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Abstract. We consider the Frobenius algebra of functions on the critical set of the master 

function of a weighted arrangement of hyperplanes in Ck with normal crossings. We construct 

two potential functions (of first and second kind) of variables labeled by hyperplanes of the 

arrangement and prove that the matrix coefficients of the Grothendieck residue bilinear form 

on the algebra are given by the 2k-th derivatives of the potential function of first kind and the 

matrix coefficients of the multiplication operators on the algebra are given by the (2k + 1)-st 

derivatives of the potential function of second kind. Thus the two potentials completely 

determine the Frobenius algebra. The presence of these potentials is a manifestation of a 

Frobenius like structure similar to the Frobenius manifold structure. 
We introduce the notion of an elementary subarrangement of an arrangement with normal 

crossings. It turns out that our potential functions are local in the sense that the potential 

functions are sums of contributions from elementary subarrangements of the given 

arrangement. This is a new phenomenon of locality of the Grothendieck residue bilinear form 

and multiplication on the algebra. 
It is known that this Frobenius algebra of functions on the critical set is isomorphic to the 

Bethe algebra of this arrangement. (That Bethe algebra is an analog of the Bethe algebras in 

the theory of quantum integrable models.) Thus our potential functions describe that Bethe 

algebra too. 

1. Introduction 

It is well known that the algebra of functions on the set of solutions of the Bethe ansatz 

equations plays an important role in the study of quantum integrable systems since in many 

cases the algebra of functions is isomorphic to the Bethe algebra of Hamiltonians of the 

system, see for example [NS, MTV1, GRTV, R]. An interesting problem is to describe the 

algebra. In this paper we consider the model case of the algebra of functions on the critical 

set of the master function associated with a family of arrangements with normal crossings. 

Such algebras appear in the KZ-Gaudin type integrable systems, see for example [SV, RV]. We 

describe the algebra of functions on the critical set together with the Grothendieck residue 

bilinear form in terms of derivatives of two potential functions in the spirit of Frobenius 

structures. 
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1.1. Statement of results. Denote J = {1,...,n}. Consider Cn × Ck with coordinates (z,t) = 

(z1,...,zn,t1,...,tk) and the projection τ : Cn × Ck → Cn. Fix n nonzero linear functions on Ck, gj = b1jt1 

+ ··· + bjk tk, j ∈ J. Assume that {gj}j∈J span the dual space 

(Ck)∗. Define the functions fj = gj +zj on Cn ×Ck. We obtain on Cn ×Ck an arrangement 

, where Hj is the zero set of fj. Let U(C) := Cn × Ck − ∪j∈JHj be the 

complement. For every x ∈ Cn, the arrangement C restricts to an arrangement C(x) on τ−1(x) 

∼= Ck with the complement U(C(x)) := τ−1(x) ∩ U(C). For almost all x ∈ Ck the arrangement 

C(x) is with normal crossings. The subset ∆ ⊂ Cn, where this does not hold, is a hypersurface 

and is called the discriminant. 

A set I = {i1,...,ik} ⊂ J is called independent if gi1,...,gik are linearly independent. Denote Jind the 

set of all independent k-element subsets of J. 

Let a = (a1,...,an) ∈ (C∗)n be a system of weights such that for any x ∈ Cn − ∆ the weighted 

arrangement (C(x),a) is unbalanced, see Section 2.10, e.g.  is unbalanced, also a 

generic system of weights is unbalanced. The master function of the weighted arrangement 

(C,a) is 

(1.1) . 

For x ∈ Cn − ∆ all critical points of ΦC,a|z=x with respect to the variables t, are isolated, and the 

sum µ of their Milnor numbers is independent of the unbalanced weight a and the parameter 

x ∈ Cn − ∆. The main object of this paper is the µ-dimensional algebra 

(1.2)  

of functions on the critical set of the master function ΦC,a|z=x, see Section 3.4. Define (1.3)

  

The elements {pj}j∈J generate O(CC(x),a) as an algebra. The elements {pi1 ···pik}{i1,...,ik}∈Jind generate 

O(CC(x),a) as a vector space. The Grothendieck residue defines a nondegenerate bilinear form 

(, )CC(x),a on O(CC(x),a). The algebra (O(CC(x),a),(, )CC(x),a) is a Frobenius algebra. 

The main result of this paper is a construction of two functions P, Q on Cn −∆ called the 

potentials of first and second kind, respectively. The potentials have the following properties. 

Theorem 1.1. Let x ∈ Cn−∆. Then for any two independent subsets {i1,...,ik},{l1,...,lk} ⊂ J and any 

i0 ∈ J, we have 
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(1.4)  

(1.5) . 

Formula (1.4) determines the Grothendieck residue bilinear form (, )CC(x),a in terms of the 

potential of first kind. Formula (1.5) determines the operators of multiplication by 

generators {pj}j∈J in terms of the potential of second kind. 

 

Figure 1 

Example. For the arrangement of four lines shown in Figure 1 and given by equations t2 + z1 

= 0, t2 + z2 = 0, t1 + z3 = 0, t1 + t2 + z4 = 0 we have 

 

Theorem 1.1 in particular says that (  and it does not 

depend on x ∈ Cn − ∆, and ( . 

In this example the potentials are sums of terms corresponding to subarrangements 

consisting of three or four lines. It turns out that this is the general case. In Section 4.1 we 

introduce the notion of an elementary arrangement in Ck of type λ = (λ1,...,λm), λh ∈ Z>0, λ1 + ··· 

+ λm = k. In particular, such an elementary arrangement consists of k + m hyperplanes, and an 

elementary arrangement in Ck has at most 2k hyperplanes. We show that the potentials are 

sums, over all elementary subarrangements, of the prepotentials of the subarrangements 

taken with suitable weights, see Corollary 6.4 and Theorem 7.1. The fact that the potentials 

are sums of contributions from elementary subarrangements indicates a new phenomenon 

of locality of the Grothendieck residue bilinear form and multiplication on 

O(CC(x),a). 

H 3 H 4 

H 2 
H 1 
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The existence of the potentials of first and second kind locally on Cn −∆ was established in 

[HV]. 

1.2. Frobenius like structure of order (n,k,m). The potential of the second kind is an analog 

of the potential in the theory of Frobenius manifolds. A Frobenius manifold is a manifold with 

a flat metric and a Frobenius algebra structure on tangent spaces at points of the manifold 

such that the structure constants of multiplication are given by third derivatives of a 

potential function on the manifold with respect to flat coordinates, see [D, M]. As an analogy 

of that, for our family of arrangements the structure constants of multiplication are given by 

2k + 1-st derivatives of the potential of second kind, see Theorem 1.1. 

The notion of potentials of a family of arrangements was introduced and studied in [V5, 

V7, HV]. In [V5] the potentials were constructed for the families of generic arrangements, that 

is, such that the linear functions gi1,...,gik are linearly independent for any distinct i1,...,ik ∈ J. In 

[V5, V7, HV] different axiomatizations of the structure leading to the existence of the 

potentials were given. In particular in [HV] Frobenius like structures of order (n,k,m) were 

introduced. Our case of a family of arrangements corresponds to the case of order (n,k,2). 

Under the axioms of [HV] the existence of the potential of second kind was deduced in [HV] 

from a surprising elementary study of finite sets of vectors in a finite-dimensional vector 

space W. Given a natural number m and a finite set {wi} of vectors, a necessary and sufficient 

condition was given to find in the set {wi} m bases of W. If m bases in the set {wi} are selected, 

then some elementary transformations of such a selection are defined. It was shown in [HV] 

that any two selections are connected by a sequence of elementary transformations. These 

structures are fundamental and one may expect a matroid version of them. 

1.3. Bethe algebra. Given a family of weighted arrangements in Ck as in Section 1.1, one 

considers the Gauss-Manin differential equations for associated k-dimensional 

hypergeometric integrals,  ∆, where Ki(z) are 

suitable linear operators on the space of singular vectors Sing aV , see Section 3.3. For every 

x ∈ Cn − ∆, the operators Kj(x),j ∈ J, commmute and are symmetric with respect to the 

contravariant bilinear form S(a) on Sing aV . The unital subalgebra of End(Sing aV ) generated 

by the operators Kj(x),j ∈ J, is called the Bethe algebra of the weighted arrangement (C(x),a). 

This algebra is the analog of the Bethe algebra in the theory of quantum integrable systems, 

see [V4]. It is known that the Bethe algebra together with the bilinear form S(a) is isomorphic 

to the pair consisting of the algebra of multiplication operators on O(CC(x),a) and the 

Grothendieck residue bilinear form (, )CC(x),a. Thus Theorem 1.1 gives us a description of the 

Bethe algebra in terms of the derivatives of the potential functions, see Theorem 6.1 and 

Corollary 7.4. 

Our construction of potential functions is based on the isomorphism of the Bethe algebra 

and the algebra of functions on the critical set. 
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The Bethe algebra of our family of arrangements is an example of the Bethe algebra of a 

quantum integrable system. One may expect to determine glimpses of Frobenius like 

structures in the Bethe algebras of standard quantum integrable systems. 

1.4. Exposition of material. In Section 2 we remind general facts about arrangements. In 

Section 3 we consider families of arrangements. In Section 4 we introduce elementary 

arrangements and define potential functions. In Section 5 we prove an important formula for 

the orthogonal projection π : V → Sing aV with respect to the bilinear form S(a). Based on that 

formula we prove the first part of Theorem 1.1 in Section 6 and the second part of Theorem 

1.1 in Section 7. 

The second author thanks the MPI in Bonn for hospitality during his visit in 2015-2016, 

C.Hertling and B.Dubrovin for useful discussions. We also thank C.Hertling for indicating a 

mistake in the initial draft of the paper. 

2. Arrangements 

2.1. Affine arrangement. Let k,n be positive integers, k < n. Denote J = {1,...,n}. 

Consider the complex affine space Ck with coordinates t1,...,tk. Let C = (Hj)j∈J, be an 

arrangement of n affine hyperplanes in Ck. Denote U(C) = Ck − ∪j∈JHj, the complement. 

An edge Xα ⊂ Ck of C is a nonempty intersection of some hyperplanes of C. Denote by Jα ⊂ J the 

subset of indices of all hyperplanes containing Xα. Denote lα = codimCkXα. We assume that C is 

essential, that is, C has a vertex, an edge which is a point. 

An edge is called dense if the subarrangement of all hyperplanes containing it is 

irreducible: the hyperplanes cannot be partitioned into nonempty sets so that, after a change 

of coordinates, hyperplanes in different sets are in different coordinates. In particular, each 

hyperplane of C is a dense edge. 

2.2. Orlik-Solomon algebra. Define complex vector spaces Ap(C), p = 0,...,k. For p = 0, we set 

Ap(C) = C. For p > 1, Ap(C) is generated by symbols (Hj1,...,Hjp) with ji ∈ J, such that (i) (Hj1,...,Hjp) 

= 0 if Hj1,...,Hjp are not in general position, that is, if the intersection Hj1 ∩ ... ∩ Hjp is empty or 

has codimension less than p; (ii) 

) for any element σ of the symmetric group Σp; (iii) 

) = 0 for any (p + 1)-tuple Hj1,...,Hjp+1 of hyperplanes in C 

which are not in general position and such that Hj1 ∩ ... ∩ Hjp+1 6= ∅. 

The direct sum ) is the Orlik-Solomon algebra with respect to multipli- 

cation (Hj1,...,Hjp) · (Hjp+1,...,Hjp+q) = (Hj1,...,Hjp,Hjp+1,...,Hjp+q). 

2.3. Aomoto complex. Fix a point a = (a1,...,an) ∈ (C×)n called the weight. Then the 

arrangement C is weighted: for j ∈ J, we assign weight aj to hyperplane Hj. For an edge Xα, 
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define its weight aα = Pj∈Jα aj. We denote aJ = Pj∈Jaj and ω(a) = Pj∈J aj ·(Hj) ∈ A1(C). Multiplication 

by ω(a) defines the differential d(a) : Ap(C) → Ap+1(C), x 7→ ω(a) · x, on A(C). 

2.4. Flag complex, see [SV]. For an edge Xα, lα = p, a flag starting at Xα is a sequence Xα0 ⊃ Xα1 

⊃ ··· ⊃ Xαp = Xα of edges such that lαj = j for j = 0,...,p. For an edge Xα, 

we define (Fα)Z as the free Z-module generated by the elements Fα0,...,αp=α labeled by the 

 
elements of the set of all flags starting at Xα. We define (Fα)Z as the quotient of (Fα)Z by the 

submodule generated by all the elements of the form 

(2.1) . 

Such an element is determined by j ∈ {1,...,p − 1} and an incomplete flag Xα0 ⊃ ... ⊃ 

Xαj−1 ⊃ Xαj+1 ⊃ ... ⊃ Xαp = Xα with lαi = i. 

 
We denote by Fα0,...,αp the image in (Fα)Z of the element Fα0,...,αp. For p = 0,...,k, we set (

). We define the 
differential dZ : (Fp(C))Z → (Fp+1(C))Z by 

(2.2) , 

d2Z = 0. Tensoring dZ with C, we obtain the differential d : Fp(C) → Fp+1(C). In particular, we 

have Hp(F(C),d) = Hp((F(C))Z,dZ) ⊗ C. 

We have Hp(F(C),d) = 0 for p 6= k and dimHk(F(C),d) = |χ(U(C))|, where χ(U(C)) is the Euler 

characteristic of the complement U(C), see [SV, Corollary 2.8] 

2.5. Duality. The vector spaces Ap(C) and Fp(C) are dual, see [SV]. The pairing Ap(C) ⊗ Fp(C) 

→ C is defined as follows. For Hj1,...,Hjp in general position, set F(Hj1,...,Hjp) = Fα0,...,αp, where Xα0 = 

Ck, Xα1 = Hj1, ..., Xαp = Hj1 ∩ ··· ∩ Hjp. Then we define h(Hj1,...,Hjp),Fα0,...,αpi = (−1)|σ|, if Fα0,...,αp = 

F(Hjσ(1),...,Hjσ(p)) for some σ ∈ Sp, and h(Hj1,...,Hjp),Fα0,...,αpi = 0 otherwise. 

An element F ∈ Fk(C) is called singular if F annihilates the image of the map d(a) : Ak−1(C) → 

Ak(C), see [V3]. Denote by Singa Fk(C) ⊂ Fk(C) the subspace of all singular vectors. 

2.6. Contravariant map and form, see [SV]. The weights a determines the contravariant 

map 

(2.3) S(a) : Fp(C) → Ap(C), Fα0,...,αp →7 Xaj1 ···ajp(Hj1,...,Hjp), 
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where the sum is taken over all p-tuples (Hj1,...,Hjp) such that Hj1 ⊃ Xα1,..., Hjp ⊃ Xαp. Identifying 

Ap(C) with Fp(C)∗, we consider the map as a bilinear form, S(a) : Fp(C) ⊗ Fp(C) → C. The bilinear 

form is called the contravariant form. The contravariant form is symmetric. The 

contravariant map (2.3) defines a homomorphism of complexes S(a) : (F(C),d) → (A(C),d(a)), 

see [SV, Lemma 3.2.5]. 

2.7. Generic weights. 

Theorem 2.1 ([SV, Theorem 3.7]). If the weight a is such that none of the dense edges has 

weight zero, then the contravariant form is nondegenerate. In particular, we have an 

isomorphism of complexes S : (F(C),d) → (A(C),d(a)).  

Notice that none of the dense edges has weight zero if all weights are positive. 

If the weight a is such that none of the dense edges has weight zero, then the isomorphism 

of Theorem 2.1 and the graded algebra structure on A(C) induce a graded algebra structure 

on F(C). 

2.8. Differential forms. For j ∈ J, fix defining equations fj = 0 for the hyperplanes Hj, where fj 

= b1jt1 +···+bkj tk +zj with bij,zj ∈ C. Consider the logarithmic differential 1-forms ωj = dfj/fj on Ck. 

Let A¯(C) be the exterior C-algebra of differential forms generated by 1 and ωj, j ∈ J. The map 

A(C) → A¯(C), (Hj) →7 ωj, is an isomorphism. We identify A(C) and A¯(C). 

For I = {i1,...,ik} ⊂ J, denote ). Then ωi1 ∧ ··· ∧ ωik = 

. 

2.9. Master function. The master function of the weighted arrangement (C,a) is 

(2.4) ΦC,a = X aj logfj, 
j∈J 

a multivalued function on U(C). Let ) = 0 for i = 1,...,k} be the 
critical set of ΦC,a. 
2.10. Isolated critical points. For generic weight a ∈ (C×)n, all critical points of ΦC,a are 

nondegenerate and the number of critical points equals |χ(U(C))|, see [V2, OT1, Si]. 

Consider the projective space Pk compactifying Ck. Assign the weight a∞ = −P
j∈J aj to the 

hyperplane H∞ = Pk −Ck. Denote by C¯the arrangement (Hj)j∈J∪∞ in Pk. The weighted 

arrangement (C,a) is called unbalanced if the weight of any dense edge of C¯ is nonzero, see 

[V4]. For example, (C,a) is unbalanced if all weights (aj)j∈J are positive. 
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If (C,a) is unbalanced, then all critical points of ΦC,a are isolated and the sum of their Milnor 

numbers equals |χ(U(C))|, see [V4, Section 4]. 

2.11. Residue. Let O(U(C)) be the algebra of regular functions on U(C) and 

)) the ideal generated by first derivatives of ΦC,a. Let 

O(CC,a) = O(U(C))/IC,a be the algebra of functions on the critical set and [] : O(U(C)) → O(CC,a), 

f →7 [f], the projection. We assume that all critical points are isolated. In that case the algebra 

O(CC,a) is finite-dimensional and the elements [1/fj], j ∈ J, generate O(CC,a) as an algebra, see 

[V4, Lemma 2.5]. 

Let R : O(CC,a) → C be the Grothendieck residue, 

Res  . 

Here Γ is the real k-cycle defined by the equations , where j are 

small positive numbers, see [GH]. Define the residue bilinear form (, )CC,a on O(CC,a) by 

([f],[g])CC,a = R([f][g]). This form is nondegenerate, see [AGV], and ([f][g],[h])CC,a = ([f],[g][h])CC,a 

for all [f],[g],[h] ∈ O(CC,a), thus (O(CC,a),(, )CC,a) is a Frobenius algebra. 

2.12. Orthogonal projection. Let π⊥ : Fk(C) → Singa Fk(C) be the orthogonal projection with 

respect to S(a). 

If the weight a ∈ (C×)n is unbalanced, then dFk−1(C) = Singa Fk(C)⊥, where dFk−1(C) ⊂ Fk(C) is 

the image of the differential defined by (2.2) and Singa Fk(C)⊥ ⊂ Fk(C) is the orthogonal 

complement to Singa Fk(C) with respect to S(a), see [V6, Lemma 2.14]. Define the map 

(2.5) νC : Fk(C) → O(CC,a), F 7→ [f], 

where f is defined by the formula S(a)(F) = fdt1 ∧ ··· ∧ dtk. Clearly, νC(Singa Fk(C)⊥) = νC(dFk−1(C)) 

= 0, since ω(a) = 0 on CC,a. 

Theorem 2.2 ([V6]). If the weight a ∈ (C×)n is unbalanced, then the map  : 

Singa Fk(C) → O(CC,a) is an isomorphism of vector spaces. The isomorphism νC identifies the 

residue form on O(CC,a) and the contravariant form on SingFk(C) multiplied by (−1)k, 

S(a)(f,g) = (−1)k(νC(f),νC(g))CC,a for f,g ∈ Singa Fk(C).  

Remark. If the weight a ∈ (C×)n is unbalanced, then the isomorphism µC induces a 

commutative associative algebra structure on Sing aFk(C). Together with the contravariant 

form S(a)|Singa Fk it is a Frobenius algebra. The algebra of multiplication operators on Sing aFk(C) 

is called the Bethe algebra of the weighted arrangement (C,a). This Bethe algebra is an analog 

of the Bethe algebra in the theory of quantum integrable models, see, for example, [MTV1, 

MTV2, V3, V4]. 
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2.13. Integral structure on O(CC,a) and Sing aFk(C). If the weight a is unbalanced, the formula 

Hp(F(C),d) = Hp((F(C))Z,dZ)⊗C and the isomorphism  

∼= Sing aF(C) → O(CC,a) define an integral structure on O(CC,a). More precisely, for a k-flag of 

edges Xα0 ⊃ Xα1 ⊃ ··· ⊃ Xαk, let S(a)(Fα0,...,αk) = fα0,...,αkdt1 ∧ ··· ∧ dtk. Denote by 

wα0,...,αk the element [fα0,...,αk] ∈ O(CC,a). 

Corollary 2.3 ([V6]). If the weight a is unbalanced, then the set of all elements {wα0,...,αk}, labeled 

by all k-flag of edges of C, spans the vector space O(CC,a). All linear relations between the 

elements of the set are corollaries of the relations 

(2.6) X wα0,...,αj−1,β,αj+1,...,αp=α = 0, 
Xβ,Xαj−1⊃Xβ⊃Xαj+1 

X 

wα0,...,αp,β = 0, Xβ,Xαp⊃Xβ 

cf. formulas (2.1), (2.2).  

Similarly, for a k-flag of edges Xα0 ⊃ Xα1 ⊃ ··· ⊃ Xαk, let vα0,...,αk be the orthogonal projection of 

Fα0,...,αk to Sing aFk(C). 

Corollary 2.4 ([V6]). If the weight a is unbalanced, then the set of all elements {vα0,...,αk}, labeled 

by all k-flag of edges of C, spans the vector space Sing aFk(C). All linear relations between the 

elements of the set are corollaries of the relations 

(2.7) X vα0,...,αj−1,β,αj+1,...,αp=α = 0, 
Xβ,Xαj−1⊃Xβ⊃Xαj+1 

X 

vα0,...,αp,β = 0, Xβ,Xαp⊃Xβ 

cf. formulas (2.1), (2.2).  

We have νC : vα0,...,αk 7→ wα0,...,αk. The elements {wα0,...,αk} ⊂ O(CC,a) and {vα0,...,αk} ⊂ Sing aFk(C) are 

called the marked elements. The relations (2.6), (2.7) are called the marked relations. 

2.14. Combinatorial connection, I. Consider a deformation C(s) of the arrangement C, which 

preserves the combinatorics of C. Assume that the edges of C(s) can be identified with the 

edges of C so that the elements in formula (2.1) and the differential in formula (2.2) do not 

depend on s. Then for every s, the elements {wα0,...,αk(s)} span O(CC(s),a) as a vector space with 

linear relations (2.6) not depending on s. This allows us to identify all the vector spaces 

O(CC(s),a). In particular, if an element w(s) ∈ O(CC(s),a) is given, then the derivative  is well-
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defined. This construction is called the combinatorial connection on the family of algebras 

O(CC(s),a), see [V5]. All the elements {wα0,...,αk(s)} are flat sections of the combinatorial 

connection. 

Similarly we can define the combinatorial connection on the family of vector spaces Sing 

aFk(C(s)). 

2.15. Arrangement with normal crossings. An essential arrangement C is with normal 

crossings, if exactly k hyperplanes meet at every vertex of C. Assume that C is an essential 

arrangement with normal crossings. 

A basis of Ap(C) is formed by (Hj1,...,Hjp), where {j1 < ··· < jp} are independent ordered p-

element subsets of J. The dual basis of Fp(C) is formed by the corresponding vectors 

F(Hj1,...,Hjp). These bases of Ap(C) and Fp(C) are called standard. We have 

(2.8) F(Hj1,...,Hjp) = (−1)|σ|F(Hjσ(1),...,Hjσ(p)), for σ ∈ Σp. 

For an independent subset {j1,...,jp}, we have S(a)(F(Hj1,...,Hjp),F(Hj1,...,Hjp)) = aj1 ···ajp and 

S(a)(F(Hj1,...,Hjp),F(Hi1,...,Hik)) = 0 for distinct elements of the standard basis. If a is unbalanced, 

then the marked elements in O(CC,a) are 

(2.9)  , 

where {i1,...,ik} runs through the set of all independent k-element subsets of J. We have 

wiσ(1),...,iσ(k) = (−1)σwi1,...,ik for σ ∈ Σk. We put wi1,...,ik = 0 if the set {i1,...,ik} is dependent. The marked 

relations are labeled by independent subsets {i2,...,ik} and have the form Pj∈Jwj,i2,...,ik = 0. The 

marked elements vi1,...,ik in Sing aFk(C) are orthogonal projections to Sing aFk(C) of the elements 

F(Hi1,...,Hik) with the skew-symmetry property viσ(1),...,iσ(k) = (−1)σvi1,...,ik for σ ∈ Σk and the marked 

relations Pj∈Jvj,i2,...,ik = 0 labeled by independent subsets {i2,...,ik}. 

For any independent ordered subset j1,...,jp ∈ J we denote Fj1,...,jp = F(Hj1,...,Hjp) ∈ Fp(C) and set 

Fj1,...,jp = 0 if j1,...,jp is a dependent subset. 

Corollary 2.5. The orthogonal complement Sing aFk(C) is generated by the elements 

P
j∈J Fj,i1,...,ik−1 labeled by independent subsets {i1,...,ik−1} ∈ J, and an element of Fk(C) lies in Sing 

aFk(C) if and only if it is orthogonal to all the elements Pj∈J Fj,i1,...,ik−1.  

3. Family of parallelly transported hyperplanes 

3.1. Arrangement in Cn×Ck. Consider Ck with coordinates t1,...,tk, Cn with coordinates z1,...,zn, 

the projection τ : Cn × Ck → Cn. Fix n nonzero linear functions on Ck, gj = 

 where . Assume that the functions {gj}j∈J, span the dual 
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space (Ck)∗. 

Define n linear functions on Cn × Ck, fj = gj + zj, j ∈ J. Consider the arrangement of hyperplanes 

C = {Hj}j∈J in Cn × Ck, where Hj is the zero set of fj, and denote by U(C) = Cn × Ck − ∪j∈JHj the 

complement. For every x =∈ Cn, the arrangement C induces an arrangement C(x) in the fiber 

τ−1(x) ∼= Ck. Then C(x) consists of hyperplanes {Hj(x)}j∈J, defined in Ck by the equations gj + xj 

= 0. Thus {C(x)}x∈Cn is a family of arrangements in Ck, whose hyperplanes are transported 

parallelly to themselves as x changes. Denote by U(C(x)) = Ck − ∪j∈JHj(x) the complement. For 

almost all x ∈ Ck the arrangement C(x) is with normal crossings. The subset ∆ ⊂ Cn where this 

does not hold, is a hypersurface called the discriminant. On the discriminant see, for example, 

[BB, V4]. 

3.2. Combinatorial connection, II. For any x1,x2 ∈ Cn − ∆, the spaces Fp(C(x1)), Fp(C(x2)) are 

canonically identified if a vector F(Hj1(x1),...,Hjp(x1)) of the first space is identified with the 

vector F(Hj1(x2),...,Hjp(x2)) of the second, in other words, if we identify the standard bases of 

these spaces. 

Assume that a weight a ∈ (C×)n is given. Then each arrangement C(x) is weighted. The 

identification of spaces Fp(C(x1)), Fp(C(x2)) for x1,x2 ∈ Cn −∆ identifies the corresponding 

subspaces Singa Fk(C(x1)), Singa Fk(C(x2)) and contravariant forms. 

Assume that the weighted arrangement (C(x),a) is unbalanced for some x ∈ Cn − ∆, then 

(C(x),a) is unbalanced for all x ∈ Cn − ∆. The identification of Singa Fk(C(x1)) and 

Singa Fk(C(x2)) also identifies the marked elements vj1,...,jk(x1) and vj1,...,jk(x2), see Section 2.15. 

For x ∈ Cn −∆, denote V = Fk(C(x)), Singa V = Singa Fk(C(x)), vj1,...,jk = vj1,...,jk(x). The triple (V,Singa 

V,S(a)), with marked elements vj1,...,jk, does not depend on x under the identification. 

As a result of this reasoning we obtain the canonically trivialized vector bundle 

(3.1) tx∈Cn−∆ Fk(C(x)) → Cn − ∆, 

with the canonically trivialized subbundle tx∈Cn−∆ Singa Fk(C(x)) → Cn − ∆ and the constant 

contravariant form on the fibers. This trivialization identifies the bundle in (3.1) with the 

bundle (Cn − ∆)×V → Cn − ∆ and identifies the subbundle tx∈Cn−∆ Singa Fk(C(x)) → Cn − ∆ with the 

subbbundle 

(3.2) (Cn − ∆) × (Singa V ) → Cn − ∆. 

The bundle in (3.2) is called the combinatorial bundle, the flat connection on it is called 

combinatorial, see Section 2.14 and [V4, V5]. 

3.3. Gauss-Manin connection on (Cn − ∆)×(Singa V ) → Cn − ∆. The master function is ΦC,a = 

P
j∈J aj logfj, a multivalued function on U(C). Let κ ∈ C×. The function eΦC,a/κ defines a rank one 
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local system Lκ on U(C) whose horizontal sections over open subsets of U(C) are univalued 

branches of eΦC,a/κ multiplied by complex numbers, see, for example, 

[SV, V2]. The vector bundle 

tx∈Cn−∆ Hk(U(C(x)),Lκ|U(C(x))) → Cn − ∆ 

is called the homology bundle. The homology bundle has a canonical flat Gauss-Manin 

connection. 

For a fixed x ∈ Cn − ∆, choose γ ∈ Hk(U(C(x)),Lκ|U(C(x))). The linear map {γ} : Ak(C(x)) → C, ω 

7→ Rγ eΦC,a/κω, is an element of Sing aFk(C(x)) by Stokes’ theorem. It is known that for generic 

κ any element of Sing aFk(C(x)) corresponds to a certain γ and in that case this construction 

gives the integration isomorphism 

(3.3) Hk(U(C(x)),Lκ|U(C(x))) → Singa Fk(C(x)), 

see [SV]. The precise values of κ, such that (3.3) is an isomorphism, can be deduced from the 

determinant formula in [V1]. 

For generic κ the fiber isomorphisms (3.3) define an isomorphism of the homology bundle 

and the combinatorial bundle (3.2). The Gauss-Manin connection induces a connection on 

the combinatorial bundle. That connection on the combinatorial bundle is also called the 

Gauss-Manin connection. 

Thus, there are two connections on the combinatorial bundle: the combinatorial 

connection and the Gauss-Manin connection depending on κ. In this situation we consider 

the differential equations for flat sections of the Gauss-Manin connection with respect to the 

combinatorially flat standard basis. Namely, let γ(x) ∈ Hk(U(C(x)),Lκ|U(C(x))) be a flat section of 

the Gauss-Manin connection. Let us write the corresponding section Iγ(x) of the bundle (Cn − 

∆) × Sing aV → Cn − ∆ in the combinatorially flat standard basis,. 
 1 k 

We may rewrite it as Iγ(x) = P independent Iγj1,...,jk(x)vj1,...,jk since Iγ(x) ∈ Sing aV . For 
{j1<···<jk}⊂J 

I = PIj1,...,jkvj1,...,jk and j ∈ J, we denote . This formula defines the 

combinatorial connection on the combinatorial bundle. 

The section Iγ satisfies the Gauss-Manin differential equations 

(3.4)  

where Kj(x) ∈ End(Sing aV ). See a description of the operators Kj(x), for example, in [OT2, V2, 

V4]. 

3.4. Critical set. Denote by CC,a the critical set of ΦC,a in the Ck-direction, 
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o 
(3.5) ) = 0 for i = 1,...,k . 

Let O(CC(x),a) be the algebra of regular functions on CC(x),a = CC,a ∩ τ−1(x). Namely, for x ∈ Cn, 

let IC(x),a be the ideal in O(U(C(x))) generated by . We set O(CC(x),a) = 

O(U(C(x)))/IC(x),a. Assume that the weight a is such that the pair (C(x),a) is unbalanced for 

some x ∈ Cn − ∆. Then we obtain the vector bundle of algebras tx∈Cn−∆O(CC(x),a) → Cn − ∆. For x ∈ 

Cn − ∆, recall the isomorphism 

(3.6)  

of Theorem 2.2. This ‘fiber’ isomorphism establishes an isomorphism of the bundle 

tx∈Cn−∆O(CC(x),a) → Cn − ∆ and the bundle (Cn − ∆) × (Singa V ) → Cn − ∆. This isomorphism 

together with the combinatorial and Gauss-Manin connections on the bundle (Cn − ∆) × (Singa 

V ) → Cn − ∆ induces two connections on the bundle of algebras tx∈Cn−∆O(CC(x),a) → Cn − ∆, which 

also are called the combinatorial and Gauss-Manin connections, respectively. 

Theorem 3.1 ([V4]). If the pair (C(x),a) is unbalanced for x ∈ Cn − ∆, then for all j ∈ J, we have 

(3.7) , 

where  is the operator of multiplication by  and Kj(x) ∈ End(Sing aV ) is 

the operator defined in (3.4).  

Remark. Recall that aj/fj = ∂ΦC,a/∂zj and the elements [aj/fj], j ∈ J, generate the algebra 

O(CC(x),a). Theorem 3.1 says that under the isomorphism ν(x) the operators of multiplication 

[aj/fj]∗x on O(CC(x),a) are identified with the operators Kj(x) in the GaussManin differential 

equations (3.4). The correspondence of Theorem 3.1 defines a commutative algebra 

structure on Sing aV , the structure depending on x. The multiplication in this commutative 

algebra is generated by the operators Kj(x),j ∈ J. The correspondence of Theorem 3.1 also 

defines the Gauss-Manin differential equations on the bundle of algebras in terms of the 

multiplication in the fiber algebras, see these differential equations in [V6, Theorem 3.9]. 

3.5. Formulas for multiplication. Recall that for j ∈ J, we denote 

O(CC(x),a). Then wi1,...,ik = di1,...,ikpi1 ...pik, and for any i1,...,ik−1 ∈ J we have 

(3.8) X dj,i1,...,ik−1pj = 0. j∈J 

For a subset I = {i1,...,ik+1} ⊂ J denote 
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(3.9) . 

Lemma 3.2. We have 

(3.10) . 

Proof. We have = 0. That implies the lemma.  

Corollary 3.3. Assume that a subset {i1,...,ik+1} ⊂ J consists of distinct elements and contains a 

k-element independent subset. Then we have an identity in O(CC(x),a): 

(3.11) . 

Proof. The corollary follows from Lemma 3.2.  

4. Elementary arrangements 

4.1. Definition. Consider a k-dimensional vector space X with coordinates t1,t2,...,tk. Let λ = 
(λ1,λ2,...,λm) be a collection of positive integers such that  
that we have a collection of non-intersecting index sets Jh, h = 1,...,m, each with |Jh| = λh + 1 
elements. Denote  

Let CJλ = {Hi}i∈Jλ be a weighted arrangement of affine hyperplanes in X with normal crossings. 

Each hyperplane Hi has weight ai and is defined by an equation gi(t1,...,tk)+zi = 

0, where  is an element of the dual space X∗ and zi ∈ C. Define a 

subspace Xh∗(Jλ) = span . We have a filtration 

(4.1) . 

The arrangement CJλ is called elementary of type λ if 

(i) For any h ∈ {1,...,m} we have dim . 

(ii) For any h ∈ {1,...,m}, any j ∈ Jh and , we have dim(span{gl}l∈A) = λh. 

In Figure 2 the first elementary arrangement is of type λ = (2) and the second is of type λ = 

(1,1) with J1 = {1,2},J2 = {3,4}. In this section we always assume that CJλ is an elementary 

arrangement. 

 

Figure 2. Elementary Arrangements in Dimension 2. 

H 2 H 3 

H 1 

H 3 H 4 

H 2 
H 1 
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4.2. Distinguished Elements. For h = 1,...,m, let Kh = {j1,...,jλh} be an ordered λhelement subset 

of Jh. Recall the notation FKh = F(Hj1,...,Hjλh) ∈ Fλh(CJλ). The elements of the flag space Fk(CJλ) of 

the form 

FK1,...,Km = FK1 ∧ FK2 ∧ ··· ∧ FKm ∈ Fk (CJλ), 

are called the distinguished elements of the elementary arrangement CJλ. 

Lemma 4.1. Counted up to permutation of indices potentially changing sign, there are exactly

 distinguished elements of CJλ.  

For example, in Figure 2 the distinguished elements of the first arrangement are ±F1,2,±F2,3, 

±F1,3 and distinguished elements of the second are . 

Let , and let  be an ordered 
λhelement subset of Jh. The element 

(4.2)  

is called the singular element of CJλ. 

Lemma 4.2. We have s(CJλ) ∈ Sing aFk(CJλ). 

Proof. By Corollary 2.5, the element s(CJλ) lies in Sing AFk(CJλ) if and only if it is orthogonal to 

each of the elements Pj∈JFj,i1,...,ik−1 labeled by independent subsets I = {i1,...,ik−1} ⊂ Jλ. If {i1,...,ik−1} 

⊂ Jλ is independent, then there is l ∈ {1,...,m} such that |I∩Jl| = λl−1 and |I ∩ Jh| = λh for h 6= l. 

Then it is clear that S(a)(s(CJλ),Pj∈J Fj,i1,...,ik−1) = 0 as the sum of two opposite terms coming from 

the l-th factor in formula (4.2).  

The singular element s(CJλ) has the following properties. It is defined uniquely up to 

multiplication by ±1, and this sign depends on the ordering put on each subset Jh. Each 

destinguished element of CJλ, considered up to sign, enters the singular element exactly once. 

Example. In Figure 2 the singular element of the first elementary arrangement is ±(a3F1,2+ 

a2F3,1 + a1F2,3) and the singular element of the second is ±(a2F1 − a1F2) ∧ (a3F4 − a4F3). 

4.3. Decomposing Determinants. Recall the elements , used in 

defining the hyperplanes Hj, and the notation . 
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Let s1,...,sk be a basis of X∗ adjacent to the filtration  in (4.1), i.e., let s1,...,sk be 

such that for any h = 1,...,m, the elements s1,...,sλh form a basis of Xh∗(Jλ). Additionally, we select 

s1,...,sk such that the change of basis matrix from t1,...,tk to s1,...,sk has determinant one. 

Let , be the expansion of gj with respect to the new basis, then for any j1,...,jk 

∈ Jλ we have det(  and cij = 0 for all j ∈ Jh, i > λh. 

For h = 1,...,m, let be an ordered λh-element subset of Jh. Consider K = 

(K1,K2,...,Km) as an ordered k-element subset of Jλ. The matrix (  is lower block-

triangular. Define the diagonal λh ×λh-blocks as the matrices . 

Lemma 4.3. Let K be constructed as above. Then, .  

4.4. Auxiliary Arrangements. For h = 1,...,m, let Yh be a vector space of dimension λh with 

coordinates s1,h,...,sλh,h. For j ∈ Jh, let gj,h be elements of Yh∗ given by the formula 

 where  and the  are the coefficients introduced in 

Section 4.3. 

Define CJλ,h = {Hj,h}j∈Jh to be the following weighted arrangement of affine hyperplanes in Yh. 

Each hyperplane Hj,h has weight aj and is defined by the equation gj,h(s1,h,...,sλh,h) + zj = 0, where 

zj and aj are the same as in Section 4.1. We call CJλ,h the auxiliary arrangement of type h 

associated with the elementary arrangement CJλ. 

For an ordered λh-element subset I = {j1,...,jλh} ⊂ Jh denote . Let 

. By the construction, the linear combination 

lies in Xh∗−1. Choose some numbers , such that 

the linear combination 

(4.3)  

as an element of the space X∗. Such numbers exist since , span . Denote 

(4.4) . 

We call the function 

(4.5)  

a prepotential of first kind of the auxiliary arrangement CJh. We call the function PCJλ = 

 a prepotential of first kind of the elementary arrangement CJλ. We call the 

function 

(4.6)  
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a prepotential of second kind of the elementary arrangement CJλ. The prepotentials are not 

unique due to the choice of the numbers ej above. 

4.5. Elementary subarrangements. Let us return to the situation of Section 3. For x ∈ Cn − ∆ 

consider the weighted arrangement C(x) with normal crossings. 

Let CJλ(x) = {Hi(x)}i∈Jλ be an elementary subarrangement of the arrangement C(x) of type λ 

= (λ1,...,λm). Recall that  with subsets Jh satisfying properties described in 

Section 4.1. According to those properties if a subarrangement CJλ(x) = {Hi(x)}i∈Jλ is an 

elementary subarrangement of C(x) for some x ∈ Cn − ∆, then the subarrangement CJλ(x0) = 

{Hi(x0)}i∈Jλ, associated with the same Jλ, is an elementary subarrangement of C(x0) for every 

x0 ∈ Cn − ∆. 

Example. If C(x) is a generic arrangement, then all elementary subarrangements are of type 

λ = (k), they are given by k + 1-element subsets of J. 

Since C(x) is with normal crossings we have a natural embeddings of graded exterior 

algebras F(CJλ(x)) ⊂ F(C(x)) and an embedding of spaces Sing AFk(CJλ(x)) ⊂ Sing AFk(C(x)). In 

particular, the singular element s(CJλ(x)) of CJλ(x) can be considered as an element of Sing 

AFk(C(x)). 

Recall that for h = 1,...,m, there are auxiliary arrangements CJλ,h(x) associated with CJλ(x). For 

h = 1,...,m − 1, we define the weight of the auxiliary arrangement CJλ,h(x) with respect to C(x) 

as the sum a(Jλ,J,h) = Pi∈J suchthat gi6∈Xh∗(Jλ) ai and the weight of the elementary subarrangement 

CJλ(x) with respect to C(x) as the product a(Jλ,J) = 

). We define the potentials of first and second kind of the family of 

arrangements C(x), x ∈ Cn − ∆, to be respectively the following functions on Cn − ∆: 

(4.7)  

(4.8) , 

where the sums are over all elementary subarrangements CJλ(x) of C(x) and PJλ(x),QJλ(x) are 

the prepotentials of first and second kind, respectively, of the elementary subarrangements 

CJλ(x) of the arrangement C(x). The potentials are not uniques, since the prepotentials are not 

unique, see Section 4.4. 

Example. The second arrangement in Figure 2 has three elementary subarrangements with 

Jλ being {1,3,4} or {2,3,4} or {1,2} ∪ {3,4} of types λ = (2),(2),(1,1), respectively. The potential 

of second kind for that arrangement is 
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, 

c.f. this formula with the formula in the example of Section 1.1. 

The potentials P,Q for families of generic arrangements were constructed in [V5], c.f. [V7]. 

Lemma 4.4. For any independent subset {s1,...,sk−1} ⊂ J, we have 

(4.9) . 

Proof. It is enough to prove that = 0 for 

every elementary subarrangement CJλ(z) of C(x). To prove that, it is enough to prove that 

= 0 for any h, see formula (4.4), but that is clear.  

5. Orthogonal projection 

5.1. Formula for orthogonal projection. Recall the objects of Section 3. For x ∈ Cn−∆, we 

denoted V = Fk(C(x)), Singa V = Singa Fk(C(x)), Fj1,...,jk = Fj1,...,jk(x). Let π : V → Sing aV be the 

orthogonal projection with respect to S(a). 

For an ordered independent subset I = {i1,...,ik} ⊂ J, let EI be the set of all elementary 

subarrangements CJλ(x) of C(x) which have FI as a distinguished element. Let CJλ(x) ∈ EI be 

such a subarrangement. Let s(CJλ(x)) be the singular element of CJλ(x) considered as an 

element of Sing aV . The singular element is defined up to multiplication by ±1. We fix the sign 

so that the distinguished element FI enters s(CJλ(x)) with coefficient 1. 

Theorem 5.1. For an independent ordered subset I = {i1,...,ik} ⊂ J we have 

(5.1)  

Corollary 5.2. The space Sing aV is generated by singular elements of elementary 

subarrangements.  

Notice that the singular element of an elementary subarrangement in Ck is a linear 

combination of at most 2k basis vectors Fl1,...,lk ∈ V , while the dimension of V could be 

arbitrarily big and grow with n. 

Example. For the second arrangement in Figure 2, we have 
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, 

where (a1F2 − a2F1) ∧ (a4F3 − a3F4) = a1a4F2,3 − a1a3F2,4 − a2a4F1,3 + a1a3F1,4. 

5.2. Proof of Theorem 5.1. Recall that every element of the form Pj∈J Fj,l1,...,lk−1 is orthogonal to 

Sing aV . In order to construct π(FI) from FI we add to FI a linear combination of elements of 

the form P
j∈J Fj,l1,...,lk−1 so that the result is a linear combination of the singular elements of 

elementary subarrangements CJλ(x). That means that the result lies in Sing aV by Lemma 4.2. 

The transition from FI to π(FI) is done in k steps and this reasoning is by induction on the 

number m appearing in the presentation λ = (λ1,...,λm). As the first step we add to FI a linear 

combination of elements of the form Pj∈J Fj,l1,...,lk−1 and transform FI to the sum 

P
CJλ(x)∈EI with , where R1 is a remainder. Then we add a new linear 

combination of elements of the form Pj∈J Fj,l1,...,lk−1 and transform the result to the sum 

P
CJλ(x)∈EI with , and so on. After m steps the result will be the right-hand 

side in (5.1) and there will be no remainder. 

We illustrate that reasoning by considering the case k = 3. We construct the orthogonal 

projection of the element F1,2,3, which could be an arbitrary basis vector of V after reordering 

hyperplanes. Formula (5.1) says 

(5.2) π(F1,2,3) = Σ1,2,3 + Σ1,2;3 + Σ1,3;2 + Σ2,3;1 + Σ1;2,3 + Σ2;1,3 + Σ3;1,2 + 

  + Σ1;2;3 + Σ1;3;2 + Σ2;1;3 + Σ2;3;1 + Σ3;1;2 + Σ3;2;1, 

where 

, 

, 

, 

, 

, 
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, 

, 

, 

, 

, 

, 

, 

. 

In these formulas we use the following notations. 

We denote a(h,l) = Paj, where the sum is over all j ∈ J such that gj ∈/ span(gh,gl). We denote 

a(h) = Paj, where the sum is over all j ∈ J such that gj ∈/ span(gh). 

The sum P 1,2,3 is over all j ∈ J such that the subset {j,1,2,3} forms a circuit in J. The sum Ph,l 

is over all j ∈ J such that the subset {j,h,l} forms a circuit in J. The sum Ph is over all j ∈ J such 

that the subset {j,h} forms a circuit in J. 

The sum Pj,l;s is over all h ∈ J such that gh ∈/ span(gj,gl). The sum Pj;l,s is over all h ∈ J such 

that span(gj,gl,gh) = span(gj,gs,gh) = (C3)∗. The sum Pj;l is over all h ∈ J such that span(gj,gl) = 

span(gj,gh). The first transformation is 

(5.3) , 

the added terms are a linear combination of elements of the form Pj∈J Fj,l1,l2. We rearrange the 

right-hand side of (5.3) as follows: 

(5.4) = a−J 1 X 1,2,3(ajF1,2,3 − a1Fj,2,3 + a2F1,j,3 − a3F1,2,j) 
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(5.5) +a−J 1 X 1,2(ajF1,2 − a1Fj,2 + a2Fj,1) ∧ F3 

(5.6) −a−J 1 X 1,3(ajF1,3 − a1Fj,3 + a3Fj,1) ∧ F2 

(5.7)  

(5.8) +a−J 1 X 1(ajF1 − a1Fj) ∧ F2,3 − aJ− 1 X 2(ajF2 − a2Fj) ∧ F1,3 

(5.9) +a−J 1 X 3(ajF3 − a3Fj) ∧ F1,2. 

The sum in (5.4) is exactly the sum PCJλ(x)∈E{1,2,3} with )) and the sums in 

(5.5)-(5.9) form the first remainder R1. 

Now we add to each of the sums in (5.5)-(5.9) a linear combination of elements of the form 

Pj∈J Fj,l1,l2 as follows. Let 

. 

Similarly, 

 

, 

a−J 1 X 2,3(ajF2,3 − a2Fj,3 + a3Fj,2) ∧ F1 → 

. 

Similarly 
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. 

We transform similarly the remaining two sums in (5.8)-(5.9). This finishes step two of the 

procedure. After the two steps the result is 

(5.10) Σ1,2,3 + Σ1,2;3 + Σ1,3;2 + Σ2,3;1 + Σ1;2,3 + Σ2;1,3 + Σ3;1,2 

(5.11)  

(5.12)  

(5.13)  

(5.14)  

(5.15)  

(5.16) . 

The sum in (5.10) is the sum PCJλ(x)∈E{1,2,3} with )) and the sums in (5.11)- 

(5.16) form the second remainder R2. As the third step we transform the expression in (5.11) 

to 

 

, 

and similarly we transform the expressions in (5.12)-(5.16). After these three steps we 

obtain formula (5.2). The case of arbitrary k is similar to this case of k = 3. Theorem 5.1 is 

proved.  

6. Potential of first kind 

Recall the objects of Section 3. Recall that vj1,...,jk = π(Fj1,...,jk), where π : V → Sing aV is the 

orthogonal projection with respect to S(a). Let P be the potential of first kind of the family of 

arrangements C(x),x ∈ Cn − ∆. 

Theorem 6.1. For any two ordered independent subsets I = {i1,...,ik},L = {l1,...,lk} ⊂ J, we have 
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(6.1) . 

For families of generic arrangements this theorem was proved in [V5], c.f. [V7]. Proof. 

Since vl1,...,lk = π(Fl1,...,lk) we have 

. 

Formula (4.2) for the singular element s(CJλ(x)) shows that the number S(a)(s(CJλ(x)),Fl1,...,lk) is 

nonzero if and only if Fl1,...,lk is a distinguished elements of the elementary arrangement 

CJλ(x). Let this condition be satisfied for an elementary arrangement CJλ(x) ∈ Ei1,...,ik. Let 

, and let b be an ordered 

λh-element subset of Jh. Then 

(6.2)  

Due to the choice of sign of s(CJλ(x)) in Section 5.1 we may assume that 

(6.3) . 

We may also assume that 

(6.4)  

for some sh ∈ {1,...,λh + 1},h = 1,...,m. 1Equations (6.2)-(6.4) 

imply 

(6.5) . 

Recall formula (4.7) for the potential of first kind. It is a linear combination of prepotentials 

of first kind PCJλ(x) of all elementary subarrangements CJλ(x) of C(x). To finish the proof of 

Theorem 6.1 we need to show that if CJλ(x) is as in formula (6.5), then 

(6.6)  

and 

 
1 Notice that if the indices of Fl1,...,lk are permuted then Fl1,...,lk is multiplied by ±1 and dl1,...,lk in the right-hand side of 

(6.1) is multiplied by the same ±1. 
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(6.7)  

if CJλ(x) 6∈ Ei1,...,ik or if CJλ(x) ∈ Ei1,...,ik but Fl1,...,lk is not a distinguished element of CJλ(x). Recall the 

formula 

. 

Lemma 6.2. The 2λh-th derivative of  with respect to the vari- 

ables  equals .  

Now Lemmas 6.2 and 4.3 imply formula (6.6). 

Lemma 6.3. Formula (6.7) holds if CJλ(x) 6∈ Ei1,...,ik or if CJλ(x) ∈ Ei1,...,ik but Fl1,...,lk is not a 

distinguished element of CJλ(x). 

Proof. Let CJλ be any elementary subarrangement and Fi1,...,ik,Fl1,...,lk two nonzero elements. 

Clearly formula (6.7) holds if . Assume that {i1,...,ik, 

. For h = 1,...,m denote ih = |{s | is ∈ Jh}| and lh = |{s | ls ∈ Jh}|. We have i1 + ··· 

+ ih 6 λ1 + ··· + λh, l1 + ··· + lh 6 λ1 + ··· + λh for any h and i1 +···+im = l1 +···+lm = λ1 +···+λm = k. If ih = 

lh = λh for all h, then Fi1,...,ik,Fl1,...,lk are distinguished elements of CJλ. So we assume that at least 

one of the numbers ih,lh differs from λh. Let hmax be the maximal h such that at least one of the 

numbers ih,lh differs from λh. Then: (a) each of ihmax,lhmax is not less than λhmax; (b) at least one of 

them is greater than λhmax; (c) hmax > 1. 

Then the derivative in (6.7) is zero due to the fact that the set {i1,...,ik, l1,...,lk} has too many 

elements of , c.f. formulas (4.4), (4.5).  

 Theorem 6.1 is proved.  

Recall the elements pj ∈ O(CC(x),a), j ∈ J, and the Grothiendick residue bilinear form (, )CC(x),a 

on O(CC(x),a). 

Corollary 6.4. For any two independent subsets I = {i1,...,ik},L = {l1,...,lk} ⊂ J, we have 

(6.8) . 

Proof. Recall that the isomorphism of vector spaces 

(6.9) ν(x) : Singa Fk(C(x)) → O(CC(x),a) 
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sends π(Fi1,...,ik) to di1,...,ikpi1 ...pik for all independent subsets {i1,...,ik} ⊂ J and also identifies the 

form S(a)(, ) on Sing
a Fk(C(x)) and the the form (−1)k(, )CC(x),a on O(CC(x),a), see Theorem 2.2.  

7. Potential of second kind 

Recall the objects of Section 3. Let Q be the potential of second kind of the family of 

arrangements C(x),x ∈ Cn − ∆. 

Theorem 7.1. Let x ∈ Cn −∆. Then for any two independent subsets I = {i1,...,ik},L = {l1,...,lk} ⊂ J 

and any i0 ∈ J, we have 

(7.1) . 

For families of generic arrangements this theorem was proved in [V5]. 

Proof. Due to relations (3.8) and (4.9) it is enough to prove (7.1) in the case when i0,i1,...,ik are 

distinct elements of J. Thus assume that i0,i1,...,ik are distinct. After reordering i0,i1,...,ik, we may 

assume that i0,i1,...,iµ form a circuit, where µ is some number 6 k. Recall the function 

 

in (3.9) and relation (3.11): 

. 

First we analyze the left-hand side in (7.1). We have 

(7.2)  

where the last equality holds by Theorem 2.2. We have 

(7.3) , 

where π is the orthogonal projection, see Section 5.1. 

Let E(i0,i1,...,iµ) be the set of all elementary subarrangements CJλ(x) of C(x) with 

such that J1 = {i0,i1,...,iµ} and such that Fi1,...,ik is a distinguished element of CJλ(x). Let s(CJλ(x)) be 

the singular element of CJλ(x) considered as an element of Sing aV . The singular element is 
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defined up to multiplication by ±1. We fix the sign so that the distinguished element Fi1,...,ik 

enters s(CJλ(x)) with coefficeint 1. 

Lemma 7.2. We have 

. 

Proof. Indeed we have 

(7.4) . 

To construct the orthogonal projection of the right-hand side in (7.4), we need to apply the 

construction of the orthogonal projection, described in the proof of Theorem 5.1, but starting 

with step 2 since the result of the first step is already presented by the factor 

 in the right-hand side of (7.4), c.f. formulas (5.4)-(5.9).  

By Lemma 7.2 the expression in (7.2) equals 

(7.5) . 

We have 

 

where we use the notations of Section 4.2, namely, we have  for h = 

2,...,m, and . 

Due to our choice of sign of s(CJλ(x)) we may assume that we have the equality of ordered 

sets 

(7.6) . 

The term S(a)(s(CJλ(x)),Fl1,...,lk) is nonzero if and only if 

(7.7)  

for some 0 6 s 6 µ and some 1 6 sh 6 λh + 1 for h = 2,...,m. In this case 

(7.8) 

. 
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Consider the right-hand side of (7.1). The potential Q of second kind is the sum 

 shown in (4.8), where the sum is over all elementary subarrangements 
CJλ(x) of C(x). 
Lemma 7.3. If the derivative 

(7.9)  

is nonzero, then Fi1,...,ik and Fl1,...,lk are distinguished elements of CJλ. 

Proof. The proof is the same as the proof of Lemma 6.3.  

Clearly the function  multiplied by a constant can be obtained by this 

differentiation only if CJλ(x) ∈ E(i0,i1,...,iµ). In this case we have 

, 

see formula (4.6). Derivatives of this summand do not depend on the ordering the elements 

of the sets Jh, h = 1,...,m, and we may assume that the equality (7.6) of ordered sets holds. 
By Lemma 7.3 we may assume that the equality of ordered sets in (7.7) holds. In that case, 

the operator (  applied to the expression in (7.10) gives 

(7.11) 

. 

Lemma 4.3 implies that 

. 

Now (7.11) equals (7.8). This proves Theorem 7.1.  

Corollary 7.4. Let x ∈ Cn − ∆. Then for any two ordered independent subsets I = 

{i1,...,ik},L = {l1,...,lk} ⊂ J and any i0 ∈ J, we have 

(7.13) . 

Proof. The corollary follows from formula (2.9) and Theorems 2.2, 3.1.  



28 ANDREW PRUDHOM AND ALEXANDER VARCHENKO 

References 

[AGV] V.I.Arnol’d, S.M.Gusein-Zade, A.N.Varchenko, Singularities of Differential Maps, Vol. I, Nauka, Moscow, 

1982; also Birkhauser, 1985 
[BB] M.Bayer, K.Brandt, Discriminantal arrangements, fiber polytopes and formality, J. Algebraic Combin. 6 

(1997), no. 3, 229–246 
[D] B.Dubrovin, Geometry of 2D topological field theories, Integrable Systems and Quantum Groups, ed. 

Francaviglia, M. and Greco, S.. Springer lecture notes in mathematics, 1620, 120–348 
[GRTV] V.Gorbounov, R.Rimanyi, V.Tarasov, A.Varchenko, Quantum cohomology of the cotangent bundle of a flag 

variety as a Yangian Bethe algebra, arXiv:1204.5138, 1–44, Journal of Geometry and Physics 
(2013), pp. 56–86 DOI information: 10.1016/j.geomphys.2013.07.006 

[GH] Ph.Griffiths, J.Harris, Principles of Algebraic Geometry, Wiley, 1994 
[HV] C.Hertling, A.Varchenko, Potentials of a Frobenius like structure and m bases of a vector space, 

arXiv:1608.08423, 1–18 
[NS] N.Nekrasov, S.Shatashvili, Quantum integrability and supersymmetric vacua, arXiv:0901.4748, Prog. Theor. 

Phys. Suppl. 177 (2009), 105–119, 
[M] Y.I.Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society 

Colloquium Publications, vol. 47, AMS, Providence, RI, 1999 
[MTV1] E.Mukhin, V.Tarasov, A.Varchenko, Three sides of the geometric Langlands correspondence for glN Gaudin 

model and Bethe vector averaging maps, arXiv:0907.3266, Arrangements of hyperplanes - Sapporo 2009, 

475–511, Adv. Stud. Pure Math., 62, Math. Soc. Japan, Tokyo, 2012 
[MTV2] E.Mukhin, V.Tarasov, A.Varchenko, Bethe algebra of the glN+1 Gaudin model and algebra of functions on 

the critical set of the master function, New trends in quantum integrable systems, 307– 324, World Sci. 

Publ., Hackensack, NJ, 2011 
[OT1] P. Orlik, H. Terao, The number of critical points of a product of powers of linear functions, Invent. Math. 120 

(1995), no. 1, 1–14 
[OT2] P.Orlik, H.Terao, Arrangements and hypergeometric integrals, MSJ Memoir, 9 (2001), Math. Soc. Japan, 

Tokyo, ix + pp.112 
[R] L.Rybnikov, A proof of the Gaudin Bethe Ansatz conjecture, arXiv:1608.04625, 1–15 
[RV] N.Reshetikhin and A.Varchenko, Quasiclassical asymptotics of solutions to the KZ equations, Geometry, 

Topology and Physics for R. Bott, Intern. Press, 1995, 293–322 
[Si] R. Silvotti, On a conjecture of Varchenko, Invent. Math. 126 (1996), no. 2, 235–248 
[SV] V.Schechtman and A.Varchenko, Arrangements of Hyperplanes and Lie Algebra Homology, Invent. Math. 106 

(1991), 139–194 
[V1] A.Varchenko, Beta-Function of Euler, Vandermonde Determinant, Legendre Equation and Critical Values of 

Linear Functions of Configuration of Hyperplanes, I. Izv. Akademii Nauk USSR, Seriya Mat., 53:6 (1989), 

1206–1235 
[V2] A. Varchenko, Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and 

Quantum Groups, Advanced Series in Mathematical Physics, 21, World Scientific, 1995 
[V3] A.Varchenko, Bethe Ansatz for Arrangements of Hyperplanes and the Gaudin Model, Mosc. Math. J. 6 (2006), 

no. 1, 195–210, 223–224 
[V4] A.Varchenko, Quantum integrable model of an arrangement of hyperplanes, SIGMA Symmetry Integrability 

Geom. Methods Appl. 7 (2011), Paper 032, 55 pp. 
[V5] A.Varchenko, Arrangements and Frobenius like structures, Annales de la faculte des sciences de Toulouse 

Ser. 6, 24 no. 1 (2015), p. 133–204 
[V6] A.Varchenko, Critical set of the master function and characteristic variety of the associated GaussManin 

differential equations, Arnold Math. J. 1 (2015), no. 3, 253–282, 



 POTENTIALS OF A FAMILY OF ARRANGEMENTS OF HYPERPLANES 29 

DOI 10.1007/s40598-015-0020-8, arXiv:1410.2438, 1–24 
[V7] A.Varchenko, On axioms of Frobenius like structure in the theory of arrangements, arXiv:1601.02208, 

Journal of Integrable Systems (2016) 00, 1–15, doi:10.1093/integr/xyw007 


