123) = X123+ X123+ X132+ X231+ X1;23+ 22513+ X3;1,2+

+ 21,23+ 21332+ 22,13+ X2;3;1 + 23;1;2 + 23251,

where

1 .

- 123 ] ] - ]

Ll 23 .= — I_rrfl,-f’J__a_:s — F j23+ N‘gf‘]_ i3 H:;f’]_g__r'_]
ay E . . J

’

1
aya(l,2)

Z J.j[”_.ff'-l.! — Fio +aaki) A Z VI Iy — as k)

’

, 1 ; . . : e . .
AN m Z J";[HJ- Py —m f'_;_:| + u-gf'__,_l]l M Z I":"j‘[wJ Iy —asd,)

J

\ 1 2.3 ' | | 2.3:1 ) |
Loa - m Z [”j Fog—aglis+agl;q) N Z (aply —ayby)

J

1 oy : : :
7":[_2_;; H Z_ ||{”.J .Ir'1|_ — il _|I'|]| A Z I'-]'-E[r’.llr., !"Z.ZI. — rn'zf' ho iy J'Ill,_g]

agall)

J
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Ygqg 1= (a;F5 —azFj) A apFlz — a1 Fihz +azF,)
313 {”“{2 Z 5 ) Z “(apFi3 1 Fha 1

’

Y= Z (a;F5 — azFj) f‘aZ*”[fmﬂ g — Fho+asFy )

i1 ;uH

y ! - - 2y 2 !
Yiog = m Z 'i_rr.;ﬂ ay Fy) A Z I"!UJ;JFQ asFy) A Z L, By = aa F})

’

J

) . — —1 Ly y 1 1,3:2 y +
Yz = aya()a(l.3) Z (a;Fy —a Fj) A Z (anF3 — azFy,) .ﬂ.z (a; Fy — aaF)

J

\ 1
."'.-g:_!_.|: mz {IIJIJ—{IEI ."i".Z [ﬁ,u.f;—u;f.l;-]a'"\Z lI'J'ur|—|'|'|.fI J

7’

=] _1 r Y 3 bl ] R o k: 3 .
F-z:l-:t * ﬁ Z_Jl[”-'i f'-g — !'I-gfr..lll A Z-’.J[{”I ‘r'l _ ”ll'l'hl M Z _.I..‘.I{”Ef..ll . ""ZI-I'.‘J

ayal(2)a ,

Fﬂ.‘!‘-:'i'l — m Z'{'l{”j f'_-; — !’I_';Jr'_]]l A Z'L_JI:H,I. Jr'z — Isz“h.l il Z-;J'II{”EI'| — il I'EJ’

1 . 1 3 g 1 3:1 y 1 A.1:2 1 1
L3152 wra3)all.3) Z (a5 — aghj) A Z (anty — a1 Fy) f"\Z (aify — aql f'J.

In these formulas we use the following notations.
We denote a(h,l) = Paj, where the sum is over all j € ] such that g; €/ span(gs,gi). We denote
a(h) = Paj, where the sum is over all j € ] such that g; €/ span(gn).

The sum F 123is over all j €] such that the subset {j,1,2,3} forms a circuit in J. The sum P

Py

is over all j € ] such that the subset {j h,[} forms a circuit in J. The sum " %is over all j € ] such

that the subset {j,h} forms a circuit in J.

Pilsis over all h € J such that gn €/ span(g;g1). The sum

Pjiis over all h € J such that span(g;gi) =

P:

The sum Jilsis over all h € ] such

that span(g;g19n) = span(g;gsgr) = (C3)*. The sum
span(g;gn). The first transformation is

i Hz I'J'j
F|H'—?F|H——E __F_,..-_*.:-. E F|,=— E Fl.ﬂ._j
(5_3) i iel i} Jed (i ied ,

the added terms are a linear combination of elements of the form Pjej Fjnn. We rearrange the
right-hand side of (5.3) as follows:

(5.4) = a-71X 1,23(ajF1,23 - aiFj2;3 + azF13 - a3F1.2j)
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(5.5) +a-j1X 12(ajF12 - a1Fj2 + az2Fj1) A F3

(5.6) -a-J1X 13(ajF13 - a1Fj3+ a3Fj1) A F2

(5.7) ta,! z 2 a;Fyg — asFj3 + agFia) A Fy

(5.8) +a-J1X 1(ajF1 - a1F) A F23 - aj-1X 2(ajF2 - a2Fj) A F1,3

(5.9) +a-/1X 3(ajF3 - a3Fj) A Fi2.

The sum in (5.4) is exactly the sum PC]A(X)EE{1,2,3}with m=1 af f,x A1 s(Ca *)) and the sums in

(5.5)-(5.9) form the first remainder R.
Now we add to each of the sums in (5.5)-(5.9) a linear combination of elements of the form

Pjej Finzas follows. Let

Similarly,

Similarly

N‘;l z I'gf_{{_l;f‘-[_g — f-’|f':;_3 + ”j.f'._.;_|:| M 1;{. b

oy -
a;’ Z HaiFie —aFig + aaFa) A (Fh - mz” JE)
|

. 1,2:3
— m Z l'g[rfl;F].iﬂ — '”l'F,‘J-z + ”"ZF.IJ ::I ! Z I:iﬂ',.F; - EJ;;F:.\J.

I.’f.;] Z I':II{(IJFLH_ ff|.1['—:|._;{ | ”:{.IF.'J_[::' .""‘xFJ »

1,3:2

1 Ly 1 1 1 o p 1
—mz 1._”_,1;"],.'3_"':[}'_,1..'5"_”;Zf'_,l,l}"ﬂ"z {-I'Ir'.lr'-z—l'fzf'fjl

’

a-j1X 23(ajF23 - az2Fj3 + asFj2) A F1—>

1 o 2.%1
m Z 2':‘“!_1'.!1:'2_3 - HQFJ'_H T {-!;J;F_'JI_:-;I M Z (II;F| - fi‘|lr"_r':|.

{I]l |:-I'J'.|II|_—vI'J'|_.fI ::l."ﬂ'-..lr);—:'
'NT Yo Fy — g F (F. - 23 Fa— -2 F,)
@y Z (a;jFy —a Fj) A 3 a(1) 3 rrl]hz 2

_” ”{1 Z (a;Fy — mF‘.Ifo'“feF“—u:F;+u;F )
J

1 , _ 1
+ru”“.}z (a;F) —ra,f-j]ﬁ.z (”"’—”zf ) A Fy
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i o _ Y o
agall) Z (a;Fy —a F5) A Z ks — agFi) A -’"z'

We transform similarly the remaining two sums in (5.8)-(5.9). This finishes step two of the
procedure. After the two steps the result is

(5.10) 2123+ 21,23+ X132+ L23;1 + 21,23 + X2;1,3 + L3;1,2
(5.11) T mlt 1) D NaF —mF)AY ek — aF) AR
(5.12) “aga(l) Z Hajby —a k) A Z Faily — agF) A Fy
] i) P Y
— Z‘[raJFQ ruF;]u’xZ"'l[u;F. ay F;) A Fy
(5.13) aral2) ' '
(5.14) +f|' ra(2) Z E(Hfﬁ-’ — agF) A Z #aiFs — a3 F) A Fy
(5.15) aya(3) Z-;(”»" By — agk) A Z.u{”fﬁ" —aaki) A By
1 . 3.
(5.16) T ra(3) Z a;Fy — agFj) A Z oy — a B A By
L o
The sum in (5.10) is the sum PC]A(X)EE{1,2,3}with maEd wlJ J) s(Cr, l-'L)) and the sums in (5.11)-

(5.16) form the second remainder Rz. As the third step we transform the expression in (5.11)
to

1 _ .
Z Y By — ay Fy) A Z L2 g, Fy — agFy) A (Fy — —2 )

aya(l) all,2)&=ics

— 1 3 1 [ 1 + g g . ;
- a _H'I':. I‘IIH{I .;,:I Z Il{'”J.f'l — i _||l"._|}| A Z I'_Jl:_f.ll-jr".‘! —_ rf—__lf'l'}l Ay Z I._J'jl”,lf'.'; _ l"-'.s.lr'llj

’

and similarly we transform the expressions in (5.12)-(5.16). After these three steps we
obtain formula (5.2). The case of arbitrary k is similar to this case of k = 3. Theorem 5.1 is
proved.

6. Potential of first kind

Recall the objects of Section 3. Recall that v, jx = m(Fj...x), where m : V — Sing 4V is the
orthogonal projection with respect to S(@. Let P be the potential of first kind of the family of
arrangements C(x),x € C" - A.

Theorem 6.1. For any two ordered independent subsets I = {ix,...,ix},L = {11,..., Ik} C ], we have
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. &]_
"";I.”;Ilzr”.....h_ 1 !II'|..... & ; ; r} .P F
(6.1) Oziy o Oz, Az . Oz

For families of generic arrangements this theorem was proved in [V5], c.f. [V7]. Proof.

Since vn,...lk= (Fn,.,ik) we have

|
- Z(',A(.rlu Tay oo ln‘[JTj. J)

Formula (4.2) for the singular element s(Cj(x)) shows that the number S@(s(Cn(x)),Fn,..i) is

S s(Coy(x)). i)

nonzero if and only if Fp,..ikis a distinguished elements of the elementary arrangement

Cpn(x). Let this condition be satisfied for an elementary arrangement Cj(x) € Ei,..i. Let

_ T -l K- = S1 o -
Iy = ULy = {135 Ja4 }, andlet il i Jis S+ 11b be an ordered
An-element subset of Jn. Then

"’:'{C--",-.L[.-l"\.ﬁl (E .h-IH l]”l” '!h )J"\(E Ifm-:-l[_l'”l If'. )
Am+1
cee A [ .lll Ir' B )
(6.2) (Zr . "3

Due to the choice of sign of s(C;(x)) in Section 5.1 we may assume that
Fiavoie = Ficy APy, A Fic

(6.3) i i i
We may also assume that

JL_.|| ..... . = F.r\.' _ M Fh' - -"n"\'"'F.rf =
(6.4) "':!j _'.'_, 1
for some sn € {1,..,.An+ 1},h = 1,...,m. 1IEquations (6.2)-(6.4)

imply
I”“H - T _ '-‘-|.+l I .
(6.5) S (€ (@), Fu..i) H_r'; llz ) Hn |H_J'{ a

Recall formula (4.7) for the potential of first kind. It is a linear combination of prepotentials
of first kind Pca(x) of all elementary subarrangements Cj(x) of C(x). To finish the proof of
Theorem 6.1 we need to show that if Cj(x) is as in formula (6.5), then

G* P,

. e s
, el | IEIE) |
---- F0z;, .. 0z, 02, . Oz, h=1" =il Lien

(6.6) EETEE
and

(6.1) is multiplied by the same *1.
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a2k
ke,

=1
(6.7) Oz 0z,0%, ... 0z,

formula

(f 22,
J” B H.'.l.l HH T ﬂ_, |.,.f[',|1_|, ll f
Cyp, — ; y
a =1 (2500 (Tt t] . 2
(2An)! (T r'r_,’,' _____ 58 ed 4 I..f.-] '
1 (ficy, )
(24,00 (1 [::".-_.I—I d \ . \ I 2
Lemma 6.2. The 2An-th derivative of ety with respect to the vari-

1)=ntl

s 1
:-II Zily aaa gy Aih Z rlll' h “

ables ™' " T T e equals 2R Al i g,

Now Lemmas 6.2 and 4.3 imply formula (6.6).

Lemma 6.3. Formula (6.7) holds if Ci(x) 6€ En,.ic or if Ca(x) € En,..ic but Fn,.I is not a
distinguished element of Cp(x).

Proof. Let Cjnbe any elementary subarrangement and Fi,..ir, F1,..ktwo nonzero elements.
Clearly formula (6.7) holds if {71+« 7k Lievvv. e} @ WUplydh, Assume that {i1,...,ik,
h,.... I} © Uil Jh For h=1,..,m denote i"= |{s | is€ Ja}| and I"= |{s | Is € Ju}|. We have il + ---
+ih6 A1+ o+ Ap, 1+ - +[M6 A1+ - + Anforany hand i1 ++-+im= 1+ +Im= A1+ +Am=k. If in=

one of the numbers i, 1" differs from An. Let hmaxbe the maximal h such that at least one of the
numbers ih " differs from Ax. Then: (a) each of ifimas, [himexis not less than Anma; (b) at least one of
them is greater than Anme; (€) hmax> 1.

Then the derivative in (6.7) is zero due to the fact that the set {is,...,ik, 1,..,lx} has too many
elements of i=imerJn, c.f. formulas (4.4), (4.5).

Theorem 6.1 is proved.
Recall the elements p; € O(Ccx).q), j € J, and the Grothiendick residue bilinear form (, )ccw.
on O(Cc(x),a).
Corollary 6.4. For any two independent subsets I = {ix,...,ix},L = {l1,..., I} C ], we have
) i o P
(68) Piy oo s Pigs Py - P e . = (1) Oziy oo 02,021, ... 0z,
Proof. Recall that the isomorphism of vector spaces

(6.9) v(x) : Singa FK(C(x)) = O(Ccrya)
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sends m(Fi,..i) to di,..upi...pifor all independent subsets {iy,..,ix} € J and also identifies the

form S@(, ) ©0 SING, F(C(x)) and the the form (~1)(, ccw.0on O(Ccpoa), see Theorem 2.2.

7. Potential of second kind
Recall the objects of Section 3. Let Q be the potential of second kind of the family of

arrangements C(x),x € C" - A.

Theorem 7.1. Let x € C" -A. Then for any two independent subsets I = {i,....ix},L = {l1,... Ik} € |

and any io € ], we have

i
r)

. " L)
(PiPiy -+ - Pis Pty « - - P ) oy, = (=1)F = — o €
(7.1) PioPiv - Phar Pl -+ Pl /Cetape iz Dz L 02, 0%, 0z

For families of generic arrangements this theorem was proved in [V5].

Proof. Due to relations (3.8) and (4.9) it is enough to prove (7.1) in the case when io,i1,...,ikare
distinct elements of J. Thus assume that io, i1,..,, ikare distinct. After reordering io, 1,..., ik, we may
assume that io, 1,...,ix form a circuit, where u is some number 6 k. Recall the function

b K I Y - " — u — o -
.JI.-|..|:|.....n:I.I:':,] = Zr r:I'L_].} i ; "F-'u------'_. ..... i Z_J' |:|Ii l]|l'-'.'_.d':"""":"""'--"_I"""'"
in (3.9) and relation (3.11):
1 i .
PigPiy -+ Diy, = mz_‘_;“'l—lf”-ﬁ. TR I PR A

First we analyze the left-hand side in (7.1). We have

(PigPiy -« iy - - - Py )iy

1 no
— { N "
fiodr (Z _o" L a; P PR SRS AP T 'M”)f'r...-....

1 J

1 oo )
Ve . - Ny
l!'.'rllI _____ H -Fll;l'l-'l--- ' (ZI |||: I"I “'.'” l'||.....|'_.......'|._|.....FA' uwh,, mlk)l!“,-::_.,

D oS (-
— gla) (—1V . v, A i .
(72) Irl|l.-'| ..... Iy _Ir.:.|_-'|.....|',|. ) ( ..|=||'L lJ “rji LR PR TE S RRRELY g B lr")
where the last equality holds by Theorem 2.2. We have

SO (32 W i i)
(73) - S:‘” (: (Z_‘: |||:._ IIIJ:“"_- FI'.......!'_I......J,._:.....|',L)' F:'| ..... I'J.)

where 7 is the orthogonal projection, see Section 5.1.

Let E(io,i1,...,iu) be the set of all elementary subarrangements Cj(x) of C(x) with -+ iz
such that J1 = {io,i1,..,. I} and such that Fi,..iis a distinguished element of Cj(x). Let s(Cu(x)) be
the singular element of Cj(x) considered as an element of Sing ¢V . The singular element is
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defined up to multiplication by *1. We fix the sign so that the distinguished element Fi,.. i
enters s(Cn(x)) with coefficeint 1.

Lemma 7.2. We have
I i . (] .
- Vg - = s(Cqy (7
(Z,’—I’I{' J }I ”-_r"II L1 PEOTPL S PR S PP ) ZL?"’A :--"l:‘Llr'-'l.-'|:|.l:|-- i y ”[-.-F_\L. jl'] 5{{?" " f 'I'I

Proof. Indeed we have

g oV i = (VI E 5 i) A B

To construct the orthogonal projection of the right-hand side in (7.4), we need to apply the
construction of the orthogonal projection, described in the proof of Theorem 5.1, but starting
with step 2 since the result of the first step is already presented by the factor

Ve B .
(LF“'{ Wai k. . ) in the right-hand side of (7.4), c.f. formulas (5.4)-(5.9).
By Lemma 7.2 the expression in (7.2) equals

(—1)* af  ola)
- - SN s(Cyy (x), Fyy
(7.5) By oty Siviin ,*_Zr'ﬁ-:..-]er-:u...-'-_......',.:;;{J;\, J) el P L}.

We have

o (Z;'_U[—1]-"rn_,-f"s.....--f'}-----"f-) A (Z?j'{—l}u trf_J;-’L-n-;_.) AL

. o S ] -
where we use the notations of Section 4.2, namely, we have o = i gz -*’An.+ll.' for h =

- o - -k -
2 m andh-f-i =Lt il ..II}L_.,{I}

Due to our choice of sign of s(Ci(x)) we may assume that we have the equality of ordered
sets

(7.6) (i eoviv} = {in i K Ko K}
The term S@(s(Cn(x)),Fn...i) is nonzero if and only if
(7.7) {lh...., i} = {ip, ..., By s L, W X HJE;; ..... H.J-l'_.'.'. }
forsome 0 6 s6 uand some 1 6 sy6 An+ 1 for h = 2,...,m. In this case
(—1)" iy, o
A I.|_:II_|'|_I q T : '\I . F 1|
(78) Hln'l. ..!'J.-..flﬁu.u poosd e Hl_r.JT,"n,. IJ - [ "{L_;_\_I{ ! :I LI I/

|:. —1 .,"J'. iy . ™ 1t I An+l
\ 4 _1 |"‘+Zl’- 5 Ak . "
.ty Figiyoin @Sy, --F}i ' HH_””'«H,,_EHH_] ek
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Consider the right-hand side of (7.1). The potential Q of second kind is the sum

L
2. w7190, shown in (4.8), where the sum is over all elementary subarrangements
Cn(x) of C(x).
Lemma 7.3. If the derivative

Qe

(7_9) Oz 0z .. 0z, 0%, ... 0z,

Proof. The proof is the same as the proof of Lemma 6.3.

1
Clearly the function fa.ix'*! multiplied by a constant can be obtained by this

differentiation only if Ci(x) € E(io,11,...,ix). In this case we have
- Ty . ay  1l_gas, . ., ffL Iyl )
7.10) = -] Fe
(7.10) alJy, J) J{I‘ alJy, J)  (2p)! nlfe, lT 0By H Cy
see formula (4.6). Derivatives of this summand do not depend on the ordering the elements

of the sets Jn, h = 1,..,m, and we may assume that the equality (7.6) of ordered sets holds.
By Lemma 7.3 we may assume that the equality of ordered sets in (7.7) holds. In that case,

=2

-1)* _ -
the operator ( iy iy, 02 0 e apphed to the expression in (7.10) gives
: i " Ay
(7.11) ' u{ I, IJH;—LI "Hn— Hr_[—
(—1)**2haa l
x m u L
r'il.-.;;.. R P S h=2 nr_,u':' ..... "-‘I'I.l. ..... _JQJI il f‘:.l_-t.l h=2 f'IIJﬂ'- -_f:.:f.__l h

Lemma 4.3 implies that

LS i

Now (7.11) equals (7.8). This proves Theorem 7.1.

Corollary 7.4. Letx € C" - A. Then for any two ordered independent subsets I =
{ix,...,i},L = {I,...,. Ik} € ] and any io € ], we have
@)y o Q) .
S K (T iy n ) =diyady — — (1)
(7.13) Pz Oz L Oz 0z, L D2y,

Proof. The corollary follows from formula (2.9) and Theorems 2.2, 3.1.
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