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Abstract. We describe q-hypergeometric solutions of the equivariant quantum differential 

equations and the associated qKZ difference equations for the cotangent bundle T∗Fλ of a partial 

flag variety Fλ . These q-hypergeometric solutions manifest a Landau-Ginzburg mirror 

symmetry for the cotangent bundle. We formulate and prove Pieri rules for quantum 

equivariant cohomology of the cotangent bundle. Our Gamma theorem for T∗Fλ says that the 

leading term of the asymptotics of the q-hypergeometric solutions can be written as the 

equivariant Gamma class of the tangent bundle of T∗Fλ multiplied by the exponentials of the 

equivariant first Chern classes of the associated vector bundles. That statement is analogous 

to the statement of the gamma conjecture by B.Dubrovin and by S.Galkin, V.Golyshev, and 

H.Iritani, see also the Gamma theorem for Fλ in Appendix B. 
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1. Introduction 

In [MO], D.Maulik and A.Okounkov develop a general theory connecting quantum groups 

and equivariant quantum cohomology of Nakajima quiver varieties, see [N1, N2]. In 

particular, in [MO] the operators of quantum multiplication by divisors are described. As it 

is well-known, these operators determine the equivariant quantum differential equations of 

a quiver variety. In this paper we apply this description to the cotangent bundles T ∗Fλ of the 

gln N-step partial flag varieties and construct q-hypergeometric solutions of the associated 
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equivariant quantum differential equations and qKZ difference equations. The q-

hypergeometric solutions are constructed in the form of Jackson integrals. 

Studying solutions of the equivariant quantum differential equations may lead to better 

understanding Gromov-Witten invariants of the cotangent bundle, cf. Givental’s study of the 

J-function in [Gi1, Gi2, Gi3]. 

The presentation of solutions of the equivariant quantum differential equations as 

qhypergeometric integrals manifests a version of the Landau-Ginzburg mirror symmetry for 

the cotangent bundle. 

In [MO] the equivariant quantum differential equations come together with a compatible 

system of difference equations called the qKZ equations. In [GRTV, RTV1] the equivariant 

quantum differential equations and qKZ difference equations were identified with the 

dynamical differential equations and qKZ difference equations with values in the tensor 

product (CN)⊗n of vector representations of glN. The q-hypergeometric solutions of the 

(CN)⊗n-valued qKZ difference equations were constructed long time ago in [TV1], see also 

[TV2]-[TV4]. It was expected that those q-hypergeometric solutions are also solutions of the 

compatible dynamical differential equations. That fact is proved in this paper and is the first 

main result of the paper. The proof is based on some new rather nontrivial identities for the 

integrand of the Jackson integral. The integrand is the product of the scalar master function 

and a vector-valued function, whose coordinates are called weight functions. In [RTV1] it 

was shown that the weight functions are nothing else but the stable envelopes of [MO] for 

the cotangent bundle of the partial flag varieties. Our new identities can be interpreted as 

new identities for stable envelopes. We interpret these new identities as Pieri rules in 

quantum equivariant cohomology of the cotangent bundle of the partial flag variety. That is 

our second main result. 

Our Gamma theorem for T ∗Fλ (Theorem B.1) says that the leading term of the asymptotics 

of the q-hypergeometric solutions for T ∗Fλ is the product of the equivariant gamma class of 

the tangent bundle of T ∗Fλ and the exponentials of the equivariant first Chern classes of the 

associated vector bundles. That statement is analogous to the statement of the gamma 

conjecture by B.Dubrovin and by S.Galkin, V.Golyshev, and H.Iritani, see Appendix B. See also 

the Gamma theorem for Fλ (Theorem B.2). 

The paper is organized as follows. In Section 2 we introduce the (CN)⊗n-valued dynamical 

and qKZ equations. In Section 3 we define the weight functions and list their basic properties. 

In Section 4 we introduce the master function and describe the discrete differentials — the 

quantities with zero Jackson integrals. We also formulate there two key identities for the 

weight functions — Theorems 4.3 and 4.4. We prove Theorem 4.3 in Section 5 and Theorem 

4.4 in Section 6. In Section 7, we summarize Theorems 4.3 and 4.4 as a statement about the 

integrand of the main Jackson integral. In Section 8 we construct integral representations for 

solutions of the (CN)⊗n-valued dynamical equations. In Section 9 we introduce the 

equivariant quantum differential equations and explain how their q-hypergeometric 
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solutions are obtained from solutions of the (CN)⊗n-valued dynamical equations. In Section 

10 we formulate and prove Pieri rules. In Section 11 we show that the space of solutions of 

the quantum differential equation can be identified with the vector space of the equivariant 

Ktheory algebra. We also discuss two limiting cases of the quantum differential equation. In 

Appendix A we discuss the basic properties of Schubert polynomials, and in Appendix B we 

formulate our Gamma theorems. 

The authors thank G.Cotti, V.Golyshev, and R.Rimanyi for useful discussions. The second 

author thanks the Hausdorff Institute for Mathematics in Bonn for hospitality in March 2018, 

when the Gamma theorem was discovered. The second author also thanks the Max Planck 

Institute for Mathematics in Bonn for hospitality in May–June 2018. 

2. Dynamical and qKZ equations 

2.1. Notations. Fix N,n ∈ Z>0 and h,κ ∈ C×. Let . Let 

I = (I1,...,IN) be a partition of {1,...,n} into disjoint subsets I1,...,IN. Denote Iλ the set of all partitions 

I with |Ij| = λj, j = 1,...,N. 

Consider CN with basis vi = (0,...,0,1i,0,...,0), i = 1,...,N, and the tensor product (CN)⊗n with basis 

vI = vi1 ⊗ ··· ⊗ vin, 

where the index I is a partition (I1,...,IN) of {1,...,n} into disjoint subsets I1,...,IN and ij = m if j ∈ Im. 

The space (CN)⊗n is a module over the Lie algebra glN with basis ei,j, i,j = 1,...,N. 

The glN-module (CN)⊗n has weight decomposition ( , where ( is 

the subspace with basis (vI)I∈Iλ. 

2.2. Dynamical differential equations. Define the linear operators X1,...,Xn acting on (CN)⊗n-

valued 

functions of z = (z1,...,zn), q = (q1,...,qN) and called the dynamical Hamiltonians: 

(2.1) 

, 

where ˜  and a superscript means that the corresponding operator acts on the 
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corresponding tensor factor. The differential operators 

(2.2)  

preserve the weight decomposition of (CN)⊗n and pairwise commute, see [TV2], also [GRTV, 

Section 3.4], [RTV1, Section 7.1], [MTV1]. The operators ∇q,κ,i define the (CN)⊗n-valued 

dynamical connection. The system of differential equations 

(2.3) on a (CN)⊗n-valued 

function f(z;h;q) is called the dynamical equations. 

2.3. Difference qKZ equations. Define the R-matrices acting on (CN)⊗n, 

 

Define the qKZ operators K1,...,Kn acting on (CN)⊗n: 

Ki(z;h;q;κ) = R(i,i−1)(zi − zi−1 + κ) ... R(i,1)(zi − z1 + κ) × 

. 

The qKZ operators preserve the weight decomposition of (CN)⊗n and form a discrete flat 

connection, 

Ki(z1,...,zj + κ,...,zn;q;κ)Kj(z;h;q;κ) = Kj(z1,...,zi + κ,...,zn;q;κ)Ki(z;h;q;κ) for all i,j, see [FR]. The 

system of difference equations with step κ, 

(2.4) f(z1,...,zi + κ,...,zn;q) = Ki(z;h;q;κ)f(z1,...,zn;q), on a (CN)⊗n-valued 

function f(z,q) is called the qKZ equations. 

i = 1,...,N , 

Theorem 2.1 ([TV2]). The systems of dynamical and qKZ equations are compatible.  

3. Weight functions 

3.1. Weight functions Wˇ 
I. For I ∈ Iλ, we define the weight functions Wˇ 

I(t;z), cf. [TV1, TV4, 

RTV1]. The functions Wˇ 
I(t;z) here coincide with the functions WI(t;z;h) defined in [RTV1, 

Section 3.1]. 

Recall λ = (λ1,...,λN). Denote λ(i) = λ1 + ... + λi, i = 1,...,N − 1, λ(N) = n, and 

. Recall I = (I1,...,IN). Set  
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. Consider the variables h and . Set , a = 

1,...,n. Denote t  and t = (t(1),...,t(N−1)). 
The weight functions are 

(3.1) Wˇ 
I(t;z) = (−h)λ{1} Sym  Sym , 

 λ 1 λ( −1) 

 . 

In these formulas for a function f(t1,...,tk) of some variables, we denote 

Symt1,...,tk f(t1,...,tk) = X f(tσ1,...,tσk). 
σ∈Sk 

Example. Let N = 2, n = 2, λ = (1,1), I = ({1},{2}), J = ({2},{1}). Then 

 , . 

Example. Let N = 2, n = 3, λ = (1,2), I = ({2},{1,3}). Then 

. 

Example. Let N = 2, n = 3, λ = (2,1), I = ({1,3},{2}). Then 

. 

For a subset A = {a1,...,aj} ⊂ {1,...,n}, denote zA = (za1,...,zaj). For I ∈ Iλ, denote zI = (zI1,...,zIN ). For 

f(t(1),...,t(N)) ∈ C[t(1),...,t(N)]Sλ(1)×...×Sλ(N) , we define f(zI) by substituting t(j) = (zI1,...,zIj), j = 1,...,N. 

3.2. Weight functions Wˇ 
σ,I. For σ ∈ Sn and I ∈ Iλ, we define 

(3.2) Wˇ σ,I(t;z) = Wˇ σ−1(I)(t;zσ(1),...,zσ(n)), Uˇσ,I(t;z) = Uˇσ−1(I)(t;zσ(1),...,zσ(n)), where σ−1(I) = 

(σ−1(I1),...,σ−1(IN)). 
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Example. Let N = 2, n = 2, λ = (1,1), I = ({1},{2}), J = ({2},{1}). Then 

 , , 

 , , 

where s is the transposition. 

3.3. Three-term relation. 

Lemma 3.1 ([RTV1, Lemma 3.6]). For any σ ∈ Sn, I ∈ Iλ, i = 1,...,n − 1, we have 

(3.3) , 

where si,j ∈ Sn is the transposition of i and j.  

3.4. Weight functions WI(t;z). Let σ0 ∈ Sn be the longest permutation, σ0(i) = n+1−i, i = 1,...,n. 

For I ∈ Iλ , denote 

(3.4) WI(t;z) = (−h)−λ{1} Wˇ 
σ0,I(t;z), UI(t;z) = Uˇ

σ0,I(t;z). 

In other words, we have 

(3.5) WI(t;z) = SymSym, 
 (1) ( 1) 

(3.6) UI(t;z) = 

 . 

Example. Let N = 2, n = 2, λ = (1,1), I = ({1},{2}), J = ({2},{1}). Then 

 . 

3.5. Modification of the three-term relation. For a function f(z1,...,zn) and i = 1, 

...,n − 1, define the operator Si,i+1 by the formula 

. 

Lemma 3.1 can be reformulated as follows. 

Lemma 3.2. For any I ∈ Iλ, i = 1,...,n − 1, we have 
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(3.8) Wsi,i+1(I)(t;z) = (Si,i+1 WI)(t;z) 

. 

 

3.6. Shuffle properties. Let n,n1,n2 ∈ Z>0, n = n1 + n2. Let , |λ2| = n2, 

λ = λ1 +λ2. Let ) be a decomposition of the set {1,...,n1} into subsets such that 

|Ij1| = λ1j. Let ) be a decomposition of the set {n1 +1,..., n} into subsets such that 

|Ij2| = λ2j. Define the decomposition I = (I1,...,IN) of the set {1, ...,n} by the rule: Ij = Ij1 ∪ Ij2. 

Consider the weight function WI of variables (t(1),...,t(N)), where t ), λ(j) = λ1 

+ ... + λj, j = 1,...,N − 1, and t(N) = (z1,...,zn). 

Consider the weight function WI1 of variables (˜t(1),...,˜t(N)), where ˜t ), 

1, and ˜t(N) = (z1,...,zn1). Consider the weight function 

 2 ˇt = (ˇt(1),...,ˇt(N)), where ˇt) for j = 1,...,N − 1, 

WI of variables and ˇt(N) = (zn1+1,...,zn). Denote ( 

Define the connection coefficient 

(3.9) C
λ1,λ2(t;z) = 

. 

Lemma 3.3. We have 

Symt(1),...,t(1) ... Symt(N−1),...,t(N−1) We I1,I2(t;z) 

(3.10) WI(t;z) =  , 

where 
 (1) (N−1) 

 We I1,I2(t;z) = Cλ1,λ2(t;z) WI1(˜t ,...,˜t ;z1,...,zn1) 

 × WI2(ˇt(1),...,ˇt(N−1);zn1+1,...,zn).  
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3.7. Factorization. Consider the gl
N weight function W{1,...,n},∅,...,∅ of variables (t(1),..., t(N)), where 

t ) for j = 1,...,N − 1, and t(N) = (z1,...,zn). 

Lemma 3.4. We have 
N−1 

(3.11) W{1,...,n},∅,...,∅(t(1),...,t(N−1);t(N)) = Y W{gl12,...,n},∅(t(j);t(j+1)), 

j=1 

where  is the gl2 weight function assigned to the partition of the set {1, ...,n} 

into two subsets {1,...,n} and ∅. 

Proof. The function ) is symmetric in variables ( ) due to the 

gl2 three-term relations of Lemma 3.1. That symmetry and formula (3.1) imply formula 

(3. 11).  

3.8. Useful identities. 

Theorem 3.5. Given k ∈ Z>0, consider variables  and  for i = 1,...,k. 

Set 

, 

, 

and 

 . 

Then 

(3.12) Sym  Sym  

and 

(3.13) Sym  Sym . 

Proof. Formulae (3.12), (3.13) are equivalent to 

Sym  Sym . 

Observe that 

, 

, 

and 
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Sym  = Sym . 

Hence the function 

) = Sym  

is symmetric both in s1,s2 and u1,u2 . Therefore, 

Sym  Sym  
 k

 k

 k−1 

 × Sym  . 
1 2 1 i=1 

and 

Sym  Sym  

k−1 

× Sym. 
2 1 i=1 

Theorem 3.5 is proved.  

4. Master function and discrete differentials 

4.1. Master function. Let  . Define the master function: 

(4.1) Φλ(t;z; 

. 

It is a symmetric function of variables in each of the groups t(i), i = 1,...,N − 1. 

4.2. Definition of discrete differentials. Consider the space S of functions of the form 

Φλ(t;z;h;q)f(t;z;h;q) where f(t;z;h;q) is a rational function. Consider the lattice κZλ{1} whose 

coordinates are labeled by variables t. The shifts  of any of the t-variables 
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preserve the space S and extend to an action of the lattice κZλ{1} on S. A discrete differential is 

a finite sum of rational functions of the form 

Φλ(t + w;z;h;q) 

(4.2)  f(t + w;z;h;q) − f(t;z;h;q), 

Φλ(t;z;h;q) 

where w ∈ κZλ{1}. 

4.3. Special discrete differentials. For integers 1 6 α < β 6 N, split the variables t = 

(t(1),...,t(N−1)), t ), into two groups t{α,β} and t{α,β} as follows: 

t  

and t ), where t ) if α 6 i < β and t  

t(i), otherwise. 

For a rational function g of t{α,β},z,q , denote 

 

Lemma 4.1. The function dt{α,β}g is a discrete differential.  

Proof. Formula (4.3) is an example of formula (4.2), where 

β−1 λ(i−1)−1 

 f(t;z;h;q) = g(t{α,β};z;h;q)(t(λα(α−−1)1) − tλ(α(α))) Y Y (t(ai−1) − tλ(i()i)) × 

 i=α a=1 
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and w has coordinates  equal to κ and other coordinates equal to zero. 

We rewrite dt{α,β}g as 

 dt{α,β}g = β d˜t{α,β}g − dˇt{α,β}g, 

where 

 

 

and 

(4.5)  

Denote 

(4.6) d{α,β}g := SymSym 
 (1) ( −1) 

(4.7) d˜
{α,β}g := SymSym 

 λ 1 λ( −1) 

 Sym  (4.8) dˇ
{α,β}g := Sym

 λ 1 λ( −1) 

Then 

(4.9)  

Corollary 4.2. The function d{α,β}g is a discrete differential.  

4.4. First key formula. Let . For α,β = 1,...,N, α 6= β , denote 
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(4.10) λα,β = (λ1,...,λα − 1,...,λβ + 1,...,λN). 

Notice that |λα,β | = |λ|. 

Let I = (I1,...,IN) ∈ Iλ, Ik = (`k,1,...,`k,λk), k = 1,...,N. For α 6= β , a = 1,..., λα , b = 1,...,λβ , denote 

(4.11) (I)β,αb = (I1,...,Iα ∪ {`β,b},...,Iβ − {`β,b},...,IN) ∈ Iλα,β . 

For J ∈ Iλα,β and b = 1,...,λβ + 1, we have (J)β,αb ∈ Iλ . The function UJ defined by formula (3.5) is 

a function of variables tα,β ,z . Theorem 4.3. We have 

λβ+1 

(4.12) (d˜
{α,β}UJ)(t;z) = −h X W

(J)β,αb (t;z). 
b=1 

Theorem 4.3 is proved in Section 5. 

4.5. Second key formula. Let I = (I1,...,IN) ∈ Iλ , Ik = (`k,1,...,`k,λk). For k1,k2 = 1,...,N, k1 6= k2, and m1 

= 1,...,λk1 , m2 = 1,...,λk2 , define the element Ik1,k2;m1,m2 = 

(I˜1,...,I˜N) ∈ Iλ such that I˜k = Ik if k 6= k1,k2 , and 

(4.13) I˜k1 = Ik1 ∪ {`k2,m2} − {`k1,m1}, I˜k2 = Ik2 ∪ {`k1,m1} − {`k2,m2}. 

Theorem 4.4. For I ∈ Iλ and i = 1,...,N − 1, we have 

(4.14) = 

. 

Theorem 4.4 is proved in Section 6. 

5. Proof of Theorem 4.3 

For n = 1, Theorem 4.3 is the following statement. 

Lemma 5.1. Let n = 1. For 1 6 γ 6 n, let Jγ = (J1,...,JN) be the decomposition of the one-element set 

{1}, such that Jγ = {1} and Jj = ∅ for j 6= γ . Let 1 6 α < β 6 N. 
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Then   

(5.1) d˜{α,β} UJγ = −hWJα , β = γ , 

(5.2) d˜{α,β} UJγ = 0, β 6= γ . 

Proof. For any γ, we have WJγ = UJγ, and UJγ is the function of , which is 
identically equal to 1, see (3.5). 

If β = γ, then 

 , 

which proves (5.1). 

The proof of (5.2) is by cases. If β < γ, then d˜
{α,β}UJγ = (1 − 1) · 1 = 0. If γ < α < β, then d˜

{α,β}UJγ 

= 0 by identity (3.12). If α < γ < β, then d˜
{α,β}UJγ = 0 by identity (3.13). 

If α = γ < β, then d˜
{α,β}UJγ = 0 by the degeneration of identity (3.12) as .  

For arbitrary n, Theorem 4.3 follows by induction on n from the shuffle properties of 

weight functions in Lemma 3.3. To avoid writing numerous indices we illustrate the 

reasoning by an example. 

Let N = 3, n = 2, J = (∅,{1,2},∅), α = 1, β = 2. Then formula (4.12) reads 

(5.3) d˜{1,2}UJ = −hW({1},{2},∅) − hW({2},{1},∅) . 

Indeed, we have 

d˜{1,2}UJ = Sym  

 

= Sym  

 
This is the sum of four terms. The first two are 

Sym  

 

= −h Sym, 
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 2 1 

the last two are 

Sym  

 

= −h Sym, 
 2

 1 

and we get (5.3). 

The treatment of these four terms is an inductive step from n = 1 to n = 2. The analysis of 

the first two terms is the application of Theorem 4.3 for n = 1 at the first point z1. 

Namely, the factor  corresponds to d˜
{1,2} at z1 and the product 

 

is the connection coefficient between W{1},∅,∅ sitting at z1 and W∅,{2},∅ sitting at z2, see Lemma 

3.3. And the analysis of the last two terms is the application of Theorem 4.3 for n = 1 at the 

second point z2. Namely, the factor  corresponds to d˜
{1,2} at z2 and 

the product 

 

is the connection coefficient between W{2},∅,∅ sitting at z1 and W∅,{1},∅ sitting at z2, see Lemma 

3.3. 

6. Proof of Theorem 4.4 

6.1. Proof of Theorem 4.4 for N = 2, λ = (n,0), I = ({1,...,n},∅). Lemma 6.1. We have 

(6.1) . 

Proof. We will prove formula (6.1) by induction on n. Denote 

 , t , z0 = (z1,...,zn−1), 
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. 

By formulae (4.5), (4.8), equality (6.1) reads as follows: 
n 

(6.2) Sym  

. 

For n = 1, formula (6.2) is clearly true. For the induction step, we explore formula (3.6). It 

implies that the summation term with a = n in formula (6.2) vanishes, 

(6.3) , 

and for a < n, 

(6.4) ) = 

. 

The last formula and the identity 

 (n) (n) (n) (n) 

 Sym = Sym, 
 n n−1 n n−1 

yield 

(6.5) Sym ) = 

= Sym  

. 

Summarizing all observations, we see that formula (6.2) follows from the equality 

(6.6) Sym  

, 

with  not involved in the symmetrization. Since the product 
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is symmetric in  , formula (6.6) follows from the induction assumption 

n−1 

(6.7) Sym  

. 

Lemma 6.1 is proved.  

6.2. Proof of Theorem 4.4 for N = 2 and I = Imax. For N = 2, λ = (k,n − k), we denote 

. Then formula (4.14) becomes formula 
(6.8) below. 

Lemma 6.2. We have 
k 

(6.8) X
(t(1)l − zn−k+l)W{gln2−k+1,...,n},{1,...,n−k} 

l=1 n 

= X 
dˇ{1,2} U{gln2−k+1,...,a−1,a+1,...,n},{1,...,n−k,a}, a=n−k+1 

Proof. Dividing both sides of the equation by ), turns formula (6.8) into 

formula (6.1).  

6.3. Proof of Theorem 4.4 for i = 1, arbitrary N, and I = ({1,...,n},∅,...,∅). 

Proposition 6.3. For I = ({1,...,n},∅,...,∅), we have 

(6.9) . 

Proof. Formula (6.9) is equivalent to the formula 

 

which follows from the next lemma. Lemma 

6.4. For j = 2,...,N we have 

 n n 

(6.10) X(t(lj−1)− t(lj))WI = X dˇ{1,j} U(I)01a,j 

 l=1 a=1 
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Proof. By Lemma 3.4, the left-hand side of (6.10) equals 

(6.11) . 

It is easy to see that the right hand side equals 

(6.12) . 

Hence, Lemma 6.4 follows from formula (6.1).  

 Proposition 6.3 is proved.  

6.4. Proof of Theorem 4.4 for i = 1, arbitrary N, and I = Imax. For λ = (λ1,..., λN), we denote 

. Then formula (4.14) takes the form 
 N λ1 N λ1 

(6.13) X X(t(l+j−λ1)(j−1)−λ1 − t(l+j)λ(j)−λ1)WImax = X X dˇ{1,j}W(Imax)01a,j . 

 j=2 l=1 j=2 a=1 

The following lemma implies formula (6.13). 

Lemma 6.5. For j = 2,...,N, we have 

 λ1 λ1 

(6.14) X(t(l+j−λ1)(j−1)−λ1 − t(l+j)λ(j)−λ1)WImax = X dˇ{1,j} W(Imax)01a,j . 

 l=1 a=1 

Proof. The left-hand side of formula (6.14) equals 

λ 

(6.15) SymSym 
λ 

l=1 

, 

while the right-hand side of (6.14) equals by definition 
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λ(j) λ(j−1)−1 (j−1) (j−1) h 
(6.16)  SymSym 

λ 
 l=1 l=1 λ(j−1) l 

λ(j) 

× X Ugl2j (j)−λ1,...,b−1,b+1,...,λ(j)},{1,...,λj,b}(t(j−1) \ {t(λj(−j−1)1)}, t(j)) {λ +1,...,λ b=1+λ(j)−λ1 

. 

The equality of (6.15) and (6.16) follows from the following case of formula (6.1): 

λ1 

 X(t(l+j−λ1)(j−1)−λ (l+j)λ gl2 (t(j−1)(j−1)−λ ,...,tλ(j(−j−1)1);t(1+j)λ(j)−λ ,...,tλ(j()j)) 

 − t (j)−λ )W{1,...,λ1},∅ 1+λ 
1 1 1 1 l=1 

λ1 

= X dˇ{1,2} U{gl12,...,a−1,a+1,...,λ1},{a}(t(1+j−λ1)(j−1)−λ1,...,tλ(j(−j−1)1)−1;t(1+j)λ(j)−λ1,...,t(λj()j)). 
a=1  

6.5. Proof of Theorem 4.4 for i > 1, arbitrary N, and I = ({1,...,n},∅,...,∅). For i = 2,...,N − 1, and 

I = ({1,...,n},∅,...,∅), Theorem 4.4 says that 

, 

which is formula (6.10). 

6.6. Proof of Theorem 4.4 for i > 1, arbitrary λ, and I = Imax. To prove this case of Theorem 

4.4, we introduce a partition ) of the set (1,...,λ(j)) by the rule 

(6.17) , 

so that |Iamax,j| = λa . For example, Imax,N = Imax. 

Formula (4.14) for I = Imax can be written as 
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(6.18) 

. 

Formula (6.18) follows from the next Proposition. 

Proposition 6.6. For i = 1,2,...,N − 1, and j = i,i + 1,...,N − 1, we have 

(6.19)  . 

Proof. For i = 1, formula (6.19) follows from Lemma 6.5. For i > 1, we prove formula (6.19) by 

induction on λ(i−1), see Lemmas 6.7 and 6.8 below. If λ(i−1) = 0, that is, λj = 0 for all j = 1,...,i − 1, 

formula (6.19) follows from Lemma 6.5 by renaming variables. 

We will indicate explicitly the dependence of the partitions Imax, Imax,l on λ: 

. 

We fix i,j until the end of the proof of Proposition 6.6, and omit the condition |λ| = n. 

Lemma 6.7. Assume that formula (6.19) holds for λ = (0,...,0,λk,...,λN) with k 6 i. Then formula 

(6.19) holds for λ˜ = (0,...,0,1,λk,...,λN). 

Proof. Formula (6.19) for λ has the form 

(6.20)  Symt(k) ... Symt  

= Symt(k) ... Symt , 

where Cλ,i,j+1 is the factor in the second and third lines of definition (4.5). 

In addition to the variables t = (t(k),...,t(N)) appearing in formula (6.20), formula (6.19) for λ˜ 

contains the new variables tnew  , and has 
the form 

(6.21)  Sym˜t(k) ... Sym˜t  λ˜ 
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 = Sym˜t(k) ... Sym˜t  , 

where ˜t = t ∪ tnew = (˜t(k−1),˜t(k),...,˜t(N)). It is easy to see from definition (3.6) that 

(6.22) , 

where F(˜t) is the product of all factors appearing in (3.6) involving the interrelation of two 

variables at least one of those being from tnew . Moreover, F(˜t) is symmetric in the variables 

t(l) for each l = k,...,N. Furthermore, since  and  , the first 

factors in the left-hand sides of formulas (6.20) and (6.21) coincide. 

By all these observations, to get formula (6.21) from (6.20), we need to verify that 

(6.23) Sym˜t(k) ... Sym˜t . 

This equality follows from identity (3.12) for the variables  , 

 . Lemma 6.7 is proved.  

Example. Let N = 5, λ = (0,0,1,0,0), λ˜ = (1,0,1,0,0). For i = 3, j = 3, formulas 

(6.20) and (6.23) take the form  and 

Sym  Sym  

 

= Sym  Sym  

, 

respectively. The last equality follows from identity (3.12) for the variables , 

. 

For i = 3, j = 4, formulas (6.20) and (6.23) take the form  and 

Sym  Sym  
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= Sym  Sym  

, 

respectively. The last equality follows from identity (3.12) for the variables , 

. 

Lemma 6.8. Assume that formula (6.19) holds for λ = (0,...,0,λk,...,λN) with k < i and λk > 0. Then 

formula (6.19) holds for λ˜ = (0,...,0,0,λk + 1,...,λN). 

Proof. The proof is completely similar to that of Lemma 6.7. The only change is that the 

new variables are tnew k k N N

 .  

Example. Let N = 3, λ = (1,1,0), λ˜ = (2,1,0). For i = 2, j = 2, formula (6.23) proof follows from 

identity (3.12) for the variables . 

 Lemmas 6.7 and 6.8 yield Proposition 6.6.  

Theorem 4.4 for i > 1, arbitrary N, λ, and I = Imax is proved. 

6.7. Modification of the three-term relation. For integers α,β , 1 6 α < β 6 N, and 

, recall the notations t{α,β}, t{α,β} , λα,β , in Sections 4.3 and 4.4. Lemma 6.9. For 

any 1 6 α < β 6 N and I ∈ Iλα,β , we have dˇ
{α,β}UI = cα,β dˇ

{α,β}WI , 

where  . 

Proof. Let 

(6.24) 

be the product in the right-hand side of formula (4.5). Since Gα,β(t,z) is symmetric in the 

variables t({iα,β) } for every i = 1,...,N − 1, we can apply the symmetrization in those variables to 

UI(t{α,β},z) and divide the result by the order of the relevant product of the symmetric groups 

before doing the overall symmetrization in formula (4.8) for dˇ
{α,β}UI . 

This results in replacing UI(t{α,β},z) by cα,β WI(t{α,β},z), see formula (3.5).  
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Recall the operator Si,i+1 acting on functions of z1,...,zn given by formula (3.7). 

Lemma 6.10. For any i = 1,...,n − 1, 1 6 α < β 6 N, and I ∈ Iλα,β , we have 

(6.25) Si,i+1(dˇ{α,β}UI) = dˇ{α,β}Usi,i+1(I) . 

Proof. The product Gα,β(t,z), see (6.24), is symmetric in z1,...,zn. Hence 

. 

by Lemmas 6.9 and 3.2.  

6.8. The end of the proof of Theorem 4.4. Given l, 1 6 l 6 N − 1, we add formulas 

(4.14) for i = 1,...,l. The result is 

(6.26) 

, 

To finish the proof of Theorem 4.4, we need to prove formula (6.26) for any I and any i = 1, 

...,N − 1. 

For any permutation σ , denote by |σ| the length of σ . For any J,J0 ∈ Iλ , define the 

permutation σJ,J0 as follows: if , 

then . Set σJ = σJ,Imax . The permutation σJ has the minimal length amongst all 
permutations σ such that σ(Imax) = J . 

Lemma 6.11. Assume that for J ∈ Iλ and a transposition si,i+1, we have |si,i+1 σJ | < |σJ |. 

Then si,i+1 σJ = σsi,i+1(J) .  

We will prove formula (6.26) by induction with respect to the length of σI . For the base of 

induction I = Imax, formula (6.26) is proved already. 

Fix I ∈ Iλ and find m such that |sm,m+1 σI | < |σI |. Let p,r be such that m ∈ Ip and m + 1 ∈ Ir. 

Since |sm,m+1 σI | < |σI |, we have p < r. 

Denote I˜ = sm,m+1(I). Then I˜p = Ip − {m} ∪ {m + 1}, I˜r = Ir − {m + 1} ∪ {m}, and 

I˜c = Ic , otherwise. And clearly, I = sm,m+1(I˜). 

Write formula (6.26) for I˜: 
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(6.27) 

, 

where I˜c = (`˜c,1,...,`˜c,λc). We will show that applying the operator Sm,m+1 to both sides of formula 

(6.27) transforms it to formula (6.26) for I . 

To compare the right-hand sides, observe that . Hence, Lemma 6.10 

yields , that proves the desired assertion. 
To compare the left-hand sides, observe first that 

sm,m+1(I˜i,j;m1,m2) = Ii,j;sm,m+1(m1),sm,m+1(m2) 

and 

Sm,m+1(WI˜i,j;m1,m2 ) = WIi,j;sm,m+1(m1),sm,m+1(m2) 

by Lemma 3.2. This proves the desired transformation of the second sum in the left-hand side 

of (6.27) term by term provided p > l or r 6 l. If p 6 l < r, the matching between the terms of 

the second sums in (6.27) and (6.26) is not perfect and the sum in (6.26) contains one more 

term hWIp,r;m,m+1 . 

If p > l or r 6 l, the sum  in formula (6.27) is symmetric in zm ,zm+1 and equals 

the sum  in formula (6.26). Thus 

 

 

by Lemma 3.2. If p 6 l < r , then we have 
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since I˜ = Ip,r;m,m+1 . This shows that the operator Sm,m+1 transforms formula (6.27) to formula 

(6.26). This completes the induction step. Theorem 4.4 is proved. 

Example. Let N = 2, n = 3, λ = (2,1), I = ({1,3},{2}), Imax = ({2,3},{1}), σI = 

s1,2 . Formula (6.26) is 

(6.28) ( , 

formula (6.27) is 

(6.29) ( . 

and the operator S1,2 transforms formula (6.29) to formula (6.28). 

7. Corollary of Theorems 4.3 and 4.4 

 Let , and I ∈ Iλ . Recall the notations (I)α,βa , Ii,j;m1,m2 , see (4.11), 

(4.13), and the discrete differentials d{α,β} g , see (4.6). Define the discrete differential 

 N λj i−1 λi 

(7.1) DI,i = X X d{j,i} U(I)j,ia − X X d{i,j}U(I)i,ja . 

 j=i+1 a=1 j=1 a=1 

Corollary 7.1. We have 

. 

Proof. Theorems 4.3 and 4.4, and formula (4.9) imply that 
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. 

Formula (7.2) is obtained now by rearranging the terms in the left-hand side of this equality. 

 

Recall the scalar master function Φλ(t;z;h;q) given by (4.1). Define 

 N−1 N 

(7.3) Ωλ(q) = Y Y (1 − qj/qi)hλi/κ . 

i=1 j=i+1 

Introduce the ( -valued weight function 

(7.4) Wλ(t;z;h) = X WI(t;z;h)vI . 
I∈Iλ 

Recall the dynamical Hamiltonians Xi(z;h;q) defined in (2.1). 

Theorem 7.2. For every i = 1,...,N, we have 

(7.5) (t;z;h;q)Wλ(t;z) = 

= Ωλ(q)Φλ(t;z;h;q) X DI,i(t;z;h;q)vI . 
I∈Iλ 

Proof. The statement is equivalent to Corollary 7.1.  

8. Integral representations for solutions of dynamical equations 

8.1. Formal integrals. , and κ ∈ C×. Consider the space of functions of 

the form Φλ(t;z;h;q)f(t;z;h;q), where Φλ(t;z;h;q) is the master function (4.1), and f(t;z;h;q) is a 

polynomial in t and holomorphic function of z,h,q on some domain L ⊂ Cn× C × CN. Assume 

that we have a map M assigning to a function Φλf a function M(Φλf) of variables z,h,q , 

holomorphic on L, such that: 

(i) The map M is linear over the field of meromorphic on L functions in z,q,h, 

(8.1)  

for any meromorphic functions g1,g2 of z,h,q , such that g1f1 and g2f2 are holomorphic 

on L. 

(ii) For any i = 1,...,N, we have 
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(8.2)  . 

(iii) If f is a discrete differential of a polynomial in t, then 

(8.3) M(Φλf) = 0. 

A map M is called a formal integral. We have the following corollary of Theorem 7.2. 

Lemma 8.1. If M is a formal integral, then the -valued function 

FM(z;h;q) := Ωλ M(ΦλWλ) = Ωλ 
X M(ΦλWI)vI 

I∈Iλ 

holomorphic on L, is a solution of the dynamical differential equations (2.3).  

8.2. Jackson integral. Consider the space Cλ{1}×Cn×C×CN with coordinates t,z,h,q . The lattice 

κZλ{1} naturally acts on this space by shifting the t-coordinates. 

Let J = (J1,...,JN) ∈ Iλ . Recall the notation . Define 

ΣJ ⊂ Cλ{1}× Cn× C × CN by the equations: 

(8.4) , 

and call it a discrete cycle. 

For a function of t and a point s ∈ Cλ{1}, define Rest=s to be the iterated residue, 

 Rest=s = Res  Res
t(1) =s(1) ... Res  Res . 

 λ(1) λ(1)λ(  1) λ(

 1) 

Let L0 be the complement in Cn× C of the union of the hyperplanes 

(8.5) h = mκ, za − zb = mκ, za − zb + h = mκ, 

for all a,b = 1,...,n, a 6= b, and all m ∈ Z. Let L00 ⊂ CN be the domain 

(8.6) |qi+1/qi| < 1, i = 1,...,N − 1, 

with additional cuts fixing a branch of log qi for all i = 1,...,N. Set L = L0 × L00 ⊂ Cn× C × CN. 

Let f(t;z;h;q) be a polynomial in t and a holomorphic function of z;h;q on L. For 

(z;h;q) ∈ L, define 

(8.7) MJ(Φλf)(z;h;q) = X Rest=ΣJ+rκ Φλ(t;z;h;q)f(t;z;  . 
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r
∈Zλ{1} 

This sum is called the Jackson integral over the discrete cycle ΣJ . 

Lemma 8.2. The map MJ is a formal integral. 

Proof. Each term of the sum in formula (8.7) is a holomorphic function on L0. Moreover, 

Rest=ΣJ+rκ Φλ(t;z;h;q)f(t;z;h;q) = 0 if r . Hence, the sum over Zλ{1} reduces to the sum over

. The result is similar to a multidimensional hypergeometric series multiplied by some 
fractional powers of q1,...,qN . The obtained sum converges if |qi+1/qi| < 1 for all i = 1,...,N − 1, 
and gives a holomorphic function on L. 

 Properties (8.1)–(8.3) for the map MJ are clear. Lemma 8.2 is proved.  

Lemma 8.3. The function MJ(Φλf) analytically continues to the hyperplanes h = mκ for m ∈ Z>0 

. 

Proof. By the proof of Lemma 8.2, 

(8.8) MJ(Φλf)(z;h;q) = X Rest=ΣJ+rκ Φλ(t;z;h;q)f(t;z;  . 

r  

for (z;h;q) ∈ L. By inspection, if h → mκ, m ∈ Z>0 , and r , then 

Rest=ΣJ+rκ Φλ(t;z;h;q)f(t;z;  Rest=ΣJ+rκ Φλ(t;z;mκ;q)f(t;z; . 

Hence 

(8.9) MJ(Φλf)(z;h;q) → X Rest=ΣJ+rκ Φλ(t;z;mκ;q)f(t;z;  , 

r  

since the sum in the right-hand side converges if |qi+1/qi| < 1 for all i = 1,...,N − 1.  

Remark. For m ∈ Z>0 , the sum P
r∈Zλ{1} Rest=ΣJ+rκ Φλ(t;z;mκ;q)f(t;z;  diverges, and the 

function MJ(Φλf)(z;mκ;q) is not given by formula (8.7). 

Example. Let N = 2, λ = (1,n − 1), J = ({1},{2,3,...,n}). Then 

Φλ(t;z; , 

and 

(8.10) M({1},{2,3,...,n})(Φλf) = X Res . 
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r∈Z 
Nonzero contributions to the sum in the right-hand side of (8.10) come from the poles of 

 . Explicitly, the answer is 

 , 

and the series converges if |q2/q1| < 1. 

8.3. Solutions of dynamical equations. Recall the ( -valued weight function Wλ(t;z), given 

by (7.4). For J ∈ Iλ , define 

(8.11) ΨJ(z;h;q) = Ωλ(q)MJ(ΦλWλ)(z;h;q) = Ωλ(q) X MJ(ΦλWI)(z;h;q)vI . 
I∈Iλ 

Theorem 8.4. The function ΨJ(z;h;q) is a holomorphic -valued function of z,h,q on the 

domain L ⊂ Cn× C × CN such that 

h 6∈ κZ60 , 

for all a,b = 1,...,n, a 6= b, 

za − zb 6∈ κZ, za − zb + h 6∈ κZ, 

 |qi+1/qi| < 1, i = 1,...,N − 1, 

and a branch of log qi is fixed for each i = 1,...,N. Furthermore, ΨJ(z;h;q) is a solution of the 

dynamical differential equations (2.3). 

Proof. The weight functions WI(t;z;h) are polynomials in t,z,h and do not depend on q . 

Hence, Theorem 8.4 follows from Lemmas 8.2, 8.3, and 8.1.  

Theorem 8.5. Under conditions of Theorem 8.4, the collection of -valued functions 

 is a basis of solutions of the dynamical equations (2.3). 

Proof. By formulas (8.8), (8.11), if |qi+1/qi| → 0 for all i = 1,...,N − 1, then 

(8.12) ΨJ(z;h;q) ' Ωλ(q) Rest=ΣJ Φλ(t;z;  ) = 

= Ωλ(q) Rest=ΣJ Φλ(t;z; . 

By [RTV1, Lemma 3.1], the matrix  is triangular and the diagonal entries 
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WI(ΣI;z;h) are nonzero if h 6= 0 and za − zb 6= 0, za − zb + h 6= 0, for all a,b = 1,..., n, a 6= b. Hence 

the vectors Wλ(ΣJ), J ∈ Iλ , form a basis of (  and the collection  is a basis 
of solutions of the dynamical equations (2.3).  The functions ΨJ(z;h;q) were considered in 
[TV1]. It follows from [TV1, Theorem 1.5.2], cf. [TV4], that for every J ∈ Iλ , the function 
ΨJ(z;h;q) is a solution of the qKZ equations 
(2.4). 

Corollary 8.6. The collection of -valued functions  is a basis of solutions 

of both the dynamical and qKZ equations, see (2.3), (2.4), with values in . 

Remark. The functions ΨJ(z;h;q) are called the multidimensional q-hypergeometric solutions 

of the dynamical equations. In [TV5], we constructed another type of solutions of the 

dynamical equations called the multidimensional hypergeometric solutions. 

9. Equivariant quantum differential equations 

9.1. Partial flag varieties. Let . Consider the partial flag variety Fλ 

parametrizing chains of subspaces 

0 = F0 ⊂ F1 ⊂ ... ⊂ FN = Cn 

with dimFi/Fi−1 = λi, i = 1,...,N. Denote by T ∗Fλ the cotangent bundle of Fλ and 

Xn = [ T ∗Fλ . 

|λ|=n 

Let u1,...,un be the standard basis of Cn. For I ∈ Iλ , let xI ∈ Fλ be the point corresponding to 

the coordinate flag F1 ⊂ ... ⊂ FN , where Fi is the span of the standard basis vectors uj ∈ Cn with 

j ∈ I1 ∪ ... ∪ Ii . We embed Fλ in T ∗Fλ as the zero section and consider the points xI as points of 

T ∗Fλ . 

9.2. Equivariant cohomology. Let A ⊂ GLn(C) be the torus of diagonal matrices and T = A×C×. 

The group A acts on Cn and hence on T ∗Fλ . Let the group C× act on T ∗Fλ by multiplication in 

each fiber. We denote by −h its C×-weight. 

We consider the equivariant cohomology algebras HT∗(T ∗Fλ;C) and 

HT∗(Xn) = M HT∗(T ∗Fλ;C). 

|λ|=n 

Denote by Γi = {γi,1,...,γi,λi} the set of the Chern roots of the bundle over Fλ with fiber Fi/Fi−1 . Let 

Γ = (Γ1;...;ΓN). Denote by z = {z1,...,zn} the Chern roots corresponding to the factors of the torus 

A. Then 



32 VITALY TARASOV AND ALEXANDER VARCHENKO 

. 

The cohomology HT∗(T ∗Fλ) is a module over HT∗(pt;C) = C[z] ⊗ C[h]. 

Notice that  

(9.2) 

N−1 N λi λj 

Y Y Y Y 

(γj,b − γi,a)(γi,a − γj,b − h) 
i=1 j=i+1 a=1 b=1 

is the equivariant total Chern class of the tangent bundle of T ∗Fλ and 

(9.3) 

λi 

c1(Ei) = X γi,a , 
a=1 

i = 1,...,N , 

is the equivariant first Chern class of the vector bundle Ei over T ∗Fλ with fiber Fi/Fi−1 . 

For i = 1,...,N, denote Θi = {θi,1,...,θi,λ(i)} the Chern roots of the bundle F i over Fλ with fiber Fi . 

Let Θ = (Θ1,...,ΘN). The relations 

 λ(i) i λj 

(9.4) Y(u − θi,a) = Y Y(u − γj,k), i = 1,...,N , 
 a=1 j=1 k=1 

define the homomorphism 

. 

9.3. Stable envelope map. Recall the weight functions Wˇ I defined in Sections 3.1. Let Wˇ 

I(Θ;z) ∈ HT∗(T ∗Fλ) be the cohomology class represented by the polynomial Wˇ 
id,I(t;z) with the 

variables  replaced by θi,a for all i = 1,...,N − 1, a = 1,...,λ(i). Denote 

N−1 λ(i) λ(i) 

cλ(Θ) = Y Y Y(θi,a − θi,b − h) ∈ HT∗(T ∗Fλ). 

i=1 a=1 b=1 

Observe that cλ(Θ) is the equivariant Euler class of the bundle  Hom(F a,F a) if we make 

C× act on it with weight −h. 
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Theorem 9.1 ([RTV1, Theorem 4.1]). For any λ and any I ∈ Iλ , the cohomology class Wˇ 
I(Θ;z) 

∈ HT∗(T ∗Fλ) is divisible by cλ(Θ), that is, there exists a unique element StabI ∈ HT∗(T ∗Fλ) such 

that 

(9.5) [Wˇ I(Θ;z)] = cλ(Θ) · StabI .  

Define the stable envelope map by the rule 

(9.6) Stab : (CN)⊗n ⊗ C[z] ⊗ C[h] → HT∗(Xn), vI 7→ StabI . 

Remark. Stable envelope maps for Nakajima quiver varieties were introduced in [MO]. They 

were defined there geometrically in terms of the associated torus action. The map Stab given 

by formula (9.6) is the stable envelope map of [MO] for the Nakajima quiver variety Xn , 

described in terms of the Chern roots Θ,z,h, see [RTV1]. 

Remark. After the substitution h = 1 the classes Stab ) can be considered as 

elements of the equivariant cohomology ) of the partial flag variety Fλ (and not of 

the cotangent bundle T ∗Fλ). These new classes are the equivariant Chern-

SchwartzMacPherson classes (CSM classes) of the corresponding Schubert cells, see [RV]. 

Let C(z;h) be the algebra of rational functions in z,h. The map 

(9.7) Stab : (CN)⊗n ⊗ C(z;h) → HT∗(Xn) ⊗ C(z;h), vI 7→ StabI , 

is an isomorphism of C(z;h)-modules by [RTV1, Lemma 6.7]. 

9.4. HT∗(T ∗Fλ)-valued weight function. Define the HT∗(T ∗Fλ)-valued function Wb (t;Γ) as 

follows: 

(9.8) Wb (t;Γ) = Sym  Sym  b , 
 λ λ 

 . 

where ( ), cf. formula (3.1) 

for . 

Example. Let N = 2, λ = (1,n − 1). Then  

Let N = 3, λ = (1,1,1). Then 
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 Define 
N−1 N λi λj 

(9.9) Q(Γ) = Y Y Y Y(γi,a − γj,b − h) ∈ HT∗(T ∗Fλ). 

i=1 j=i+1 a=1 b=1 

The image of the ( -valued weight function Wλ(t;z), see (7.4), is given by the next 
proposition. 

Proposition 9.2. We have 

(9.10) X WI(t;z) Stabid,I = Q(Γ)Wb (t;Γ). 
I∈Iλ 

Proof. Recall that WI(t;z) = (−h)−λ{1} Wˇ 
σ0,I(t;z), see (3.4). Recall the discrete cycle ΣJ given by 

(8.4). Let σI ∈ Sn be a permutation such that σI(Imin) = I . Then formula (9.10) is equivalent to 

the following equality 

(9.11) X Wˇ 
σ0,I(t;z) Wˇ 

I(ΣJ;z) = cλ(ΣJ)Q(zJ)Wˇ 
σJ,J(t;z). 

I∈Iλ 

For the proof of formula (9.11), consider the function 

Z(t;˜t;z) = X Wˇ 
σ0,I(t;z) Wˇ 

I(˜t;z). 
I∈Iλ 

Here ˜t is an additional set of variables similar to t. Then formula (9.11) reads 

(9.12) Z(t;ΣJ;z) = cλ(ΣJ)Q(zJ)Wˇ 
σJ,J(t;z). 

Three-term relations (3.3) imply that for any σ ∈ Sn , we have 

(9.13) Z(t;˜t;z) = X Wˇ 
σ,I(t;z) Wˇ 

σσ0,I(˜t;z). 
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I∈Iλ 

By [RTV1, Lemma 3.2], we have Wˇ 
σJσ0,I(ΣJ,z) = cλ(zJ)Q(zJ)δI,J . Thus taking σ = σJ, 

˜t = ΣJ in formula (9.13), we get equality (9.12). Proposition 9.2 is proved. Define 

the cohomology classes 

 N−1 N λi λj 

(9.14) R(Γ) = Y Y Y Y(γi,a − γj,b) 

i=1 j=i+1 a=1 b=1 

and 
 N−1 N λi 

(9.15) RI(Γ;z) = Y Y Y Y (γi,a − zb), I ∈ Iλ . 

i=1 j=i+1 a=1 b∈Ij Notice 

that RI(zJ;z) = R(zJ)δI,J . 

Proposition 9.3. For any K ∈ Iλ , we have 

(9.16) X WI(ΣK;z) Stabid,I = (−h)−λ{1}cλ(Θ)RK(Γ;z)Q(Γ). 
I∈Iλ 

Proof. Formula (9.16) is equivalent to the equality 

 

(9.17) . 

By [RTV1, Lemma 3.2], we have Wˇ 
σJ,J(ΣK,z;h) = cλ(zJ)R(zJ)δJ,K . Thus taking ˜t = ΣK in formula 

(9.11), we get equality (9.17). 

 Formula (9.17) also follows from [RTV1, Lemma 3.4]. Proposition 9.3 is proved.  

9.5. Quantum multiplication by divisors on HT∗(T ∗Fλ). The quantum multiplication by 

divisors on HT∗(T ∗Fλ) is described in [MO]. The fundamental equivariant cohomology classes 

of divisors on T ∗Fλ are linear combinations of Di = γi,1 + ... + γi,λi , i = 1,...,N. 

The quantum multiplication ) by the divisor Di depends on 

parameters q˜= (q˜1,...,q˜N) ∈ (C×)N and is given in [MO, Theorem 10.2.1]. 

The quantum connection  on ) is defined by the formula 
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where ˜κ ∈ C× is the parameter of the connection, see [BMO]. The system of equations for flat 

sections of the quantum connection is called the system of the equivariant quantum 

differential equations. 

The isomorphism Stab allows us to compare the operators  of 

the dynamical connection on ( , see (2.2), and the operators ∇λquant,q˜,κ,i˜ of the quantum 

connection on HT∗(T ∗Fλ). 

Recall the dynamical Hamiltonians Xi(z;h;q), see (2.1). Define the modified dynamical 

Hamiltonians 

 

. 

The modified dynamical connection on (  is 

(9.19)  

see [GRTV, Section 3.4]. Recall that hGRTV = −h. 

Theorem 9.4 ([RTV1, Corollary 7.6]). The isomorphism Stab identifies the operators Di ∗q˜ of 

quantum multiplication by Di on HT∗(T ∗Fλ) with the action of the modified dynamical 

Hamiltonians  on , where q˜ . Consequently, the 

differential operators ∇λquant,q˜,κ,i˜ are identified with the differential operators ∇λ,q˜−1,−κ,i˜ .  

See also [RTV1, Theorem 7.5]. 

 Set  

(9.20) Ωλ(q˜; ˜κ) = Y Y (1 − q˜i/q˜j)hmin(0,λj−λi)/κ˜ . 

i=1 j=i+1 

Set λ{2} = P16i<j6N λi λj . For any I ∈ Iλ , define 

(9.21) , 

 Rest=ΣI+rκ˜ Φλ(t;z;q˜ . 

r  

) belongs to the extension of ) by functions in z,h,q˜,κ˜ holomorphic on 

the domain L ⊂ Cn× C × CN such that 

(9.22) h 6∈ κ˜Z>0 , za − zb 6∈ κ˜Z, za − zb + h 6∈ κ˜Z, 
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for all a,b = 1,...,n, a 6= b, 

 |q˜i/q˜i+1| < 1, i = 1,...,N − 1, 

and a branch of log ˜qi is fixed for each i = 1,...,N. 

Example. Let N = 2, n = 2, λ = (1,1). Recall the Gauss hypergeometric series 

 , 

where (u)m = u(u − 1)...(u − m + 1). Set 

;1 +  

and 

. 

Then 

 

 

and  

Theorem 9.5. The collection of functions  is a basis of solutions of both the 

quantum differential equations , and the associated qKZ 

difference equations. 

Proof. The statement follows from Theorems 8.4, 8.5, 9.4, and Proposition 9.2, see Corollary 

8.6.  

Remark. The integral representations for solutions of the equivariant quantum differential 

equations is a manifestation of a version of mirror symmetry. The basis of solutions given by 

Theorem 9.5 is an analog of Givental’s J-function. 

For ˜qi/q˜i+1 → 0 for all i = 1,...,N − 1, the leading term of the asymptotics of ΨbI(z;h;q˜; ˜κ) is 
given by taking the residue at t = ΣI . 

Theorem 9.6. Assume that q˜i/q˜i+1 → 0 for all i = 1,...,N − 1. Then 
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(9.23)  

, 

> m6=0 

where ∆I(Γ,z) = RI(Γ;z)/R(zI) is the cohomology class such that ∆I(zJ;z) = δI,J , and the classes 

 are rational functions in z,h,κ˜ , regular on the domain h 6∈ κ˜Z>0 , za − zb ∈6 κ˜Z, za 

− zb + h ∈6 κ˜Z, for all a,b = 1,...,n, a 6= b. 

Proof. The statement follows from formula (9.21) and Propositions 9.2, 9.3.  

Example. Let N = 2, n = 2, λ = (1,1). As ˜q1/q˜2 → 0, the leading term of the solution 

Ψb({1},{2})(z1,z2;h; ˜q1,q˜2; ˜κ) is the cohomology class 

 

and the leading term of the solution ) is the cohomology class 

 . 

10. Quantum Pieri rules 

10.1. Quantum equivariant cohomology algebra . Let q˜ = (q˜1,...,q˜N) ∈ 

(C×)N have distinct coordinates. The quantum equivariant cohomology algebra  

is the algebra generated by the operators ) of quantum 

multiplication by the divisors Di , i = 1,...,N, see details in [MO, GRTV]. The algebra can be 

defined by generators and relations as follows. 

Introduce the variables ˜γi,1,...,γ˜i,λi for i = 1,...,N. Set 

(10.1)  . 

Theorem 10.1. The quantum equivariant cohomology algebra  is isomorphic to 

the algebra n 

(10.2) C[Γe]Sλ1×...×SλN ⊗ C[z] ⊗ C[h].DWq˜(u) = Y (q˜j − q˜i) Y(u − za)E 

 16i<j6N a=1 
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where Γe = (γ˜1,1,...,γ˜1,λ1,...,γ˜N,1,...,γ˜N,λN ), and the correspondence is 

. 

 

This theorem follows from [GRTV, Theorems 6.5, 7.10, and Lemma 6.10], see also [MTV2]. 

Notice that the parameters in this paper and in [GRTV] are related as follows: h = −hGRTV, q˜i 

= qi−1, i = 1,...,N. 

Example. Let N = 2, n = 2, λ = (1,1). Then Di ∗q˜ →7 γ˜i,1 , i = 1,2, and the relations are 

(10.3) γ˜1,1 + γ˜2,1 = z1 + z2 ,  . 

It is easy to see that the algebra HTq˜(T ∗Fλ) does not change if all ˜q1,...,q˜N are multiplied by 

the same number. In the limit ˜qi/q˜i+1 → 0, i = 1,...,N − 1, the relations in HTq˜(T ∗Fλ) turn into 

the relations in ), see formula (9.1). 

10.2. Quantum equivariant Pieri rules. Recall the weight functions WI(t;z), see (3.5). 

Introduce the variables Θe i = {θ˜
i,1,...,θ˜

i,λ(i)}, Θe = (Θe 1,...,Θe N). Let WI(Θe;z) be the polynomial 

WI(t;z) with the variables  replaced by θ˜
i,a for all i = 1,...,N −1, a = 1, ...,λ(i). For any m = 1,...,N 

− 1, the relation 

(10.4) det  

allows us to express the elementary symmetric functions in the variables Θe m in terms of the 

elementary symmetric functions in the variables ) with i = 1,..., m. For 
example, 

(10.5)  

Relations (10.4) define a homomorphism 

C[Θe]Sλ(1)×...×Sλ(N) ⊗ C[z] ⊗ C[h] → HTq˜(T ∗Fλ). 

Let {WI} ∈ HTq˜(T ∗Fλ) be the cohomology class represented by the image of  
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Theorem 10.2. For any i = 1,...,N and I ∈ Iλ , the following relation in holds: 

(10.6)  

, 

where `i,m1, `j,m2, Ii,j;m1,m2 are defined in Section 4.5. 

Theorem 10.2 is proved in Section 10.4. 

Example. Let N = 2, n = 2, λ = (1,1). Then 

 {W({1},{2})} = γ˜1,1 − z2 − h, {W({2},{1})} = γ˜1,1 − z1 , 

and the quantum Pieri rules take the form 

, 

 . 

These are the same relations as in formula (10.3). 

10.3. Bethe ansatz equations. The Bethe ansatz equations are the following system of 

algebraic equations with respect to the variables t: 

(10.8)  , 

for i = 1,...,N − 1, j = 1,...,λ(i). This system can be reformulated as the system of equations: 

(10.9) lim  = 1, i = 1,...,N − 1, j = 1,...,λ(i), 

 κ→0 Φλ(t;z;h;q) 

see [TV1, MTV1]. 

Lemma 10.3. For I ∈ Iλ and i = 1,...,N − 1, let DI,i(t;z;h;q) be the function defined in (7.1). Let ˇt 

be a solution of the Bethe ansatz equations (10.8). Then DI,i(ˇt;z;h;q) = 0 and the right-hand side 

of formula (7.2) equals zero at t = ˇt. 

Proof. If ̌ t is a solution of equations (10.8), then the second of the two factors in the righthand 

side of formula (4.3) equals zero at t = ˇt.  

10.4. Proof of Theorem 10.2. We have the following theorem. 
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Theorem 10.4. Let ˇt be a solution of the Bethe ansatz equations (10.8). Then there exist 

unique polynomials , such that 

(10.10) det  

for i = 1,...,N − 1, and 

(10.11)  det . 

 

This is [MTV2, Theorem 7.2], which is [MV2, Proposition 7.6], which in its turn is a 

generalization of [MV1, Lemma 4.8]. 

Proof of Theorem 10.2. Formula (10.6) is obtained from formula (7.2) by several 

substitutions. First take qi = q˜i−1 for all i = 1,...,N, substitute the variables  by θ˜
i,j , and 

replace the term DI,i by zero. Then write symmetric functions in the variables Θe m via 

symmetric functions in the variables . As a result, the expression 

 becomes ) according to for- 
mula (10.5). 

Lemma 10.3 and Theorem 10.4 mean that formula (10.6) holds for those values of Γe1,..., 

ΓeN−1 that come from solutions ˇt of the Bethe ansatz equations (10.8). By [MTV2, Theorem 

7.3] of completeness of the Bethe ansatz, such values of Γe1,...,ΓeN−1 form a Zariski open subset 

of all values of  satisfying defining relations of the algebra HTq˜(T ∗Fλ), see (10.2). 

This proves Theorem 10.2.  

10.5. Limit q˜i/q˜i+1 → 0, i = 1,...,N −1, and CSM classes of Schubert cells. In the limit ˜qi/q˜i+1 

→ 0 for all i = 1,...,N − 1, the algebra ) turns into the algebra 

HT∗(T ∗Fλ) and the classes {WI} ∈ H
Tq˜(T ∗Fλ) become the classes [WI] ∈ HT∗(T ∗Fλ). Then formula 

(10.6) takes the form 

(10.12) ] = 

. 
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In particular, identities in (10.7) turn into the identities 

(10.13) (γ1,1 − z1)[W({1},{2})] = −h[W({2},{1})], (γ1,1 − z2)[W({2},{1})] = 0. 

Remark. After the substitution h = 1, the classes [ ) can be considered as 

elements of the equivariant cohomology ). By [RV] these new classes [WI]h=1 are 

proportional to the CSM classes κI of the corresponding Schubert cells with the coefficient of 

proportionality independent of the index I . Hence formula (10.12) induces the equivariant 

Pieri rules for the equivariant CSM classes: 

(10.14) = 

, 

see detailed definitions of the CSM classes in [RV]. 

11. Solutions of quantum differential equations and equivariant K-theory 

√  

11.1. Solutions and equivariant K-theory. Introduce more variables: y = e2π −1h/κ˜, 

i , etc. We will use the acute superscript 

also for the corresponding collections of those variables like Γ´, t´,z´. We will write , 

z´±1 for the collections extended by the inverse variables, for instance, z´  

Let P be a Laurent polynomial in the variables t´,z´,y , symmetric in  for each i = 

1,...,N − 1. Define 

(11.1) ΨbP (z;h;q˜; ˜κ) = X P(Σ´
I,z´,y)ΨbI(z;h;q˜; ˜κ), 

I∈Iλ 

where ) are given by (9.21). 

Lemma 11.1. The function  is a solution of both the quantum differential 

equations , and the associated qKZ difference equations. 

Proof. The statement follows from Theorem 9.5.  
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Lemma 11.2. For a Laurent polynomial P in t´,z´,y symmetric in  for each i = 1,...,N 

− 1, the function  is holomorphic in q˜ on the domain L00 ⊂ CN such that |q˜i/q˜i+1| 

< 1, i = 1,...,N − 1, and a branch of log ˜qi is fixed for each i = 1, ...,N, and ΨbP (z;h;q˜; ˜κ) is 

holomorphic in z,h on the domain L000 ⊂ Cn× C such that 

(11.2) h 6∈ κ˜Z>0 , za − zb + h 6∈ κ˜Z, a,b = 1,...,n, a 6= b. 

Proof. By the properties of ), see (9.22), we need only to show that the function 

) is regular at the hyperplanes za − zb ∈ κ˜Z. This will be done in Section 11.2 

below.  

Consider the equivariant K-theory algebra, see [RTV2, Section 2.3], [RTV3, Section 4.4], 

, 

cf. (9.1). Introduce the variables θ´
i,a , i = 1,...,N − 1, a = 1,...,λ(i). The relations 

 λ(i) i λj 

(11.4) Y(u − θ´
i,a) = Y Y(u − γ´j,k), i = 1,...,N , 

 a=1 j=1 k=1 

define the epimorphism ). Thus the 

assignment  defines a map from KT (T ∗Fλ) to the space of solutions of the quantum 

differential equations and the associated qKZ difference equations with values in HT∗(T ∗Fλ) 

extended by functions in z,h,q˜ holomorphic in the domain L000× L00. We evaluate below the 

determinant of this map. 

The cohomology algebra HT∗(T ∗Fλ) is a free module over HT∗(pt;C) = C[z] ⊗ C[h], with a 

basis given by the classes of Schubert polynomials 

(11.5) YI(Γ) = AσI(γ1,1,...,γ1,λ1,γ2,1,...,γ2,λ2, ... ,γN,1,...,γN,λN ), I ∈ Iλ . 

Similarly, the algebra KT (T ∗Fλ) is a free module over KT (pt;C) = C[z´±1] ⊗ C[y±1], with a basis 

given by the classes of Schubert polynomials 

(11.6)  
. 

Both assertions are clear from Proposition A.7. 
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Expand solutions of the quantum differential equation using those Schubert bases: 

(11.7) . 

Theorem 11.3. Let n > 2. We have 

, 

where 

(11.9) . 

Proof. By Lemma 11.1, the left-hand side of (11.8) solves the differential equations 

 

where  are the modified dynamical Hamiltonians (9.18). Thus det( ) equals the first 

two products in the right-hand side of (11.8) multiplied by a factor that does not depend on 

q˜. The remaining factor is found by taking the limit ˜qi/q˜i+1 → 0 for all i = 1,...,N − 1, and 

applying Theorem 9.6 and Proposition A.9.  

Corollary 11.4. The collection of functions  is a basis of solutions of both 

the quantum differential equations , and the associated qKZ 

difference equations.  

11.2. End of proof of Lemma 11.2. It is enough to show the regularity of 

at the hyperplanes za − zb ∈ κ˜Z assuming that h/κ˜ is real negative 

and sufficiently large. 

For a number A, let C(A) ⊂ C be a parabola with the following parametrization: 

(11.10) . 

Given z, κ˜ , take A such that all the points z1,...,zn are inside C(A + N − 2). Suppose h/κ˜ is a 

sufficiently large negative real so that all the points z1 + h,...,zn + h are outside C(A). Set 

(11.11)  
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indicating the dependence on λ and z explicitly. The integral (11.12) below does not depend 

on a particular choice of A. 

Lemma 11.5. For a Laurent polynomial P in t´,z´,y symmetric in  for each i = 1,...,N 

− 1, we have 

, 

ΨeP (z; (t´;z´;y)Φλ(t;z;q˜−1;−κ˜)Q(Γ)Wb (t;Γ) dλ{1}t. 

Proof. The integral converges provided |q˜i/q˜i+1| < 1 for all i = 1,...,N − 1, and a branch of log 

˜qi is fixed for each i = 1,...,N . Evaluate the integral by residues in the following 

N way: replace Cλ(z) 

by, where B ∈ R>0 , and send B to infinity. Then by (9.21), the resulting series yields formula 

(11.1).  

The integrand in formula (11.12) is regular at the hyperplanes za − zb ∈ κ˜Z, and so does the 

function ). Lemma 11.2 is proved.  

11.3. The homogeneous case z = 0. The quantum differential equations 
depend on z as a parameter and are well defined at z = 0. 

 For any Laurent polynomial P in t´,y , symmetric in  for each i = 1, 

...,N − 1, the function ) is a solution of the quantum differential equations 

, see Lemma 11.1. 

Lemma 11.6. The function  is holomorphic in q˜,h provided |q˜i/q˜i+1| < 1, i = 1,...,N 

− 1, a branch of log ˜qi is fixed for each i = 1,...,N, and h 6∈ κ˜Z>0 . 

Proof. By Lemma , we need only to show that ) is regular if h ∈ κ˜Z<0 . 

We will prove that ΨP (0;h; ˜q; ˜κ) is regular if h/κ˜ ∈ R<0 . 

If h/κ˜ is a sufficiently large negative real, write ) by formula (11.12). Then one 

can replace the integration contour Cλ(0) by the contour 

, 

where ), without changing the integral. With the integration over ), it is 

clear that ΨP (0;h; ˜q; ˜κ) continues to a function regular for all negative real h/κ˜ .  Consider 

the algebras 

. 
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The algebra ) is a free module over C[h] and the algebra KC×(T ∗Fλ) is a free module 

over C[y±1], with bases given by the respective classes of Schubert polynomials, see (11.5), 

(11.6). 

Expand solutions of the quantum differential equation at z = 0 using those Schubert bases: 

(11.13) . 

Let dλ = n!/(λ1!...λN !). Formula (11.8) at z = 0 takes the form 

(11.14) = 

. 

Corollary 11.7. The collection of functions  is a basis of solutions of the 

quantum differential equations .  

11.4. The limit h → ∞. Suppose that ˜qi/q˜i+1 = (−h)−λi−λi+1pi/pi+1 , i = 1,...,N − 1, and ˜qN = pN , 

where p1,...,pN are new variables. The limit h → ∞ keeping p1,...,pN fixed corresponds to 

replacing the cotangent bundle T ∗Fλ by the partial flag variety Fλ itself, the algebras HT∗(T ∗Fλ), 

KT (T ∗Fλ) by the respective algebras HA∗ (Fλ), KA(Fλ), where A ⊂ GLn(C) is the torus of diagonal 

matrices, and the equivariant quantum differential equations for T ∗Fλ by the analogous 

equations for Fλ, cf. [BMO, Sections 7,8]. We will discuss this limit in detail in a separate paper 

making here only a few remarks. 

We identify ) with the subalgebra in ) of h-independent elements, and 

KA(Fλ) with the subalgebra in KT (T ∗Fλ) of y-independent elements. 

The discussion of the limit h → ∞ is based on Stirling’s formula 

(11.15) . 

For Fλ , we have the following counterparts of the master function (t;z;p

 

, 

the weight function 
 N−1 N λ(i) λ(i+1) 
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(11.17) Wb ◦(t,Γ) = Y Y Y Y (ta(i) − γj,b), 

i=1 j=i+1 a=1 b=λ(i)+1 

and solutions of the quantum differential equations 

(11.18) (z;p (z;p; ˜κ), 

(z;p; ˜κ) = X Rest (t;z;p , 

r  

where  and λ{2} = P16i<j6N λi λj . The series converges and defines a holomorphic 

function (z;p; ˜κ) of z,p on the domain in Cn×CN such that a branch of log pi is fixed for each 

i = 1,...,N, and za − zb 6∈ κ˜Z for all a,b = 1,...,n, a 6= b. 

Set . As h → ∞, we have (−h)λ{1}−λ{2} Wb (t,Γ) → Wb ◦(t,Γ), 

(t;z; (t;z;p; ˜κ), 

and 

(z; (z;p; ˜κ). 

If pi/pi+1 → 0 for all i = 1,...,N − 1, then similarly to (9.23), 

(z;p 

, 
m6=0 

where ∆I(Γ,z) = RI(Γ;z)/R(zI) is the cohomology class such that ∆I(zJ;z) = δI,J , and the classes 

b ) are rational functions in z,κ˜ , regular if za −zb 6∈ κ˜Z for all a,b = 1, ...,n, a 6= b. 

Recall the contour Cλ(z), see (11.11). Given a Laurent polynomial P in the variables t´,z´, 

symmetric in  for each i = 1,...,N − 1, define 
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(11.20) (z;p (z;p; ˜κ), 

ΨeP◦ (z;p (t;z;p , 

cf. (11.18). The integral converges and defines a holomorphic function (z;p; ˜κ) of z,p on 

the domain in Cn × CN such that a branch of log pi is fixed for each i = 1,...,N. 

Furthermore, 

(11.21) (z;p; ˜κ) = X P(Σ´
I,z´)ΨbI◦(z;p; ˜κ), 

I∈Iλ 

and the assignment  defines a map from KA(Fλ) to the space of solutions of the 

quantum differential equations with values in HA∗ (Fλ). 

Consider the classes ) given by (11.5), (11.6), and write 

(11.22) ;z;p (z;p; ˜κ)YJ(Γ), 

cf. (11.7). Taking the limit h → ∞ in formula (11.8) yields 

(11.23) det  (z;p , 

where 

. 

Therefore, the collection of functions

 (z;p  is a basis of solutions of 
both the quantum differential equations with values in ) and the associated qKZ 
difference equations. 

Appendix A. Basics on Schubert polynomials 

For references regarding Schubert polynomials, see for example [L, M]. 

Let D1,...,Dn−1 be the divided difference operators acting on functions of x1,...,xn : 

 , 

cf. (3.7). They satisfy the nil-Coxeter algebra relations, 

(A.1) (Di)2 = 0, DiDi+1Di = Di+1DiDi+1 , DiDj = DjDi , |i − j| > 1. 
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Given σ ∈ Sn with a reduced decomposition σ = si1,i1+1 ...sij,ij+1 , define Dσ = Di1 ...Dij . For instance, 

Did is the identity operator and Dsi,i+1 = Di. Due to relations (A.1), the operator Dσ does not 

depend on the choice of a reduced decomposition. Moreover, 

 Dσ Dτ = Dστ , if |σ| + |τ| = |στ|, Dσ Dτ = 0, otherwise. 

Here |σ| is the length of σ. Denote xσ = (xσ(1),...,xσ(n)). Let σ0 be the longest permutation, σ0(i) = 

n + 1 − i, i = 1,...,n. Then 

Dσ0 f(x) = Y (xi − xj)−1 X (−1)σf(xσ). 16i<j6n σ∈Sn 

The Schubert polynomials Aσ(x), σ ∈ Sn , are defined by the rule 

(A.2) . 

In particular,  and Aid = 1. 

Proposition A.1. For any σ,τ ∈ Sn , 

(A.3) .  

Proposition A.2. Cauchy formula holds,  

n−1 n−i 

(A.4) X (−1)σAσ(x)Aσσ0(y) = Y Y(yi − xj). 
 σ∈Sn i=1 j=1 

For any f ∈ C[x] and σ ∈ Sn , define fhσi ∈ C[x]Sn by the rule 

 

(A.5)  . 

Proposition A.3. For any f ∈ C[x],  

(A.6) f(x) = X fhσi(x)Aσ(x). 
σ∈Sn  

Thus C[x] is a free module over C[x]Sn of rank n! with a basis given by Schubert polynomials. 

Recall the notation from Section 2.1, and Imin, Imax ∈ Iλ , 

, 

For I = (I1,...,IN) ∈ Iλ , Ij = {ij,1 < ... < ij,λj}, define the permutations σI, 

 σI(k) = ij,k−λ(j−1) , k ∈ Ijmin, j = 1,...,N , 
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and σI = σI(σImax)−1 . Then σI(Imin) = σI(Imax) = I . 

Let Sλ1× ... × SλN ⊂ Sn be the isotropy subgroup of Imin. 

Lemma A.4. For any I ∈ Iλ , we have AσI(x) ∈ C[x]Sλ1
×...×SλN .  

For example, . 

Proposition A.5. For any I,J ∈ Iλ , 

(A.7) .  

Proposition A.6. We have, 

(A.8) X (−1)σIAσI(x)AσI(yσ0) = Y Y Y (yj − xi). 

 I∈Iλ 16a<b6N i∈Iamin j∈Ibmin  

Proposition A.7. For any f ∈ C[x]Sλ1
×...×SλN , we have 

(A.9) f(x) = X fhσIi(x)AσI(x), 
I∈Iλ 

that is, in formula (A.6), fhσi = 0 unless σ = σI for some I ∈ Iλ , and 

(A.10) .  Define Y Y Y 

 Rλ(x) = (xi − xj). 

16a<b6N i∈Iamin j∈I
bmin 

Proposition A.8. For any f ∈ C[x]Sλ1
×...×SλN , we have 

σI) 

(A.11)  . 

 I∈Iλ λ xσI)

  

Proposition A.9. Let n > 2. Then 

(A.12) det  , 

where  
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Appendix B. aLeading Terms of Solutions and Gamma Conjecture 

The formula (9.23) for the asymptotics of solutions  to the joint system 

of the quantum differential equations and associated qKZ difference equations reminds the 

statement of the gamma conjecture, see [D1, D2, KKP, GGI, GI, GZ]. 

The gamma conjecture [D2, GGI] is a conjecture relating the quantum cohomology of a 

Fano manifold X with its topology. The quantum cohomology of X defines a flat quantum 

connection over C× in the direction of the first Chern class c1(X). The connection has a regular 

singular point at t = 0 and an irregular singular point at t = ∞. The connection has a 

distinguished (multivalued) flat section JX(t) defined by Givental in [Gi1] and called the J-

function. Under certain assumptions, the limit of the J-function: 

 

exists and defines the principal asymptotic class AX of X. The gamma conjecture says that 

AX equals the gamma class Γˆ
X of the tangent bundle of X. 

The gamma class of a holomorphic vector bundle E over a topological space X is the 

multiplicative characteristic class, in the sense of Hirzebruch, associated to the power series 

expansion Γ(1 +  of the gamma function at 1, where γ is the 

Euler constant and ζ(2) is the value at 2 of the zeta function. In other words, the gamma class 

is the function that associates to a holomorphic bundle E over X the cohomology class Γ(ˆ E) 

= Qi Γ(1 + τi) ∈ H∗(X;R), where the total Chern class of E has the formal factorization c(E) = 

Q
i(1 + τi) with the Chern roots τi of degree 2. If E is the tangent bundle of X, we write ΓˆX for 

Γ(ˆ E). Its terms of degree 6 3 are given by the formula 

(B.1)  

see [GZ]. 

Consider the equivariant gamma class of T ∗Fλ , 

 N−1 N λi λj 

ΓbT∗Fλ = Y Y Y Y Γ(1 + γj,b − γi,a)Γ(1 + γi,a − γj,b − h). 

i=1 j=i+1 a=1 b=1 
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cf. (9.2), and the equivariant first Chern classes , of the 

vector bundles Ei over T ∗Fλ with fibers Fi/Fi−1 , see (9.3). Theorem 9.6 can be reformulated as 

follows. 

Theorem B.1 (Gamma theorem for  . For κ = 1, the leading term of the asymptotics of 

the q-hypergeometric solutions  in (9.23) is the product of the equivariant 

gamma class of T ∗Fλ and the exponentials of the equivariant first Chern classes of the associated 

vector bundles E1,...,EN: 

(B.2). 

 

Similarly formula (11.19) can be reformulated as follows. 

Theorem B.2 (Gamma theorem for Fλ ). For κ = 1, the leading term of the asymptotics of the 

q-hypergeometric solutions b (z;p  in (11.18) is the product of the equivariant 

gamma class of Fλ and the exponentials of the 

equivariant first Chern classes of the associated vector 

bundles 

(B.3). 

 

Example. Let N = 2, n = 2, λ = (1,1). For ˜κ = 1, the leading term of the asymptotics of the q-

hypergeometric solutions for T ∗P1 is the class 

 √  √  

(e−π −1 q˜1)γ1,1 (e−π −1 q˜2)γ2,1 Γ(1 + γ2,1 − γ1,1)Γ(1 + γ1,1 − γ2,1 − h) 

and the leading term of the asymptotics of the q-hypergeometric solutions for P1 is the class 

 √  √  

(e−π −1 p1)γ1,1 (e−π −1 p2)γ2,1 Γ(1 + γ2,1 − γ1,1). 
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