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Abstract

This study presents functional limit theorems for the Euler characteristic of Vietoris—
Rips complexes. The points are drawn from a nonhomogeneous Poisson process on R?,
and the connectivity radius governing the formation of simplices is taken as a function
of the time parameter ¢, which allows us to treat the Euler characteristic as a stochastic
process. The setting in which this takes place is that of the critical regime, in which the
simplicial complexes are highly connected and have nontrivial topology. We establish
two ‘functional-level’ limit theorems, a strong law of large numbers and a central limit
theorem, for the appropriately normalized Euler characteristic process.
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1. Introduction

The Euler characteristic is one of the oldest and simplest topological summaries. It is at
once local and global, combinatorial and topological, owing to its representation as either the
alternating sum of Betti numbers of a topological space, or the alternating sum of simplices
in its triangulation. Beyond its theoretical beauty, the Euler characteristic has recently made
its way into the field of applied mathematics, notably topological data analysis (TDA). For
instance, the Euler characteristic of sublevel (or superlevel) sets of random fields has found
broad applications [1, 8]. In TDA, the technique of capturing the dynamic evolution of topol-
ogy is generally studied in persistent homology—see [7] for a good introduction. Persistent
homology originated in computational topology [10] and has received much attention as a use-
ful machinery for exploring the manner in which topological holes appear and/or disappear in
a filtered topological space. The primary objective of the current study is to associate the Euler
characteristic with some filtered topological space by treating it as a stochastic process in the
time parameter f.

Due to recent rapid development of TDA in conjunction with probability theory, there
has been a growing interest in the study of random geometric complexes. We focus on
the Vietoris—Rips complex [15, 16, 19], because of its ease of application, especially in
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58 A. M. THOMAS AND T. OWADA

computational topology; though much research has also been done on the Cech complex [4, 6,
9,11, 15, 16, 20, 25], and on the notion of generalizing both types of complex [13]. An elegant
survey of progress in these areas can be found in [5]. These studies are mostly concerned with
the asymptotic behavior of topological invariants such as the Euler characteristic and Betti
numbers. Among them, [9] derived a concentration inequality for the Euler characteristic
built over a Cech complex on a d-dimensional torus, as well as its asymptotic mean and
variance; and [14] established a multivariate central limit theorem for the intrinsic volumes,
including the Euler characteristic. Furthermore, [23] proved ergodic theorems for the Euler
characteristic over a stationary and ergodic point process.

Most of the studies cited in the last paragraph start with either an independent and
identically distributed (i.i.d.) random sample &, = {X1, ..., X;} or a Poisson point process
P, =1{Xi1,...,Xn,}, where N, is a Poisson random variable with mean n, independent of (X;),.
Subsequently, we will consider a simple Boolean model of the union of balls centered around
X, or P, with a sequence of non-random radii s,, — 0, n — 0o. Then the behavior of topolog-
ical invariants based on the Boolean model can be split up into several distinct regimes. When
nsz — 0 as n — oo, we have what is called the sparse (or subcritical) regime, in which there
occur many small connected components. If nsZ — 00 as n — 00, we have the dense (or super-
critical) regime, which is characterized by a large connected component with few topological
holes as a result of a slower decay rate of s,. The intermediate case where nsZ converges to
a positive and finite constant is called the critical regime, in which the stochastic features of
a geometric complex are less assured, and arguably more interesting, owing to the emergence
of highly connected components with nontrivial topologies. The present study focuses exclu-
sively on the critical regime. This is because the behaviors of the Euler characteristic in other
regimes, e.g. the sparse and dense regimes, are essentially trivial. For example, in the dense
regime, the Euler characteristic is asymptotic to 1 (see [4]).

Within the context of geometric complexes—such as the Cech and Vietoris—Rips
complexes—few attempts have been made thus far at deriving limit theorems on the functional
level for topological invariants (for some exceptions, see [3, 19, 20]). From the viewpoint of
persistent homology, such functional information is crucial for the understanding of topological
invariants in a filtered topological space. With this in mind, the current study proceeds to estab-
lish functional limit theorems for the Euler characteristic defined as a stochastic process. More
specifically, we shall prove a functional strong law of large numbers and a functional central
limit theorem in the space D[0, co) of right-continuous functions with left limits. Our results
are the first functional limit theorems in the literature for a topological invariant under the criti-
cal regime that have neither time/radius restrictions nor restrictions on the number/size of com-
ponents in the underlying simplicial complex. The primary benefit in our results lies in infor-
mation obtainable about topological changes as the time parameter ¢ varies. For example, if we
let x,(¢) be the Euler characteristic considered as a stochastic process, then as consequences
of our main theorems, one can capture the limiting behavior of various useful functions of the
Euler characteristic process via the continuous mapping theorem. We elaborate on these at the
end of Section 3. Other potential applications can be found in Chapter 14 of [2] and in [24].

In Section 2 we discuss all the topological background necessary for the paper. In Section 3
we discuss our main results: the functional strong law of large numbers and functional central
limit theorems for the Euler characteristic process in the critical regime. All of the proofs in
the paper are collected in Section 4.
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FIGURE 1. A family of Vietoris—Rips complexes.

2. Preliminaries

2.1. Topology

The main concept in the present paper is the Euler characteristic. Before introducing it we
begin with the notions of a simplex and an (abstract) simplicial complex. Let N, Ny be the
positive and nonnegative integers respectively, and let B(x, r) be the closed ball centered at x
with radius » > 0.

Definition 2.1. Let A’ be a finite set. An abstract simplicial complex [ is a collection of non-
empty subsets of X which satisfy the following conditions:

1. All singleton subsets of X are in K.
2. foeKandt Co,thent e K.

If o € K and |o| =k + 1, with k € Ny, then o is said to have dimension k and is called a
k-simplex in KC. The dimension of K is the dimension of the largest simplex in /C.

It can be shown (cf. [10]) that every abstract simplicial complex K of dimension d can
be embedded into R?¢*!. The image of such an embedding, denoted geom(K), is called the
geometric realization of KC. A topological space Y is said to be triangulable if there exists
a simplicial complex /C together with a homeomorphism between Y and geom(K). We now
define the Euler characteristic.

Definition 2.2. Take K to be a simplicial complex and let Sx(/C) be the number of k-simplices
in /C. Then the Euler characteristic of I is defined as

X0 =Y (=1 (K.

k=0

If Y is a triangulable topological space with an associated simplicial complex /C, then we
have x(Y)= x(K), and x(Y) is independent of the triangulation (see Theorem 2.44 in [12]).
Therefore, the Euler characteristic is a topological invariant (and in fact a homotopy invariant).

Our setting for this study is always in RY, so we may take X', ) to be arbitrary finite subsets
of R¥. To conclude this section, we will now define the Vietoris—Rips complex: the aforemen-
tioned simplicial complex that allows us to get a topological, as well as combinatorial, structure
from our data X'. A family of Vietoris—Rips complexes (R(X, 1), > 0) for points in R? can
be seen in Figure 1; yellow represents a 2-simplex and green represents a 3-simplex, which
cannot be embedded in R?.

Downloaded from https://www.cambridge.org/core. Purdue University Libraries, on 01 Jun 2021 at 19:24:52, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2020.46


https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2020.46
https://www.cambridge.org/core

60 A. M. THOMAS AND T. OWADA

Definition 2.3. Let X ={x, ..., x,} be a finite subset of R? and ¢t > 0. The Vietoris—Rips
complex R(&X, 1) is the (abstract) simplicial complex with the following properties:

1. All singleton subsets of A" are in R(X, 1).
2. A k-simplex o = {x;,, ..., x; } is in R(X, 1) if
B(xi;, 1) N B(xiy, 1) 0

forall0 <j<{ <k

2.2. Tools

Throughout, we let P, denote a Poisson point process on R? with intensity measure
nf 1 f(x)dx, where A is a Borel subset of R, and f is a probability density function. Writing
m for Lebesgue measure on RY, we assume that f is bounded almost everywhere, i.e.,
IIf lloo := inf {a € R:m(f‘l(a, oo)) = 0} < 00.

For two finite subsets ) C X of R with |V|=k+ 1, and t > 0, we define

1Y) = 1{Y forms a k-simplex in R(X, 0} =[] I{B(x, )N B(y, 1) # w}. 2.1)
x,yeY, x#y

In the below we present obvious but highly useful properties of this indicator function. First, it
is translation- and scale-invariant: for any ¢ > 0, x € RY, and Y0, - - -5 Yk € R4,

R0 + X, .. v+ X) = hy (50, - V0.
Furthermore, for any fixed y; € RYi=0,... k,itis nondecreasing in , i.e.,

B, ) < B0, ), 0<s<t. (2.2)

Using (2.1), we can define k-simplex counts by Si(X, 1) := Zycx hﬂ‘(y). As declared in
the introduction, we shall exclusively focus on the critical regime, so that nsf{ — 1, n— oo.
Finally, in order to formulate the Euler characteristic as a stochastic process, let r,(f) :== s,t
and define

Kn(®) =Y (=1 Sk(Pa, ra()) Z( DES B ), =0, (2.3)
k=0 YCPy

Notice that (2.3) is almost surely (a.s.) a finite sum, because the cardinality of P,, denoted by
| Py, is finite a.s., and Sy (Pn, r,,(t)) =0 for all k > |P,|. Furthermore, for a Borel subset A of
R?, define a restriction of the Euler characteristic to A by

K. (D) —Z< DE YR OD{LMP(Y) € A}, 2.4)
YcP,

where LMP())) represents the leftmost point of ), i.e., the least point with respect to lexico-
graphic order in R?. This restriction is useful for proving finite-dimensional convergence in
the case when A is bounded. When A is bounded we get a finite number of random variables
for the dependency graph, so that we may use Stein’s method for normal approximation. See
Section 4.3 for more details. Clearly, yx,, ga(t) = xa ().
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Limit theorems for the Euler characteristic process 61

3. Main results

The first contribution of the present paper is the functional strong law of large numbers
(FSLLN) for y,, in the space D[0, co) of right-continuous functions with left limits. More pre-
cisely, almost sure convergence of x,/n to the limiting mean will be established in terms of
the uniform metric. Our proof techniques rely on the Borel-Cantelli lemma to prove a strong
law of large numbers for each fixed f#, and we then extend this to the functional case. As for
the method of proofs in other studies, [22] and [25] have established concentration inequalities
that can lead to the desired (static) strong law of large numbers. Although these concentra-
tion inequalities can yield sharper bounds, a downside is that extra conditions need to be put
on an underlying density f. For example f must have bounded support. For this reason, we
have adopted a different approach via the Borel-Cantelli lemma, by which one can prove
n~! ( xn (1) —E[ Xn(l)]) — 0 a.s. by showing that the sum of the fourth moments is convergent.
The relevant article taking an approach similar to ours is [11].

The second contribution of this paper is to show the weak convergence of the process

Tn(0) := 172 (xu(0) — Elxa(0]1), 120,

with respect to the Skorokhod Ji-topology. Proving finite-dimensional weak convergence of ¥,
in conjunction with its tightness will allow us to obtain the desired convergence in D[0, c0).
Finite-dimensional convergence will be established via the Cramér—Wold device and Stein’s
method, as in Theorem 2.4 in [22], by adhering closely to the proof of Theorem 3.9 in the same
source. In addition, the tightness will be proven via Theorem 13.5 in [2]. These functional limit
theorems enable us to capture dynamic features of topological changes in D[0, 00). The proofs
for all results in this section are postponed to Section 4.

In order to obtain a clear picture of our limit theorems, it will be beneficial to start with
some results on asymptotic moments of x,. Define for k1, ko € Ny, 7, s > 0, and a Borel subset
Aof RY,

(ki Ak2)+1
Wiy o AL, 8) = Z Yk ko, AL, S),

j=1

where k; A kp = min{ky, kp}, and

/‘Af(x)k1+k2+27jdx
JWky + 1 =Pltka + 1= ))!

X hfl(O,yl,...,ykl)
(Rd)k1+k2+1—j

X h§2(0’ yla sy yj717 yk1+17 sy yk1+k2+1*])dY'

ik ko, AL, S) ==

Here we set hf(O, Vi, ..., yk)=11if k=0, so that Wp 0a(t, s) = ¥1.0.04(t, 5) = fAf(x)dx. In
the sequel, we write Wy, 1, (1, 8) = Wy 1 ga(t, ) With Yj i, &, (1, 8) = ¥ 1, g, ma (2 9).

Proposition 3.1. Fort,s>0and A C R4 open with m(0A) = 0, we have

7 Bl a®] = Y (D Wi kkalt 0, n— o0, 3.1)
k=0
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62 A. M. THOMAS AND T. OWADA

o0 o
n'CoV (i a®. xna®) = D (=DITRW g ats),  n— oo, (3.2)
k1=0 k=0

so that both of the right-hand sides are convergent for every such A C R%.

We can now introduce the FSLLN for the process ;.
Theorem 3.1. (FSLLN for y,.) As n — 09,

Xn(2)

oo
= Y (=D"uq1xk(t D as. in DJO, 00),
k=0

where D[0, 00) is equipped with the uniform topology.

Before stating our functional central limit theorem (FCLT) for x,, let us define its limiting
process. First define (Hi, k € Np) as a family of zero-mean Gaussian processes on a generic
probability space (€2, F, IP), with intra-process covariance

E[Hi(OHi(s)] = Wi i (2, 5), (3.3)
and inter-process convariance
E[Hr, ) Hi, ()] = Wi, 1, (2, 5), (3.4)

for all k, k1, ko € No with k; # kp and ¢, s > 0. In the proof of Proposition 3.1, the functions
Wi, k, (2, s) naturally appear in the covariance calculation of yx,, which in turn implies that the
covariance functions in (3.3) and (3.4) are well-defined. With this notation in mind, we now
define the limiting Gaussian process for x, as

M) =Y (=D M), >0, 3.5)
k=0
so that o -
E[HOH®] =Y > (=D uy, ,(1,9), 1,5=0. (3.6)
k1=0 k=0

Once again, Proposition 3.1 implies that the right-hand side of (3.6) can define the covariance
functions of a limiting Gaussian process, since it is obtained as a (scaled) limit of the covari-
ance functions of x,. In particular, since (3.6) is convergent, for every ¢ > 0, H(¢) is definable
in the L2(2) sense. Note that the Euler characteristic in (2.3) and the process (3.5) exhibit sim-
ilar structure, in the sense that Sy (Pn, rn(t)) in (2.3) and H(¢) both correspond to the spatial
distribution of k-simplices.

Now, we proceed to stating the FCLT for yy,.

Theorem 3.2. (FCLT for y,.) As n — 09,
Xn = H in D[0, 00),

where DI[0, 00) is equipped with the Skorokhod Ji-topology. Furthermore, for every 0 <
T < 00, we have that (’H(t), 0<t< T) has a continuous version with Holder continuous
sample paths of any exponent y € [0, 1/2).
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Limit theorems for the Euler characteristic process 63

Remark 3.1. The results of Theorem 3.1 and Theorem 3.2 also hold for the Cech complex,
in the case of the latter theorem only up to finite-dimensional weak convergence of yx,. The
definition of a k-simplex of the Cech complex requires a non-empty intersection of ‘multiple’
closed balls. This makes it more difficult to establish the required tightness for the Cech com-
plex. Specifically, obtaining bounds as in Lemma 4.2 seems much harder. If one were able to
establish such a nice bound, the rest of the argument for tightness would essentially be the
same as the Vietoris—Rips case.

Example 3.1. Consider a map x > supy,<; |x(1)| from D[0, 1] to R. This map is continuous
on C[0, 1], the space of continuous functions on [0, 1]. Since the limits in Theorems 3.1 and
3.2 are both continuous, we get that as n — oo,

o0
n~tsup x> sup | Y (=D a0l as.,
k=0

0<t<1 0<r<l

172

sup [ xa(®) = Elxa()]| = sup |H()].

0=<r<1 0<t<1

In particular, the latter claims that the supremum of a mean-centered Euler characteristic
process can be approximated by n'/? supg<,<; |H(#)| for large enough n.

4. Proofs

We first deal with moment asymptotics of x,, in Section 4.1. In Section 4.2 we prove the
FSLLN in Theorem 3.1. Subsequently, we establish Theorem 3, the proof of which is divided
into two parts, with the first part devoted to finite-dimensional weak convergence, and the
second to tightness. The proofs frequently refer to Palm theory for Poisson processes for com-
puting the moments of various Poisson functionals. A brief citation is given in Lemma 5.1 of
the appendix. Finally we verify Holder continuity of the limiting Gaussian process H, adhering
closely to what is established for subgraph counting processes in Proposition 4.2 of [18].

For simplicity of description, we assume throughout this section that nsﬁf = 1. However,
generalizing it to ns? — 1, n — oo, is straightforward. In the following, we write a \ b :=

n

max{a, b} and a A b := min{a, b} fora, b € R.

4.1 Proof of moment asymptotics

Without loss of generality, the proof of Proposition 3.1 only handles the case when A = R?.
Throughout this section, let ), Vi, and )» denote collections of i.i.d. random points with
density f. We begin with the following lemma.

Lemma 4.1.

(i) Fort=>0we have, as n — o,
i k
&) E (1 (O] = Yrs1kk(t, 1),
(i) ForallneN,
n'E [ ()] < @),
where
a; = (2004l fllo 4.1)
with 63 = m(B(O, 1)), i.e., the volume of the unit ball in R4,
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64 A. M. THOMAS AND T. OWADA

(iii) For1 <j<(ki ANky)+ 1, k1, ko € Ny, and t, s > 0,
nk1+k2+17j
Sk +1 =ik +1=)!
as n— oQ.

(iv) ForallneN,
nki +k2+l—/]E[ /;l(;)(yl )hr (S)(yz) 1{|y1 N = }] < (ap )k] thyt+1—j

Proof. We shall prove (iii) and (iv) only, since (i) and (ii) can be established by a similar
and simpler argument. With the change of variables xy =xandx; =x+ s, y;—1,i=1, ..., k1 +
ko + 2 — j, the left-hand side of (iii) equals

E[AY VDR D) IV 0 V2l =5}] = ik o 2. 9)
(1) (5)

ki+ky+1—j
i / By % Xky+1)
J'(kl + 1 _J)'(kZ + 1 _J)‘ (]Rd)lirszrZ—j (1) Lyoves 1+

ki+ky+2—j
k
x h,j(s)(x], s Xy X425+ - s Xy ko4 2—) l_[ f(xp)dx
i=1
— (nsz)k1+kz+l—./ / / hkl (0 N N ) (4 2)
JUkt 4+ 1= lka + 1= Jga Jgayariori 0700 .

ki+ky+1—j

X R0, 91, ¥ Vit Ykt [ FG+ siyidy dx.
i=1

Recall that ns¢ = 1 and note that ]_[k1+k2+1 T f(x + spyi) — fRITRFIZ 5 00, holds under
the integral sign because of the Lebesgue differentiation theorem. Thus, (4.2) converges to
Yk ko (L, 8) @S — 00,

Now let us turn to proving (iv). Without loss of generality, we may assume s < 7. After the
same change of variables as in (iii), the left-hand side of (iv) is bounded by

ki+kr+1—j k
(Il flloo) 2T ’/ KO, 1. yky)

(Rd)kl +ky+1—j
X hfz(o, Vi eoos Yjimls Yig4ls - oo ykl+k2+1_j)dy. 4.3)

By the definition of the indicators ht , hs?, each of the y; in (4.3) must have distance at most 2¢
from the origin. Therefore, (4.3) can be bounded by

ki +kao+1—j k1 +ko4+1—7 . 0
(”f”oo) et ]m(B(O, 2t)) ket =(a,)k1+k2+l J

Proof of Proposition 3.1. We prove only (3.2), as the proof techniques for (3.1) are very
similar to (3.2). Specifically, we shall make use of (ii), (iii), and (iv) of Lemma 4.1. We start

by writing
™ Cov (Xu(®), xu(9)) = n‘E[ DY DTS (P, 1a(®)) Sk (P rn(s>)} (4.4)
k1=0 k=0
— n‘E[ > 1 S (Pa, rn(t))]]E[ > (=1 S (Pas rn(s>)}.
k=0 k=0
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Next, Palm theory for Poisson processes, Lemma 5.1(ii), along with the bounds given in Parts
(1) and (iv) of Lemma 4.1, yields that

E[ Sk, (Pas 1a0) Sk, (Pas 7)) |

(ki Ak2)+1

= Z [ Z Z hr (t)(yl)hr (Y2) {1 N x| :j}i|
=0 TPy o CPy
pkitko+2
= m [ rn([)(yl)] [ i (s)(yZ)]
(ky Akp)+1 o2

i /; ik + 1= ik + 1)) B[ O O N 221 =]

(kl /\k2)+1 i
n?(a) (ay)k n(ap, syt t1=i

Tk De+ D iRk =ik T =)

Here it is straightforward to see that

oo oo (kiAky)+1 )k[-‘rkz-l-l—j

— (at)k a; (arvs 3apys
2 <= ZZ Z M+ T—plda+1—j1 ¢ =%

k=0 =0 k=

So Fubini’s theorem is applicable to the first term in (4.4). Repeating the same argument for
the second term of (4.4), one can get

(k1 Akp)+1 pkirko 1=
-1 ki+k
Cov(xn(0), xn(s)) (=1)" T2 - - .
(0. 3 klz;)kzz;) /zzl Jiky+ 1= ik + 1 — )

. E[ OGOV N Y| =j}].

By virtue of Lemma 4.1(iii)—(iv), the dominated convergence theorem implies that the last
expression converges to Y _2°_o > (— Dkitk2gy (2, s) as required. O

4.2. Proof of FSLLN

To prove the FSLLN, we first establish a result which allows us to extend a ‘pointwise’
strong law for a fixed ¢ into a functional one, if the processes are nondecreasing and there is
a deterministic and continuous limit. We again would like to emphasize that our approach in
this section gives an improvement from the viewpoint of assumptions on the density f. Unlike
the existing results, such as those of [25], ours do not require f to have compact and convex
support.

Proposition 4.1. Let (X, n € N) be a sequence of random elements in D[0, 0o) with nonde-
creasing sample paths. Suppose A : [0, 00) — R is a continuous and nondecreasing function.
If we have

X, (1) = A1), n— 00, a.s. 4.5)
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for every t > 0, then it follows that

sup |X,(1) — A()| — 0, n— 0o, a.s.
t€[0,T]

for every 0 <T < oco. Hence, it holds that X, — A a.s. in D[0, 0o0) endowed with the uniform
topology.

Proof. Fix 0 < T < oo. Note that A is uniformly continuous on [0, 7. Given € > 0, choose
k = k(¢) € N such that for all s, r € [0, T],

|s—1/ <1/k implies |A(s) —A(D)| <e. (4.6)
Since X,,(f) and A(¢) are both nondecreasing in ¢, we see that

sup ‘Xn(t) — A(t)‘ = max sup ‘Xn(t) — A(t)‘
1€[0,T] 1<i<k se[(i—1)T /k, iT /k]

< max {(xnar/k) == DT/B) v (AT /K) = Xu((i = DT/K)) }

< max {(Xn(iT/k) - /\(iT/k)) v (A((i — )T /k) — Xp((i — l)T/k))} te

T 1<i<k

< max [X,GT/0) - x(iT/k)‘ s
<i<

where the second inequality follows from (4.6). By the SLLN in (4.5), the last expression tends
to € a.s. as n — 00. Since € is arbitrary, this completes the proof. U

Proof of Theorem 3.1. Since (2.3) is a.s. represented as a sum of finitely many terms, it can
be split into two parts:

Ko@) = S2u(Pas 12 @) = Y Sapes1 (Pas 1a @) = x50 = x2(0) - as.
k=0 k=0

Denoting by K(z) the limit of (3.1) with A = R?, we decompose it in a way similar to the above:

o0 o0
K@0)=> vYar12e2x(t, ) = Y Va2 s n1(t ) = KD — KP).

k=0 k=0
Our final goal is to prove that for every 0 < T < oo,
t
X"—()—K(t)’—>0, n— oo, as.,
o<t<T' N

which is clearly implied by

X ()

— K(i)(t)’ — 0, n— 0o, a.s.
0<t<T

foreachi=1, 2. As X,(,i)(t)/n and K(7) satisfy the conditions of Proposition 4.1, it suffices to
show that

(i)
t .
X"—() — K%, n— o0, as.
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Limit theorems for the Euler characteristic process 67

for every t > 0. We will prove only the case i = 1, and henceforth omit the superscript (1) from
X,(,I)(t) and KW (7). Tt then suffices to show that

@ — Ela(D]] = 0, n— 00, as., 4.7

and
[n"Elxa(01 — K] — 0, n— 00. (4.8)

First we will deal with (4.8). It follows from the customary change of variables as in the proof
of Lemma 4.1 that

I Elxa()]1 — K@)

o]

= Z% f f (0, y1, - yk)
=1 (2k+ 1)' R4 (Rd)Zk ! ’ R
2k
< f( TTfe+sum) = 0™ )y dx'
i=1
0 1 2k
_ 2% N 2k
<X mm [ Ot 09| T+ 5000 =107 ay

Similarly to the proof of Lemma 4.1 Part (ii) or (iv), one can show that the last term above is
bounded by 2> 72, (a)**/(2k + 1)! < oo (where g, is defined in (4.1)). Thus, the dominated
convergence theorem concludes the proof of (4.8).

Now, let us turn our attention to (4.7). From the Borel-Cantelli lemma it suffices to show
that, for every € > 0,

> P(|a0 = ELa(]] > en) < oo.

n=1

By Markov’s inequality, the left-hand side above is bounded by
1 o 1 4
= 2 B[ (u® —EDu)*].
n=1
Since ), n~2 < 0o, we only need to show that

1
lim sup n—2E[(Xn(t) - ]E[X,,(t)])4] <o0. (4.9)

n— oo

Applying Fubini’s theorem as in the proof of Proposition 3.1, along with Holder’s inequality,
we get that

1
— E[ (a0 — EDxa(0)

—z X 8| T (P o)~ Elsa(Pr )] |

" (ST ky)eN4
(] 4o 17474
< [; {n—zE[(SZk(Pn, (1) = E[S21(Pa 1a(0)] ) ]} }
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68 A. M. THOMAS AND T. OWADA

Now, (4.9) can be obtained if we show that

00 1/4
Z{hmsup ! [(SZk(Pn,rn(t))—E[SZk(Pn, rn(t))]>4]} <. (4.10)

=1 n—00

From this point on, let us introduce the shorthand So; := Sox (73,,, rn(t)). In order to find an
appropriate upper bound for (4.10), using the binomial expansion we write

4
E[(Sx — ElSxl) =Y ( )( D'ELSS ) (ELS2]) @.11)
=0
For every ¢ € {0, . .., 4}, one can write E[Sgk](E[Szk])At_ as

X ¥ T ¥ o) an

VicP PPy Yuc P =1

() _

where for every i, j € {1, ..., 4}, we have either that P,,” = ,(,/ ) or that ’P,gl) is an independent

copy of 73,(/). IV U--- U =8k+4,1ie., V1,...,YVsdonot have any common elements,
then Palm theory (Lemma 5.1) shows that (4.12) is equal to (E[Szk])4, which grows at the rate
of O(n*) (see Lemma 4.1(i)). In this case, the total contribution to (4.11) disappears, because

4

4
> <£>(_1)Z(E[Szk])4 =
=0

Suppose next that [)) U---U V4| =8k + 3; that is, there is exactly one common element
between ); and ); for some i # j, with no other overlappings. Then (4.12) is equal to

[ YD WO @(yz)l{mmy2|—1}}(E[S2k])
V1CPu 2CPy

Although the growth rate of the above term is O(n3) (see Lemma 4.1 Parts (i) and (iii)), an
overall contribution to (4.11) is again canceled. This is because

Qe+ Qe Q)+ ()G

[ oy h,n(,><y1)h%f(,)(yz)1{|y1my2|=1}](E[52k])2=0.

Vi CPu IoCPy
By the above discussion, we only need to consider the case where there are at least two
common elements within Yy, ..., V4. Among many such cases, let us deal with a specific
term,

= DD ND I I LN @1

yl Cpn yZCPn ySCPn y4C7Dn i=1

x WV Nl =L1, V3NVl = Lo,

QUM)NY3 U= 0}}
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Limit theorems for the Euler characteristic process 69
where £1, € € {1, ..., 2k + 1}. Palm theory allows us to write (4.13) as

I

i G (Qk 41—’

pk1-t

B2 0 2 1101 N 2l = )], (4.14)

By Lemma 4.1(iv) and the fact that £!(2k + 1 — £)! > k! for any £ € {1, ..., 2k + 1}, one can
bound (4.14) by

)4k+l—[ )8k+2—51 —0p

(a

2
Ez,v (2k+1—£)‘) k!

Now, the ratio test shows that

0 (at)8k+2f€1 —t ) 1/4

N
k=1 ’

as desired. Notice that all the cases except (4.13) can be handled in a very similar way, and so

(4.10) follows.

4.3. Proof of finite-dimensional convergence in Theorem 3.2

Proof of finite-dimensional convergence in Theorem 3.2. Throughout the proof, C* denotes
a generic positive constant that potentially varies across and within the lines. Recall (2.4), and
define ¥, 4(#) analogously to ¥,(f) by mean-centering and scaling by n~!/2. We first consider
the case where A is an open and bounded subset of R? with m(3dA) = 0.

From the viewpoint of the Cramér—Wold device, one needs to establish weak convergence of
Z;"zl aixn(t)) forevery0 <t; <---<typ,meN,andg; e R,i=1, ..., m. Our proof exploits
Stein’s normal approximation method in Theorem 2.4 of [22]. Let (Qj,, j> 1) be an enu-
meration of disjoint subsets of R4 congruent to (0, ra(tm)]?, such that RY = Uj'i 1 Ojn. Let
H,={jeN:Q;,NA # @} Define

sjn:—Z< Dk Zal i VHLMP() € AN Q;.0},
YCP, i=1

and also

‘fj,n - E[éj,n]
\/Vaf( S aixna(t)
Then, we have Y 1" | aixn.a(ti) = > jen, &in:
Now, we define H,, to be the vertex set of a dependency graph (see Section 2.1 of [22] for

the formal definition) for the random variables (éj, n» Jj € Hy) by setting j ~j if and only if the
condition

‘i:j,n =

inf{”x_y” X € Qj,nv RS Qj/n} <d4r,(tn)

is satisfied. This is because &;,, and gj, , become independent whenever j ~ j fails to hold.
Now we must ensure that the other conditions of _Theorem 2.4 in [22] are satisfied with respect
to the dependency graph (H,, ~ ). First, ) jcH, &j n 18 a zero-mean random variable with unit
variance. We know that |H,| = O(s, ) as A is bounded. Furthermore, the maximum degree of
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70 A. M. THOMAS AND T. OWADA

any vertex of H,, is uniformly bounded by a positive and finite constant. Let Z denote a standard
normal random variable. Then the aforementioned theorem implies that

P(Y&.<v)-Pz=x|=C ( \/snd max E[[§.,*] + \/snd max E[|§j,n|4])

jeHl‘l

<C* (\/sndn—3/2 mjax E[|§jn — E[Ej,n]|3] + \/Sndn—Z mjax E[|§j,n — E[gj’n]lﬁl])’ (4.15)

where the second inequality follows from Proposition 3.1, which claims that
Var( Yo diXnA (t,-))) is asymptotically equal to n up to multiplicative constants. Minkowski’s
inequality implies that

1/
(E[lgn — Elg:0P]) " < (E[1g.aP]) "7 +E[1gl]

Recall that for fixed Y C R4, hf ()) is nondecreasing in . Then, we have that

|s,n|<2 > Z|a,|hk oy VHLMP(V) € AN Q; )

k=0 YCP, i=1

I /\

Z Y e OLMPQ) €AN Q)0
k=0 YCP,

.~ Pn(Tube(Qj,n,zrnum))))
D (R

IA

< c*. 2’P,,(Tube(Qj,n, 2rn(lm)))’

where

Tube(Qjn: 2rultn)) = freRY: inf flx =yl < 2r(t)}.
Jsn

By the assumption nsg = 1, one can easily show that P, (Tube(Q,;n, 2r,,(tm))) is stochastically
dominated by a Poisson random variable with positive and finite parameter, which does not
depend on j and n. Denote such a Poisson random variable by Y. Then, for p =3, 4,

maX]EUEj,n _ E[Ej,n”p] < C*[(E[Z”Y])l/p + ]E(ZY)] < 00.
J

Referring back to (4.15) and noting nsif =1, we can see that

‘ Zéjn_ P(Z<x)‘ <C*(\/s;dn—3/2+\/s;dn—2>=0(n’1/4)—>0, n— 00,

JjeH,

which implies that > jcH, éj, 2= N(0, 1) as n — o0; equivalently,

m
> aiknat) = N©O,Zp).  n— oo,
i=1
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Limit theorems for the Euler characteristic process 71

where
m

m o0 o
Sa=Y_ Y aig Yy Y (DS A, ).

i=1 j=1 ki=0 k=0
Subsequently we claim that
m
> ain(t) = N, Bga).  n—> oo,
i=1

which completes the proof. To show this, take Ax = (— K, K)d for K > 0. It then suffices to
verify that

N0, Zag) = N(0, Zga), K — oo,

and foreach >0 and € > 0,

lim lim sup IP<| n®) = T ae (0)] > e) —0.

K—00 p—soo

The former condition is obvious from the fact that ¥4, — X+ as K — oo. The latter is also a
direct consequence of Proposition 3.1, together with Chebyshev’s inequality and the fact that
Xn(®) = Xn,ax (1) = X R\ ag (- U

4.4. Proof of tightness in Theorem 3.2

Before we begin the proof, we add a few more useful properties of hﬁ‘ For 0 <s <t < o0,
we define

W D=k V) = k), V=00, ...,y € RHF

Lemma 4.2.

(i) Forany0<s<t<T <09,
[ HO 0y = Cagn =,
(RY)

where Cq k.7 = k2249 )k Td*k=D)

(i) Letje{l, ..., (ki Ak)+ 1} and suppose that yo € Ry ™", y; € RO, and y, €
(RY2H1=T Then, for0 <t <s<th <T < 00,

k k.
‘/(;Rd)lirszrlf hs,ltl (09 Yo- yl)htzz,s(o» Yo- Y2)dYOdY1dY2

< 36(k1 ko) (2T 020+ (1 — )2,
Proof. We note that for any 0 < s < ¢ with yg =0,

hﬁs(o,yl,...,)’k)zl{2s< max ||)’i—yj|| 52;}

0<i<j<k
k
<[] 1{veBo. 2T)}<Zl{2s< Iyl =2e}+ > 1{2s<|yi—y §2t}>.
i=1 i=1 1<i<j<k
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72 A. M. THOMAS AND T. OWADA

Foreachi=1,...,k, let y(i) be the tuple (y1, ..., Yi—1, Yi+ls---» k) € (Rd)k_l with the ith
coordinate omitted. Then

(i)
[, 70 yl,...,yk>dy<2/(w s < Il <2rjaay

" {2 < 2¢dy; dy®.
Z /(ozr)kl/ {25 < [yi =yl }dy; dy

1<i<j<k

= (k+ <§>)m(3(0, 21))" [m(B(O, 20)) — m(B(0, 25))]

d_ d
< Carr" —s%)

as required.
Part (ii) is essentially the same as Lemma 7.1 in [18], so the proof is skipped. U

Proof of tightness in Theorem 3.2. To show tightness, it suffices to use Theorem 13.5 from
[2], which requires that for every 0 < T < 0o, there exist a C > 0 such that

E[17n(12) — 2n(®)I17n(s) — Xn(tDI?] < C(§ — 19)? (4.16)

forall0 <t <s <t <T and n € N. To demonstrate (4.16), we will give an abridged proof—
tightness will be similarly established for analogous processes seen in [18, 21]. Let us begin
with some helpful notation, namely,

Hy o s = o ) =HE V) =Ry (D).
&x 15 =Sk (P 10 (D) = St (Pay ra(9)) = Y Hy , (D).

YCPn
By the same argument as in the proof of Proposition 3.1, one can apply Fubini’s theorem to
obtain
E[170(12) = Zn®)I?1%n(5) = n(t1)I’] @.17)

1
= ﬁ Z (— 1)k|+k2+k3+k4E[(§n 1,s E[Cn b, A]) (gn 1,8 [é‘n 1, A])

(k1.ka. k3, ka)eNS
(é‘" S,11 E[gn s tl])(gn 5,1 E[gn s ll]):l

Our objective now is to find a suitable bound for
k k k k k
E[ (610 — BLenty o) (60 =BG D (@ — Blo ) (G — Bloit )] @18)

To this end, let us refine the notation once more by setting &; := C,]f . &= é“r]f 1, 53 =

k k. k k;
Cnosyand &4 = ¢, ;. Furthermore, let hy = hy)!y, o, ho i=hyy, 5, h3 = hn 5.1y and by = hn 511
Define [n]:={1,2,...,n}, and for any o C [4] let & =], , &, where we set & =1 by
convention. Then we can express (4.18) quite simply as

> DR [] ELEL (4.19)

o Cl[4] ie[4)\o
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Limit theorems for the Euler characteristic process 73

For o C [4] with o # {J, and finite subsets V; C R, je€o, we define ), := Ujeg Y. Given a
subset T C o C [4], we also define

Too(Vs) = 1_[ 1{there exists p € T\ {j} such that Y; N Y, # ¥}
Jjet
< [T Yyny,=0forallgeo\ {ji}.
jeo\t
Note that Z; 5 () ) = 0 whenever |t| =1, and
Y LioVe)=1. (4.20)
TCo

Furthermore, if T = o, we write Z,(+) := Z; 5 (-). It follows from (4.20) and the Palm theory in
the appendix that, for each non-empty o C [4],

Ele1=E[ Y w0

ViCP,. jeo ico

=SB Y T [[ho0)]

TCo yjcP,,,jeo i€o
=Y E[ > noo[[non] [T el
TCo YiCPy, jer iet ieo\t

Hence, (4.19) is equal to

S Y E0E Y Teo[[mon] [T BE [T B

oCl4] TCo YiCPh, jet iet ieo\t i€e[4]\o
=Y E X noo[[mon] IT Bl Y 07
tC[4]  YV,CPy.jer iet i€[4]\r tCoCl4]

=5l Y X X 21[41(y4])]_[h(y,]

ylcpn yZCPn ySCPn y4C7jn
where the last line follows from the fact that
4 —
4—|7|
TCoCl4

unless 7 =[4]. Substituting this back into (4.17) and taking the absolute value of
(_1)](1 +k2+k3+k4’ we get

E[17n(12) = Zn()P17n(5) — Xnt)]?]

- ¥ Y T T X mowl[o]

(kl,kz,k3,k4)eN4 V1 CPu Y2CPn Y3CPn YaCP
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74 A. M. THOMAS AND T. OWADA

Now, it suffices to show that the right-hand side above is less than C (tg — t‘f)2 for some
C > 0. We can break the above summand into four distinct cases:

@D b1a=|V1 N2 >0, bzg =|Y3 N V4| > 0, with all other pairwise intersections empty.

(D) b13 = Y1 N3] >0, brsa =|V2 N V4| > 0, with all other pairwise intersections empty.
1) b14 =|YV1 NVa| > 0, bz =1V> N V3| > 0, with all other pairwise intersections empty.
(IV) For each i, there exists a j # i such that J; N )); # @, but (I)—(I1I) do not hold.

We prove appropriate upper bounds for Cases (I) and (IV), and the other two cases follow from
the proof for (I). The Palm theory in the appendix implies that

%E[ )IEDIEDINDS li[hi(yi) 4.21)

ylcpn yZCPn y3CP)1 y4C7)n i=1
X {|V1 N V2l =biz, V50 Vsl = ba, %131 =0 for other (i, )} |

Zn_le[ Z Z hl(yl)hz(y2)1{|y1ﬂyg|=b12}]

yl Cpn yZCPn

X E[ Z Z h3(V)ha(Va)1{|V3 N V4| = b34}]
V3CPu YVaCPy
nkitka+1=b1y

" bialtk £ 1 — bio)l(ka + 1 — bpo)!
x E[mX1, ..o X+ DXt - Xbyys X420 - -+ Xig o201 ]
platka+1-bs

x b3altks +1 — b3g)!(kg + 1 — b3a)!
x E[h3(X1, ... Xig+Dha(X1, <o Xbgs Xig 424 - -+ Xigthat2—b3a) |-

In the remainder of the proof, assume for ease of description that 27)%0; > 1, ||flleo > 1,
and T > 1. Moreover, assume without loss of generality that k; >k and k3 > k4. Using
trivial bounds and the customary changes of variable (i.e., x; =x and x; =x+ s,y;—; for
i=2,...,k1 +k+2—by2), applying Lemma 4.2(i), and recalling that ar = QT) 4]l fll oo
we see that

pF R T bR E L (X X DX - Kby Xk 42 - - > Xk ko +2—b12)]

- k
< i1 / [, 0
lf o0 (Rd)kQJrlfblz (Rd)lirl*blZ (Rd)blzfl 1,s Yo 1

k
X hy; (0, ¥o, ¥2)dyody, dy,

k
/ hy, 50, ¥o, y1)dyody;
(Rd)bu*l

= (Iflloe) 2 (1) 00) " /

(RA)Yk1+1-b12
kr+1—b
< (Il 12 (2T)00) > 712 Carty 115 — 5%

2 ki+ko o d d
<Baphthud — s,
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Hence (4.21) is bounded by

(aT)kl +k2k% (l‘d . sd) (aT)k3+k4k§
btk + 1 —b1)l(ka + 1 — byp)! 2 b3gl(ks + 1 — b3g)!(kg + 1 — b3a)!
(aT)kl “Fho+k3+ks k% k%

<
T bipltky + 1 = D12)lka + 1 — b12)'b3al (k3 + 1 — b3a)l(ka + 1 — b34)!

(s* — 1)

d d\2
@ -1

Finally we see that
Z (aT)lq +k2+k3+k4k%k§ .
biol(ky + 1 —=b12)!(ko + 1 — b12)!b3al(kz + 1 — b3g)!(ks + 1 — b3g)! '

k1>ky, k3>ky,
1<bip<kr+1,
1<b3g<kq+1
since
' — = N =1 — ) — 0!
P Uk +1 =0k +1 -0 — Pt Lk +1—20)! ot 1 (ko +1—20)!
00 {—1  ©© k1,2
< eaT Z (aT) (aT) lkl < 00
=< | —0)!
i A

(4.22)

Now, for Cases (I)-(III), we have an upper bound of the form C(tg — tf )2, as desired.
Thus we need only demonstrate the same for Case (IV). In addition to the notation b,
1 <i<j <4, introduced above, define for J; € (RH)%+! k;eNg,i=1,...,4,
bijp = YiNY; N Il I<i<j<k=<4,
b1234 = V1 NI N V3N V4,

and
b:=b12+b13+ b1a + b3z + bog + b3g — b123 — b124 — b13s — br3a + b1234, (4.23)

so that [V UMLbUYV3UVs|=ki +ky +k3 + ks +4— b with b> 3. Let B be the collection
ofb=(b12,...,b1234) € N(l)l satisfying the conditions in Case (IV). For a non-empty o C [4]
and Yy e RONH i=1,...,4,let

ﬂ(yi\ U yj)

ico jeld\o

o = . (4.24)

In particular, the j, are functions of b such that ZUC[“]’ (,#/;ja = ViUV UY3U Vy|. The
Palm theory in the appendix yields

nizE[ Z Z Z Z li[hi(yi)l{case (Iv) holds}]

lePn yZCPn y3cpn y4CP)1 i=1
4
1
=Y SE[ Y Y X X [T N dal=bn 1% 0 Vsl =bus.
beB y] CPVL y2cpn y3C7Dn y4C7)n i=1
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e NN YN V| =b1234}]

phiHkatks+ka+2-b 4

=3 e B[ [T 1{I%1 N 22l =bi, Y1 N 3] =bis,
beB3 Hoc[4],a;&({)]0- e

s NN Y3 N Vel =b1234}]~

Under the conditions in Case (IV), at least one of the b;; is nonzero, so we may assume
without loss of generality that b;3 > 0. Then we have

4
nk1+k2+k3+k4+2_bE[ l_[ R IV Nl =bia, ..., IV NI NYV3N Yy = b1234}]

i=1

= phithethksthit2=b / h1(x0, X1)h3(X0, X3)h2(X2)h4(X4)

(RAyk1+ho k3 +g+4=b

x ]_[ FOd(XoUx U - --Uxy),
er?:O X;
where X is a collection of elements in RY with |xo| = b13 > 0. In other words, x¢ € (Rd)b 13
so that x; € (RO)MFT1=b13 and x3 € (RO H1-L13 with x| N x3 = . Moreover, x, € (R4)k2H!
and x4 € (Rd)k‘*“, such that if xp N x4 =0, then x; N (xo Ux; Ux3) # ¥ for i=2,4, and if
Xy NX4 # (@, then (X2 Uxyq) N (xg UX| UX3) # .
Now, let us perform the change of variables x; =x1 + s,y; for i=0, ..., 4, where 1 is a

vector with all entries 1, and the first element of y, is taken to be 0. In addition to this, we
apply the translation and scale invariance of the ; to get

4
nk1+k2+k3+k4+2_bE[ 1_[ R H IV Nl =bia. ... IVININY3N Yyl = b1234}]

i=1

_ ki +ko+kz3+ka+2—b d(ky+ko+kz+ka+3—b ki k3
= phithaths that2=b gdhy thoths +h )Ad his (Vo> YRS 1, (Yoo ¥3)

/(Rd)kl ks g +3—b
ko k4
X hyy (¥2)hs 1, (¥4) l_[ fee+s)d((yo U - - - Uyg) \ {0})dx.
)’GULO Yi
Using ns? = 1, together with the trivial bounds hfzz’s(yz) < hl}z(yz), hff‘tl (yg) < h?(y4), and
S+ 5,Y) < |Iflloo, One can bound the last expression by

ki +ko+k3+ks+3—b
(VRTINS
(]Rd)kl +ky+k3+kq+3—b

R (Yo YRS, (Yo, ¥3)
x K2 (y ) (yd((yo U - - Uyy) \ {0})

_ k k
= |[FlI et that3=b / He! (Vo YOHS, (Yo, ¥3)

(Rd)lq +k3+1-b13

x { /( st s i YR ()d((¥2 U Ya) \ (6 U1 UY3) }d(yO \ (0})dy, dys.
(4.25)
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Suppose hl}z(yz)h];t (y4) =1, so that

Y2 Nyq # Y, Y2N(yo Uy Uys) =0, Y4 N (yo Uy Uyz) #0. (4.26)

Then there exists y € y, N (¥ Uy, Uys) such that all points in y, are at distance at most 47T
from y'. Since y’ itself lies within distance 27 from the origin (recall that the first element of
Yo is 0), we conclude that all points in y, Ny, are at distance at most 67 from the origin. As
b1z <k;+k3;+1and b > 3, we have

k k
[ g2 h? (y)hs (y)d((y2 Uy \ (Yo Uy  Uy3)) (4.27)

< m(B(O, 6T))k2+k4+27b+b13 — ((6T)d9d)k2+k4+27b+b13 < ((6T)d9d)kl+k2+k3+k4.

If y, and y, do not satisfy (4.26), it is still easy to check (4.27).
Applying (4.27), along with Lemma 4.2(ii), one can bound (4.25) by

|[f||léé+k2+k3+k4+3_b((6T)d94)k1+k2+k3+k4 « 36(k1k3)6((2T)d9d)2(kl+k3)(tg _ t?)Z
3(ky+ky+k3+k 2
< 36(k1 kakska)® ((67)6allf lloo)™ ' 27 (i — i),
Thus, we conclude that
| 4
> E[ Y Y S [ 1{case avy holds}]
VICPy o CPy V3CPy YVaCPy i=1

3(ky ko +k3 +k 1 2
< 36(ki kakska)® ((67)*6allf lloc) ™ 11 3™ (1 — )",
i o, oo’

To complete the proof, we need to show that

(ki +ho+ks+k 1
> Gkkakska) (6T 04llf floo) TN <0,
ki<kr<k3 <ks be H(’Cl‘”’“#@]”'

As seen in the calculation at (4.22), the term (kikaksks)® ((6T)60,4]flloc)” T2 s

negligible, while proving
Z Z % < 00
ky <k <kz<ks beBB oCld], o#pJo-

is straightforward.

4.5 Proof of Holder continuity of 7{

Proof of Holder continuity in Theorem 3.2. Since H(t) — H(s) has a normal distribution for
0 <s <t < 00, we have for every m € N that

E[ (K0 - H)™" | = f[ @i — D(E[(Ho - H)]) "
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Proposition 3.1 ensures that (22420 (=D (), M e NO) constitutes a Cauchy sequence in
L*(2). Therefore we have

M 2
E[(1(0) — H()*] = lim_ E[( > DH ) — k() }

< [ g {E[(Hk(f) - Hk(s))z] } 1/2}2,

where the second line is due to the Cauchy—Schwarz inequality. We see at once that

E[(Hx(r) - Hk(s))z] = Wi k(t, 1) = 2V (1, 5) + Wi k(s, 5)

k+1

Skt ) = Wia(t, )= Y (Viak(t, ) = Yiaa(t, ) (4.28)

Jj=1
by monotonicity due to (2.2) and symmetry of Wy (-, -) in its arguments. Now, we note that

/‘Rdf(x)Zk-i-Z—jdx
e+ 1=)H?

X/ / / h, YOsY1)hf,s(0, Yo, ¥2)dyody, dys.
(]Rd)kJrlﬁ (Rd)k“’l*j (]Rd)]—l

Applying a bound h’t‘(O, Yo, ¥1) < ]—[yeyl 1{|ly|l < 2T} and integrating out y;, as well as using
Lemma 4.2(i), we get

Yik k(1) — Yy i k(t, 5) =

2

Vidkk(t, 1) = Y i(t, s) < (ar) T (14— s)

T ((k+ 1 —))!)

dk? .
<— (ar)* (@t — 5),

T T ((k+ 1))
where a7 is given in (4.1). Substituting this back into (4.28), we obtain

d 2 k+1 (aT)2k+l_j
E[(HeD) = Hi ()] < 5= Y — (1 —9)
[ =7 ;ﬂ((m 1—)!)°

di* k1
=< Tt Diar (ar(1 +ar)™" (1 — ).
Therefore, we conclude that
., m d \m o0 k 1+ (k+1)/2 2m
E[ (1) - Hw)™ | <[] @i= (=) (Z (ar(1 + ar) , ) (t— 5"
i=1 ar k=0 (k+ D!

One can easily check that the infinite sum on the right-hand side converges via the ratio test. As
a result, we can apply the Kolmogorov continuity theorem [17]. This implies that there exists a
continuous version of (H(7), 0 <t < T) with Holder continuous sample paths on [0, 7] with
any exponent y € [0, (m — 1)/2m). As m is arbitrary, we can conclude by letting m — oo.
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5. Appendix

We briefly cite the necessary Palm theory for Poisson processes, for easy reference for the
proofs in Section 4.

Lemma 5.1. (Lemma 8.1 in [18] and Theorems 1.6—1.7 in [22].) Suppose P, is a Poisson point
process on RY with intensity nf. Further, for every ki € No, i=1, ..., 4, let hj(}) be a real-
valued measurable bounded function defined for Y € (RY)%+1. By a slight abuse of notation we
let Y; be collections of ki + 1 i.i.d. points with density f on the right-hand side of each equation
below. We have the following results:

(i)
k1+1
[ > /u(yl)] G Ol
ylcpn

(ii) Forevery £ €{0, ..., (ki Aky)+ 1},
E[ Y Y mOnh@n{yinyi=¢]

ViCPy Y2CPa
pkiHka+2—¢
= T I= O T 10! E[hDha(V2) {1 N Wa| =£}].
(7ii) Forevery b= (b2, D13, ...,b1234) € N(l)l, we have

E[ Z Z Z h (Y 1h2(V2)h3(Y3)

ylcpn yZCPn yficpn

X HIViNal=bra, (V1N Vsl =biz, V2N V3| =bo3, [V NV2N Y3 =b123}]
pnki+katk3+3—b12—b13—b23+b123
= = E[A1(V1)ha(V2)h3(V3)
noc[3],a;é®10~

V1 Nl =bia, (V1N Y3l =bi3, V2N V3| =bax, [V ﬂyzﬂy3|=b123}],

where

= ﬂ(%\ U yj)

ieo jel3\o

(iv) Furthermore, we have

E[ Z Z Z Z h (VD2 (V2)h3(V3)ha(Va)

ylcpn yZCPn y3cpn y4C7)n
x HIVinYil=by, 1<i<j<4, IViNYNVl=bj, 1<i<j<k<4,

ViNhNY3N Vsl = b1234}]
nk1+k2+k3+k4+4 b

=ﬁ [h1(yl)hz(yz)h3(y3)h4(y4)1{|ylny]| by, 1<i<j<4,
oC[4], o #HJO

NNk =by 1=i<j<k=4 VNY2N0Y5 0Vl =bpaa}],
where b and j, are defined in (4.23) and (4.24), respectively.
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