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Abstract

This study presents functional limit theorems for the Euler characteristic of Vietoris–
Rips complexes. The points are drawn from a nonhomogeneous Poisson process on R

d ,
and the connectivity radius governing the formation of simplices is taken as a function
of the time parameter t, which allows us to treat the Euler characteristic as a stochastic
process. The setting in which this takes place is that of the critical regime, in which the
simplicial complexes are highly connected and have nontrivial topology. We establish
two ‘functional-level’ limit theorems, a strong law of large numbers and a central limit
theorem, for the appropriately normalized Euler characteristic process.
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1. Introduction

The Euler characteristic is one of the oldest and simplest topological summaries. It is at
once local and global, combinatorial and topological, owing to its representation as either the
alternating sum of Betti numbers of a topological space, or the alternating sum of simplices
in its triangulation. Beyond its theoretical beauty, the Euler characteristic has recently made
its way into the field of applied mathematics, notably topological data analysis (TDA). For
instance, the Euler characteristic of sublevel (or superlevel) sets of random fields has found
broad applications [1, 8]. In TDA, the technique of capturing the dynamic evolution of topol-
ogy is generally studied in persistent homology—see [7] for a good introduction. Persistent
homology originated in computational topology [10] and has received much attention as a use-
ful machinery for exploring the manner in which topological holes appear and/or disappear in
a filtered topological space. The primary objective of the current study is to associate the Euler
characteristic with some filtered topological space by treating it as a stochastic process in the
time parameter t.

Due to recent rapid development of TDA in conjunction with probability theory, there
has been a growing interest in the study of random geometric complexes. We focus on
the Vietoris–Rips complex [15, 16, 19], because of its ease of application, especially in
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58 A. M. THOMAS AND T. OWADA

computational topology; though much research has also been done on the Čech complex [4, 6,
9, 11, 15, 16, 20, 25], and on the notion of generalizing both types of complex [13]. An elegant
survey of progress in these areas can be found in [5]. These studies are mostly concerned with
the asymptotic behavior of topological invariants such as the Euler characteristic and Betti
numbers. Among them, [9] derived a concentration inequality for the Euler characteristic
built over a Čech complex on a d-dimensional torus, as well as its asymptotic mean and
variance; and [14] established a multivariate central limit theorem for the intrinsic volumes,
including the Euler characteristic. Furthermore, [23] proved ergodic theorems for the Euler
characteristic over a stationary and ergodic point process.

Most of the studies cited in the last paragraph start with either an independent and
identically distributed (i.i.d.) random sample Xn = {X1, . . . , Xn} or a Poisson point process
Pn = {X1, . . . , XNn}, where Nn is a Poisson random variable with mean n, independent of (Xi)i.
Subsequently, we will consider a simple Boolean model of the union of balls centered around
Xn or Pn with a sequence of non-random radii sn → 0, n → ∞. Then the behavior of topolog-
ical invariants based on the Boolean model can be split up into several distinct regimes. When
nsd

n → 0 as n → ∞, we have what is called the sparse (or subcritical) regime, in which there
occur many small connected components. If nsd

n → ∞ as n → ∞, we have the dense (or super-
critical) regime, which is characterized by a large connected component with few topological
holes as a result of a slower decay rate of sn. The intermediate case where nsd

n converges to
a positive and finite constant is called the critical regime, in which the stochastic features of
a geometric complex are less assured, and arguably more interesting, owing to the emergence
of highly connected components with nontrivial topologies. The present study focuses exclu-
sively on the critical regime. This is because the behaviors of the Euler characteristic in other
regimes, e.g. the sparse and dense regimes, are essentially trivial. For example, in the dense
regime, the Euler characteristic is asymptotic to 1 (see [4]).

Within the context of geometric complexes—such as the Čech and Vietoris–Rips
complexes—few attempts have been made thus far at deriving limit theorems on the functional
level for topological invariants (for some exceptions, see [3, 19, 20]). From the viewpoint of
persistent homology, such functional information is crucial for the understanding of topological
invariants in a filtered topological space. With this in mind, the current study proceeds to estab-
lish functional limit theorems for the Euler characteristic defined as a stochastic process. More
specifically, we shall prove a functional strong law of large numbers and a functional central
limit theorem in the space D[0,∞) of right-continuous functions with left limits. Our results
are the first functional limit theorems in the literature for a topological invariant under the criti-
cal regime that have neither time/radius restrictions nor restrictions on the number/size of com-
ponents in the underlying simplicial complex. The primary benefit in our results lies in infor-
mation obtainable about topological changes as the time parameter t varies. For example, if we
let χn(t) be the Euler characteristic considered as a stochastic process, then as consequences
of our main theorems, one can capture the limiting behavior of various useful functions of the
Euler characteristic process via the continuous mapping theorem. We elaborate on these at the
end of Section 3. Other potential applications can be found in Chapter 14 of [2] and in [24].

In Section 2 we discuss all the topological background necessary for the paper. In Section 3
we discuss our main results: the functional strong law of large numbers and functional central
limit theorems for the Euler characteristic process in the critical regime. All of the proofs in
the paper are collected in Section 4.
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Limit theorems for the Euler characteristic process 59

FIGURE 1. A family of Vietoris–Rips complexes.

2. Preliminaries

2.1. Topology

The main concept in the present paper is the Euler characteristic. Before introducing it we
begin with the notions of a simplex and an (abstract) simplicial complex. Let N, N0 be the
positive and nonnegative integers respectively, and let B(x, r) be the closed ball centered at x
with radius r ≥ 0.

Definition 2.1. Let X be a finite set. An abstract simplicial complex K is a collection of non-
empty subsets of X which satisfy the following conditions:

1. All singleton subsets of X are in K.

2. If σ ∈K and τ ⊂ σ , then τ ∈K.

If σ ∈K and |σ | = k + 1, with k ∈N0, then σ is said to have dimension k and is called a
k-simplex in K. The dimension of K is the dimension of the largest simplex in K.

It can be shown (cf. [10]) that every abstract simplicial complex K of dimension d can
be embedded into R

2d+1. The image of such an embedding, denoted geom(K), is called the
geometric realization of K. A topological space Y is said to be triangulable if there exists
a simplicial complex K together with a homeomorphism between Y and geom(K). We now
define the Euler characteristic.

Definition 2.2. Take K to be a simplicial complex and let Sk(K) be the number of k-simplices
in K. Then the Euler characteristic of K is defined as

χ (K) :=
∞∑

k=0

(−1)kSk(K).

If Y is a triangulable topological space with an associated simplicial complex K, then we
have χ (Y) = χ (K), and χ (Y) is independent of the triangulation (see Theorem 2.44 in [12]).
Therefore, the Euler characteristic is a topological invariant (and in fact a homotopy invariant).

Our setting for this study is always in R
d, so we may take X , Y to be arbitrary finite subsets

of Rd. To conclude this section, we will now define the Vietoris–Rips complex: the aforemen-
tioned simplicial complex that allows us to get a topological, as well as combinatorial, structure
from our data X . A family of Vietoris–Rips complexes (R(X , t), t ≥ 0) for points in R

2 can
be seen in Figure 1; yellow represents a 2-simplex and green represents a 3-simplex, which
cannot be embedded in R

2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2020.46
Downloaded from https://www.cambridge.org/core. Purdue University Libraries, on 01 Jun 2021 at 19:24:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2020.46
https://www.cambridge.org/core


60 A. M. THOMAS AND T. OWADA

Definition 2.3. Let X = {x1, . . . , xn} be a finite subset of R
d and t ≥ 0. The Vietoris–Rips

complex R(X , t) is the (abstract) simplicial complex with the following properties:

1. All singleton subsets of X are in R(X , t).

2. A k-simplex σ = {xi0 , . . . , xik} is in R(X , t) if

B(xij , t) ∩ B(xi� , t) 	= ∅
for all 0 ≤ j< �≤ k.

2.2. Tools

Throughout, we let Pn denote a Poisson point process on R
d with intensity measure

n
∫

A f (x)dx, where A is a Borel subset of Rd, and f is a probability density function. Writing
m for Lebesgue measure on R

d, we assume that f is bounded almost everywhere, i.e.,
‖f ‖∞ := inf

{
a ∈R:m

(
f −1(a,∞)

)= 0
}
<∞.

For two finite subsets Y ⊂X of Rd with |Y| = k + 1, and t ≥ 0, we define

hk
t (Y) := 1

{Y forms a k-simplex in R(X , t)
}=

∏
x,y∈Y, x 	=y

1
{

B(x, t) ∩ B(y, t) 	= ∅
}

. (2.1)

In the below we present obvious but highly useful properties of this indicator function. First, it
is translation- and scale-invariant: for any c> 0, x ∈R

d, and y0, . . . , yk ∈R
d,

hk
t (cy0 + x, . . . , cyk + x) = hk

t/c(y0, . . . , yk).

Furthermore, for any fixed yi ∈R
d, i = 0, . . . , k, it is nondecreasing in t, i.e.,

hk
s (y0, . . . , yk) ≤ hk

t (y0, . . . , yk), 0 ≤ s ≤ t. (2.2)

Using (2.1), we can define k-simplex counts by Sk(X , t) :=∑
Y⊂X hk

t (Y). As declared in
the introduction, we shall exclusively focus on the critical regime, so that nsd

n → 1, n → ∞.
Finally, in order to formulate the Euler characteristic as a stochastic process, let rn(t) := snt
and define

χn(t) :=
∞∑

k=0

(−1)kSk
(Pn, rn(t)

)=
∞∑

k=0

(−1)k
∑
Y⊂Pn

hk
rn(t)(Y), t ≥ 0. (2.3)

Notice that (2.3) is almost surely (a.s.) a finite sum, because the cardinality of Pn, denoted by
|Pn|, is finite a.s., and Sk

(Pn, rn(t)
)≡ 0 for all k ≥ |Pn|. Furthermore, for a Borel subset A of

R
d, define a restriction of the Euler characteristic to A by

χn,A(t) :=
∞∑

k=0

(−1)k
∑
Y⊂Pn

hk
rn(t)(Y)1

{
LMP(Y) ∈ A

}
, (2.4)

where LMP(Y) represents the leftmost point of Y , i.e., the least point with respect to lexico-
graphic order in R

d. This restriction is useful for proving finite-dimensional convergence in
the case when A is bounded. When A is bounded we get a finite number of random variables
for the dependency graph, so that we may use Stein’s method for normal approximation. See
Section 4.3 for more details. Clearly, χn,Rd (t) = χn(t).
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3. Main results

The first contribution of the present paper is the functional strong law of large numbers
(FSLLN) for χn in the space D[0,∞) of right-continuous functions with left limits. More pre-
cisely, almost sure convergence of χn/n to the limiting mean will be established in terms of
the uniform metric. Our proof techniques rely on the Borel–Cantelli lemma to prove a strong
law of large numbers for each fixed t, and we then extend this to the functional case. As for
the method of proofs in other studies, [22] and [25] have established concentration inequalities
that can lead to the desired (static) strong law of large numbers. Although these concentra-
tion inequalities can yield sharper bounds, a downside is that extra conditions need to be put
on an underlying density f . For example f must have bounded support. For this reason, we
have adopted a different approach via the Borel–Cantelli lemma, by which one can prove
n−1

(
χn(t) −E[χn(t)]

)→ 0 a.s. by showing that the sum of the fourth moments is convergent.
The relevant article taking an approach similar to ours is [11].

The second contribution of this paper is to show the weak convergence of the process

χ̄n(t) := n−1/2(χn(t) −E[χn(t)]
)
, t ≥ 0,

with respect to the Skorokhod J1-topology. Proving finite-dimensional weak convergence of χ̄n

in conjunction with its tightness will allow us to obtain the desired convergence in D[0,∞).
Finite-dimensional convergence will be established via the Cramér–Wold device and Stein’s
method, as in Theorem 2.4 in [22], by adhering closely to the proof of Theorem 3.9 in the same
source. In addition, the tightness will be proven via Theorem 13.5 in [2]. These functional limit
theorems enable us to capture dynamic features of topological changes in D[0,∞). The proofs
for all results in this section are postponed to Section 4.

In order to obtain a clear picture of our limit theorems, it will be beneficial to start with
some results on asymptotic moments of χn. Define for k1, k2 ∈N0, t, s ≥ 0, and a Borel subset
A of Rd,

�k1,k2,A(t, s) :=
(k1∧k2)+1∑

j=1

ψj,k1,k2,A(t, s),

where k1 ∧ k2 = min{k1, k2}, and

ψj,k1,k2,A(t, s) :=
∫

A f (x)k1+k2+2−jdx

j!(k1 + 1 − j)!(k2 + 1 − j)!
×
∫

(Rd)k1+k2+1−j
hk1

t (0, y1, . . . , yk1 )

× hk2
s (0, y1, . . . , yj−1, yk1+1, . . . , yk1+k2+1−j)dy.

Here we set hk
t (0, y1, . . . , yk) = 1 if k = 0, so that �0,0,A(t, s) =ψ1,0,0,A(t, s) = ∫

A f (x)dx. In
the sequel, we write �k1,k2 (t, s) :=�k1,k2,R

d (t, s) with ψj,k1,k2 (t, s) :=ψj,k1,k2,R
d (t, s).

Proposition 3.1. For t, s ≥ 0 and A ⊂R
d open with m(∂A) = 0, we have

n−1
E[χn,A(t)] →

∞∑
k=0

(−1)kψk+1,k,k,A(t, t), n → ∞, (3.1)
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62 A. M. THOMAS AND T. OWADA

n−1Cov
(
χn,A(t), χn,A(s)

)→
∞∑

k1=0

∞∑
k2=0

(−1)k1+k2�k1,k2,A(t, s), n → ∞, (3.2)

so that both of the right-hand sides are convergent for every such A ⊂R
d.

We can now introduce the FSLLN for the process χn.

Theorem 3.1. (FSLLN for χn.) As n → ∞,

χn(t)

n
→

∞∑
k=0

(−1)kψk+1,k,k(t, t) a.s. in D[0,∞),

where D[0,∞) is equipped with the uniform topology.

Before stating our functional central limit theorem (FCLT) for χn, let us define its limiting
process. First define (Hk, k ∈N0) as a family of zero-mean Gaussian processes on a generic
probability space (	,F, P), with intra-process covariance

E[Hk(t)Hk(s)] =�k,k(t, s), (3.3)

and inter-process convariance

E[Hk1 (t)Hk2 (s)] =�k1,k2 (t, s), (3.4)

for all k, k1, k2 ∈N0 with k1 	= k2 and t, s ≥ 0. In the proof of Proposition 3.1, the functions
�k1,k2 (t, s) naturally appear in the covariance calculation of χn, which in turn implies that the
covariance functions in (3.3) and (3.4) are well-defined. With this notation in mind, we now
define the limiting Gaussian process for χ̄n as

H(t) :=
∞∑

k=0

(−1)kHk(t), t ≥ 0, (3.5)

so that

E[H(t)H(s)] =
∞∑

k1=0

∞∑
k2=0

(−1)k1+k2�k1,k2 (t, s), t, s ≥ 0. (3.6)

Once again, Proposition 3.1 implies that the right-hand side of (3.6) can define the covariance
functions of a limiting Gaussian process, since it is obtained as a (scaled) limit of the covari-
ance functions of χn. In particular, since (3.6) is convergent, for every t ≥ 0, H(t) is definable
in the L2(	) sense. Note that the Euler characteristic in (2.3) and the process (3.5) exhibit sim-
ilar structure, in the sense that Sk

(Pn, rn(t)
)

in (2.3) and Hk(t) both correspond to the spatial
distribution of k-simplices.

Now, we proceed to stating the FCLT for χn.

Theorem 3.2. (FCLT for χn.) As n → ∞,

χ̄n ⇒H in D[0,∞),

where D[0,∞) is equipped with the Skorokhod J1-topology. Furthermore, for every 0<
T <∞, we have that

(H(t), 0 ≤ t ≤ T
)

has a continuous version with Hölder continuous
sample paths of any exponent γ ∈ [0, 1/2).
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Remark 3.1. The results of Theorem 3.1 and Theorem 3.2 also hold for the Čech complex,
in the case of the latter theorem only up to finite-dimensional weak convergence of χ̄n. The
definition of a k-simplex of the Čech complex requires a non-empty intersection of ‘multiple’
closed balls. This makes it more difficult to establish the required tightness for the Čech com-
plex. Specifically, obtaining bounds as in Lemma 4.2 seems much harder. If one were able to
establish such a nice bound, the rest of the argument for tightness would essentially be the
same as the Vietoris–Rips case.

Example 3.1. Consider a map x �→ sup0≤t≤1 |x(t)| from D[0, 1] to R+. This map is continuous
on C[0, 1], the space of continuous functions on [0, 1]. Since the limits in Theorems 3.1 and
3.2 are both continuous, we get that as n → ∞,

n−1 sup
0≤t≤1

|χn(t)| → sup
0≤t≤1

|
∞∑

k=0

(−1)kψk+1,k,k(t, t)| a.s.,

n−1/2 sup
0≤t≤1

∣∣χn(t) −E[χn(t)]
∣∣⇒ sup

0≤t≤1
|H(t)|.

In particular, the latter claims that the supremum of a mean-centered Euler characteristic
process can be approximated by n1/2 sup0≤t≤1 |H(t)| for large enough n.

4. Proofs

We first deal with moment asymptotics of χn, in Section 4.1. In Section 4.2 we prove the
FSLLN in Theorem 3.1. Subsequently, we establish Theorem 3, the proof of which is divided
into two parts, with the first part devoted to finite-dimensional weak convergence, and the
second to tightness. The proofs frequently refer to Palm theory for Poisson processes for com-
puting the moments of various Poisson functionals. A brief citation is given in Lemma 5.1 of
the appendix. Finally we verify Hölder continuity of the limiting Gaussian process H, adhering
closely to what is established for subgraph counting processes in Proposition 4.2 of [18].

For simplicity of description, we assume throughout this section that nsd
n = 1. However,

generalizing it to nsd
n → 1, n → ∞, is straightforward. In the following, we write a ∨ b :=

max{a, b} and a ∧ b := min{a, b} for a, b ∈R.

4.1 Proof of moment asymptotics

Without loss of generality, the proof of Proposition 3.1 only handles the case when A =R
d.

Throughout this section, let Y , Y1, and Y2 denote collections of i.i.d. random points with
density f . We begin with the following lemma.

Lemma 4.1.

(i) For t ≥ 0 we have, as n → ∞,

nk

(k + 1)! E
[
hk

rn(t)(Y)
]→ψk+1,k,k(t, t).

(ii) For all n ∈N,
nk
E
[
hk

rn(t)(Y)
]≤ (at)

k,

where
at := (2t)dθd‖ f ‖∞ (4.1)

with θd = m
(
B(0, 1)

)
, i.e., the volume of the unit ball in R

d.
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64 A. M. THOMAS AND T. OWADA

(iii) For 1 ≤ j ≤ (k1 ∧ k2) + 1, k1, k2 ∈N0, and t, s ≥ 0,

nk1+k2+1−j

j!(k1 + 1 − j)!(k2 + 1 − j)! E
[
hk1

rn(t)(Y1)hk2
rn(s)(Y2) 1

{|Y1 ∩Y2| = j
}]→ψj,k1,k2 (t, s)

as n → ∞.

(iv) For all n ∈N,

nk1+k2+1−j
E
[
hk1

rn(t)(Y1)hk2
rn(s)(Y2) 1

{|Y1 ∩Y2| = j
}]≤ (at∨s)

k1+k2+1−j.

Proof. We shall prove (iii) and (iv) only, since (i) and (ii) can be established by a similar
and simpler argument. With the change of variables x1 = x and xi = x + snyi−1, i = 1, . . . , k1 +
k2 + 2 − j, the left-hand side of (iii) equals

nk1+k2+1−j

j!(k1 + 1 − j)!(k2 + 1 − j)!
∫

(Rd)k1+k2+2−j
hk1

rn(t)(x1, . . . , xk1+1)

× hk2
rn(s)(x1, . . . , xj, xk1+2, . . . , xk1+k2+2−j)

k1+k2+2−j∏
i=1

f (xi)dx

= (nsd
n)k1+k2+1−j

j!(k1 + 1 − j)!(k2 + 1 − j)!
∫
Rd

∫
(Rd)k1+k2+1−j

hk1
t (0, y1 . . . , yk1 ) (4.2)

× hk2
s (0, y1, . . . , yj−1, yk1+1, . . . , yk1+k2+1−j)f (x)

k1+k2+1−j∏
i=1

f (x + snyi)dy dx.

Recall that nsd
n = 1 and note that

∏k1+k2+1−j
i=1 f (x + snyi) → f (x)k1+k2+1−j, n → ∞, holds under

the integral sign because of the Lebesgue differentiation theorem. Thus, (4.2) converges to
ψj,k1,k2 (t, s) as n → ∞.

Now let us turn to proving (iv). Without loss of generality, we may assume s ≤ t. After the
same change of variables as in (iii), the left-hand side of (iv) is bounded by

(‖ f ‖∞
)k1+k2+1−j

∫
(Rd)k1+k2+1−j

hk1
t (0, y1 . . . , yk1 )

× hk2
s (0, y1, . . . , yj−1, yk1+1, . . . , yk1+k2+1−j)dy. (4.3)

By the definition of the indicators hk1
t , hk2

s , each of the yi in (4.3) must have distance at most 2t
from the origin. Therefore, (4.3) can be bounded by(‖ f ‖∞

)k1+k2+1−j
m
(
B(0, 2t)

)k1+k2+1−j = (at)
k1+k2+1−j.

�

Proof of Proposition 3.1. We prove only (3.2), as the proof techniques for (3.1) are very
similar to (3.2). Specifically, we shall make use of (ii), (iii), and (iv) of Lemma 4.1. We start
by writing

n−1Cov
(
χn(t), χn(s)

)= n−1
E

[ ∞∑
k1=0

∞∑
k2=0

(−1)k1+k2Sk1

(Pn, rn(t)
)
Sk2

(Pn, rn(s)
)]

(4.4)

− n−1
E

[ ∞∑
k=0

(−1)kSk
(Pn, rn(t)

)]
E

[ ∞∑
k=0

(−1)kSk
(Pn, rn(s)

)]
.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2020.46
Downloaded from https://www.cambridge.org/core. Purdue University Libraries, on 01 Jun 2021 at 19:24:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2020.46
https://www.cambridge.org/core


Limit theorems for the Euler characteristic process 65

Next, Palm theory for Poisson processes, Lemma 5.1(ii), along with the bounds given in Parts
(ii) and (iv) of Lemma 4.1, yields that

E

[
Sk1

(Pn, rn(t)
)
Sk2

(Pn, rn(s)
)]

=
(k1∧k2)+1∑

j=0

E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

hk1
rn(t)(Y1)hk2

rn(s)(Y2) 1
{|Y1 ∩Y2| = j

}]

= nk1+k2+2

(k1 + 1)!(k2 + 1)! E
[
hk1

rn(t)(Y1)
]
E
[
hk2

rn(s)(Y2)
]

+
(k1∧k2)+1∑

j=1

nk1+k2+2−j

j!(k1 + 1 − j)!(k2 + 1 − j)! E
[
hk1

rn(t)(Y1)hk2
rn(s)(Y2)1

{|Y1 ∩Y2| = j
}]

≤ n2(at)k1 (as)k2

(k1 + 1)!(k2 + 1)! +
(k1∧k2)+1∑

j=1

n(at∨s)k1+k2+1−j

j!(k1 + 1 − j)!(k2 + 1 − j)! .

Here it is straightforward to see that

∞∑
k=0

(at)k

(k + 1)! < eat <∞,

∞∑
k1=0

∞∑
k2=0

(k1∧k2)+1∑
j=1

(at∨s)k1+k2+1−j

j!(k1 + 1 − j)!(k2 + 1 − j)! < 2e3at∨s <∞.

So Fubini’s theorem is applicable to the first term in (4.4). Repeating the same argument for
the second term of (4.4), one can get

n−1Cov
(
χn(t), χn(s)

)=
∞∑

k1=0

∞∑
k2=0

(−1)k1+k2

(k1∧k2)+1∑
j=1

nk1+k2+1−j

j!(k1 + 1 − j)!(k2 + 1 − j)!

×E

[
hk1

rn(t)(Y1)hk2
rn(s)(Y2)1

{|Y1 ∩Y2| = j
}]

.

By virtue of Lemma 4.1(iii)–(iv), the dominated convergence theorem implies that the last
expression converges to

∑∞
k1=0

∑∞
k2=0 (−1)k1+k2�k1,k2 (t, s) as required. �

4.2. Proof of FSLLN

To prove the FSLLN, we first establish a result which allows us to extend a ‘pointwise’
strong law for a fixed t into a functional one, if the processes are nondecreasing and there is
a deterministic and continuous limit. We again would like to emphasize that our approach in
this section gives an improvement from the viewpoint of assumptions on the density f . Unlike
the existing results, such as those of [25], ours do not require f to have compact and convex
support.

Proposition 4.1. Let (Xn, n ∈N) be a sequence of random elements in D[0,∞) with nonde-
creasing sample paths. Suppose λ : [0,∞) →R is a continuous and nondecreasing function.
If we have

Xn(t) → λ(t), n → ∞, a.s. (4.5)
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for every t ≥ 0, then it follows that

sup
t∈[0,T]

|Xn(t) − λ(t)| → 0, n → ∞, a.s.

for every 0 ≤ T <∞. Hence, it holds that Xn → λ a.s. in D[0,∞) endowed with the uniform
topology.

Proof. Fix 0 ≤ T <∞. Note that λ is uniformly continuous on [0, T]. Given ε > 0, choose
k = k(ε) ∈N such that for all s, t ∈ [0, T],

|s − t| ≤ 1/k implies
∣∣λ(s) − λ(t)

∣∣< ε. (4.6)

Since Xn(t) and λ(t) are both nondecreasing in t, we see that

sup
t∈[0,T]

∣∣Xn(t) − λ(t)
∣∣= max

1≤i≤k
sup

t∈[(i−1)T/k, iT/k]

∣∣Xn(t) − λ(t)
∣∣

≤ max
1≤i≤k

{(
Xn(iT/k) − λ((i − 1)T/k)

)
∨
(
λ(iT/k) − Xn((i − 1)T/k)

)}

≤ max
1≤i≤k

{(
Xn(iT/k) − λ(iT/k)

)
∨
(
λ((i − 1)T/k) − Xn((i − 1)T/k)

)}
+ ε

≤ max
0≤i≤k

∣∣∣Xn(iT/k) − λ(iT/k)
∣∣∣+ ε,

where the second inequality follows from (4.6). By the SLLN in (4.5), the last expression tends
to ε a.s. as n → ∞. Since ε is arbitrary, this completes the proof. �

Proof of Theorem 3.1. Since (2.3) is a.s. represented as a sum of finitely many terms, it can
be split into two parts:

χn(t) =
∞∑

k=0

S2k
(Pn, rn(t)

)−
∞∑

k=0

S2k+1
(Pn, rn(t)

)=: χ (1)
n (t) − χ (2)

n (t) a.s.

Denoting by K(t) the limit of (3.1) with A =R
d, we decompose it in a way similar to the above:

K(t) =
∞∑

k=0

ψ2k+1,2k,2k(t, t) −
∞∑

k=0

ψ2k+2,2k+1,2k+1(t, t) =: K(1)(t) − K(2)(t).

Our final goal is to prove that for every 0< T <∞,

sup
0≤t≤T

∣∣∣χn(t)

n
− K(t)

∣∣∣→ 0, n → ∞, a.s.,

which is clearly implied by

sup
0≤t≤T

∣∣∣χ (i)
n (t)

n
− K(i)(t)

∣∣∣→ 0, n → ∞, a.s.

for each i = 1, 2. As χ (i)
n (t)/n and K(i)(t) satisfy the conditions of Proposition 4.1, it suffices to

show that
χ

(i)
n (t)

n
→ K(i)(t), n → ∞, a.s.
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for every t ≥ 0. We will prove only the case i = 1, and henceforth omit the superscript (1) from
χ

(1)
n (t) and K(1)(t). It then suffices to show that

n−1|χn(t) −E[χn(t)]| → 0, n → ∞, a.s., (4.7)

and ∣∣n−1
E[χn(t)] − K(t)

∣∣→ 0, n → ∞. (4.8)

First we will deal with (4.8). It follows from the customary change of variables as in the proof
of Lemma 4.1 that∣∣n−1

E[χn(t)] − K(t)
∣∣

=
∣∣∣∣

∞∑
k=1

1

(2k + 1)!
∫
Rd

∫
(Rd)2k

h2k
t (0, y1, . . . , y2k)

× f (x)
( 2k∏

i=1

f (x + snyi) − f (x)2k
)

dy dx

∣∣∣∣
≤

∞∑
k=1

1

(2k + 1)!
∫
Rd

∫
(Rd)2k

h2k
t (0, y1, . . . , y2k)f (x)

∣∣∣ 2k∏
i=1

f (x + snyi) − f (x)2k
∣∣∣dy dx.

Similarly to the proof of Lemma 4.1 Part (ii) or (iv), one can show that the last term above is
bounded by 2

∑∞
k=1 (at)2k/(2k + 1)!<∞ (where at is defined in (4.1)). Thus, the dominated

convergence theorem concludes the proof of (4.8).
Now, let us turn our attention to (4.7). From the Borel–Cantelli lemma it suffices to show

that, for every ε > 0,
∞∑

n=1

P

(∣∣χn(t) −E[χn(t)]
∣∣> εn

)
<∞.

By Markov’s inequality, the left-hand side above is bounded by

1

ε4

∞∑
n=1

1

n4
E

[(
χn(t) −E[χn(t)]

)4
]
.

Since
∑

n n−2 <∞, we only need to show that

lim sup
n→∞

1

n2
E

[(
χn(t) −E[χn(t)]

)4
]
<∞. (4.9)

Applying Fubini’s theorem as in the proof of Proposition 3.1, along with Hölder’s inequality,
we get that

1

n2
E

[(
χn(t) −E[χn(t)]

)4
]

= 1

n2

∑
(k1,...,k4)∈N4

E

[ 4∏
i=1

(
S2ki

(Pn, rn(t)
)− E

[
S2ki

(Pn, rn(t)
)])]

≤
[ ∞∑

k=1

{
1

n2
E

[(
S2k

(Pn, rn(t)
)−E

[
S2k

(Pn, rn(t)
)])4]}1/4]4

.
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Now, (4.9) can be obtained if we show that

∞∑
k=1

{
lim sup

n→∞
1

n2
E

[(
S2k

(Pn, rn(t)
)−E

[
S2k

(Pn, rn(t)
)])4]}1/4

<∞. (4.10)

From this point on, let us introduce the shorthand S2k := S2k
(Pn, rn(t)

)
. In order to find an

appropriate upper bound for (4.10), using the binomial expansion we write

E
[(

S2k −E[S2k]
)4]=

4∑
�=0

(
4

�

)
(−1)�E[S�2k]

(
E[S2k]

)4−�. (4.11)

For every � ∈ {0, . . . , 4}, one can write E[S�2k]
(
E[S2k]

)4−� as

E

[ ∑
Y1⊂P (1)

n

∑
Y2⊂P (2)

n

∑
Y3⊂P (3)

n

∑
Y4⊂P (4)

n

4∏
i=1

h2k
rn(t)(Yi)

]
, (4.12)

where for every i, j ∈ {1, . . . , 4}, we have either that P (i)
n =P (j)

n or that P (i)
n is an independent

copy of P (j)
n . If |Y1 ∪ · · · ∪Y4| = 8k + 4, i.e., Y1, . . . ,Y4 do not have any common elements,

then Palm theory (Lemma 5.1) shows that (4.12) is equal to
(
E[S2k]

)4, which grows at the rate
of O(n4) (see Lemma 4.1(i)). In this case, the total contribution to (4.11) disappears, because

4∑
�=0

(
4

�

)
(−1)�

(
E[S2k]

)4 = 0.

Suppose next that |Y1 ∪ · · · ∪Y4| = 8k + 3; that is, there is exactly one common element
between Yi and Yj for some i 	= j, with no other overlappings. Then (4.12) is equal to

E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

h2k
rn(t)(Y1)h2k

rn(t)(Y2) 1{|Y1 ∩Y2| = 1}
](
E[S2k]

)2.

Although the growth rate of the above term is O(n3) (see Lemma 4.1 Parts (i) and (iii)), an
overall contribution to (4.11) is again canceled. This is because{(

4

2

)
(−1)2 +

(
4

3

)
(−1)3

(
3

2

)
+
(

4

4

)
(−1)4

(
4

2

)}

×E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

h2k
rn(t)(Y1)h2k

rn(t)(Y2) 1{|Y1 ∩Y2| = 1}
](
E[S2k]

)2 = 0.

By the above discussion, we only need to consider the case where there are at least two
common elements within Y1, . . . ,Y4. Among many such cases, let us deal with a specific
term,

n−2
E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

4∏
i=1

h2k
rn(t)(Yi) (4.13)

× 1
{|Y1 ∩Y2| = �1, |Y3 ∩Y4| = �2,

∣∣(Y1 ∪Y2) ∩ (Y3 ∪Y4)
∣∣= 0

}]
,
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where �1, �2 ∈ {1, . . . , 2k + 1}. Palm theory allows us to write (4.13) as

2∏
i=1

n4k+1−�i

�i!
(
(2k + 1 − �i)!

)2
E

[
h2k

rn(t)(Y1)h2k
rn(t)(Y2) 1{|Y1 ∩Y2| = �i}

]
. (4.14)

By Lemma 4.1(iv) and the fact that �!(2k + 1 − �)! ≥ k! for any � ∈ {1, . . . , 2k + 1}, one can
bound (4.14) by

2∏
i=1

(at)4k+1−�i

�i!
(
(2k + 1 − �i)!

)2
≤ (at)8k+2−�1−�2

k! .

Now, the ratio test shows that

∞∑
k=1

{
(at)8k+2−�1−�2

k!
}1/4

<∞

as desired. Notice that all the cases except (4.13) can be handled in a very similar way, and so
(4.10) follows.

4.3. Proof of finite-dimensional convergence in Theorem 3.2

Proof of finite-dimensional convergence in Theorem 3.2. Throughout the proof, C∗ denotes
a generic positive constant that potentially varies across and within the lines. Recall (2.4), and
define χ̄n,A(t) analogously to χ̄n(t) by mean-centering and scaling by n−1/2. We first consider
the case where A is an open and bounded subset of Rd with m(∂A) = 0.

From the viewpoint of the Cramér–Wold device, one needs to establish weak convergence of∑m
i=1 aiχ̄n(ti) for every 0< t1 < · · ·< tm, m ∈N, and ai ∈R, i = 1, . . . ,m. Our proof exploits

Stein’s normal approximation method in Theorem 2.4 of [22]. Let (Qj,n, j ≥ 1) be an enu-
meration of disjoint subsets of R

d congruent to (0, rn(tm)]d, such that Rd =⋃∞
j=1 Qj,n. Let

Hn = {j ∈N : Qj,n ∩ A 	= ∅}. Define

ξj,n :=
∞∑

k=0

(−1)k
∑
Y⊂Pn

m∑
i=1

aih
k
rn(ti)(Y)1

{
LMP(Y) ∈ A ∩ Qj,n

}
,

and also

ξ̄j,n := ξj,n −E[ξj,n]√
Var

(∑m
i=1 aiχn,A(ti)

) .

Then, we have
∑m

i=1 aiχn,A(ti) =∑
j∈Hn

ξj,n.
Now, we define Hn to be the vertex set of a dependency graph (see Section 2.1 of [22] for

the formal definition) for the random variables (ξ̄j,n, j ∈ Hn) by setting j ∼ j′ if and only if the
condition

inf
{‖x − y‖ : x ∈ Qj,n, y ∈ Q′

j,n

}≤ 4rn(tm)

is satisfied. This is because ξj,n and ξj′,n become independent whenever j ∼ j′ fails to hold.
Now we must ensure that the other conditions of Theorem 2.4 in [22] are satisfied with respect
to the dependency graph (Hn,∼ ). First,

∑
j∈Hn

ξ̄j,n is a zero-mean random variable with unit

variance. We know that |Hn| = O(s−d
n ) as A is bounded. Furthermore, the maximum degree of
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any vertex of Hn is uniformly bounded by a positive and finite constant. Let Z denote a standard
normal random variable. Then the aforementioned theorem implies that

∣∣∣ P(∑
j∈Hn

ξ̄j,n ≤ x
)− P(Z ≤ x)

∣∣∣≤ C∗
(√

s−d
n max

j
E
[|ξ̄j,n|3

]+
√

s−d
n max

j
E
[|ξ̄j,n|4

])

≤ C∗
(√

s−d
n n−3/2 max

j
E
[|ξj,n −E[ξj,n]|3]+

√
s−d

n n−2 max
j

E
[|ξj,n −E[ξj,n]|4]

)
, (4.15)

where the second inequality follows from Proposition 3.1, which claims that
Var

(∑m
i=1 aiχn,A(ti))

)
is asymptotically equal to n up to multiplicative constants. Minkowski’s

inequality implies that

(
E
[|ξj,n −E[ξj,n]|p])1/p ≤ (

E
[|ξj,n|p

])1/p +E
[|ξj,n|

]
.

Recall that for fixed Y ⊂R
d, hk

t (Y) is nondecreasing in t. Then, we have that

|ξj,n| ≤
∞∑

k=0

∑
Y⊂Pn

m∑
i=1

|ai|hk
rn(ti)(Y)1

{
LMP(Y) ∈ A ∩ Qj,n

}

≤ C∗
∞∑

k=0

∑
Y⊂Pn

hk
rn(tm)(Y)1

{
LMP(Y) ∈ A ∩ Qj,n

}

≤ C∗
∞∑

k=0

(Pn
(
Tube(Qj,n, 2rn(tm))

)
k + 1

)

≤ C∗ · 2Pn(Tube(Qj,n, 2rn(tm))),

where
Tube

(
Qj,n, 2rn(tm)

)= {
x ∈R

d : inf
y∈Qj,n

‖x − y‖ ≤ 2rn(tm)
}
.

By the assumption nsd
n = 1, one can easily show that Pn

(
Tube(Qj,n, 2rn(tm))

)
is stochastically

dominated by a Poisson random variable with positive and finite parameter, which does not
depend on j and n. Denote such a Poisson random variable by Y . Then, for p = 3, 4,

max
j

E

[∣∣ξj,n −E[ξj,n]
∣∣p]≤ C∗[(

E[2pY ]
)1/p +E(2Y )

]
<∞.

Referring back to (4.15) and noting nsd
n = 1, we can see that

∣∣∣ P(∑
j∈Hn

ξ̄j,n ≤ x
)− P(Z ≤ x)

∣∣∣≤ C∗(√s−d
n n−3/2 +

√
s−d

n n−2
)

= O(n−1/4) → 0, n → ∞,

which implies that
∑

j∈Hn
ξ̄j,n ⇒N (0, 1) as n → ∞; equivalently,

m∑
i=1

aiχ̄n,A(ti) ⇒N (0, �A), n → ∞,
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where

�A :=
m∑

i=1

m∑
j=1

aiaj

∞∑
ki=0

∞∑
kj=0

(−1)ki+kj�ki,kj,A(ti, tj).

Subsequently we claim that

m∑
i=1

aiχ̄n(ti) ⇒N (0, �Rd ), n → ∞,

which completes the proof. To show this, take AK = (− K,K)d for K > 0. It then suffices to
verify that

N (0, �AK ) ⇒N (0, �Rd ), K → ∞,

and for each t ≥ 0 and ε > 0,

lim
K→∞ lim sup

n→∞
P

(∣∣χ̄n(t) − χ̄n,AK (t)
∣∣> ε)= 0.

The former condition is obvious from the fact that �AK →�Rd as K → ∞. The latter is also a
direct consequence of Proposition 3.1, together with Chebyshev’s inequality and the fact that
χn(t) − χn,AK (t) = χn,Rd\AK

(t). �

4.4. Proof of tightness in Theorem 3.2

Before we begin the proof, we add a few more useful properties of hk
t . For 0 ≤ s< t<∞,

we define
hk

t,s(Y) = hk
t (Y) − hk

s (Y), Y = (y0, . . . , yk) ∈ (Rd)k+1.

Lemma 4.2.

(i) For any 0 ≤ s ≤ t ≤ T <∞,∫
(Rd)k

hk
t,s(0, y1, . . . , yk)dy ≤ Cd,k,T (td − sd),

where Cd,k,T = k2(2dθd)kTd(k−1).

(ii) Let j ∈ {1, . . . , (k1 ∧ k2) + 1} and suppose that y0 ∈ (Rd)j−1, y1 ∈ (Rd)k1+1−j, and y2 ∈
(Rd)k2+1−j. Then, for 0 ≤ t1 ≤ s ≤ t2 ≤ T <∞,∫

(Rd)k1+k2+1−j
hk1

s,t1 (0, y0, y1)hk2
t2,s(0, y0, y2)dy0dy1dy2

≤ 36(k1k2)6((2T)dθd)2(k1+k2)(td2 − td1
)2.

Proof. We note that for any 0 ≤ s< t with y0 ≡ 0,

hk
t,s(0, y1, . . . , yk) = 1

{
2s< max

0≤i<j≤k

∥∥yi − yj
∥∥≤ 2t

}

≤
k∏

i=1

1
{
yi ∈ B(0, 2T)

}( k∑
i=1

1
{
2s<

∥∥yi
∥∥≤ 2t

}+
∑

1≤i<j≤k

1
{
2s<

∥∥yi − yj
∥∥≤ 2t

})
.
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For each i = 1, . . . , k, let y(i) be the tuple (y1, . . . , yi−1, yi+1, . . . , yk) ∈ (Rd)k−1 with the ith
coordinate omitted. Then∫

(Rd)k
hk

t,s(0, y1, . . . , yk)dy ≤
k∑

i=1

∫
B(0,2T)k−1

∫
Rd

1
{
2s<

∥∥yi
∥∥≤ 2t

}
dyi dy(i)

+
∑

1≤i<j≤k

∫
B(0,2T)k−1

∫
Rd

1
{
2s<

∥∥yi − yj
∥∥≤ 2t

}
dyi dy(i).

=
(

k +
(

k

2

))
m
(
B(0, 2T)

)k−1[
m
(
B(0, 2t)

)− m
(
B(0, 2s)

)]
≤ Cd,k,T (td − sd)

as required.
Part (ii) is essentially the same as Lemma 7.1 in [18], so the proof is skipped. �
Proof of tightness in Theorem 3.2. To show tightness, it suffices to use Theorem 13.5 from

[2], which requires that for every 0< T <∞, there exist a C> 0 such that

E
[|χ̄n(t2) − χ̄n(s)|2|χ̄n(s) − χ̄n(t1)|2]≤ C(td2 − td1)2 (4.16)

for all 0 ≤ t1 ≤ s ≤ t2 ≤ T and n ∈N. To demonstrate (4.16), we will give an abridged proof—
tightness will be similarly established for analogous processes seen in [18, 21]. Let us begin
with some helpful notation, namely,

hk
n,t,s(Y) := hk

rn(t),rn(s)(Y) = hk
rn(t)(Y) − hk

rn(s)(Y),

ζ k
n,t,s := Sk

(Pn, rn(t)
)− Sk

(Pn, rn(s)
)=

∑
Y⊂Pn

hk
n,t,s(Y).

By the same argument as in the proof of Proposition 3.1, one can apply Fubini’s theorem to
obtain

E
[|χ̄n(t2) − χ̄n(s)|2|χ̄n(s) − χ̄n(t1)|2] (4.17)

= 1

n2

∑
(k1,k2,k3,k4)∈N4

0

(−1)k1+k2+k3+k4E

[(
ζ

k1
n,t2,s −E[ζ k1

n,t2,s]
)(
ζ

k2
n,t2,s −E[ζ k2

n,t2,s]
)

× (
ζ

k3
n,s,t1 −E[ζ k3

n,s,t1 ]
)(
ζ

k4
n,s,t1 −E[ζ k4

n,s,t1 ]
)]

.

Our objective now is to find a suitable bound for

E

[(
ζ

k1
n,t2,s −E[ζ k1

n,t2,s]
)(
ζ

k2
n,t2,s −E[ζ k2

n,t2,s]
)(
ζ

k3
n,s,t1 −E[ζ k3

n,s,t1 ]
)(
ζ

k4
n,s,t1 −E[ζ k4

n,s,t1 ]
)]

. (4.18)

To this end, let us refine the notation once more by setting ξ1 := ζ
k1
n,t2,s, ξ2 := ζ

k2
n,t2,s, ξ3 :=

ζ
k3
n,s,t1 , and ξ4 := ζ

k4
n,s,t1 . Furthermore, let h1 := hk1

n,t2,s, h2 := hk2
n,t2,s, h3 := hk3

n,s,t1 , and h4 := hk4
n,s,t1 .

Define [n] := {1, 2, . . . , n}, and for any σ ⊂ [4] let ξσ =∏
i∈σ ξi, where we set ξ∅ = 1 by

convention. Then we can express (4.18) quite simply as∑
σ⊂[4]

(−1)|σ |
E[ξσ ]

∏
i∈[4]\σ

E[ξi]. (4.19)
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For σ ⊂ [4] with σ 	= ∅, and finite subsets Yj ⊂R
d, j ∈ σ , we define Yσ :=⋃

j∈σ Yj. Given a
subset τ ⊂ σ ⊂ [4], we also define

Iτ,σ (Yσ ) :=
∏
j∈τ

1
{
there exists p ∈ τ \ {j} such that Yj ∩Yp 	= ∅}

×
∏

j∈σ\τ
1
{Yj ∩Yq = ∅ for all q ∈ σ \ {j}}.

Note that Iτ,σ (Yσ ) = 0 whenever |τ | = 1, and∑
τ⊂σ

Iτ,σ (Yσ ) = 1. (4.20)

Furthermore, if τ = σ , we write Iσ (·) := Iσ,σ (·). It follows from (4.20) and the Palm theory in
the appendix that, for each non-empty σ ⊂ [4],

E[ξσ ] =E

[ ∑
Yj⊂Pn, j∈σ

∏
i∈σ

hi(Yi)
]

=
∑
τ⊂σ

E

[ ∑
Yj⊂Pn, j∈σ

Iτ,σ (Yσ )
∏
i∈σ

hi(Yi)
]

=
∑
τ⊂σ

E

[ ∑
Yj⊂Pn, j∈τ

Iτ (Yτ )
∏
i∈τ

hi(Yi)
] ∏

i∈σ\τ
E[ξi].

Hence, (4.19) is equal to∑
σ⊂[4]

∑
τ⊂σ

(−1)|σ |
E

[ ∑
Yj⊂Pn, j∈τ

Iτ (Yτ )
∏
i∈τ

hi(Yi)
] ∏

i∈σ\τ
E[ξi]

∏
i∈[4]\σ

E[ξi]

=
∑
τ⊂[4]

E

[ ∑
Yj⊂Pn, j∈τ

Iτ (Yτ )
∏
i∈τ

hi(Yi)
] ∏

i∈[4]\τ
E[ξi]

∑
τ⊂σ⊂[4]

(−1)|σ |

=E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

I[4](Y[4])
4∏

i=1

hi(Yi)
]
,

where the last line follows from the fact that

∑
τ⊂σ⊂[4]

(−1)|σ | =
(

4 − |τ |
0

)
(−1)|τ | + · · · +

(
4 − |τ |
4 − |τ |

)
(−1)4 = 0

unless τ = [4]. Substituting this back into (4.17) and taking the absolute value of
(−1)k1+k2+k3+k4 , we get

E
[|χ̄n(t2) − χ̄n(s)|2|χ̄n(s) − χ̄n(t1)|2]

≤
∑

(k1,k2,k3,k4)∈N4
0

1

n2
E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

I[4](Y[4])
4∏

i=1

hi(Yi)
]
.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2020.46
Downloaded from https://www.cambridge.org/core. Purdue University Libraries, on 01 Jun 2021 at 19:24:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2020.46
https://www.cambridge.org/core


74 A. M. THOMAS AND T. OWADA

Now, it suffices to show that the right-hand side above is less than C
(
td2 − td1

)2 for some
C> 0. We can break the above summand into four distinct cases:

(I) b12 = |Y1 ∩Y2|> 0, b34 = |Y3 ∩Y4|> 0, with all other pairwise intersections empty.

(II) b13 = |Y1 ∩Y3|> 0, b24 = |Y2 ∩Y4|> 0, with all other pairwise intersections empty.

(III) b14 = |Y1 ∩Y4|> 0, b23 = |Y2 ∩Y3|> 0, with all other pairwise intersections empty.

(IV) For each i, there exists a j 	= i such that Yi ∩Yj 	= ∅, but (I)–(III) do not hold.

We prove appropriate upper bounds for Cases (I) and (IV), and the other two cases follow from
the proof for (I). The Palm theory in the appendix implies that

1

n2
E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

4∏
i=1

hi(Yi) (4.21)

× 1
{|Y1 ∩Y2| = b12, |Y3 ∩Y4| = b34, |Yi ∩Yj| = 0 for other (i, j)

}]

= 1

n2
E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

h1(Y1)h2(Y2)1
{|Y1 ∩Y2| = b12

}]

×E

[ ∑
Y3⊂Pn

∑
Y4⊂Pn

h3(Y3)h4(Y4)1
{|Y3 ∩Y4| = b34

}]

= nk1+k2+1−b12

b12!(k1 + 1 − b12)!(k2 + 1 − b12)!
×E

[
h1(X1, . . . , Xk1+1)h2(X1, . . . , Xb12 , Xk1+2, . . . , Xk1+k2+2−b12 )

]
× nk3+k4+1−b34

b34!(k3 + 1 − b34)!(k4 + 1 − b34)!
×E

[
h3(X1, . . . , Xk3+1)h4(X1, . . . , Xb34 , Xk3+2, . . . , Xk3+k4+2−b34 )

]
.

In the remainder of the proof, assume for ease of description that (2T)dθd > 1, ‖f ‖∞ > 1,
and T > 1. Moreover, assume without loss of generality that k1 ≥ k2 and k3 ≥ k4. Using
trivial bounds and the customary changes of variable (i.e., x1 = x and xi = x + snyi−1 for
i = 2, . . . , k1 + k2 + 2 − b12), applying Lemma 4.2(i), and recalling that aT = (2T)dθd‖ f ‖∞,
we see that

nk1+k2+1−b12E[h1(X1, . . . , Xk1+1)h2(X1, . . . , Xb12 , Xk1+2, . . . , Xk1+k2+2−b12 )]

≤ (‖f ‖∞)k1+k2+1−b12

∫
(Rd)k2+1−b12

∫
(Rd)k1+1−b12

∫
(Rd)b12−1

hk1
t2,s(0, y0, y1)

× hk2
t2,s(0, y0, y2)dy0dy1dy2

≤ (‖f ‖∞)k1+k2
(
(2T)dθd

)k2+1−b12

∫
(Rd)k1+1−b12

∫
(Rd)b12−1

hk1
t2,s(0, y0, y1)dy0dy1

≤ (‖f ‖∞)k1+k2
(
(2T)dθd

)k2+1−b12Cd,k1,T (td2 − sd)

≤ k2
1(aT )k1+k2 (td2 − sd).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2020.46
Downloaded from https://www.cambridge.org/core. Purdue University Libraries, on 01 Jun 2021 at 19:24:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2020.46
https://www.cambridge.org/core


Limit theorems for the Euler characteristic process 75

Hence (4.21) is bounded by

(aT )k1+k2 k2
1

b12!(k1 + 1 − b12)!(k2 + 1 − b12)! (td2 − sd)
(aT )k3+k4k2

3

b34!(k3 + 1 − b34)!(k4 + 1 − b34)! (sd − td1)

≤ (aT )k1+k2+k3+k4 k2
1k2

3

b12!(k1 + 1 − b12)!(k2 + 1 − b12)!b34!(k3 + 1 − b34)!(k4 + 1 − b34)! (td2 − td1)2.

Finally we see that

∑
k1≥k2, k3≥k4,
1≤b12≤k2+1,
1≤b34≤k4+1

(aT )k1+k2+k3+k4 k2
1k2

3

b12!(k1 + 1 − b12)!(k2 + 1 − b12)!b34!(k3 + 1 − b34)!(k4 + 1 − b34)! <∞,

since

∞∑
k1=0

k1∑
k2=0

k2+1∑
�=1

(aT )k1+k2k2
1

�!(k1 + 1 − �)!(k2 + 1 − �)! =
∞∑
�=1

∞∑
k1=�−1

(aT )k1k2
1

�!(k1 + 1 − �)!
k1∑

k2=�−1

(aT )k2

(k2 + 1 − �)!

≤ eaT

∞∑
�=1

(aT )�−1

�!
∞∑

k1=�−1

(aT )k1k2
1

(k1 + 1 − �)! <∞.

(4.22)

Now, for Cases (I)–(III), we have an upper bound of the form C(td2 − td1)2, as desired.
Thus we need only demonstrate the same for Case (IV). In addition to the notation bij,

1 ≤ i< j ≤ 4, introduced above, define for Yi ∈ (Rd)ki+1, ki ∈N0, i = 1, . . . , 4,

bijk := |Yi ∩Yj ∩Yk|, 1 ≤ i< j< k ≤ 4,
b1234 := |Y1 ∩Y2 ∩Y3 ∩Y4|,

and

b := b12 + b13 + b14 + b23 + b24 + b34 − b123 − b124 − b134 − b234 + b1234, (4.23)

so that |Y1 ∪Y2 ∪Y3 ∪Y4| = k1 + k2 + k3 + k4 + 4 − b with b ≥ 3. Let B be the collection
of b = (b12, . . . , b1234) ∈N

11
0 satisfying the conditions in Case (IV). For a non-empty σ ⊂ [4]

and Yi ∈ (Rd)ki+1, i = 1, . . . , 4, let

jσ :=
∣∣∣∣⋂

i∈σ

(
Yi \

⋃
j∈[4]\σ

Yj

) ∣∣∣∣. (4.24)

In particular, the jσ are functions of b such that
∑
σ⊂[4], σ 	=∅ jσ = |Y1 ∪Y2 ∪Y3 ∪Y4|. The

Palm theory in the appendix yields

1

n2
E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

4∏
i=1

hi(Yi) 1
{
case (IV) holds

}]

=
∑
b∈B

1

n2
E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

4∏
i=1

hi(Yi) 1
{|Y1 ∩Y2| = b12, |Y1 ∩Y3| = b13,
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76 A. M. THOMAS AND T. OWADA

. . . , |Y1 ∩Y2 ∩Y3 ∩Y4| = b1234
}]

=
∑
b∈B

nk1+k2+k3+k4+2−b∏
σ⊂[4], σ 	=∅ jσ ! E

[ 4∏
i=1

hi(Yi) 1
{|Y1 ∩Y2| = b12, |Y1 ∩Y3| = b13,

. . . , |Y1 ∩Y2 ∩Y3 ∩Y4| = b1234
}]

.

Under the conditions in Case (IV), at least one of the bij is nonzero, so we may assume
without loss of generality that b13 > 0. Then we have

nk1+k2+k3+k4+2−b
E

[ 4∏
i=1

hi(Yi) 1
{|Y1 ∩Y2| = b12, . . . , |Y1 ∩Y2 ∩Y3 ∩Y4| = b1234

}]

= nk1+k2+k3+k4+2−b
∫

(Rd)k1+k2+k3+k4+4−b
h1(x0, x1)h3(x0, x3)h2(x2)h4(x4)

×
∏

x∈⋃4
i=0 xi

f (x)d (x0 ∪ x1 ∪ · · · ∪ x4),

where x0 is a collection of elements in R
d with |x0| = b13 > 0. In other words, x0 ∈ (Rd)b13 ,

so that x1 ∈ (Rd)k1+1−b13 and x3 ∈ (Rd)k3+1−b13 with x1 ∩ x3 = ∅. Moreover, x2 ∈ (Rd)k2+1

and x4 ∈ (Rd)k4+1, such that if x2 ∩ x4 = ∅, then xi ∩ (x0 ∪ x1 ∪ x3) 	= ∅ for i = 2, 4, and if
x2 ∩ x4 	= ∅, then (x2 ∪ x4) ∩ (x0 ∪ x1 ∪ x3) 	= ∅.

Now, let us perform the change of variables xi = x1 + snyi for i = 0, . . . , 4, where 1 is a
vector with all entries 1, and the first element of y0 is taken to be 0. In addition to this, we
apply the translation and scale invariance of the hi to get

nk1+k2+k3+k4+2−b
E

[ 4∏
i=1

hi(Yi) 1
{|Y1 ∩Y2| = b12, . . . , |Y1 ∩Y2 ∩Y3 ∩Y4| = b1234

}]

= nk1+k2+k3+k4+2−bsd(k1+k2+k3+k4+3−b)
n

∫
Rd

∫
(Rd)k1+k2+k3+k4+3−b

hk1
t2,s(y0, y1)hk3

s,t1

(
y0, y3

)
× hk2

t2,s(y2)hk4
s,t1 (y4)

∏
y∈⋃4

i=0 yi

f (x + sny)d
(
(y0 ∪ · · · ∪ y4) \ {0})dx.

Using nsd
n = 1, together with the trivial bounds hk2

t2,s(y2) ≤ hk2
T (y2), hk4

s,t1 (y4) ≤ hk4
T (y4), and

f (x + sny) ≤ ‖f ‖∞, one can bound the last expression by

‖f ‖k1+k2+k3+k4+3−b∞
∫

(Rd)k1+k2+k3+k4+3−b
hk1

t2,s(y0, y1)hk3
s,t1 (y0, y3)

× hk2
T (y2)hk4

T (y4)d
(
(y0 ∪ · · · ∪ y4) \ {0})

= ‖f ‖k1+k2+k3+k4+3−b∞
∫

(Rd)k1+k3+1−b13
hk1

t2,s(y0, y1)hk3
s,t1 (y0, y3)

×
{ ∫

(Rd)k2+k4+2−b+b13
hk2

T (y2)hk4
T (y4)d

(
(y2 ∪ y4) \ (y0 ∪ y1 ∪ y3)

)}
d
(
y0 \ {0})dy1dy3.

(4.25)
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Suppose hk2
T (y2)hk4

T (y4) = 1, so that

y2 ∩ y4 	= ∅, y2 ∩ (y0 ∪ y1 ∪ y3) = ∅, y4 ∩ (y0 ∪ y1 ∪ y3) 	= ∅. (4.26)

Then there exists y′ ∈ y4 ∩ (y0 ∪ y1 ∪ y3) such that all points in y2 are at distance at most 4T
from y′. Since y′ itself lies within distance 2T from the origin (recall that the first element of
y0 is 0), we conclude that all points in y2 ∩ y4 are at distance at most 6T from the origin. As
b13 ≤ k1 + k3 + 1 and b ≥ 3, we have∫

(Rd)k2+k4+2−b+b13
hk2

T (y2)hk4
T (y4)d

(
(y2 ∪ y4) \ (y0 ∪ y1 ∪ y3)

)
(4.27)

≤ m
(
B(0, 6T)

)k2+k4+2−b+b13 = (
(6T)dθd

)k2+k4+2−b+b13 ≤ (
(6T)dθd

)k1+k2+k3+k4 .

If y2 and y4 do not satisfy (4.26), it is still easy to check (4.27).
Applying (4.27), along with Lemma 4.2(ii), one can bound (4.25) by

‖f ‖k1+k2+k3+k4+3−b∞
(
(6T)dθd

)k1+k2+k3+k4 × 36(k1k3)6((2T)dθd
)2(k1+k3)(

td2 − td1
)2

≤ 36(k1k2k3k4)6((6T)dθd‖f ‖∞
)3(k1+k2+k3+k4)(

td2 − td1
)2.

Thus, we conclude that

1

n2
E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

4∏
i=1

hi(Yi) 1
{
case (IV) holds

}]

≤ 36(k1k2k3k4)6((6T)dθd‖f ‖∞
)3(k1+k2+k3+k4) ∑

b∈B

1∏
σ⊂[4], σ 	=∅ jσ !

(
td2 − td1

)2.

To complete the proof, we need to show that

∑
k1≤k2≤k3≤k4

(k1k2k3k4)6((6T)dθd‖f ‖∞
)3(k1+k2+k3+k4) ∑

b∈B

1∏
σ⊂[4], σ 	=∅ jσ ! <∞.

As seen in the calculation at (4.22), the term (k1k2k3k4)6
(
(6T)dθd‖f ‖∞

)3(k1+k2+k3+k4) is
negligible, while proving

∑
k1≤k2≤k3≤k4

∑
b∈B

1∏
σ⊂[4], σ 	=∅ jσ ! <∞

is straightforward.

4.5 Proof of Hölder continuity of H
Proof of Hölder continuity in Theorem 3.2. Since H(t) −H(s) has a normal distribution for

0 ≤ s< t<∞, we have for every m ∈N that

E

[(H(t) −H(s)
)2m

]
=

m∏
i=1

(2i − 1)
(
E
[(H(t) −H(s)

)2])m
.
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Proposition 3.1 ensures that
(∑M

k=0 (−1)kHk(t), M ∈N0
)

constitutes a Cauchy sequence in
L2(	). Therefore we have

E
[(H(t) −H(s)

)2]= lim
M→∞ E

[( M∑
k=0

(−1)k(Hk(t) −Hk(s)
))2

]

≤
[ ∞∑

k=0

{
E

[(Hk(t) −Hk(s)
)2
]}1/2]2

,

where the second line is due to the Cauchy–Schwarz inequality. We see at once that

E
[(Hk(t) −Hk(s)

)2]=�k,k(t, t) − 2�k,k(t, s) +�k,k(s, s)

≤�k,k(t, t) −�k,k(t, s) =
k+1∑
j=1

(
ψj,k,k(t, t) −ψj,k,k(t, s)

)
(4.28)

by monotonicity due to (2.2) and symmetry of �k,k(·, ·) in its arguments. Now, we note that

ψj,k,k(t, t) −ψj,k,k(t, s) =
∫
Rd f (x)2k+2−jdx

j!((k + 1 − j)!)2

×
∫

(Rd)k+1−j

∫
(Rd)k+1−j

∫
(Rd)j−1

hk
t (0, y0, y1)hk

t,s(0, y0, y2)dy0dy1dy2.

Applying a bound hk
t (0, y0, y1) ≤∏

y∈y1
1{‖y‖ ≤ 2T} and integrating out y1, as well as using

Lemma 4.2(i), we get

ψj,k,k(t, t) −ψj,k,k(t, s) ≤ k2

Tdj!((k + 1 − j)!)2
(aT )2k+1−j(td − sd)

≤ dk2

Tj!((k + 1 − j)!)2
(aT )2k+1−j(t − s),

where aT is given in (4.1). Substituting this back into (4.28), we obtain

E
[(Hk(t) −Hk(s)

)2]≤ dk2

T

k+1∑
j=1

(aT )2k+1−j

j!((k + 1 − j)!)2
(t − s)

≤ dk2

T(k + 1)!aT

(
aT (1 + aT )

)k+1(t − s).

Therefore, we conclude that

E

[(H(t) −H(s)
)2m

]
≤

m∏
i=1

(2i − 1)
( d

TaT

)m
( ∞∑

k=0

k
(
aT (1 + aT )

)(k+1)/2

√
(k + 1)!

)2m

(t − s)m.

One can easily check that the infinite sum on the right-hand side converges via the ratio test. As
a result, we can apply the Kolmogorov continuity theorem [17]. This implies that there exists a
continuous version of (Hk(t), 0 ≤ t ≤ T) with Hölder continuous sample paths on [0, T] with
any exponent γ ∈ [0, (m − 1)/2m). As m is arbitrary, we can conclude by letting m → ∞.
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5. Appendix

We briefly cite the necessary Palm theory for Poisson processes, for easy reference for the
proofs in Section 4.

Lemma 5.1. (Lemma 8.1 in [18] and Theorems 1.6–1.7 in [22].) Suppose Pn is a Poisson point
process on R

d with intensity nf. Further, for every ki ∈N0, i = 1, . . . , 4, let hi(Y) be a real-
valued measurable bounded function defined for Y ∈ (Rd)ki+1. By a slight abuse of notation we
let Yi be collections of ki + 1 i.i.d. points with density f on the right-hand side of each equation
below. We have the following results:

(i)

E

[ ∑
Y1⊂Pn

h1(Y1)

]
= nk1+1

(k1 + 1)! E[h1(Y1)].

(ii) For every � ∈ {0, . . . , (k1 ∧ k2) + 1},
E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

h1(Y1)h2(Y2) 1
{|Y1 ∩Y2| = �

}]

= nk1+k2+2−�

�!(k1 + 1 − �)!(k2 + 1 − �)! E
[
h1(Y1)h2(Y2) 1

{|Y1 ∩Y2| = �
}]

.

(iii) For every b = (b12, b13, . . . , b1234) ∈N
11
0 , we have

E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

h1(Y1)h2(Y2)h3(Y3)

× 1
{|Y1 ∩Y2| = b12, |Y1 ∩Y3| = b13, |Y2 ∩Y3| = b23, |Y1 ∩Y2 ∩Y3| = b123

}]

= nk1+k2+k3+3−b12−b13−b23+b123∏
σ⊂[3], σ 	=∅ jσ ! E

[
h1(Y1)h2(Y2)h3(Y3)

× 1
{|Y1 ∩Y2| = b12, |Y1 ∩Y3| = b13, |Y2 ∩Y3| = b23, |Y1 ∩Y2 ∩Y3| = b123

}]
,

where

jσ =
∣∣∣∣⋂

i∈σ

(
Yi \

⋃
j∈[3]\σ

Yj

)∣∣∣∣.
(iv) Furthermore, we have

E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

h1(Y1)h2(Y2)h3(Y3)h4(Y4)

× 1
{|Yi ∩Yj| = bij, 1 ≤ i< j ≤ 4, |Yi ∩Yj ∩Yk| = bijk, 1 ≤ i< j< k ≤ 4,

|Y1 ∩Y2 ∩Y3 ∩Y4| = b1234
}]

= nk1+k2+k3+k4+4−b∏
σ⊂[4], σ 	=∅ jσ ! E

[
h1(Y1)h2(Y2)h3(Y3)h4(Y4) 1

{|Yi ∩Yj| = bij, 1 ≤ i< j ≤ 4,

|Yi ∩Yj ∩Yk| = bijk, 1 ≤ i< j< k ≤ 4, |Y1 ∩Y2 ∩Y3 ∩Y4| = b1234
}]
,

where b and jσ are defined in (4.23) and (4.24), respectively.
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