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Abstract. We describe g-hypergeometric solutions of the equivariant quantum differential
equations and the associated gKZ difference equations for the cotangent bundle T*Faof a partial
flag variety Fa . These g-hypergeometric solutions manifest a Landau-Ginzburg mirror
symmetry for the cotangent bundle. We formulate and prove Pieri rules for quantum
equivariant cohomology of the cotangent bundle. Our Gamma theorem for T#Fasays that the
leading term of the asymptotics of the g-hypergeometric solutions can be written as the
equivariant Gamma class of the tangent bundle of T*Fa multiplied by the exponentials of the
equivariant first Chern classes of the associated vector bundles. That statement is analogous
to the statement of the gamma conjecture by B.Dubrovin and by S.Galkin, V.Golyshev, and
H.Iritani, see also the Gamma theorem for F1in Appendix B.
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In [MO], D.Maulik and A.Okounkov develop a general theory connecting quantum groups
and equivariant quantum cohomology of Nakajima quiver varieties, see [N1, N2]. In
particular, in [MO] the operators of quantum multiplication by divisors are described. As it
is well-known, these operators determine the equivariant quantum differential equations of
a quiver variety. In this paper we apply this description to the cotangent bundles T *F; of the
gln N-step partial flag varieties and construct g-hypergeometric solutions of the associated
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equivariant quantum differential equations and gkZ difference equations. The g-
hypergeometric solutions are constructed in the form of Jackson integrals.

Studying solutions of the equivariant quantum differential equations may lead to better
understanding Gromov-Witten invariants of the cotangent bundle, cf. Givental’s study of the
J-function in [Gi1, Gi2, Gi3].

The presentation of solutions of the equivariant quantum differential equations as
ghypergeometric integrals manifests a version of the Landau-Ginzburg mirror symmetry for
the cotangent bundle.

In [MO] the equivariant quantum differential equations come together with a compatible
system of difference equations called the gkZ equations. In [GRTV, RTV1] the equivariant
quantum differential equations and gkZ difference equations were identified with the
dynamical differential equations and gkZ difference equations with values in the tensor
product (CM)®" of vector representations of glv. The g-hypergeometric solutions of the
(CM)®n-valued gKZ difference equations were constructed long time ago in [TV1], see also
[TV2]-[TV4]. It was expected that those g-hypergeometric solutions are also solutions of the
compatible dynamical differential equations. That fact is proved in this paper and is the first
main result of the paper. The proof is based on some new rather nontrivial identities for the
integrand of the Jackson integral. The integrand is the product of the scalar master function
and a vector-valued function, whose coordinates are called weight functions. In [RTV1] it
was shown that the weight functions are nothing else but the stable envelopes of [MO] for
the cotangent bundle of the partial flag varieties. Our new identities can be interpreted as
new identities for stable envelopes. We interpret these new identities as Pieri rules in
quantum equivariant cohomology of the cotangent bundle of the partial flag variety. That is
our second main result.

Our Gamma theorem for T *F; (Theorem B.1) says that the leading term of the asymptotics
of the g-hypergeometric solutions for T *F, is the product of the equivariant gamma class of
the tangent bundle of T *F, and the exponentials of the equivariant first Chern classes of the
associated vector bundles. That statement is analogous to the statement of the gamma
conjecture by B.Dubrovin and by S.Galkin, V.Golyshev, and H.Iritani, see Appendix B. See also
the Gamma theorem for Fi (Theorem B.2).

The paper is organized as follows. In Section 2 we introduce the (CV)®"-valued dynamical
and gKZ equations. In Section 3 we define the weight functions and list their basic properties.
In Section 4 we introduce the master function and describe the discrete differentials — the
quantities with zero Jackson integrals. We also formulate there two key identities for the
weight functions — Theorems 4.3 and 4.4. We prove Theorem 4.3 in Section 5 and Theorem
4.4 in Section 6. In Section 7, we summarize Theorems 4.3 and 4.4 as a statement about the
integrand of the main Jackson integral. In Section 8 we construct integral representations for
solutions of the (CM)®n-valued dynamical equations. In Section 9 we introduce the
equivariant quantum differential equations and explain how their g-hypergeometric
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solutions are obtained from solutions of the (CV)®n-valued dynamical equations. In Section
10 we formulate and prove Pieri rules. In Section 11 we show that the space of solutions of
the quantum differential equation can be identified with the vector space of the equivariant
Ktheory algebra. We also discuss two limiting cases of the quantum differential equation. In
Appendix A we discuss the basic properties of Schubert polynomials, and in Appendix B we
formulate our Gamma theorems.

The authors thank G.Cotti, V.Golyshev, and R.Rimanyi for useful discussions. The second
author thanks the Hausdorff Institute for Mathematics in Bonn for hospitality in March 2018,
when the Gamma theorem was discovered. The second author also thanks the Max Planck
Institute for Mathematics in Bonn for hospitality in May-June 2018.

2. Dynamical and gKZ equations

2.1. Notations. Fix N,n € Z-oand h,kx € C*. Let AELL, A=A+ +Ay = " Let
I = (I1,..,In) be a partition of {1,..,n} into disjoint subsets [1,..,In. Denote [y the set of all partitions
I'with |[[| =4;,j=1,..,N.

Consider CNwith basis vi=(0,..,,0,1;0,..,0), i = 1,..,N, and the tensor product (C¥)®"with basis

Vi=Vi @ -+ & Viy,

where the index I is a partition (/3,..,In) of {1,..,n} into disjoint subsets I1,..,Inand ij= m ifj € Im.

The space (CN)®"is a module over the Lie algebra gly with basis eij, i,j = 1,..,N.

:E.'\ :I no__ El}t ”{:E_'\' _:I;;“

The glv-module (CY)®" has weight decomposition ( , where (T"J%"s

the subspace with basis (vi)ien.

2.2. Dynamical differential equations. Define the linear operators Xi,..,X»acting on (CV)®n-
valued

Xi(zihiq) = 3 zeel® — h( + Z Z
a=1 a<hon k=1
Iy {Ir.
+ Y (8 — )
%I{ f,f.' _ {‘r-r R
e
functions of z = (z1,..,zn), 9 = (q1,..,qn) and called the dynamical Hamiltonians:

(2.1)

‘
- el

where "+t = 2= s and a superscript means that the corresponding operator acts on the
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corresponding tensor factor. The differential operators

o)
vq i — B

— — Xi(=z;h:q), i=1,...,. Vi
(2.2) da;

preserve the weight decomposition of (C¥)®" and pairwise commute, see [TV2], also [GRTV,
Section 3.4], [RTV1, Section 7.1], [MTV1]. The operators Vg define the (CN)®n-valued

dynamical connection. The system of differential equations

9 ¢
h'r,r,:_r—'JI = Xilz:;h:q) [, i=1,....V,
(2.3) d; on a (CM)®n-yalued

function f{z;h;q) is called the dynamical equations.

2.3. Difference gkZ equations. Define the R-matrices acting on (CV)®n,

| _ Pl
R“""[H} — i ! . i,g=1...., n, t#Fj.
w—h

Define the gKZ operators Kj,...,Kn acting on (CV)®n:

Ki(z;h;q;k) = R(ii-0)(zi— zi-1+ k) ... Ri1)(zi— 21+ k)
” 'I-.IIIIII.I o qf\:\'.l‘ HI'I'”:[L. - ;”} o HI:.-.E—I:[ 2 — Ziry :I

The gKZ operators preserve the weight decomposition of (C¥)®" and form a discrete flat
connection,

Ki(z1,.,2j + K...Zn;q;K)Kj(z;h;q;K) = Kj(z1,..,2i + K,...,Zn;q;K)Ki(z;h;q;x) for all ij, see [FR]. The
system of difference equations with step k,

(2.4) flz1,2i + K..,Zn;q) = Ki(z;h;q;x)f(21,..,2n;9), on a (CN)®n-valued i=1,.,N,
function f{z,q) is called the gKZ equations.

Theorem 2.1 ([TV2]). The systems of dynamical and qKZ equations are compatible.

3. Weight functions

3.1. Weight functions W 1. Forl€ I, we define the weight functions w i(t;2), cf. [TV1, TV4,

RTV1]. The functions w i(t;z) here coincide with the functions Wi(t;z;h) defined in [RTV1,
Section 3.1].

Recall A = (Ay.,An). Denote AW = A1 + .. + A, i = 1,.,N - 1, AM = pn, and

g

.‘\ i .‘\ f T =% |: -
b = Z.'_JI Wi — E.'_]I'L'\' — i)\ Recall ] = (11,...,IN).SetU.'. e =4 = .0 <
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i } Con51der the variables h and t&', i =1,...,] N—-1la=1..., AT gep 11 = Ze, 0 =

1,..,n. Denote " L;; Jpsaitand t = (tD),.., tN-1),
The weight functions are

v [ ) ‘a (-1 (N —1 -f' t: |
(3.1) W i(t;2) = (~hYo Sym't -t syme T 1 z’l,
A 1 A(-1)
N—-1 Al Ali+1] A+ alal (1 [
¢ ‘ . . Jle.j.l o JI....I _ h
ST T @ n T1 @) T 95500
I| 1 a=l] 4_—| o "!. 1 h=a+1 f" _ fr'.l :
.'.. 1} - J:_:.- h] ;:rJ— 1) - .:.!fl |

In these formulas for a function f{t3,..,tk) of some variables, we denote

Symei,...eef(t,...,tk) = X f(toy,..., tor).

OESK

Example. Let N=2,n=2,A=(1,1), 1= ({1,{2}),] = ({2},{1}). Then
Wilt; z) = =h (1} = 2) Wit z) = —h (1) = 2z, = h)
Example. Let N=2,n=3,A=(12),1=({2},{1,3}). Then
Wit z) = =h (£ = z; = h) (1Y = 24)
Example. Let N=2,n=3,A=(2,1),1=({1,3},{2}). Then

0 Y — 1)

(1) )ty — 2 — R — 2 — h) ——

Wit z) = h]'-’(rrl %) ()

i1 1}
Vgt ) ty =t —h
+U'!z]| }'”“]—LJHI’]I'—M—h}[e’lll'— ;—.F,aj—l_)
!,IJ. f-,l__l

2 1

For a subset 4 ={ay,..,aj} € {1,...,n}, denote za = (zay,...,.Zq)). For I € I, denote zi= (zn,...,.ziv). For

ftay,...tn) € C[ta,...tm]ssx..xsam, we define f{zi) by substituting t0) = (zn,..,z1), j = 1,...,N.

3.2. Weight functions Wv ol. For o € Snand I € I, we define
(3.2) W'si(t;z) = W o-i()(t;20(1),yZ0(n),  Ual(t;z) = Uo-1(n)(t;2o(1),...,Z0(n)), Where o-1(I) =

(0-1(11),0-1(IN))-
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Example. Let N=2,n=2,4=(1,1),I = ({1},{2)),] = ({2},{1}). Then

Wia.1(t; 2) —f:{.f:,':'—.:-..l Wi st z) = —h (I'i"'—:| —h)
Wai(tiz) = —h(t]" — - h) Woaltiz) = —h(t}"— =)
where s is the transposition.
3.3. Three-term relation.

Lemma 3.1 ([RTV1, Lemma 3.6]). Forany o € S,, [€ ), i=1,..,n — 1, we have

. Baii) = Zeli . h ;
II-,h.__I 5= 1) [++1) T!,-_.-_,I’ + i]:—;l‘ o (1
(33) s :rrl_.lf- '?!T[r+l:| 1 'II'I ':.".r:."l '-:n:f—l: t h hetit gt

where sij € Snis the transposition of i and j.
3.4. Weight functions Wi(t;z). Let oo € Shbe the longest permutation, oo(i) = n+1-i,i = 1,..,n.
For I € I, denote

(3.4) Wi(t:2) = (~h) 0 W ooi(t:2), Ul(t:2) = U ooi(t:2).

In other words, we have

(3.5) Wi(t;z) = SymSym, it i 0D Ui(t: z)
1 ( 1)

(3.6) Ul(t;2) =

N—1 A ALF+1} A+ AlT) 1) B S
_ () pli+1)y ) gl gy B %
2101 (0 VSN | RN | ety

_ f':J:]
=1 d=1 b=a+1 7} a

Example. Let N=2,n=2,A=(1,1),1=({1},{2}),/ = ({2},{1}). Then

Wilt:z) = ?Lli]:I =, Wilt:z) = Tr]l: I,

3.5. Modification of the three-term relation. For a function f{z3,...,zn) and i = 1,
.,n =1, define the operator S;i+1 by the formula
Zi— 2 — h
] =1 1

(3.7)  Siipiflz..o z) = flzr,.... Zifls Biy oo g 2n) — f(=1,...12n)

= - -

i — Fi4l 2 — Zitl
Lemma 3.1 can be reformulated as follows.

Lemma 3.2. Forany I € 1), i=1,.,n -1, we have
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(3.8) Wsiin(n(t;2) = (Sii+1 W1)(t;2)

Zi— Zig1— N, ! .
_—_hlru,rl:f Ty e e g Bidle Biyeeeadn) + %Hﬂ,t:.‘:] ..... Zn)

Zi T Zig S S

1 42 =N T
3.6. Shuffle properties. Let n,n1,nz € Z-o, n = n1 + n2. Let ALALAE T (X = "A2| = n,
A=At+A2 Let!t — (.-, }\) be a decomposition of the set {1,..,n1} into subsets such that

|| = AL Let!” — (Jf..... x) be a decomposition of the set {n1+1,..,, n} into subsets such that
|I2| = A%. Define the decomposmon I = (11,...,In) of the set {1, ..,n} by the rule: [j= 111 U I2.

Consider the weight function W;of variables (t(3),..,tM), where £ i '.J“ ------ j.l J) A0 =1
+..+,j=1,.,N-1,and tM = (z,..,,zn).

a7 L?L[ " | )

Consider the weight function Wi of variables ("t(1,..,"t(M), where "t Fianyn ),

Inidy - -
(A=Al A ‘}‘_:" =1 A 1, and "tV) = (z3,...,Zn1). Consider the weight function

i3 (i) (1)
2t =t tay), where “t) forj=1,.,N = Eonogee b -1,
Wi of  variables and Tt = (Zn1+1,...,Zn). Denote (
A = A 4.4 }‘J J=1 v LDefine the connection coefficient
N—1_ (AN a f.:. _ 4 g
C H [( 1_[ H T ) *
(3.9) ama(t;z) = =1 - : ty —ta
(aLylal AL+1) FXELl (ALlF+L)
<(IT I @-w-m)( I 1T« -]
a=1 r'—[..l'_|'.l'|:'+| a=(A1E 41 e=1

Lemma 3.3. We have

Symt(l),...,tu) Symt(N 1), t(N 1) We n Iz(t Z)

1 a1l [M—1]

(3.10) Wi(t;z) = [T ﬂul"l'-ﬂj!f_m )))!

where
1) (N-1)

We n,2(t;2) = Al}[z(t ) Wh( t,.. 321,00, Zn1)

x Wr('ta,..., t(v-1);Zn1+1,...,Zn).
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3.7. Factorization. Consider the glNweight function W,..n)0.. of variables (t(1,..., tt), where

Y pptdl Ll .

T -nf) forj=1,.,N-1,and tM = (z3,...,,.zn).

Lemma 3.4. We have
N-1

(3.11) Wa,.,n0,..0(t),...tv-1);tmn) = Y Wigitz,..,nyo(t();to+1)),
j=1

-[I-{IL_. {t;jl-ﬂ:jll:ll:l' 3 . B iy
where " {1ompte is the gl2 weight function assigned to the partition of the set {1, ..,n}

into two subsets {1,..,n} and @.

170 (L pli—1 J11] Jl1
Proof. The function L 1. plE ) is symmetric in variables (ilu" ok I) due to the

glz2 three-term relations of Lemma 3.1. That symmetry and formula (3.1) imply formula
(3. 11).

3.8. Useful identities.

(&1 1]

(0 o)
Theorem 3.5. Given k € Z-o, consider variables ! o and fori=1,.,k

Set
P [Jll_ll:-'l . fI:JI:I:I I.rrl_l.l.-] _ Jl|_l.l,--i-1J . h:l _ [Jl[lilj . r!;_]I:- _ .II.I] ”,_];.] _ f-jjj.-+lill
G = (7~ W — Y — ) — (67— ) ) — )
and
k1 _ - k iF;;1 ti::- h
H = H({“” - !E; - ‘r".j “'L‘” _ 'rlllI . “}) H - (i} : (i)
=1 i1t —h .
Then
(3.12) Symettiet?  gyme e (D=0
and
(313) Sym.'.:‘”:.'f:‘-!l.' __.Sym?:’.'f:..tg};.-'; |:'|:-1'J.rf| = l-]

Proof. Formulae (3.12), (3.13) are equivalent to

Symrm:-”“((Fi(rjljf] == U

Sym.'.;”..':'-!lll e
Observe that

(o

F+G = @2t -tV -t~ )t ;" — )

F-G ==t ="+ — 26— h)

4

and
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39— 81— 1| g — ity — |
avs (81— = 1) (o) 2222 s (51 =02 =) (s 1) Z =2 )
Sym - Sz — &1 =Sym S2— &1 7,

Hence the function

| by — 51— |
ST PR hﬁ@m g — h) (52— 1) = q
.:1.2].51'~“"‘- fo, ol Hg) — Sym 1452 So — 8

is symmetric both in s1,52 and u,uz. Therefore,

- " () A S B A ) \
WWnlp_wmwﬁﬁr+ﬂuﬂ (26— —t3' — h) x

() .
(plRr _ gl ty — i) (i) 41} (i41)
-1 "“':-f'_-”('l‘i“''_ilc”“_hJ u._ (h )H”lum”rt A ) = 0 k
x Sym
! 2 1 i=1
and
oy sy (F = O)H) = (447 -2 1)

(1) (1) gl i) (i) 1) L(i41)y
W”ﬁ“ — fﬂ . ”ijpi,mnfwn Laithy =0

x Sym.

Theorem 3.5 is proved.

4. Master function and discrete differentials

4.1. Master function. Let ?{) = I'lx/r) T ((h— *)/£) Define the master function:

N-1 sl i,

—_— . [
h- Ty —1in—Ay] S I K ( w1 (i1 —A) {Jr_J)‘—" Lo
(4.1) da(tz; ) = e ) ]:[] : - x
N—1 Al i) 1 3 li+1)
X R - oty — e 3')
H an=1 ( h=1 “:."J ' 'in:l.l] - IF'I:I {'.“'r.lr:;‘l] - !JI:.IJ':I H
ba

It is a symmetric function of variables in each of the groups t®,i=1,..,N - 1.

4.2. Definition of discrete differentials. Consider the space S of functions of the form
®i(t;z;h;9)f(t;2;h;q9) where f{t;z;h;q) is a rational function. Consider the lattice kZ*m whose
— a‘ ' bk

b

L2y - [+
coordinates are labeled by variables’; ©t. The shifts " of any of the t-variables
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preserve the space S and extend to an action of the lattice kZ*uon S. A discrete differential is
a finite sum of rational functions of the form

D,(t + w;z;h;q)

(4.2) f(t + w;z;h;q) - f(t;z:h;9),
Pa(t;z;h;q)

where w € kZ Mo,

4.3. Special discrete dlfferentlals For integers 1 6 a < f 6 N, split the variables t =

i el
(t(),...,tN-1), t U IEEEEE x' 1), into two groups t{®f! and t{«p; as follows:
0. (e |.-| ] (#-1)
{ -jll - I:i:;,'l]nl' ;,'I-T-]: """ re}'ll ]::I
I{t:lju tl.‘\'—l_l (#) {Ir:.-] Fu- (i
and ti™~ {o.8b 7 Ha 3} ), where tie. Lo AMi-1)ifa 61 < fand tiedl =

t, otherwise.

For a rational function g of t{«s},2,q , denote

. ) g—1 ali-tl_
_ gt iz f a1l al )
( 1.3) dﬁﬁ 5g = at {q }_ p q) (}'.J[f” J: I'.'I N H H “r: 1) ;l:l:.lr.l] %
i ] el
_ 3_1 pli+l) A1 abit_y 1 ;
< (0 =An - I 11 u\,,— - T IT - —! _
L=y a=1 = =1 i Al
d—1 L ] -1
— Qo (t5att) — t10y — 1) H | R D
i a=1
i—1 pliFle -1 Al #[JJ _Jl[a;-_li.
() ; \ i
x'{w—- — by JJH H _’Ifl'f””]H H L—)
i=0x i=n a=1 '!I —ta
Lemma 4.1. The function dw.sg is a discrete differential.
Proof. Formula (4.3) is an example of formula (4.2), where
B-1Ai-1-1
flt:z;h;q) = g(tiap;z;h;9) (tRae--1)n — ti(aw)) Y Y (t(ai-1) — taion)
i=a a=1
3—1 Al 1} I.l.l _ h

-l T - -n I T S5

1=yx [ i=a a=l _1.,-:J.l
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JI_[nl r._u|+|.:l

{5-1)
and w has coordinates “aint * Falariye e f

We rewrite dt(a,ﬁ}g as

Y
diwpg = Y g drepg — d teng,
where
3—1 Al i—1})
(44)  dyomg == 9(ts: 2k q}({a‘l" L=t TT H [r'; D40y x
A=dK = I
3—1 Apli+1} A=1 abil—q I'.'_I_ (il —h
[I ll HJ u- (41 ta Alf]
x (ty _—fr,'l]___[ H — 1 [ H H @ M
1=k =1 = a=1 %-' - )"n
g=1 Ali-1} _
(e — 6 = m 1 H cf” D — 50 — h) %
|;_I'I = J
B—-1 AU+l A—1 Alfh—j [.-j £3]
fB—1] () (410 J‘ ta h
% |:-f__'|ll 1-1) #j.[-l]) H H { t |I ] H l__[ '!I[.l fl'” )
Py =1 i=x a=1 il
and
A—1 Ali-11_
dygo.rg = gt 2 h:q}l[i‘:f:l,j:, 1‘[”,1, H H (¢l ”’ h) x
o a=1
A—1 A+l g-1 Al . fs-_h
(3—1) (3} (341
b ('r)'[.i—u _'r)l.:.ﬂ) H H { ,I' :I H H [.u - |.l:|
(4-5) i=a  a=l i=n  a=1 '!l
Denote
(4.6) diepg := SymSym 4t " 8N dita.9;
6] (-1
~ L [W=1) N-1) f? o, 23
(4.7) d @pg:=SymSym = 1 S SR
Py 1 AC-1)
v ey L e J | ] | l|-I a, A .
(4.8) d pg:=Sym = Symt" 1 Gl
py 1 AC-1)
Then
(4 9) d{rl..j}y - G — 15 ”r{rl J}{Jr_ “I'{n 5}{-"

Corollary 4.2. The function  dapyg is a discrete differential.
4.4. First key formula. Let Ae LYy, [Al=n, Fora,f =1,.,N, a 6=, denote

13

al#-1equal to x and other coordinates equal to zero.
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(4.10) Aap= (AymAa—1,.., A5+ 1,..,AN).

Notice that |Azg| = |A|.
Let I = (Iy,...In) € Iy, Ix= (k1,0 k1), k= 1,..,N.Fora 6= ,a =1,.., Aa, b = 1,..,Ap, denote

(4.11) (Db = (11,0 la U { b} Ip = { Bb}ers IN) € Inap.
ForJ € lpand b = 1,..,Ap+ 1, we have (J)po? € 1. The function Ujdefined by formula (3.5) is

a function of variables tqp,z . Theorem 4.3. We have

Ap+1

(4.12) (d wpU)(6:2) = =h * Wi (52).
b=1
Theorem 4.3 is proved in Section 5.

4.5. Second key formula. Let I = (I4,...,In) € Ip, Ik= ('k1,..., ka). For ki,k2=1,..,,N, k1 6= k2, and m1

=1,.,Ak, mz=1,..,Ak, define the element Ikikz;mi,m2=

(I~1,...,I~N) € Ixsuch that I~k = Ixif k 6= k1,k2, and

(413) o= IV { k2 mz} { k1 m1} = IkU {‘kl,m1} - {‘kz,mz}.

Theorem 4.4. ForI € lhandi=1,.,N - 1, we have
Al
(4.14) = (Zf Z (Y Z :,..)H}
J=1 .
hzz Sow, _—JJZ Z Z Wi imims +

N oA,
T Z er[f.j}{'-[fl_’_ ZZJ{J WU (s

J=i4 1 a=1 _| 1
Theorem 4.4 is proved in Section 6.
5. Proof of Theorem 4.3
For n =1, Theorem 4.3 is the following statement.

Lemma 5.1. Letn=1. For 1 6 y 6 n, let JY = (J1,...,/Jn) be the decomposition of the one-element set
{1}, such that Jy={1}andJi=Q forj6=y.Let 16 a <6 N.
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Then
(51) dv{a:ﬁ} U]Y= _hVV]“/ ﬂ = V;
(5.2) d s Uy=0, poé6=7.
(= (=1 LN
Proof. For any y, we have W}, = Uy, and Uy is the function ofti, ...ty Lt = Z1, which is
identically equal to 1, see (3.5).
If 8 =7y, then

diaayUsr = digpUpn = (877 V=77 =) = (77 = 6) = ~h = ~hW,a
which proves (5.1).
The proof of (5.2) is by cases. If § <y, then d~{a',ﬁ}U]y: (1-1)-1=0.Ify<a<p, then d~{a’,ﬁ}U]y
= 0 by identity (3.12). If @ <y < 3, then d U= 0 by identity (3.13).

If @ =y <, then d~{a',ﬁ}U]y= 0 by the degeneration of identity (3.12) as 15— e
For arbitrary n, Theorem 4.3 follows by induction on n from the shuffle properties of

weight functions in Lemma 3.3. To avoid writing numerous indices we illustrate the
reasoning by an example.

LetN=3,n=2,]=(0,{1,2},0),a=1, = 2. Then formula (4.12) reads

(5.3) d" 11,2301 = —hWay,(23,0) - hW(i23,{13,0) .
Indeed, we have

@ o (67 =67 = (07 = 157 = h) — (1" = 6) (1) = 157))
d 11,230y = Sym's 'z

Kl::f':]'iju za — h) (17 — zy) @)
i _]

(23 ) f.[_gzll — .fli_g': —h )

_ Sym“”'-’;:: ([firill:._ ,rll'J]_ ff][ﬂlll B fff:' —h)— “(]I:- B F:F:'J rJ,.;]n B r.’f' AN

(2] (2] y

+ {f_lll:l_JL }{f:|“_ JL-EE:I— .Irl'l:l _{#=|l]— r_l }[?LI|::I—TI:_;.2:};| w

£ — 2 — h )

5 [i""l21 — 29 — h) [z‘."z21 — 2z} o
i

(4]

ts

This is the sum of four terms. The first two are
Fell) |2 1] (2) \ (1} (21 ¢, 0(1) (2)
Symi ([m —t =Rt =ty —h) — (£ — 67 (5 — 67— h)) %

x (87 =z — h) (15— 2)) 2

= -h Sym,
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1) (2 2) o2y fi,i:l — Tlg.l — Jil.' =
rulr._'l:,_\-ﬂ ({ﬁ ) — 113 FHJI Irfl — 2z — h) ity — 21 —qu) = —hH [1rdovn

the last two are

sy (87 =) (67 = 67— by — (67 — ) (1) = 47)

2} [2)
ty =1
T - e g J|.|.2I _ TI?: . h )
=-h Sym’ I'Il_lll.-'::__.il(l:'lr}l. — .ll.lz_l]{f”lz. — Zn — Jr.r_;ll:'.f_:‘rg.l_ :41%) = —hW {2 i1n8
2
1

and we get (5.3).
The treatment of these four terms is an inductive step from n = 1 to n = 2. The analysis of
the first two terms is the application of Theorem 4.3 for n = 1 at the first point z1.

i1 |2_| i :l'| ~
(t —h)— {?' ) corresponds to d {1,2) at z1 and the product

g 2 ; B — ¥ — p
ty) — k) (81 — 25 — h) (87 — 2) 2
A

Namely, the factor

£ (1)
i 1 2
is the connection coefficient between Wi1y,¢,¢ sitting at z1 and Wy {2),¢ sitting at z2, see Lemma
3.3. And the analysis of the last two terms is the application of Theorem 4.3 for n = 1 at the

1) (2] i |:I:- (2

second point z2. Namely, the factor ) corresponds to d {(1,21atzzand

the product

t — ¥ —h

Wt (1 — 2 — (Y - 1)

(ts

is the connection coefficient between W20, sitting at z1 and Wg,(1),¢ sitting at z2, see Lemma
3.3.

6. Proof of Theorem 4.4
6.1. Proof of Theorem 4.4 for N = 2,A = (n,0), I = ({1,..,n},@). Lemma 6.1. We have

Ll

(1) !.1'- g it
L ” - H' et )0 L HI{]-E} IE {1,...,a—1a+1,...n}{a}

(61) n=1

Proof. We will prove formula (6.1) by induction on n. Denote

(1] i1 i1 (1
) A (TIPS sty 20 = (z1,...,2n-1),
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n—1 1 My n—=2
P ¥ P i ﬁ.' _?“J-_h W i1y
A, (t,2) = H(u:ﬂ' ~ ;}Ir”—’f“) B(t"z) = [Tt — =z —n)
h=1 o T by n=I| .
By formulae (4.5), (4.8), equality (6.1) reads as follows:
Fiey oy pralk f \
(6.2) Symietd 2 (8 = =) U _apo(t:2) =

a=]

= () = =) At 2V U oy u}.[n]{f'z]) =0

For n = 1, formula (6.2) is clearly true. For the induction step, we explore formula (3.6). It
implies that the summation term with a = n in formula (6.2) vanishes,

(#,2') B(t" z,) (V) — 2, — h)

n—1
7’

‘;.?I.'Ellz n}_|.1|:t' Z] — ‘4”{..;:_z} {_r[llu

(6.3) {1.... {1 =130

and fora <n,

,-;Il._. ¥
(64) {{I ..... a—1.04+1,.... H’.{rl}{t'z) =

(1)

I{III.I.I—I - ':?i‘ I:l '4-'-' I-l:t" z'r:l [';f:.f...,.'.'— lat1,..., n—1 _I-.{.'.-} Iit”' zi-} ’rj(tﬂ' ':'”:]_

The last formula and the identity

[ i — I — ||I-' | 1 — 1 — II'J
i) o T n—I1 i) . " n—1
ff:lll.f!—.ﬂl {III" ”“} #I_?.'_I _ f:I:Jlfl fEI"'ll_f'"”' {If” 1 i h]' !I.['l".l - f':”:'
(n) (n) (n) (n)
Sym = Sym,
n n-1 n n-1
yield
(1) - 2 ,fﬂl'_‘ ]

(65) Symfllu- ..flr.” ”:'J — -.,....J;‘l,—,[r_t., z'r) {U =10 l_....'-l:-.{rl](t'z)=

= SYm-'il". i “E;Ijl — zn1) Anlt, 2') At 2') x

rala
K ir'{l.....-'.'—l.r|+] ..... n—1}.{n

() B ) (80— 2 1)

Summarizing all observations, we see that formula (6.2) follows from the equality

w An(t.2") Bt z) (1 — 2, — h) x

(6.6)  Symt't.ly -1
n—I1
< (0 ) UR i al#2)
a=1

— (thly = ze1) Ana (B 2V U ity (5 z']) 0

n—1
J

with i not involved in the symmetrization. Since the product
A2V B 20 (Y — 2~ h)

m—1
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i1} (1] . . .
is symmetricin £ ' 1,1, formula (6.6) follows from the induction assumption
n-1
, { (1) — = 'F[f d ‘r'll'| —
6n sy, S (€U 0

n=1

(1]

- {'fn 1 ':J-—ltl-'lu—ll-rt'f'zf:lE-{EIII...!. Ja=1ad1,...,m I].':“':'HI”. Zf]) - “

Lemma 6.1 is proved.

6.2. Proof of Theorem 4.4 for N = 2 and [ = ™, For N = 2, A = (kn - k), we denote

"= ({n—k+1,... npAL " = k1), Then formula (4.14) becomes formula

(6.8) below.
Lemma 6.2. We have
k
(6.8) X(t(1)1 = Zn-k+l) Wign>—k+1,..,n},{1,..,n-k}
I=1n

= X dv{l,Z} U{glnz—k+1 ..... a-1a+1,.,n}{1,.,n-ka}, a=n-k+1
K n—ke il .
Proof. Dividing both sides of the equation by [ Lo Tzt ~ ~a), turns formula (6.8) into

formula (6.1).
6.3. Proof of Theorem 4.4 for i = 1, arbitrary N, and I = ({1,..,n},9....,0).

Proposition 6.3. For I = ({1,..,n},9,..,0), we have

OIS SENITED 9) ST IPLN
=1 .

a=1 j=2 a=l

(6.9)

Proof. Formula (6.9) is equivalent to the formula

T

Z Z“-rij 1} f,i'“}n} — Z Z .,ri'“__,:, {-""r.'.'.
=1

=2 1 §=2 a=l
which follows from the next lemma. Lemma
6.4. Forj=2,..,N we have
n n
(6.10) X(tu-n- tap)) Wi= X d'¢1,3 Unyora

I=1 a=1
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Proof. By Lemma 3.4, the left-hand side of (6.10) equals

TE

N
(- w0 0:0)) [T Wil o Ds)
i=1 =2

(6.11) i#]

It is easy to see that the right hand side equals

(Z dgi-151 Utn,catait,m) fap) (8905 89) ) H WPE e 1it?)

a=]

(6.12) s

Hence, Lemma 6.4 follows from formula (6.1).
Proposition 6.3 is proved.

6.4. Proof of Theorem 4.4 for i = 1, arbitrary N, and I = I, For A = (A,.., Ax), we denote

[me=({n—A 41, nh .o . An}), Then formula (4.14) takes the form
N A1 N A1
(6.13) X X(t+j-r1)¢-n-11 = te)An-21) Winax= X X d {1, W(iImax)o1a,.
j=2 I=1 j=2 a=1

The following lemma implies formula (6.13).

Lemma 6.5. Forj = 2,..,N, we have

Al A
(6.14) X(ta+j-21)g-0-21 = t+pA-11) Wimax= X d (1,13 W(Imaso1a.
=1 a=1

Proof. The left-hand side of formula (6.14) equals

A

rhF E {i—1) (]
(615) SymSym .l."l't:.....'.':ll."l L B e 4:.‘- H., ( , AL 4y b AL — 2y )
(1] 3
N
rils m—1] |1}
% H I[ TR R L Ly S DR L I:t t ]I)
m=2 1

while the right-hand side of (6.14) equals by definition
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i —1 —

[i-1] iy .
f.l.\. N1 (H“;,L-_.—Il _'rn' / H ir.:"i 1) _!I_J 1]

A Ag-n-1 (-1) G- h

35— 1%

(6.16) TR SymSym
| ! 1=1 =1 AG-1) I
AG)
x X Uglyi  (9-A1,b-1b+1,, A0 {L-. 5B} (EG-1) \ {EWi-1D)n}, t()) 4 +1,..4 b=1+20)-11
N
 TT U8 o s (€7 0.200))
s

The equality of (6.15) and (6.16) follows from the following case of formula (6.1):
A1

X(t+j-A1)g-v-2 (1+/)A gl2 (EG-1)G-102eer, EAG - DD EA+DAD A yoeo, EAGOD)
-t M- ) Wii,..,.01,0 1+A

1 1 1 11=1
A1

= X d'(1,2} Uggnz,..,a-1,a+1,.., 213 {a} (£(14j-21) G-1-21,.er, EAGi(=j- 1) 1)~ 1; E(14)AG-AL, e, £ DD ) -
a=1
6.5. Proof of Theorem 4.4 for i > 1, arbitrary N,and I = ({1,..,n},9,..,0). Fori=2,.,N - 1, and
I=({1,..,n},0.,..0), Theorem 4.4 says that

S Y Wr = = 3 dy Uy
=1 N

[r} | )

which is formula (6.10).

6.6. Proof of Theorem 4.4 for i > 1, arbitrary A, and I = [m2x, To prove this case of Theorem
max,j __ miax, 7 s, j
4.4, we introduce a partition*lr T =1 v d; ) of the set (1,..,A)) by the rule

i

(617) Jrl':ll.:l": (R {,-' | )"ijl A;.;, - i _&:{ .-:III.I"I:I )1,:“_“ }

7’

so that |lamaxj| = Aa. For example, ImaxN = Imax.
Formula (4.14) for [ = [max can be written as
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19 E((zf“ 5 ) Wi+ 3 Uy

=1 .'E.I' |'.—":.I'!“"u'l 1 ia=1

N

I=j+1 ]llll %l — IT lI-Jnl-'-'t:.l'

Formula (6.18) follows from the next Proposition.

Proposition 6.6. Fori=1,2,.,N-1,andj=1ii+1,.,N -1, we have
A

( S -y mn)n, = Z“}{’-J'-'I'"r'-!""'“‘".“-'.'...

(6-19) .r"..;_.fl'"'”'" -r&fln:m"" a1

Proof. Fori=1, formula (6.19) follows from Lemma 6.5. For i > 1, we prove formula (6.19) by
induction on A(-1), see Lemmas 6.7 and 6.8 below. If A(-1) = 0, that is, ;=0 forallj=1,..,i - 1,
formula (6.19) follows from Lemma 6.5 by renaming variables.

We will indicate explicitly the dependence of the partitions [max, [maxlgn A:

”:uetx — [“J!?x ..... 'II-;”"I;.\J ) er ax, 1 — U”“ axt ;;:u;t\uj
We fix i,j until the end of the proof of Proposition 6.6, and omit the condition |A| = n.

Lemma 6.7. Assume that formula (6.19) holds for A = (0,...,0,A...,An) with k 6 i. Then formula
(6.19) holds for A = (O,...,0,1, k... An).
Proof. Formula (6.19) for A has the form

(S - 3 )

(6.20) TR Sym. Syme s (Upeen(t)

ov- (Casis L{ gy (0)

= Symyg... Sym; ,

where Cyij+1is the factor in the second and third lines of definition (4.5).

In addition to the variables t = (t(9),.., ")) appearing in formula (6. 20) formula (6.19) for A

{?LH.— | |.l.| f,:¢.+ f (N — f )
contains the new variables tnew --A"-' PULpAkL) e LAl =t gl d and has
the form
- Ir-;_.‘l _ . I,.:_.iu:.) e
(6'21) ( L { L ! Symm)... Syn’rtl"" 1 '-r'! pmal 'L,'J .
I l-:.}l_n..n'.\.n-l

i i
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Aj
= Symmrm.. Sme-:.x 1) ([.T Z U *a [t,})}-.-'-..'+| (rmas),

a=] )

where "t = t U thew = ("tk-1),"t(1,..,"t(M). It is easy to see from definition (3.6) that

(6.22) Urpsx(£) = Urgex(t) F(£)
where F("t) is the product of all factors appearing in (3.6) involving the interrelation of two

variables at least one of those being from tnew. Moreover, F(t) is symmetric in the variables
ma, i Iir!.'l'.ﬂ_'\'. j F-n'uxx FRR I!.:llﬂ_‘\'.:_f 11
t for each I = k,...,N. Furthermore, since *: i and A , the first

factors in the left-hand sides of formulas (6.20) and (6.21) coincide.
By all these observations, to get formula (6.21) from (6.20), we need to verify that

A A
(N —1) ({.T:’Lr'._f—l Z {."”:mx "J.' , — .t{-"-':-ij,_.u__,i+l Z L‘rl: J'_'x'”'x]:'.l. . ) =1

(623) Symm)... Sym~t n=1 a=1

fli=1) # ?un E)
This equality follows from identity (3.12) for the variables "1+~ ESTD LR Al
0 b1}
B ai ?L|+> +111, Lemma 6.7 is proved.

Example. Let N=5,1=(0,0,1,0,0), A~ =(1,0,1,0,0). Fori=3,j = 3, formulas

13 (4]

(6.20) and (6.23) take the form t1 — 1" = 1" =t} and

oo ey (=t (67 = 8 (1P = 5 = n) 5V - 1Y)
Sym'l'I31'|"23 Symn‘ll.-'zl ( 1 1 1 ] 1 d 2 1 J
(d) (5] (4} (%) -rr;"l_l” —h Ir-:_.l:l—fli_”—.ll.l
x (B0 10— n) (i) — ) 2 2 )
(@ Y

_ Symi Symi". ::_,_“(“-:I.'s:-_ .|L|_ B JU["' :.'!jl.] “Ea ) f,"]l: (3) fgl.n-]

r|_3‘;i:_ P,:I'=if|_ h #i’lfl_ r[l:l:_ h)

(3) () ) (4]
JL'_:' ir-] f! JI'|.

x (BY =t — n) (Y — )
respectively. The last equality follows from identity (3.12) for the variables AR ,

i

() 405 {4) 5]
Fori=3,j = 4, formulas (6.20) and (6.23) take the form {1 — ) = Y — ’1[1 o
(3,43 aw e (6 = ) (07 = ) (1Y — 15V — By (85 — 1Y)
Sym.'.fj..'..f Syrnh vhg ( 3 5
" |:f \ #_l.l'l H#IH i‘ :I TI:_;“— ?,:I-’ifl_ h ?‘.:_,I:I— r[l:l:_ .J.l)
‘ 2 TN (3 (3 {4} [
i‘L-'_;.J fj f;! Jt.l”
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Fald) (3) (2) (3]
ar o [ (85 = 57 = B (157 —
=Sym-'-'.3'~-'-'f' Sy 4] 40 (g i 5 1) (L5

@) 5 i) E) b — T — Rt
X ':i‘?_il.l ;'L'I';".II]I:fIIJI: ?lllll.I ) = 1] I (3) 1) : (4 J)
PR
respectively The last equality follows from identity (3.12) for the variables i : {i - 13

it 44

Pt

Lemma 6.8. Assume that formula (6.19) holds for A = (0,...,0,Ak...,AN) with k < i and Ax> 0. Then

formula (6.19) holds for A~ =(0,...,0,0,Ak+ 1,..,.An).

Proof. The proof is completely similar to that of Lemma 6.7. The only change is that the
[ +1) { —1) (]
new variables are tnew “IH W1 bppatrn ooy f|+.\-i‘ 1) 7 iF|+.1L-*--J'kk NN

Example. Let N=3,A=(1,1,0), A = (2,1,0). Fori=2,j =2, formula (6.23) proof follows from

i1 2} :'E;l ::1'
identity (3.12) for the variables 'z "+ f2 " 37, ts

Lemmas 6.7 and 6.8 yield Proposition 6.6.

Theorem 4.4 for i > 1, arbitrary N, A, and I = [maxis proved.
6.7. Modification of the three-term relation. For integers ., 1 6 @« < f 6 N, and
Ae il |Al - ™ recall the notations t{@B}, t{ep}, Aes, in Sections 4.3 and 4.4. Lemma 6.9. For

any 16 a <6 Nand I € Ixs we have dv{a,ﬁ}UI = Cap dv{a,/;}Wb

[

Co 7 N1 -
where [[= At
Proof. | A—1 Ali-1i_g . . Let
(6.24) Coslt.z) = (tytoty = H [T (80 —4% —n) x
i=i a=l|

A—1 Alit+ilog A—1 Al £(0)
h

- T TE - T T S

i a=] i

be the product in the right-hand side of formula (4.5). Since Gqp(tz) is symmetric in the
variables t{{sp)} for every i = 1,..,N — 1, we can apply the symmetrization in those variables to
Ui(t{ap,2) and divide the result by the order of the relevant product of the symmetric groups

before doing the overall symmetrization in formula (4.8) for dv{a,/;}Uz.

This results in replacing Ui(t{a},2) by cap Wi(t{ap,2), see formula (3.5).
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Recall the operator S;i+1 acting on functions of zi,...,.z» given by formula (3.7).

Lemma 6.10. Foranyi=1,.,n-1,16 a<f6 N, and I € l.s, we have

(6.25) Siit1(d {apyUn) = d {apyUsii (1) .

Proof. The product Gep(t,z), see (6.24), is symmetric in z1,..,zn. Hence
‘-r.-;.'.n:—||::uf{r|..l':-{-|':| = Ca,d -5.'..-+||:fli{¢=. Wi = Ca s a5} (Siip (W)

= 'f'n_.-if?[“_ 1']H-J-:._._1|j.l': = ""I.{n.i}r-ﬁ...lil']_

by Lemmas 6.9 and 3.2.
6.8. The end of the proof of Theorem 4.4. Given, 1616 N - 1, we add formulas

(4.14) fori=1,. ,I The result is

(6.26) (Zf ZZ )“I'“ZZ Z Z

=1 r|,|l .—I.- I||rr| 1 rrg—|

5 my = L

I N Aj
=D 2. 2 dualay,

a=l _.5 141 a=l

To finish the proof of Theorem 4.4, we need to prove formula (6.26) for any I and any i =1,
N =1

For any permutation o , denote by |o| the length of o . For any ]]0 € Ix, defme the
permutation oy as follows: if “m = Uhm1 = oo < Jma, }' S = AT < -+ < Jhuan, }

then 74" i) Jmt, Set 0j = 0jimx. The permutation oy has the minimal length amongst all
permutations o such that g(Imax) =],

Lemma 6.11. Assume that for | € Ixand a transposition sii+1, we have |sii+1 07| < |0y |.
Then Sii+1 O] = Osii+1()) .

We will prove formula (6.26) by induction with respect to the length of o:. For the base of
induction I = [max, formula (6.26) is proved already.

Fix I € I1and find m such that |smm+1 01| < |o1|. Let p,r be such that m € [pand m + 1 € I
Since |Smm+101| < |o1|, we have p <r.

Denote | = Smm+1(I). Then I~p: I-{m}u{m+1}, [r=1I- {m+ 1} U {m}, and

I~c = I, otherwise. And clearly, I = Sm,m+1(IN).
Write formula (6.26) for I':
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(6.27)

OO S SRSITETD 3 9 oD >

=1 I'I'E-" =1 _f_.'ll ey =1 i rr|2=!

I'.__.,_.I-:j rl.'-""z

PN N
= Z Z z rf;,:r-.__l.}l!'.'_:j]:-.l

i=1 j=l+1 a=I

where [ = (‘Nc,1,..., ‘NC,AC). We will show that applying the operator Smm+1to both sides of formula
(6.27) transforms it to formula (6.26) for I.

To compare the right-hand sides, observe that “m.m+1 { I); )
m, r.'.'+|{':"|l{.'_.}f _|'| ] _f'f{fj}t (g

= i, Hence, Lemma 6.10

yields i, that proves the desired assertion.
To compare the left-hand sides, observe first that

Sm,m+1(1~i,j:m1,mz) = Lijismme(ma),Smmei(m2)
and
Smm+1(Wrijmimz ) = Wiijsmmsiomiysmmeim2)
by Lemma 3.2. This proves the desired transformation of the second sum in the left-hand side
of (6.27) term by term provided p >lorr6 L. If p 6 | <r, the matching between the terms of
the second sums in (6.27) and (6.26) is not perfect and the sum in (6.26) contains one more

term hWIprmm+1

If p>1lorré6l the sum L&-L 2aci; “uin formula (6.27) is symmetric in zm,zm+1 and equals
the sum L;_-_ Ziaci; ~ain formula (6.26). Thus

S (D=2 )1) = (-3 5 %) Sty

rI-.:Ir

)'II

(=X y )

i=1 ael;

by Lemma 3.2. pr 6 [ <r,then we have
alh

,,,,,_|((Z# ZZ W) (Zr'” ZZ o) Smomsr (W5) + hW;

.II”_ll i=1 acl;

Al

I
= (- )W W
i=1 a&l;

i=1
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since | = Ipr;mm+1. This shows that the operator Smm+1 transforms formula (6.27) to formula
(6.26). This completes the induction step. Theorem 4.4 is proved.

Example. Let N=2,n=3,A=(21), I = ({1,3},{2}), = ({2,3,,{1}), 01 =

s1,2. Formula (6.26) is

(6.28) 15 = 21— 2) Wy + P Weany = dogy (Unyes + Usnoa),
formula (6.27) is

(6.29) 1 = 2= =) Weane = dpay Ueyom + Usnom),

and the operator S1,2 transforms formula (6.29) to formula (6.28).

7. Corollary of Theorems 4.3 and 4.4

Let A € 28y, |A] = "t and I € I. Recall the notations (I)a? , Lijzmi,mz, see (4.11),
(4.13), and the discrete differentials di«p g , see (4.6). Define the discrete differential

N Aj -1 A
(7.1) Dii= XX din Unjie— X X diijiUia.
Jj=i+1a=1 j=1la=1
Corollary 7.1. We have
Al ai-m i—1 .y N o
(7.2 (Zf';- Sy Z.—;r,)n} 4 ;a(zu 3 L)n} |
i=1 . i=1 aEl; — b i J=i+l i 9
N Ay A
+ h ( ”-lrr - ”F ) = D;_J
i Ei g% Eme
Proof. Theorems 4.3 and 4.4, and formula (4. 9) 1mply that
Al ali=1) A
i (i—1)
(-3 47 -2 =) 333 Z
_ — o .I'_I j= .-.|.||—| m _g—l
1=l J=1 £ I o tymg
N A A i—1 q A A
- h Wi . +h : (,\ Wy A W, )
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N

NA
rn Yy X (er-n'f+ SN W, .) D,
; 1 .

a=i+l =45 ny=1 ma

Formula (7.2) is obtained now by rearranging the terms in the left-hand side of this equality.

Recall the scalar master function ®,(t;z;h;q) given by (4.1). Define

N-1 N

(7.3) Q) =YY (1-qj/qi)nrx.

i=1j=i+1

A G . .
Introduce the ([L 'a -valued weight function

(7.4) Wa(t:z;h) = X Witz h)vi.

1€}

Recall the dynamical Hamiltonians Xi(z;h;q) defined in (2.1).

Theorem 7.2. For every i = 1,..,N, we have

i - .
(m,r. _f — ."L.[z:.i'e:qj) Qalq) Dy
s

(7.5) (tzhg)Wa(t2) =

= () Pa(t:z2h:q) X Dii(t:zh;q)vr.

(SN

Proof. The statement is equivalent to Corollary 7.1.
8. Integral representations for solutions of dynamical equations

8.1. Formal integrals. ¢t A € ZZo+ IAl =7 and k € ¢~ Consider the space of functions of
the form ®,(t;z;h;q)f(t;z;h;q), where ®,(t;z;h;q) is the master function (4.1), and f{t;z;h;q) is a
polynomial in t and holomorphic function of z,h,q on some domain L © C"x C x CN. Assume
that we have a map M assigning to a function ®,f a function M(®,f) of variables zh,q ,
holomorphic on L, such that:

(i) The map M is linear over the field of meromorphic on L functions in z,g,h,

(8.1) M(Palgifi + g2f2)) = mM(PAS) + g2 M( D f2)
for any meromorphic functions gi,g2 of z,h,q , such that gifi and gzf2 are holomorphic
on L.

(ii) Foranyi=1,..N, we have



28 VITALY TARASOV AND ALEXANDER VARCHENKO

il

: JMf‘I'.h,f::' = M _rj |:1:1h}hf';'|
(8.2) g, J .

Ji
(iii) If fis a discrete differential of a polynomial in ¢, then
(8.3) M(®xf) = 0.

A map M is called a formal integral. We have the following corollary of Theorem 7.2.

Lemma 8.1. If M is a formal integral, then the (4% I1-valuedfunction

Fu(zh;q) := QaM(DaW) = WX M@ Wvi

I€l

holomorphic on L, is a solution of the dynamical differential equations (2.3).

8.2. Jackson integral. Consider the space CuxCnxCxCN with coordinates tzh,q . The lattice

kZMunaturally acts on this space by shifting the t-coordinates.

. U:.- I — { (k) - k) } i
Let] = (Ju...,/n) € In. Recall the notation Yi=1 i = 1J1 = - = Jyu 1 Define
¥jc Ctmx Cnx C x CNby the equations:
) = 2,  k=1,...,. V-1, i=1,..., A
(8.4) : il ' )

and call it a discrete cycle.

For a function of t and a point s € CAu, define Res:=sto be the iterated residue,

[ =01 s s
P Res . ,x-u -y

4 |'-x_ H L
Rest=s= Res*i "=+ €S, 1y =sm... Rest:” =4 *
T — : 5 —

A1) AMA( 1)
1)

Let L9 be the complement in C"x C of the union of the hyperplanes
(8.5) h = mk, Za— Zb= MK, Za—Zb+ h = mk,
foralla,b =1,..,n,a 6= b, and all m € Z. Let L% c CNbe the domain

(8.6) |qi+1/qi] <1, i=1,..,N-1,

with additional cuts fixing a branch of log gifor alli = 1,..,N. Set L = L0 x L00 c C"x C x CN,

A

Let f(t;z;h;q) be a polynomial in t and a holomorphic function of z;h;q on L. For

(z;h;q) € L, define

(8.7) Mj(Prf)(z;h;q) = X Res=syirn CDA(t;z;h;q)f(t;z;'r'-'E ql).
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o
This sum is called the Jackson integral over the discrete cycle ;.
Lemma 8.2. The map Myis a formal integral.

Proof. Each term of the sum in formula (8 7) is a holomorphic function on L° Moreover,

Rest_zmx Da(t;z;h;9)f(t:zh;q9) = 0 if i Z Hence the sum over Z*ureduces to the sum over
A
Z0 . The result is similar to a multidimensional hypergeometric series multiplied by some

fractional powers of qi,..,qn . The obtained sum converges if |gi+1/qi| <1 foralli=1,.,N -1,
and gives a holomorphic function on L.

Properties (8.1)-(8.3) for the map M;are clear. Lemma 8.2 is proved.

Lemma 8.3. The function M;(®,f) analytically continues to the hyperplanes h = mk for m € Z-o

Proof. By the proof of Lemma 8.2,

(8.8) M;(DAf)(z;h;q) = X Rest=s+rk CDA(t;z;h;q)f(t;z;'}"? q)),
gzplth
~ T ‘U-}
for (z;h;q) € L. By inspection, if h - mk, m € Z>0, and r~ = # , then

Rest=s+rk CDA(t;z;h;q)ﬂt;z;'F"-: q].}' * Rest=x+rx Da(t;z;miq)f(t;z; M1 q) ]
Hence

(8.9) Mj(Drf) (z;h;q) — X Rese=s+m Pa(t;z;mr;q)f(t;2; 111 ‘f”,
il

r="tEn

since the sum in the right-hand side converges if |qi+1/qi| <1 foralli = 1,..,N - 1.

Remark. For m € Z-o, the sum Prezm} Rese=sj+me ®A(t;z;mK;q)f(t;z; ™ Hiq)] diverges, and the
function M;(®xf)(z;mk;q) is not given by formula (8.7).
Example. Let N=2,A=(1,n-1),J/=({1},{2,3,..,n}). Then

hiq) = (77 ) Zie s (o ”’"""'”) Hr( fu)r(rf.—f:u_'i'ﬂ,)

CDA(t,Z, a=1 I ,

and

(8.10) M(1},23...n0)(Paf) = X Resti ' —#1 7 (A )]
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rez
Nonzero contributions to the sum in the right-hand side of (8.10) come from the poles of

e LA
Py = 21/n), Explicitly, the answer is

.-'H.:{ 13.42,3,m}) [gl}l f ) = (e =1 [n—1 ]{“ ].'|_.-_-.- [E_:V-‘_l {]r._,]E:.I o Zafk .

X K ]—(i:) ﬁr(:;::r.) r(:”_i]_'_h:] y

N Y = h+ju — o+ h+ gk
* on—Ikzh J(—) = -
fa o () e I

=i G=il a=2

and the series converges if |q2/q1| < 1.

8.3. Solutions of dynamical equations. Recall the ('-':'ﬁ"' 15 "-valued weight function W) (t;z), given
by (7.4). For ] € I, define

(8.11) W)(z:h;) = (@M @WA) (5:h59) = a(q) X Mi(@AW1) (Z:hsq)vr.

I€l

Theorem 8.4. The function W(z;h;q) is a holomorphic (o \-"fﬁ-valuedfunction of z,h,q on the
domain L c C'x C x CNsuch that

h 6€ kZs0, Za— Zb BE KZ, Za—Zb+ h 6E KZ,

foralla,b=1,.,n,a6=>b,
lgi+1/qi| <1, i=1,.,N-1,

and a branch of log qi is fixed for each i = 1,..,N. Furthermore, W(z;h;q) is a solution of the
dynamical differential equations (2.3).

Proof. The weight functions Wi(t;z;h) are polynomials in t,zh and do not depend on g .
Hence, Theorem 8.4 follows from Lemmas 8.2, 8.3, and 8.1.

Theorem 8.5. Under conditions of Theorem 8.4, the collection ofm:'w ﬁ”-valuedfunctions

Vrlzih:q) ) rem, is a basis of solutions of the dynamical equations (2.3).

Proof. By formulas (8.8), (8.11), if |gi+1/qi| — O for alli = 1,..,N - 1, then

(8.12) W(zh;q) " Qa(q) Resey ba(tiz @) WalZrizh 2
h; q)) Z Wiz h)
= W(q) Rese=x,Pa(t;z; Tely )

: I\(H’:r |iEJ: i .FJ.}:I Fr 3 . . .
By [RTV1, Lemma 3.1], the matrix * 411,774 is triangular and the diagonal entries
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Wi(Zr;z;h) are nonzero if h 6=0and za—zp6= 0, za— zo+ h 6= 0, for all a,b = 1,.., n, a 6= b. Hence

. LR . Wz hig) . :
the vectors Wi()), ] € Ix, form a basis of ("r“ J3" and the collection Wilz:hiq) ) reais a basis

of solutions of the dynamical equations (2.3). The functions W)(z;h;q) were considered in
[TV1]. It follows from [TV1, Theorem 1.5.2], cf. [TV4], that for every J € I, the function
Yj(z;h;q) is a solution of the gKZ equations

(2.4).

Uiz hiq))

. (N . . . .
Corollary 8.6. The collection of (T3 valued functions JET, s a basis of solutions

of both the dynamical and gKZ equations, see (2.3), (2.4), with values in (5"
Remark. The functions Wj(z;h;q) are called the multidimensional q-hypergeometric solutions

of the dynamical equations. In [TV5], we constructed another type of solutions of the
dynamical equations called the multidimensional hypergeometric solutions.

9. Equivariant quantum differential equations

=
9.1. Partial flag varieties. Let * € “n, Al —n
parametrizing chains of subspaces

. Consider the partial flag variety Fx

O0=FycFic..c Fy=(Cn

with dimFi/Fi-1=A;, i = 1,..,N. Denote by T *Fx the cotangent bundle of F,and

Xn= [ T «Fa.
[A|=n

Let uy,...,un be the standard basis of C. For I € I, let x; € F be the point corresponding to
the coordinate flag F1 C ... € Fn, where Fiis the span of the standard basis vectors u; € C" with
j€NhU..Ul.Weembed Fyin T *Faas the zero section and consider the points x;as points of
T *F;.

9.2. Equivariant cohomology. Let A © GLn(C) be the torus of diagonal matrices and T = AxC*,
The group A acts on C"and hence on T *F,. Let the group C*act on T *Fx by multiplication in
each fiber. We denote by -h its C*-weight.

We consider the equivariant cohomology algebras Hr*(T *F»;C) and

HT*(Xn) =M HT*(T *F/\;C).
|A|=n

Denote by I'i= {¥i1,..,¥i1} the set of the Chern roots of the bundle over F,with fiber Fi/Fi-1. Let
I' = (T'1;...;Tn). Denote by z = {z1,..,,.zn} the Chern roots corresponding to the factors of the torus
A. Then
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"' I
i=1 j=1 =1

N M
. & fre % T S, S f v 3 -
(9.1)  HH(T"Fy) = C[I']™ " @ Clz] @ Clh /': [IIT = = [Tt J}

The cohomology Hr*(T *F,) is a module over Hr*(pt;C) = C[z] @ C[h].

Notice that
N-1 N A A
YYYY
(9.2) (¥ib = Via) (Via = yib = h)
i=1 j=i+1 a=1 b=1

is the equivariant total Chern class of the tangent bundle of T *Faand
Ai

(9.3) i=1..,N,

c1(Ei) =X Yia,
a=1
is the equivariant first Chern class of the vector bundle Eiover T *Fa with fiber Fi/Fi-1.
Fori=1,.,N, denote ©;= {6i1,...,0ir»} the Chern roots of the bundle F ;over Fy with fiber Fi.
Let © = (01,...,0n). The relations

AW i A
(9.4) Yu-6)=YY(u-y0 i=1,..N,
a=1 J=1k=1

define the homomorphism

C[@]m "% @ Clz] @ Clh] — H3(T*F)

9.3. Stable envelope map. Recall the weight functions W ;defined in Sections 3.1. Let w
1(®;z) € Hr*(T *F1) be the cohomology class represented by the polynomial w id(t;z) with the
variables ! @ replaced by Oiqforalli=1,.,N-1,a=1,..,A0. Denote

N-12® 2@

cA(®) =Y Y Y(Bia— Bib— h) € Hr«(T «Fa).

i=1a=1b=1

=1
Observe that ci(®) is the equivariant Euler class of the bundle B Hom(F 4F o) if we make
Cxact on it with weight -h.
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Theorem 9.1 ([RTV1, Theorem 4.1]). For any A and any I € 1, the cohomology class w 1(0;2)

€ Hr*(T *Fa) is divisible by cA(®), that is, there exists a unique element Stabr € Hr*(T *F;) such
that

(9.5) [W* 1(0;2)] = cA(©) - Stab.
Define the stable envelope map by the rule
(9.6) Stab : (CM)®" Q) C[z] ® C[h] = Hr*(Xn), vi7— Staby.

Remark. Stable envelope maps for Nakajima quiver varieties were introduced in [MO]. They
were defined there geometrically in terms of the associated torus action. The map Stab given
by formula (9.6) is the stable envelope map of [MO] for the Nakajima quiver variety Xu,
described in terms of the Chern roots 0,z,h, see [RTV1].

Remark. After the substitution h = 1 the classes Stab: € H3(T “Fx) can be considered as

elements of the equivariant cohomology A *) of the partial flag variety Fi (and not of

the cotangent bundle T *Fj). These new classes are the equivariant Chern-

SchwartzMacPherson classes (CSM classes) of the corresponding Schubert cells, see [RV].
Let C(z;h) be the algebra of rational functions in z,h. The map

(9.7) Stab : (CM)®" ® C(z;h) — Hr*(Xn) & C(zh), vi7— Staby,

is an isomorphism of C(z;h)-modules by [RTV1, Lemma 6.7].

9.4. Hr*(T *Fa)-valued weight function. Define the Hr*(T *Fa)-valued function Wp (t;I') as
follows:

i1l il .. [N—1) [N—1}) {[tl—‘:l
(98) Wb (t;r) - Sym oo | (11 Symrl ..... t [(N=1} b ,
A A
N1 A% ra—l Al i g
S L R Py

i=1 a=l =1 d=n+1 h=a+1 ta iI-I;.l-I .
where ("I|'T:I~ e () b= (71,00--- V1,300 ¥2 000 e e V2, Aqr v s TN L e W, ax), cf. formula (3.1)
for I = 1™ = ({1,..., N In—Ay—+1,..., nt)

“Tr \ n—1 \
Example. Let N = 2,4 = (1,n - 1). Then W (E: ) = [T (1 = 2.).
Let N=3,A=(1,1,1). Then



34 VITALY TARASOV AND ALEXANDER VARCHENKO

-~ - P oY . . . I||IZJI . ,f!'; _ ,‘

Wi(t.T') = I-fJLI'L“ — 1y ) fflill — Y2 ) (57 = 7a,1) [?L-lg_)'l =71 —h) [’L-Izl'l = 7a1) Ifl_i: _Ir:_?. -+
1 2

; i A P, “ \ ?L.IEI _ r|:2 s
+ () =67 () = )ty = 330) (017 — 70— B) (117 — 75.0) _)fl'!: -f )

2 1

Define N-1 N Ao A

(9.9) QM) =YYYY(Yia—yjb—h) € Hr«(T «Fa).
i=1j=i+1 a=1b=1

The image of the (ﬂ'""ﬁ"-valued weight function Wy(t;z), see (7.4), is given by the next
proposition.

Proposition 9.2. We have

(9.10) X Wi(t;z) Stabias= Q(T)Wh (£;T).

1€l

Proof. Recall that Wi(t;z) = (-h)~m w o01(t;2), see (3.4). Recall the discrete cycle X given by

(8.4). Let o € Spbe a permutation such that ¢/(/min) = [ . Then formula (9.10) is equivalent to
the following equality

(9.11) XW oi(t:2) W 1(Z52) = ca(Z)QIW oy(£:2).

VS

For the proof of formula (9.11), consider the function

Z(t"tz) = Xw o01(t;2) w 1I(Ct;2).

1€l

Here "t is an additional set of variables similar to t. Then formula (9.11) reads

(9.12) Z(632) = a(Z)QEAIW wy(t:2).

Three-term relations (3.3) imply that for any o € S», we have

(9.13) Z(t'tz) = Xy oi(t;2) w o001 ("t;2).
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1€}

By [RTV1, Lemma 3.2], we have w ao01(Z1,2) = ca(2))Q(27)d1y . Thus taking o = o/,
"t = ¥jin formula (9.13), we get equality (9.12). Proposition 9.2 is proved. Define

the cohomology classes

N-1 N Ao A

(9.14) R =YYY Y(¥ia- ¥ib)
i=1j=i+1 a=1 b=1
and
N-1 N A
(9.15) Ri(T;2) =Y YYY (- 2), I€T.

i=1 j=i+1 a=1 bel, Notice
that Ri(z5;z) = R(2))61y.

Proposition 9.3. For any K € I, we have

(9.16) X Wi(Zk;2) Stabiar= (-h)-*uca(@)Rx(T;2) Q(T).

I€l)

Proof. Formula (9.16) is equivalent to the equality
Y Wy a(Eki2) Wi(E:2) = (ea(E))" R(2s) Q(z4) b1k
(9.17) IeTy,

By [RTV1, Lemma 3.2], we have W o)(Ex.2;h) = ca(2)R(2)8) . Thus taking "t = Zxin formula
(9.11), we get equality (9.17).

Formula (9.17) also follows from [RTV1, Lemma 3.4]. Proposition 9.3 is proved.

9.5. Quantum multiplication by divisors on Hr*(T *F;). The quantum multiplication by
divisors on Hr*(T *F;) is described in [MO]. The fundamental equivariant cohomology classes
of divisors on T *Fa are linear combinations of Di=y;1+... + ¥ix, i = 1,...,N.
The quantum multiplication i *4 : Hi(T"Fx) = H{(T"Fx) by the divisor Di depends on
parameters "= (q¢"1,..,q"~) € (C*)¥Nand is given in [MO, Theorem 10.2.1].

> quant . i
The quantum connection Vg on i1 #4) is defined by the formula
= fquant = {} ) - T
Vigai = ff.'ﬁ — D5, t=1,...,. v,
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where "k € C*is the parameter of the connection, see [BMO]. The system of equations for flat
sections of the quantum connection is called the system of the equivariant quantum
differential equations.

E.ﬁ...r,i..l.'.: = vl’;..h‘.l (ONyEn

The isomorphism Stab allows us to compare the operators xof

\Y

. i A
the dynamical connection on ({L Ja", see (2.2), and the operators Vg of the quantum

connection on Hr*(T *F).

Recall the dynamical Hamiltonians Xi(z;h;q), see (2.1). Define the modified dynamical
Hamiltonians
(9.18) X, (=z:h:q) =
.

1

. . if; . i .

Niz:h:g)| voon — h min(A;, A:) — h E min(A;, A;)

(=i ki @] omg el lF ' Parrdll Bl o
The modified dynamical connection on (Eﬂ',\-‘fﬂ is
) .
Vy o = kgi— — X, .z h:q), i=1..... V.

(9.19) A dgi M

see [GRTV, Section 3.4]. Recall that hgrrv = —h.

Theorem 9.4 ([RTV1, Corollary 7.6]). The isomorphism Stab identifies the operators Di x4 of
quantum multiplication by Dion Hr*(T *F,) with the action of the modified dynamical

Xy (zhig !l

. . F o1 =1 -1
Hamiltonians Lon (T3 1, whereq~ — (it ) Consequently, the

differential operators V/\q“am,q”',lc,l" are identified with the differential operators VA,qtl,-K,f
See also [RTV1, Theorem 7.5].

Set N No1 N
(9.20) (G K) =YY (1 - q"i/q7j)mminOx-1)/ic .
i=1j=i+1

Set A2y = P16i<j61v7u7tj. Forany I € I, define

(921) ';I}I{z;h:q": i) i Altl 2Apay [_I])-.["r Aoy {I-{_h:’,‘;‘_”—}t- 'l_l:'lrl:?..i h q*-:;l. ]’

U, (2 b q.r) = f_h{t}": i) Z Restsine OA(t:2;q" LR QI WI(E, + ri: I')
moadl)
=t
Wiz b g %) belongs to the extension of HT "Fx) by functions in zh,g”x” holomorphic on
the domain L < C"x C x CNsuch that

(9.22) h 6€ KZ-0, Za-Zb6E K'Z, Za—Zb+ h 6E K'Z
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forallab=1,.,n,a6=>b,
|q7i/qi+1] < 1, i=1.,N-1,

and a branch of log “giis fixed for each i = 1,..,N.
Example. Let N=2,n=2,A=(1,1). Recall the Gauss hypergeometric series

[ 1}

- )y (D) ™
Fila,byeyx) = z L

() e
=[] oA ,

where (u)m=u(u - 1)..(u - m+1). Set

Flz,zo i kiz) = 3F.(—#—3.Lj_h ':-'_EE:J')

[ i 1+ E
and
y . i F .
Fiizi,zaihikix) = — (5.2 hikix)
ir .
Then
Uiy en(z. s hiqu, gos £) =
N R o N Sy oy - Zn— i — I — h
=& Cle Y Q)T e e ) T( - )T( - )
[ I

X (10— 720 —h) {lr“.-z.l — 2 ) Flzy, z b Ry o /g2) — B (g1 /G2) F'(z1, 223 'Ff'-f:'-ffn"'f}:,'l.}'

and'l'f{'-’l-{ll-l':: 21, 223 R Gy, Gas ) = u'rl.:|}.-:2}:-|:-3":- s b gy ot K.

Theorem 9.5. The collection of functions Werlzhegik)) g I IS a basis of solutions of both the

quantum differential equations Vgl 0, i=1...1 A

difference equations.

, and the associated qKZ

Proof. The statement follows from Theorems 8.4, 8.5, 9.4, and Proposition 9.2, see Corollary
8.6.

Remark. The integral representations for solutions of the equivariant quantum differential
equations is a manifestation of a version of mirror symmetry. The basis of solutions given by
Theorem 9.5 is an analog of Givental’s J-function.

For“qi/q"i+1— 0 foralli = 1,..,N - 1, the leading term of the asymptotics of Whi(z;h;q"; "k) is
given by taking the residue at t = ;.

Theorem 9.6. Assume that q"i/q"i+1— 0 for all i = 1,..,N - 1. Then
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N
Wi(zihig: i) = [ (77T i) Zoerie/
i=1

N1l N -. ﬂ
e H 1(1_,_%'?"”)1(14_ 0 .'.—h)
(923) i=1 j=i+l acl; bel, F: :
X (i"..u + Z 1[1““.-.’3 he &) H (rqu, )rnl)
W1 "
>;n6 0

where Ai(T,z) = Ri(T;z)/R(z1) is the cohomology class such that Ai(zj;z) = 81y, and the classes

VimlzihiB] gre rational functions in z,h,K", regular on the domain h 6€ KZ>0, Za— Zb €6 K'Z, Za
-Zp+h€6KZ forallab =1,..,n,a 6=Db.

Proof. The statement follows from formula (9.21) and Propositions 9.2, 9.3.
Example. Let N=2,n=2,A=(1,1). As"q1/q2— 0, the leading term of the solution

WYhnzn(21,22;h; "q1,q"2; "k) is the cohomology class

I e T T I o — 2 31— za— 1
|::|' R, ]r.li-_::lll'.h |:_{' ' ]I"ll';.!:|"'>". r(l—'- 2 _ |)1"(| +I*U)_x|{]}1‘”|

I Lt

and the leading term of the solution ¥ {2}{1})(#1: 221 i 41 21 £) is the cohomology class

R, e T — 5 o — 2 — F
(7™ T )=/ (VT @) A D (14 22 D14 20 ) Ay

A
10. Quantum Pieri rules

10.1. Quantum equivariant cohomology algebra H7(7 "), Let " = (¢"1,...q'n) €
(C)Nhave distinct coordinates. The quantum equivariant cohomology algebra Hy(T*Fa)

is the algebra generated by the operators i*q : Hp(T"Fx) = Hi(T"Fay of quantum
multiplication by the divisors Di, i = 1,..,N, see details in [MO, GRTV]. The algebra can be
defined by generators and relations as follows.

Introduce the variables “yi3,.., Y infor i = 1,..,N. Set

Iy "
Wi u) 1](1(‘r . H rr— J.I—J"r r—;l])
k=1

(10.1) ig=1,

Theorem 10.1. The quantum equivariant cohomology algebra 'Hff-['f’*}-} I is isomorphic to
the algebra n

(10.2) C[Te]sux.xsw@ C[z] @ C[h].DWq(u) =Y (¢75-q71) Y(u - za)E

16i<j6N a=1
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A i—1 - N

Dixg — [Z Fik — h Z - q — min(0, A; — A;) — h — min(0, A; — A;)

— — 4 — G Pt !

whereT'e = (V' 11,..., Y 1.0,V N1,...,Y Nav ), and the correspondence is

This theorem follows from [GRTV, Theorems 6.5, 7.10, and Lemma 6.10], see also [MTV2].
Notice that the parameters in this paper and in [GRTV] are related as follows: h = —hcrrv, i
=qi1,i=1,..,N.

Example. Let N=2,n=2,A=(1,1). Then Di*4—7 y”i,1, i=1,2, and the relations are

" :'I —Jrl'
(10.3) Y11+ Y 21=21+ 22, e g2 = 1

It is easy to see that the algebra Hr4 (T *F») does not change if all “q3,...,g"vare multlplled by

(Y11 =21 —h) = 2122

the same number. In the limit "q;/q"i+1— 0,1 = 1,..,N — 1, the relations in H79 (T *F,) turn into
the relations in /{711 "F4), see formula (9.1).

10.2. Quantum equivariant Pieri rules. Recall the weight functions Wi(t;z), see (3.5).

Introduce the variables @¢ i = {HNi 1,...,6~mm} B¢ = (B¢ 1,..,0¢ n). Let Wi(Og;z) be the polynomial

Wi(t;z) with the variables ¢l replaced by 0 iaforalli=1,..,N-1,a=1,..,A0. Foranym=1,..,N
-1, the relation

A
(rhl I H{” _-:'-'-Il-_'lrfl-f _..lﬁ.il]) - H [rj!l _{JIJ} H l.,“ r.-rr-I
k=1

.l._|_|

(10.4) det

1 1< _.;=':_ 1]

allows us to express the elementary symmetric functions in the variables @e min terms of the

elementary symmetric functions in the variables I'i = (%i0s 2 %ia) with i = 1,.., m. For
example,
Am)

1T Ag -
ZI‘L_., X X",;_;,. — h Z (Ai — Aj) = & — | m=1,...,1 V.
i=l k=l :

(105) =1 1g i< j5m -l'JI'I — .-’Jl_l.

Relations (10.4) define a homomorphism

C[Oe]sinx..xsum @ C[z] @ C[h] = Hrq (T «Fa).

Let {Wi} € H17 (T *F,) be the cohomology class represented by the image of Wy {@: z).
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Theorem 10.2. For any i = 1,..,N and I € 1}, the following relation in HE—':T'JFA Jholds:

Mg i—1 - N -
(Z Fik— D :.,){H}} n,a.-(z A 3y A ){11}} +
(10.6) k=1 ael; Pl L i L
NN Aj - A
Yy ( > Wi} = =2 3 Wi, })
.f__‘.! e r.:-r-l;-l-c?n'l_l.-"z | e

where “imi, jmz, lij;m,m2are defined in Section 4.5.
Theorem 10.2 is proved in Section 10.4.
Example. Let N=2,n=2,A=(1,1). Then

{Wanen} =y11-z2-h, Wiz an} =y11- 21,
and the quantum Pieri rules take the form
PR . . q . . )
(10.7) (Y10 — 200 {Wiupent =k 7 —I._r}.} ({Winent + Wienon ) — -{Weanan )
. i i N .
(1= 2 (W} = bz —lr}: {Wezron} + {Wiarend)

These are the same relations as in formula (10.3).

10.3. Bethe ansatz equations. The Bethe ansatz equations are the following system of
algebraic equations with respect to the variables t:

"ﬁ' (it *ﬁ: () 1+ h -t —h g
i1 i ETENESY) L) R
rar i AR w2 R 11 by =84 h i
(10.8) ke j ’
fori=1,.,N-1,j=1,..,A0, This system can be reformulated as the system of equations:
f 1) . R T
(10.9) lim 2AL ot Az ki) i=1.,N-1, j=1,.,A0,
k=0 Di(t;z;h;q)

see [TV1, MTV1].

Lemma 10.3. For [ € hand i = 1,..,N - 1, let Dii(t;z;h;q) be the function defined in (7.1). Let "t
be a solution of the Bethe ansatz equations (10.8). Then Dii("t;z;h;q) = 0 and the right-hand side
of formula (7.2) equals zero at t = t.

Proof. If "t is a solution of equations (10.8), then the second of the two factors in the righthand
side of formula (4.3) equals zero at t = 't.

10.4. Proof of Theorem 10.2. We have the following theorem.
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Theorem 10.4. Let “t be a solution of the Bethe ansatz equations (10.8). Then there exist

A i ~ : .
unique polynomials [Tiii(w— %) €Clu], i=1,....] V. such that

Ai n Alrm)
(ﬂr: — H (i) —: l|:'I.—.|IJI,'.l'— }IJ) — H [l"f._l"L:l:l H Ir[—f!;]
J=1 1= an=1

(10.10) det k=1 i< jsm
fori=1,.,N-1,and

Ay N N
(10.11) (‘ff HE”—*.-J.a—f:{f—.;:-)) | T (a—a) T (=)
a=]

k=1 ij=1 ] = |'-:,'__| =N

This is [MTV2, Theorem 7.2], which is [MV2, Proposition 7.6], which in its turn is a
generalization of [MV1, Lemma 4.8].
Proof of Theorem 10.2. Formula (10.6) is obtained from formula (7. 2) by several
il
substitutions. First take gi = ¢q"i1 for all i = 1,..,N, substitute the variables L by ) ij, and

replace the term Di;i by zero. Then write symmetric functions in the variables @¢ m via

symmetric func‘glons in the Varlables Lo i= 1, . As a result, the expression
A () Al Foli=1] A -

2ol =X 1 pecomes et T — 1 205 I{’}'h )‘--'-”f“'-r I = 4i) according to for-

mula (10.5).

Lemma 10.3 and Theorem 10.4 mean that formula (10.6) holds for those values of Tey,...,
I'en-1that come from solutions "t of the Bethe ansatz equations (10.8). By [MTV2, Theorem

7.3] of completeness of the Bethe ansatz, such values of T'es,...,Ten-1form a Zariski open subset

of all values of - - - .. T satisfying defining relations of the algebra Hz9 (T *F1), see (10.2).
This proves Theorem 10.2.

10.5. Limitq¢"i/q"i+1— 0,i=1,..,N -1, and CSM classes of Schubert cells. In the limit "qi/q"i+1
- 0foralli=1,.,N -1, the algebra 'J{Frf?’*,ﬁ) turns into the algebra

Hr*(T*Fa) and the classes {Wi} € Hﬂ”(T*FA) become the classes [Wi] € Hr*(T *Fx). Then formula
(10.6) takes the form

(10.12) (Z ik = D7) Wi

ael}

N Ay

Frzz Z Wy, .. ]—JJZZ Z Wi, .,

7=1 wm1=1 tra=1 j=i41 mi1=1 frra=1

bimy > £imy b,y < Eiimag
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In particular, identities in (10.7) turn into the identities

(10.13) (yr1-z1)[Wnizn] = —h[W2yan), (y11- z2)[Wi2y0n] = 0.

Remark. After the substitution h = 1, the classes [H: € ”;"::-"HUF.-\) can be considered as

elements of the equivariant cohomology Hipym "“F*"). By [RV] these new classes [Wi]s=1 are
proportional to the CSM classes ki of the corresponding Schubert cells with the coefficient of
proportionality independent of the index I . Hence formula (10.12) induces the equivariant
Pieri rules for the equivariant CSM classes:

(10.14) = (Z Yok = D %) b1

k=1 acsl;

A

gy

A W A Aj
Bl g — 1 E E E K1y sy e
j=1 mi=I1 ma=1 -4 7

Ml -.-|.-|':- Ty P

see detailed definitions of the CSM classes in [RV].

11. Solutions of quantum differential equations and equivariant K-theory
v
11.1. Solutions and equivariant K-theory. Introduce more variables: y = 27 -1h/c,

FONELNES ik 2 L VAN - 2V T . .
» < S i, etc. We will use the acute superscript
P |

also for the corresponding collections of those variables like I‘,, t,z. We will write I' .

, . . . . Pl IR R |
z’*1for the collections extended by the inverse variables, for instance, 27 = %1 .- ---

oty il
i ._----."r-__5'|:1:: for eaChI:

g4y
Let P be a Laurent polynomial in the variables t’,z,y , symmetric in L
1,..,N - 1. Define

(11.1) Whr (k547 ) = X P(EII,Z',y)‘PbI(Z;h;q“; k),

VS
where Wiz h: d: i) are given by (9.21).
Lemma 11.1. The function Wr(Z: 045 %) js a solution of both the quantum differential

Vi F =0, i=1 N

equations , and the associated qKZ difference equations.

Proof. The statement follows from Theorem 9.5.
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L Aat
i) [#]

Lemma 11.2. For a Laurent polynomial P in t’,z’,y symmetric in SRCEERE f;\--':for eachi=1,.,N
- 1, the function Wolz hig: ks holomorphic in g~ on the domain L% c CNsuch that |q"i/q i+1|

<1,i=1,.N -1, and a branch of log “qi is fixed for each i = 1, ..,N, and Wbr (z;h;q"; "x) is
holomorphic in z,h on the domain L0 c C"x C such that

(11.2) h6€EKZ.0, Za—2zp+h6€EKZ ab=1,.n ab6=bh.

Proof. By the properties of ¥ [z h:q; #), see (9.22), we need only to show that the function

U #) is regular at the hyperplanes z, - z» € «Z. This will be done in Section 11.2
below.

Consider the equivariant K-theory algebra, see [RTV2, Section 2.3], [RTV3, Section 4.4],

N oM
| | " T gl Gy xSy o o] - " ; P!
(11.3) K¢(T°Fa) = CI' "2 *Sw @ ClzH | ® Ll_rJHJ;f{l [HTw=7, =]]w-2) /
] ]_.i 1 a=1

7’

cf. (9.1). Introduce the variables eli,a, i=1.,N-1,a=1,.,A0, The relations

AW i A
(11.4) Yu-6)=YYu-y), i=1..N,
a=1 J=1k=1

A e

V-1 ® C[£F

Xl g . ) LT
define the epimorphism C[© [P | @ Cly™'| — Kr(T*Fx). Thus the

assignment !’ — ¥ r defines a map from Kr (T *F;) to the space of solutions of the quantum
differential equations and the associated gkZ difference equations with values in Hr*(T *Fa)
extended by functions in zh,q” holomorphic in the domain L%0x [00, We evaluate below the
determinant of this map.

The cohomology algebra Hr*(T *Fa) is a free module over Hr*(pt;C) = C[z] @ C[h], with a
basis given by the classes of Schubert polynomials

(11.5) YI(T) = Aoi(yY11,.., YL, Y2, 1,..., V2,22 oo , YN, YNAN), 1€ .

Similarly, the algebra K7 (T *F) is a free module over K7 (pt;C) = C[z'*1] @ C[y*!], with a basis
given by the classes of Schubert polynomials

e

(11.6) YVil) = Agi(Fy4... .. Frngs Tagse s Fangs oo sFwnrec s Tuan)s 1 €D

Both assertions are clear from Proposition A.7.
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Expand solutions of the quantum differential equation using those Schubert bases:

f[j;_f[ [z h: g k) Z m;__;{z; hg;r) Y1)
(11.7) Sy .

Theorem 11.3. Let n > 2. We have

N=1 N N (1) gmm e
{“.5] det ("T",'_,,' |:Z.' he q" . ;‘J] e H "Ll - I'I’,:,-"II’L']"” min{ A A ) /R H ‘}I:f;, P P one1 Ta o
i=1 j=i+] i=1
— hady!
AT (rveir(1 22220))
a=1 k=1
bgta )
where _
(1) .-fll'l._.lin'-l - J.” {(2) ||”_ }lll .
A\ T d Z Z A
(11.9) i=1 j=i+]
Proof. By Lemma 11.1, the left-hand side of (11.8) solves the differential equations
i \ -
(“;-EL{;? tt'{.‘fhlj{z: h:q '}J) det (W s(=z:h: q: a;'}]l_ e 0, i=1,..... v,
where* %.i are the modified dynamical Hamiltonians (9.18). Thus det(¥r.7) equals the first

two products in the right-hand side of (11.8) multiplied by a factor that does not depend on
q". The remaining factor is found by taking the limit “q;/q"i+1 = 0 for all i = 1,..,N - 1, and
applying Theorem 9.6 and Proposition A.9.

(V5 (z:h: g2 ) 1T, is a basis of solutions of both
Ve =0, 0= 1. N

Corollary 11.4. The collection of functions

the quantum differential equations
difference equations.

, and the associated gKkZ

11.2. End of proof of Lemma 11.2. [t is enough to show the regularity of

W {2 5 G5 flat the hyperplanes za - z» € K°Z assuming that h/k” is real negative
and sufficiently large.

For a number 4, let C(A) c C be a parabola with the following parametrization:
(11.10) ClA) = {r(A+s"—sv-1) | seR}

Given z, k™, take A such that all the points z3,..,zn are inside C(A + N — 2). Suppose h/K" is a
sufficiently large negative real so that all the points z1 + h,..,z» + h are outside C(A4). Set

(11.11) Calz) [{'I .—i:l}x:lllllx L ((rl4 + N ___)]] s ALN=1)
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indicating the dependence on A and z explicitly. The integral (11.12) below does not depend
on a particular choice of A.

ohd Pl

Lemma 11.5. For a Laurent polynomial P in t',z’,y symmetric in SRCREE -tzn:for eachi=1,.,N
-1, we have
(1112) Wp(z:h: G i) = 720 ()92 (20 /ST (=h/R) ™ Up(z:h: §:F)
0, (§: ) '
B G:R) = Sy T / P
Yer(z; et =) (E525y)Pa(t 97 LK) QM) W (1T diost.

Proof. The integral converges provided |q"i/qi+1| <1 forall i = 1,..,N - 1, and a branch of log
"qiis fixed for each i = 1,..,N . Evaluate the integral by residues in the following

(C(A+B))" 'x...x (C(A+B+N-2))**

v way: replace Ci(z)

by, where B € R-0, and send B to infinity. Then by (9.21), the resulting series yields formula
(11.1).

The integrand in formula (11.12) is regular at the hyperplanes za - z» € KZ, and so does the
function ¥ (=74 %), Lemma 11.2 is proved.

11.3. The homogeneous case z = 0. The quantum differential equations Viarid =10

depend on z as a parameter and are well defined at z = 0.
"l:-‘l.;l .-:'I:]
For any Laurent polynomial P in t,y, symmetric in fi---Tuiforeachi=1,

.,N - 1, the function ¥#(0:#:4:%) is a solution of the quantum differential equations

Tr’:ql-z of U, i=1..... "‘,see Lemma 11.1.

Lemma 11.6. The function o PO g 6] s holomorphicin q",h provided |q"i/q"i+1| <1,i=1,..,N
-1, a branch of log “qiis fixed for each i = 1,..,N, and h 6€ K Z-0.

Proof. By Lemma l,l.'j, we need only to show that W (0; b ") is regular if h € K"Z<o.

We will prove that Wp (0;h; “q; k) is regular if h/k™ € R<o.
If h/x" is a sufficiently large negative real, write R(E #) by formula (11.12). Then one

can replace the integration contour Cy(0) by the contour
Ch(h, i) = (C((N=1)e))* % (C((N=2)2))" % ... x (C(e)

£ AN E . . . . . . Wik T .
where ~ hil "), without changing the integral. With the integration over Cilh. ), it is

(W—1)
)"

clear that Wr (0;h; "g; "k) continues to a function regular for all negative real h/k”. Consider

the algebras
H(T°Fy) = HRp(T°Fy\) /(= =10). Ke« (T Fy) = Ke(T°Fy) /(2 =1(1.....1)}
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The algebra Hi (1 ”}_A) is a free module over C[h] and the algebra Kc«(T *F,) is a free module
over C[y*1], with bases given by the respective classes of Schubert polynomials, see (11.5),
(11.6).
Expand solutions of the quantum differential equation at z = 0 using those Schubert bases:
Wy (1505 h: G ) Zﬁh_,,(ﬂ:h;q‘;;.-}mr]
(11.13) JeTy
Let dy=n!/(A1l..An!). Formula (11.8) at z = 0 takes the form

(11.14) det (T;,,(0: h: G: 7))

LJETy=
N1

(va"r—], [1(1 B %))'-’IA}_U-:_...-'___.”\.‘_. Xiky 1_[ ll[ L— i rll. }F”“““)‘ A

i=1 j=i+1

Corollary 11.7. The collection offunctionsf AL i) Vre1is a basis of solutions of the

[

quantum differential equations T;.: o =0 0=1 "‘-.
11.4. The limit h — oo. Suppose that “qi/q"i+1 = (-h)**pi/pi+1, i = 1,.,N - 1, and "gn = pn,
where ps,..,py are new variables. The limit h —» oo keeping ps,..,pn fixed corresponds to
replacing the cotangent bundle T *Faby the partial flag variety Faitself, the algebras Hr*(T *F»),
Kt (T *F;) by the respective algebras Ha* (Fa), Ka(F1), where A € GLn(C) is the torus of diagonal
matrices, and the equivariant quantum differential equations for T *Fa by the analogous
equations for Fy, cf. [BMO, Sections 7,8]. We will discuss this limit in detail in a separate paper
making here only a few remarks.

We identify /73{F) with the subalgebra in //7{7"F1) of h-independent elements, and
Ka(Fa) with the subalgebra in K7 (T *Fa) of y-independent elements.

The discussion of the limit h — oo is based on Stirling’s formula

Mo — h/&) ) f e fl
_ —= o [=RJR)TTT h— oo
(11.15) L(5 —h/k)
For Fi, we have the following counterparts of the master function [11-16] @3 (;z;p
N-1 T — 1A : L%} KOS
e U_ﬁ-.,-"_ll:la' .'.'| . (':”IIIJ LAi=Ait1) ™ )E} 15 AR %
1 I IF':l._.'\_,+}.| 21 J”_. \ 1
nN—1 'l._ Als) Al i1
I (I s T (e eorm)
|_| |, III r‘r_l 'l |—|.

i=1 a=Il

h#a
‘ ’

the weight function
N-1 N A) A@i+1)
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(11.17) Wb.tI)=YYY Y (tat) - yib),

i=1j=i+1 a=1 b=A(+1

and solutions of the quantum differential equations

At—dgy = TN T (At A

=il

(11.18) Vi(gpi i) = () F Vs ),

IIIr(z,p, ~K) - X Resi="%i—ri I::ﬁIJ;‘(t;z;p.' hj} H'“I,'E; + T FJ'I,

,-E'e:._},}f}
= Uf 1 ! g P ; - ;
where 1. and A2y = Y 1eigen Ai Aj. The series converges and defines a holomorphic
function 7 r(z;p; "K) of z,p on the domain in C"xCV such that a branch of log piis fixed for each

i=1,..,N,and za—- zp6€ KZ forall a,b = 1,..,n, a 6= b.

AZE ST ()
Set” £ui=1 . As h = oo, we have (-h) w42 Wp (tT) - Wh - (tT),

(— M= ey =) S0 2

{l}).
Allhgp - -
(T(—=h/R)) e (tzhd =R = Ptz ),
and
ﬁl‘,f ' E L eri At A )z R (—h/F)n—=Ax) Fou=1 2/ &
(T'(1 —h "F"]AM I hogi i) — W
\ IK) (M A = Vi(zp; k).

If pi/piv1 > 0 forall i=1,. ,N 1, then similarly to (9. 23) (11,197 W

(zip H O b HHHH( =)

i=1 j=i+l acl; el

N-=1

< A+ Y R ()

(e e )

mEE

m6=0

J

where Ai(T,z) = Ri(T';z)/R(z1) is the cohomology class such that Ai(z;;z) = 81y, and the classes
LN ES H‘b ) are rational functions in z,k™, regular if zs-zp 6€ KZ for alla,b = 1, ..,n, a 6= b.
Recall the contour CA(z) see (11.11). Given a Laurent polynomial P in the variables t',z’,

symmetric 1n’ll rroeal J-." foreachi=1,..,N -1, define
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(— i)~ M =dgy B0 Eaep it A zaff _
TR) = — O
- a —yalll d
(11.20) Vo(zp (2mv/~T) @p; K,
] .
(R) = Ty / P(t; z) @, o -
Wer: (zp AL A ey e (tiz;p: ) W (2T " 't

cf. (11.18). The integral converges and defines a holomorphic function W #(z;p; “x) of zp on
the domain in C"x CNsuch that a branch of log piis fixed for each i = 1,..,N.
Furthermore,

(11.21) Vi(zip; ) = X P(E 12 )Whr (z30; ),

1€l
and the assignment !’ — W » defines a map from Ka(F») to the space of solutions of the
quantum differential equations with values in Ha* (F3).
Consider the classes Y7(I']. ¥7{I") given by (11.5), (11.6), and write
“ (T .h,\.I - Z ﬁ}.J
(11.22) llzp A @eowm),
cf. (11.7). Taking the limit h — oo in formula (11.8) yields

N /
! (1) e=n
- ./ dy P icicjon M dy 5 Lnmi IafE
'h}:]ﬁ.fl:fh (2-‘! 'h_lj s H]”'
i=1

(11.23) det\Vrr (zp ,
where o ! 0 _ Ai(n — 1)1
R WIS Y R VI Y
Therefor_e, the [ collection of functions
¥ Fi(zp Al e is a basis of solutions of

both the quantum differential equations with values in //4{x) and the associated gkZ
difference equations.

Appendix A. Basics on Schubert polynomials

For references regarding Schubert polynomials, see for example [L, M].

Let D1,..,Dn-1be the divided difference operators acting on functions of xi,....xn:

Dif(xr,....7,) =

dg — il

cf. (3.7). They satisfy the nil-Coxeter algebra relations,

(A1) (Di)2=0, DiDi+1Di= Di+1DiDi+1, DiDj= DD, li-j|>1.
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Given o € S, with a reduced decomposition o = Siyii+1...Sii+1, define Do = Dir...Dj. For instance,
Diq is the identity operator and Ds;.1 = Di. Due to relations (A.1), the operator Ds does not
depend on the choice of a reduced decomposition. Moreover,

Do D= Dor, if |o| + |7| = |oT|, DsD:=0, otherwise.

Here |o| is the length of 0. Denote xo = (Xo(1),...,Xo(n)). Let oo be the longest permutation, oo(i) =
n+1-ii=1,..,n Then

Doof(x) = ¥ (xi— %) "1 X (=1)of(x0). 16isj6n ocS,

The Schubert polynomials As(x), o € Sn, are defined by the rule

(A2) Ap(@) = Dyorgy (0 252 )
n—1 _n—32

In particular, Agy=a7 1y " -1 and Aia = 1.

Proposition A.1. For any o,T € Sn,

(A.3) D.ﬂ:,l {-1Tfm:' .'1 _"r!__.[:ﬂ-rl.l:lll = ':. - ] ::'#IT“ I'jl.!T. ."
Proposition A.2. Cauchy formula holds,
n-1n-i
(A4) X (=1)940(x)Asoo(y) = ¥ Y (yi - x)).
OESy i=1j=1

For any f € C[x] and o € Sn, define fhsi € C[x]5"by the rule
(AS) 'III""II;E] = [ - ]' :|"""-"ll D"Tll {-'Ill:'*s-'l ‘.1"‘""!! [:’I:""ll -:':I .

Proposition A.3. For any f € C[x],
(A.6) F0) =X fuoi(3) o).

OESh
Thus C[x] is a free module over C[x]S»of rank n! with a basis given by Schubert polynomials.

Recall the notation from Section 2.1, and [min, Jmax g [,

me = ({1,..., LY T [n—Anv+1,...,n})
Jres {{H —M+1...., k..., 11..... )'.;.,-}]I .

For I = (I1,..,IN) € 15, Ij={ij1 < ... < ij»}, define the permutations ¢/,

o1(k) = ijk-2g-v, k € Ijmin, j=1,..,N,
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and o1 = 01(0max)-1. Then o1(Imin) = o1(Imax) = 1.
Let Suix ... x Siv € Snbe the isotropy subgroup of [min,
Lemma A.4. For any I € I, we have Aci(x) € C[x]51>*Sy.
For example = (@) = n" i I H \ ”.

Proposition A.5. Forany L] € I,
(A.7) D s {"Lr" () ':!-"-’.J (T ]} (=1)™ {li"'-"'.

Proposition A.6. We have,

(A8) X (—1)011401(X)A01(y00) = Y Y Y (y'] - Xi).

Iel 16a<b6N i€lamin jElpmin

Proposition A.7. For any f € C[x]5:*-*S, we have

(A.9) £ =X froi()Aoi(%),

SN

that is, in formula (A.6), frei= 0 unless o = ! for some I € 1, and

(A.10) Jien () = (=1)7 Dy (f(2) Az, (%5,))  Define Y Y Y
Ri(x) = (xi — x)).

16a<b6N iEIaminjEIbmin
Proposition A.8. For any f € C[x]S»*-*S, we have

o)

(A11) . Dyeefl@) = Y I:lf’

IEIAAXUI)

Proposition A.9. Let n > 2. Then

( ) . {—‘ JI.,P rl}gjc H [_I..J__l,_llj-lrrr:x
A.12 et i jEmn ,

; M — A
where (n—2)!
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M W Z Z Ai A

=1 j=i+4l
Appendix B. aLeading Terms of Solutions and Gamma Conjecture
The formula (9.23) for the asymptotics of solutions (Wil=: B @ 7) 1t o the joint system
of the quantum differential equations and associated qKZ difference equations reminds the
statement of the gamma conjecture, see [D1, D2, KKP, GGI, GI, GZ].

The gamma conjecture [D2, GGI] is a conjecture relating the quantum cohomology of a
Fano manifold X with its topology. The quantum cohomology of X defines a flat quantum
connection over C*in the direction of the first Chern class c1(X). The connection has a regular
singular point at t = 0 and an irregular singular point at t = oo. The connection has a
distinguished (multivalued) flat section Jx(t) defined by Givental in [Gil] and called the J-
function. Under certain assumptions, the limit of the J-function:

J ()
Ay = lim #‘ c Hx)
t—oo ([pt], Jx (t))

exists and defines the principal asymptotic class Ax of X. The gamma conjecture says that

Axequals the gamma class [ xof the tangent bundle of X.

The gamma class of a holomorphic vector bundle E over a topological space X is the
multiplicative characteristic class, in the sense of Hirzebruch, associated to the power series

(2
r) =1—yr+ T2yt

expansion I'(1 + ! 2 T - ofthe gamma function at 1, where y is the
Euler constant and {(2) is the value at 2 of the zeta function. In other words, the gamma class
is the function that associates to a holomorphic bundle E over X the cohomology class I'(" E)

=Q ['(1 + 7i) € H*(X;R), where the total Chern class of E has the formal factorization c(E) =

Qi(l + 7i) with the Chern roots tiof degree 2. If E is the tangent bundle of X, we write ["'x for

['(" E). Its terms of degree 6 3 are given by the formula
C(2) +7° 5
B —Y

D(E) = 1=qer+ (= ¢(2)e: +
. e s 20(3) 4 34C(2) 4+ ~%
(B.1) + (= ¢(3)es + (C(3) +1¢(2))eres — > h_“" cd) +
see [GZ].
Consider the equivariant gamma class of T *Fy,

N-1 N Ai A

Ibrm=YYYYT(1+yib-yia)[(1 + yia—yjb— h).
i=1j=i+1 a=1b=1
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cf. (9.2), and the equivariant first Chern classes “1(5:) = 2205 Jia. @ = L. N, of the
vector bundles Eiover T *Fawith fibers Fi/Fi-1, see (9.3). Theorem 9.6 can be reformulated as
follows.

T*F)

Theorem B.1 (Gamma theorem for'i . For k = 1, the leading term of the asymptotics of

the q-hypergeometric solutions Cr{z g ) rer, i (9.23) is the product of the equivariant

gamma class of T *Faand the exponentials of the equivariant first Chern classes of the associated

vector bundles Eh,...,.En:
N

3 T Vo= e[ E
(B.2). Cropy [T (e 7H )™ ™

=1

Similarly formula (11.19) can be reformulated as follows.

Theorem B.2 (Gamma theorem for F; ). For k = 1, the leading term of the asymptotics of the

q-hypergeometric solutions Vi (z;p: Fil) it in (11.18) is the product of the equivariant

gamma class of Fxand E,..... Ey: the exponentials of the
equivariant first Chern N classes of the associated vector
bundles |.'_H H (4’ V=T (A ”',rJ,\J'II.IH.'.'-I

=1
(B.3).

Example. Let N=2,n=2,A=(1,1). For "k = 1, the leading term of the asymptotics of the g-
hypergeometric solutions for T *Plis the class

v__ v

(e-r-1 1)y (e-n-1q72)ya (1 + Y21 - y1,1)T(1 + yL1—y21- h)

and the leading term of the asymptotics of the g-hypergeometric solutions for P1is the class

v v
(e-m-1p1)yi1(e-n-1p2)y2a (1 + y21-y11).
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