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We rederive the semiconductor Bloch equations emphasizing the close link to the Berry connec-
tion. Our rigorous derivation reveals the existence of two further contributions to the current, in
addition to the frequently considered intraband and polarization-related interband terms. The extra
contributions become sizable in situations with strong dephasing or when the dipole-matrix elements
are strongly wave-number dependent. We apply the formalism to high-harmonic generation for a
Dirac metal. The extra terms add to the frequency-dependent emission intensity (high-harmonic
spectrum) significantly at certain frequencies changing the total signal up to a factor of 10.

I. INTRODUCTION

The advancement of time-resolved spectroscopy seen in
recent years facilitated the study of dynamical processes
on sub-cycle time scales. Interesting effects that arise
along the way in metals and semiconductors include the
generation of high-harmonics (HHG) by the lightwave-
driven charge carriers1–7, subcycle control of charge
transport in nanostructures8, and atomic-resolution ul-
trafast microscopy9. Since high-harmonics are very sensi-
tive to acceleration processes that the charge carriers are
subjected to, HHG can be used for monitoring dynami-
cal processes. Promising applications for band structure
reconstruction10,11 and for observing dynamical Bloch os-
cillations2,12 and Berry phase effects13–15 have been re-
ported.

An established theoretical framework to describe the
dynamics of quantum systems is the density-matrix for-
malism that is known as semiconductor Bloch equations
(SBE) in the context of crystalline solids.16–21 It is ex-
act, in principle, but in many applications of SBE to
strong field dynamics, such as HHG, dynamical contri-
butions from Coulomb interactions are neglected while
band-structure effects are properly kept. This approx-
imation has proven to be useful in numerous applica-
tions including, in particular, HHG in various model sys-
tems15,22–27 and materials28–32.

In the first part of the article, we present a rederivation
of the main equations of motion (EoM) for the density
matrix ρ and the physical observables in the framework of
SBE. The particular perspective we here offer emphasizes
the close relation between SBE and the Berry connection.

Second, we present a rigorous derivation of the rela-
tion between ρ and the longitudinal current j(t). In the
absence of phenomenological dephasing, such a relation
has already been derived in earlier works by Sipe and
coworkers.33,34 These works embark on a decomposition
of the position operator into intra- and interband con-

tributions and focus on the polarization as the central
observable. The perspective we here advocate is based
on the current density; the final splitting of observables
into intra- and interband contributions then is a result of
the calculation. Further, we consider the SBE including
a phenomenological dephasing. As it turns out, this gives
an extra contribution to the current density, which gets
sizeable for Dirac fermions and has not been discussed
before.

Our exact result contains several terms that are not ac-
counted for in earlier work23,35,36. The consequences will
be discussed for the example of Dirac fermions: we find
qualitative agreement with respect to the high-harmonic
spectrum between the exact and the approximated ex-
pression. Quantitative discrepancies appear, however,
which can exceed an order of magnitude.

The manuscript is organized as follows: Sec. II focuses
on the EoM for the density matrix, ρ(t), with emphasis
on SBE and the Berry connection. In Sec. III, we relate
ρ(t) to the time-dependent longitudinal current density
and the frequency-dependent emission intensity that un-
derlies the HHG. An application to HHG in metallic films
with Dirac-like spectrum is presented in Sec. IV.

II. DERIVATION OF EQUATIONS OF MOTION
FOR THE DENSITY MATRIX

The power of the density matrix formalism is in its
simplicity. In principle, it allows for the propagation
of observables in a genuine many-body theory keeping
the effective Hilbert space on the single-particle size. It
thus can be intrinsically more efficient than wavefunc-
tion correlation theory37–40. Conceptually similar are
Green’s function based approaches, such as GW + Bethe-
Salpeter41–46. They keep an additional dynamical degree
of freedom, however, and therefore tend to be compu-
tationally more expensive. An affordable alternative to



density-matrix based approaches is the time-dependent
density functional theory47–63. It has the advantage that
implementations are available that can treat inhomoge-
neous systems of considerable size; progress towards in-
cluding spatially varying electric fields has been made
only recently.64 We nevertheless here employ the density-
matrix formalism, because it allows us to incorporate
phenomenological damping terms that describe effects of
dissipative environments. As it turns out, such terms
are needed when comparing computational results with
experimental data.

In this section, we recall the derivation of the SBE; we
carefully define the mathematical objects entering later
applications. We will derive general equations within
the framework of Hartree-Fock theory. Later appli-
cations will be given for non-interacting electrons dis-
regarding all correlation effects, such as excitons65–68,
also phonons69,70 and the quantization of electromagnetic
fields71–74. As it turns out, for the qualitative descrip-
tion of many experimental findings, the non-interacting
theory is a useful first step.

A. Equation of motion

Consider the fermionic, second quantized many-body
Hamiltonian

Ĥ =
∑
αβ

h
(0)
αβc
†
αcβ +

1

2

∑
α,β,γ,δ

Uαβγδc
†
αc
†
βcγcδ (1)

with h(0) denoting a generic single-particle Hamiltonian
represented in a stationary basis of a number of NB
single-particle states |φ(0)α 〉. In the presence of time-
dependent perturbations, such as external electric or
magnetic fields, this component of Ĥ becomes time de-
pendent, h(0)(t). The density matrix, ρ, is defined by the
matrix elements

ραβ(t) := 〈Ψ(t)|c†βcα|Ψ(t)〉. (2)

It describes selected aspects of a time evolving many-
body state Ψ(t) that enter physical observables, e.g., the
particle density.

The time-evolution of ρ(t) derives directly from the
definitions (1), (2) and the Schrödinger equation; in
a basis-free representation the resulting EoM takes the
form75

iρ̇ = [h(t), ρ] + i
∂ρ

∂t

∣∣∣∣
coll

(t) (3)

h(t) := h(0)(t) + vHF(t). (4)

While the commutator in (3) accounts for the (effective)

single-particle dynamics, the collision term ∂ρ
∂t

∣∣∣
coll

(t) in-

cludes genuine two-body effects. Systematic expansions
have been proposed to deal with it approximately, how-
ever, at the expense of a considerable numerical ef-
fort.76,77

We here consider time-dependent Hartree-Fock theory,
where the collision term is dropped and the time evolu-
tion of ρ remains unitary. In order to mimic the (non-
unitary) effects of collisions, the collision term can be
approximated on a heuristic level by replacing it with
phenomenological damping terms20. For recent discus-
sions on the strength and physical content of dephasing
and damping in the context of semiconductor Bloch equa-
tions, we refer to Refs. 64 and 78.

The mean-field interaction, vHF, can be understood
as a known75 linear functional of the density matrix
vHF(t) := F [ρ],

Fαβ(t) :=
∑
αβ

(Uααββ − Uααββ) ρβα(t), (5)

where the matrix elements ραβ(t) are the representa-
tion of ρ(t) in the stationary basis |φα〉: ραβ(t) =
〈φα|ρ(t)|φβ〉. The functional (5) together with (3) gives
a closed set of equations for the dynamics of ρ(t).
Exchange-correlation functionals alternative to Eq. (5)
have been explored in the spirit of (time-dependent) den-
sity functional theory.79

B. The adiabatic basis

We define an adiabatic basis80 |α; t〉 by the simultane-
ous, orthonormalized eigenstates of h(t)

h(t)|α; t〉 = ε̃α(t)|α; t〉. (6)

In this basis, the commutator dynamics (3) takes a sim-
ple form. Notice that (6) defines the basis at time t only
up to a phase factor. Therefore, two basis sets at neigh-
boring times t and t+ dt, |α; t〉 and |α; t+ dt〉, can differ,
in principle, by an arbitrary phase factor so that the mo-
tion of matrix elements given in the adiabatic frame is not
yet uniquely defined. We conclude that the time evolu-
tion of the phase-factor needs to be imposed by an extra
condition that complements (6) but is not part of (6).

In order to formulate this condition we adopt the at-
titude that |α; t〉 and |α; t+ dt〉 should be smoothly con-
nected in a manner as it would be implied by perturba-
tion theory; we thus stipulate

∂t|α; t〉 :=
∑
β 6=α

|β; t〉 〈β; t|ḣ(t)|α; t〉
ε̃α(t)− ε̃β(t)

, (7)

which implies 〈α; t|∂t|α; t〉 = 0. The time evolution (7)
starts at t → −∞ with initial eigenstates |α(−∞)〉 :=
|φα〉 that are defined as

hin|φα〉 = εα|φα〉 , hin := lim
t→−∞

h(t) . (8)

To further connect the time evolution (7) to other def-
initions in the literature80, we specify to a situation
where h(t) is implicitly time dependent, because it con-
tains a set of parameters R(t) that are time dependent,
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h[R(t)]. These parameters could be, e.g., external elec-
tric or magnetic fields, E(t) and B(t), but in the case of
self-consistent field theories also the matrix elements of
ρ themselves. We thus have

∂t|α; t〉 = Ṙ
∑
β 6=α

|β; t〉
〈β; t| ∂h∂R |α; t〉
ε̃α(t)− ε̃β(t)

. (9)

Suppressing the time-dependencies in our notation, the
matrix element can be evaluated by observing that

∂R〈β|h|α〉 = 〈∂Rβ|h|α〉+ 〈β|∂Rh|α〉+ 〈β|h|∂Rα〉
= ε̃α〈∂Rβ|α〉+ ε̃β〈β|∂Rα〉+ 〈β|∂Rh|α〉 .

Since 〈β|∂Rα〉 = −〈∂Rβ|α〉, we have

〈β|∂Rh|α〉 = (ε̃α − ε̃β)〈β|∂Rα〉+ δαβ∂Rε̃α. (10)

When inserting this relation into (9) we arrive at the
result

∂t|α; t〉 := Ṙ(t)
∑
β 6=α

|β; t〉〈β; t|∂R|α; t〉. (11)

We adopt the formulation of dynamics in the adiabatic
basis as in Eq. (11) as our preferred one. It reveals the
close connection to differential geometry, because it im-
plies

Ṙ(t)〈α; t|∂R|α; t〉 = 0 (12)

that we have obtained from 〈α; t|∂t|α; t〉 = 0, see note
below (7). Relation (12) is well known as the condition
of parallel transport80; it is a result of the specific way to
define the phase evolution of wavefunctions |α; t〉 during
time by imposing (7). Eq. (12) implies that the motion of
the adiabatic frame is such that the Berry connection81

Aα[R] := 〈α; t|i∂R|α; t〉 (13)

remains perpendicular to the ”velocity” of each state
|α; t〉.

Ṙ(t) ·Aα[R] = 0 . (14)

We further illustrate the meaning of (11) discussing the
example of Bloch electrons in homogeneous electric field.

Bloch electrons in homogeneous E(t). We con-
sider charged free fermions, so vHF→0 and h→h(0). They
are embedded in a crystal lattice, so the eigenstates of
the stationary single particle Hamiltonian (without elec-
tric field, E(t) = 0) are Bloch-states |nk〉, which implies
|α〉→|nk〉. Recalling Bloch’s theorem, we have a factor-
ization of the eigenstates

〈r|nk〉 =
1√
N
eikr〈〈r|nk〉〉 (15)

with eigenvalues εn(k); here, N denotes the number of
unit cells and the matrix element on the rhs represent

the lattice-periodic content of the Bloch state, unk(r) :=
〈〈r|nk〉〉 in a traditional notation82. The double angular
brackets indicate that the normalization volume for unk
is the unit cell, see Appendix A for more details on our
notation. Formally, the states |nk〉〉 are solutions of the
eigenvalue problem

hin(k) |nk〉〉 = εn(k) |nk〉〉 (16)

with

hin(k) :=
∑
n

|nk〉〉εn(k)〈〈nk| (17)

see Eq. (A13) in Appendix A. Summarizing, the station-
ary Bloch-Hamiltonian reads

Ĥ =
∑
mm′

∫
BZ

dk

(2π)d
hinmm′(k) c†m(k)cm′(k) (18)

where hmm′(k) := 〈〈m|hin(k)|m′〉〉 and the states |m〉〉 de-
note a generic basis in the subspace of the degrees of
freedom of the unit cell (bands) that may or may not be
chosen to depend on k.

As a time-dependent perturbation acting on fermions
of charge q, we introduce a homogeneous electric field
E(t) that evolves from zero, i.e. lim

t→−∞
E(t) = 0. Its effect

is discussed conveniently in the Coulomb gauge83

qE(t) = −Ȧ(t), (19)

where a factor q/c was absorbed in the definition of A.
As compared to the alternative gradient represention,
E(t)= − ∇φ(r, t), the Coulomb gauge offers the advan-
tage that it does not break translational invariance for
homogeneous electric fields; therefore, it is particularly
convenient for treating Bloch electrons. Using minimal
coupling, we have19,80,84

h(k; t) := hin(kt) , kt = k−A(t) (20)

and correspondingly

hin(kt) |̃nk; t〉〉 = ε̃n(k; t) |̃nk; t〉〉 (21)

with the analogies R(t)→A(t) and |α; t〉→|̃nk; t〉〉. Due
to minimal coupling (20), the eigenvalues are given by

ε̃n(k; t) = εn(kt) . (22)

The tilde on |̃nk; t〉〉 emphasizes the adiabatic time evo-
lution from (7)/(11),85

∂t |̃nk; t〉〉 = −qE(t)
∑
n 6=n

|̃nk; t〉〉〈̃〈nk; t| ∂
∂A
|̃nk; t〉〉 (23)

such that the condition of parallel transport (14) in the

adiabatic basis |̃nk; t〉〉 is satisfied,

E(t) 〈̃〈nk; t| ∂
∂A
|̃nk; t〉〉 = 0 . (24)

3



We note that the matrix elements used for the time evo-
lution (23) are

〈̃〈nk; t|i∂t ˜|n′k; t〉〉 = −E(t)q〈̃〈nk; t|i ∂
∂A

˜|n′k; t〉〉

= E(t)d̃nn′(k; t) (25)

introducing the dipole matrix element

d̃nn′(k; t) := −q〈̃〈nk; t|i ∂
∂A

˜|n′k; t〉〉, (26)

with diagonal elements

Ãn(k; t) := −q〈̃〈nk; t|i ∂
∂A
|̃nk; t〉〉 (27)

known as the Berry connection. We arrive at a compact
notation for the condition of parallel transport,

E(t) · Ãn(k; t) = 0. (28)

C. EoM for the density matrix in adiabatic basis

In the adiabatic basis defined in (6) and (7), the
EoM (3) takes the form (in the absence of collisions)

i〈α; t|ρ̇|β; t〉 = ε̃αβ(t)%αβ(t) , (29)

where we define ε̃αβ(t) = ε̃α(t)−ε̃β(t) and

%αβ(t) := 〈α; t|ρ(t)|β; t〉 .

To arrive at a closed set of equations for the matrix ele-
ments of ρ in the adiabatic frame, we need to reformulate
(29) so time-derivatives of matrix elements of ρ appear -
rather than matrix elements of ρ̇. To arrive at such an
EoM for the matrix elements, we will employ the relation

i
d

dt
〈α; t|ρ|β; t〉 = ε̃αβ(t)%αβ + i〈α̇|ρ|β〉+ i〈α|ρ|β̇〉

where (29) has been used; on the rhs the time variable has
been suppressed and a short-hand notation ∂t|α; t〉=|α̇; t〉
was introduced. Inserting the resolution of the identity,
1 =

∑
α |α〉〈α|, we find(

i
d

dt
− ε̃αβ(t)

)
%αβ = i

∑
α

〈α̇|α〉%αβ + %αα〈α|β̇〉. (30)

With 〈α|α̇〉 = −〈α̇|α〉 and Eq. (11), we conclude(
i
d

dt
−ε̃αβ(t)

)
%αβ = Ṙ(t)

∑
α

%αα〈α|i
∂β

∂R
〉−〈α|i ∂α

∂R
〉%αβ

(31)
arriving at the explicit form of the general EoM in the
adiabatic frame.

Semiconductor Bloch equations. In the presence
of a crystal symmetry (and in the absence of mean-field
interactions) the equation of motion of the density oper-
ator, Eq. (4), takes a block-diagonal form

iρ̇(k) = [h(k; t), ρ(k)] (32)

where each block has a common k-vector and, analogous
to Eq. (17), h(k; t) and ρ(k) are matrices that act within
the Hilbert space of the unit cell (”bands”). The matrices
h(k; t) and ρ(k) are defined via their matrix elements:

hnn′(k; t) = 〈nk|h(t)|n′k〉 = 〈〈nk|h(k; t)|n′k〉〉 (33)

and similarly for ρnn′(k), see Appendix A for further de-
tails. Electric fields are readily treated in the Coulomb-
gauge: h(k; t) = hin(k−A(t)). The stationary basis
used in (33) can be rotated into the adiabatic Bloch
states from (15)-(27) with the analogies R(t)→A(t) and

|α; t〉→ |̃nk; t〉〉. The results of the previous section then
translate into(

i
d

dt
−εnn′(kt)

)
%̃nn′(k; t) =

E(t)
∑
n

%̃nn(k; t)d̃nn′(k; t)− d̃nn(k; t)%̃nn′(k; t)
(34)

with the density matrix %̃nn′(k; t) in the adiabatic basis
and defining

εnn′(kt) := εn(kt)− εn′(kt) .

Eqs. (34) are known as the semiconductor Bloch equa-
tions (SBE).18–20 They have been derived here empha-
sizing a geometric perspective. Note that due to transla-
tional invariance, in (34) only diagonal matrix elements
of %̃ with a single k-point appear, see Appendix B for
details. Another remarkable property of Eq. (34) is that
matrix elements %̃nn′(k; t) taken at different wavevectors
k do not couple due to translational invariance of A(t);
terms involving gradients ∂k are absent in (34), which
otherwise appear; see Appendix B for further details.

D. Co-moving basis and EoM for its density matrix

We categorize the basis sets introduced before by con-
sidering a mapping f : (N, 1. BZ,R)→ H, where H is the
Hilbert space of Bloch states. We regard |nk; t〉〉 as such
a function f with variables n, k and t, that, when evalu-
ated for a given n, k and t, returns a state in H. All of
these functions are collected in the set

F :=
{
|nk; t〉〉: (N, 1. BZ,R)→ H

}
.

We define the set of instantaneous functions I containing
every function |nk; t〉〉 that is an eigenstate of h(k; t) for
each instantaneous (k, t) pair,

I :=
{
|nk; t〉〉 ∈ F : h(k; t) |nk; t〉〉 (21)= εn(k; t) |nk; t〉〉

}
.
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Next, we define a subset of I that has the special property
that the phase factors evolve smoothly in time, i.e., the
functions are differentiable in time,

D :=
{
|nk; t〉〉 ∈ I : |nk; t〉〉 differentiable in t

}
.

In the same spirit, we define the adiabatic subset of func-
tions that additionally fulfill the adiabatic time evolu-
tion (23),

A :=
{
|̃nk; t〉〉 ∈ D :

∂t |̃nk; t〉〉 (23)= −qE(t)
∑
n 6=n

|̃nk; t〉〉〈̃〈nk; t| ∂
∂A
|̃nk; t〉〉

}
.

We further define the set S of stationary (i.e. time-
independent), differentiable-in-k functions for a station-
ary basis |nk〉〉: (N, 1. BZ)→H,

S :=
{
|nk〉〉 : hin(k)|nk〉〉 (16)= εn(k)|nk〉〉

and |nk〉〉 differentiable in k
}
.

Bloch electrons in homogeneous electric field.
For the dynamics of Bloch electrons in a homogeneous
electric field, we have h(k; t) = hin(k−A(t)). It is conve-
nient to introduce a set of co-moving functions as

C :=
{
|nk; t〉〉 ∈ D : there is a |nk〉〉 ∈ S

such that |nk; t〉〉 = |nkt〉〉
}
,

(35)

using the definition kt=k−A(t) from (20). The co-
moving set forms a basis that is also known as Houston
basis86 in the literature. We mention that a co-moving
function |nk; t〉〉 ∈C is an eigenstate of h(k; t) with eigen-
value εn(kt), see (16). In general, a co-moving function
is not adiabatic,

C 6⊂ A ,

that means, the condition of parallel transport, Eq. (28),
is violated by a general co-moving function. The only de-
gree of freedom that distinguishes between an adiabatic

function |̃nk; t〉〉 ∈ A and a co-moving function |nkt〉〉 is a
differentiable phase80 γn(kt, t) such that

|̃nk; t〉〉 = exp(iγn(kt, t)) |nkt〉〉 . (36)

The dipole moment and the Berry connection from
(26) and (27) when expressed in the co-moving basis (35),
|nk; t〉〉=|nkt〉〉, turn into familiar expressions18–20,81,87

dnn′(kt) = q〈〈nkt|i∂kt
|n′kt〉〉 , (37)

An(kt) = q〈〈nkt|i∂kt
|nkt〉〉 . (38)

For deriving an equation of motion for the density ma-
trix in the co-moving basis |nkt〉〉, we proceed similarly

as for deriving Eq. (34): In Eq. (31), the substitutions
R(t)→A(t) and |α; t〉→ |nkt〉〉 lead to the familiar form
of the SBE in the co-moving basis as18–20,87(

i∂t − εnn′(kt)
)
%nn′(k; t) =

E(t)
∑
n

%nn(k; t)dnn′(kt)− dnn(kt)%nn′(k; t) .
(39)

The co-moving basis is our preferred basis for numeri-
cal calculations since dipoles and Berry connections, (37)
and (38), are easy to compute. In this representation, the
SBE constitute an Nb-level model, where Nb represents
the number of bands. A discussion for the case Nb = 2 is
given in textbooks19.

E. Gauge perspective of the EoM

So far, we have derived equations of motion for den-
sity matrices, with examples focusing on homogeneous
electric fields treated in Coulomb-gauge with E = −Ȧ.
Then, the operator relation (32) takes the form

i∂tρ(k; t) = [hin(k−A(t)), ρ(k; t)] . (40)

In this section, we translate upper commutator relation
into an EoM for matrix elements of ρ(k; t). We represent
ρ(k; t) in two different basis sets and present the EoM
associated with either one.

Within the co-moving basis |nkt〉〉, we have matrix el-
ements %nn′(k; t)

%nn′(k; t) := 〈〈nkt|ρ(k; t)|n′kt〉〉 , (41)

see Appendix C where we show that Eqs. (40) and (41)
indeed lead to the EoM (39).

For exploring another basis, we define a boost operator
as

B(t) := Te

t∫
−∞

dt′ k̇ ∂k
(42)

where the operator T keeps track of the proper ordering
along the k-space trajectory; by definition, it acts on
stationary Bloch states as

B(t) |nk〉〉 = |nkt〉〉 . (43)

For the case of a homogeneous electric field, we have
k̇(t)=∂t(k−A(t))=−Ȧ(t) such that functions are shifted
as B(t)f(k)=f(k−A(t)) (see Appendix D) in line with
Eq. (43). One may interpret the boost operator as anal-
ogon to the generator of translation that is a function of
the momentum operator. By applying the boost operator

hin(k−A(t)) = B(t)hin(k)B−1(t) (44)

we translate the initial, unperturbed Hamiltonian hin(k)
to the time-dependent Hamiltonian h(k; t) at time t.
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With the definition of the density matrix in the dipole
gauge88

ρD(k; t) := B−1(t)ρ(k; t)B(t) (45)

one can derive an EoM from Eq. (40) as

i[∂t + k̇(t)∂k] ρD(k; t) = [hin(k), ρD(k; t)] . (46)

In this representation, the commutator involves the un-
perturbed Hamiltonian only. It therefore is evaluated
conveniently in the stationary basis |nk〉〉. Similarly to
Appendix C, one derives the traditional dipole-gauge for-
mulation of the SBE with the characteristic gradient term
on the lhs,35

i[∂t + qE(t)∂k]ρDnn′(k; t) = εnn′(k)ρDnn′(k; t)

+ E(t)
∑
n

(
ρDnn(k; t)dnn′(k)− dnn(k)ρDnn′(k; t)

)
,

(47)

using the definition

ρDnn′(k; t) := 〈〈nk|ρD(k; t)|nk〉〉 . (48)

As shown in Appendix D, this definition relates to the
Coulomb-gauge density matrix elements in the co-moving
basis from Eq. (41) via

%nn′(k; t) = ρDnn′(k−A(t); t) . (49)

An alternative way to derive Eq. (47) starts from the
dipole (or length) gauge in which the electric field is rep-
resented by a linear potential. The relation Eq. (45)
between ρ(k) and ρD(k) is thus understood as a gauge
transformation. We emphasize that the time evolution
of physical observables resulting from the SBE is gauge-
independent, of course.87,89

F. Phenomenological dephasing

The formalism developed thus far has neglected the
collision term ∂ρ/∂t|coll = 0 in Eq. (3); its most impor-
tant physical effect is to provide a dephasing mechanism.
The strength of the SBE is that dephasing can be in-
cluded phenomenologically in Eq. (39) by adding a term
that is damping oscillations of offdiagonal density matrix
elements20,64:(

i
∂

∂t
+

i(1− δnn′)
T2

− εnn′(kt)
)
%nn′(k; t) =

E(t)
∑
n

%nn(k; t)dnn′(kt)− dnn(kt)%nn′(k; t) .
(50)

The damping translates to the EoM (47) in the stationary
basis with the dipole gauge:

i

[
∂

∂t
+

1−δnn′
T2

+ qE(t)
∂

∂k

]
ρDnn′(k; t) = εnn′(k)ρDnn′(k; t)

+ E(t)
∑
n

(
ρDnn(k; t)dnn′(k)− dnn(k)ρDnn′(k; t)

)
. (51)

While the damping term breaks the time reversal invari-
ance, it respects particle number conservation and the
gauge symmetries. In particular,

∑
n ρnn(k; t) continues

to be stationary.
We here follow previous authors4,12,23,64,78,90,91 and

consider the relaxation time approximation as a conve-
nient and computationally efficient approach to mimic
qualitatively many-body effects leading to dephasing.
The approximation associates the same rate parameter
with all components of the density operator however,
with consequences for quantitative estimates that are
hard to predict. While it is common practice to use the
rate as a fitting parameter so as to diminish quantitative
discrepancies with reference data, the overall procedure
is to be taken with a grain of salt.

III. OBSERVABLES: EMISSION INTENSITY,
DYNAMICAL POLARIZATION AND CURRENT

As a response to the time-dependent perturbing fields,
the charge density is accelerated; it varies in time and
therefore irradiates light. The calculation of the emitted
light intensity starts from the familiar equivalence be-
tween longitudinal current density and the derivative of
the polarization,20,92,93

j(t) = ∂tP(t) . (52)

Experiments measure the frequency resolved emission in-
tensity I, which is given by93

I(ω) =
ω2

3c3
|j(ω)|2 . (53)

In the following, we derive expressions for the (dynami-
cal) polarization and the current of the emitted radiation.

A. Dynamical polarization P

We compute the polarization94 as expectation value of
the dipole operator qr in a general basis |α〉 from (1) as20

P(t) =
1

V
Tr [qrρ(t)] =

1

V
∑
α,β

〈α|qr|β〉ρβα(t)

=
1

V
∑
mm′

∑
kk′

〈mk|qr|m′k′〉ρm′m(k′k; t) , (54)

with V denoting the normalization volume. Adopting
the notation from Eq. (15), we employ a basis |mk〉 with
k-independent lattice-periodic part |m〉〉,

〈r|mk〉 =
1√
N
eikr〈〈r|m〉〉 . (55)

The major advantage of the |m〉〉-basis over a k-dependent
lattice-periodic part |nk〉〉 is that gradient-terms in k can
be much easier handled. We also derive our main result
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for ∂tP using a k-dependent lattice-periodic |nk〉〉 basis
in Appendix E. We keep the full k-dependence of

ρmm′(kk′; t) = 〈mk|ρ(t)|m′k′〉

in (54) to properly account for k-derivatives later on.

We evaluate the dipole matrix element 〈mk|r|m′k′〉
appearing in the polarization (54) adopting (B1) as

〈mk|r|m′k′〉 =
(2π)d

V
〈〈m|

[
i∂ke

−i(k−k′)rδ(k−k′)
]
|m′〉〉 .

(56)

With (56) and results from Appendix A, we obtain

P(t) = q
∑
mm′

∫
BZ

dk

∫
BZ

dk′

(2π)d
ρm′m(k′k; t)

× 〈〈m|
[
i∂ke

−i(k−k′)rδ(k−k′)
]
|m′〉〉 .

= iq
∑
mm′

∫
BZ

dk

(2π)d
〈〈m|m′〉〉 ∂ρm

′m(k′k; t)

∂k′

∣∣∣∣
k′→k

= iq
∑
m

∫
BZ

dk

(2π)d
∂ρmm(k′k; t)

∂k′

∣∣∣∣
k′→k

= iq

∫
BZ

dk

(2π)d
Trn ρ(k; t) , (57)

where integration by parts has been used to arrive at the
second equation. In the last line, we defined

ρmm′(k; t) := 〈c†m′k∂kcmk〉 =
∂ρmm′(k

′k; t)

∂k′

∣∣∣∣
k′→k

.

(58)
The trace in Eq. (57) can be evaluated in any lattice
periodic basis and it is our preferred choice to continue
with basis-independent representations.

For computing the emission from Eq. (53), we em-
ploy the time derivative of P that translates to the
time derivative of ρ in Eq. (57). We insert EoM (40),
iρ̇(k; t) = [h(k; t), ρ(k; t)] in the Coulomb gauge in the rhs
of (58) and obtain

iTrnρ̇(k; t) = Trn

[
[h(k; t),ρ(k; t)] + (∂kh(k; t))ρ(k; t)

]
.

(59)

Since the trace of the commutator vanishes, we have

∂tP(t) = q

∫
BZ

dk

(2π)d
Trn

[
(∂kh(k; t)) ρ(k; t)

]
. (60)

We evaluate the trace in Eq. (60) for the special case of a
homogeneous electric field, h(k; t) = hin(k−A(t)) in the

co-moving basis |nk; t〉〉 = |nkt〉〉:

∂tP(t) = q
∑
nn′

∫
BZ

dk

(2π)d
〈〈nk; t|∂h

in(k−A(t))

∂k
|n′k; t〉〉 %n′n(k; t)

(61)

= q
∑
nn′

∫
dk

(2π)d
〈〈nkt|

∂hin(kt)

∂kt
|n′kt〉〉 %n′n(k; t)

(62)

so that the density matrix %nn′(k; t) as defined in Eq. (41)
in the co-moving basis appears. In this way, it is possible
to use %nn′(k; t) from the dynamics in Eq. (39) to evaluate
∂tP(t) and subsequently also the emission intensity.

The transparent result (61) implies that the velocity
associated with the co-moving states |nk; t〉〉 as given by
the matrix element derives from the instantaneous band
structure. Notice, however, that this particular aspect of
(61) is a consequence of our choice of gauge. In the later
Section III C an equivalent expression, Eq. (67), will be
derived for the current density that involves the unper-
turbed band-structure.

B. Longitudinal current density j

An alternative derivation of (60) embarks on the rela-
tion (52) between the longitudinal charge current density

and the polarization, j(t) = Ṗ and

j(t) =
1

V
Tr [qṙρ(t)] =

1

V
∑
α,β

〈α|qṙ|β〉ρβα(t)

= V
∑
nn′

∫∫
BZ

dk

(2π)d
dk′

(2π)d
〈nk|qṙ|n′k′〉ρn′n(k′k; t) .

(63)

Since the velocity operator ṙ relates to the Hamiltonian
via the operator derivative ṙ = ∂h/∂p, we readily con-
clude

j(t) = qV
∑
nn′

∫∫
BZ

dk

(2π)d
dk′

(2π)d
〈nk|∂h(t)

∂p
|n′k′〉ρn′n(k′k, t) .

(64)

Translational invariance: In the special situation
of translational invariance, h is diagonal in the eigen-
states |nk〉 of the momentum operator p. Therefore, first
the operator derivative ∂/∂p in Eq. (64) can be replaced
by ∂/∂k and second, the matrix element is proportional
to δ(k− k′).80 Hence, Eq. (64) simplifies to

j(t) = q

∫
BZ

dk

(2π)d
Trn

[
∂h(k; t)

∂k
ρ(k; t)

]
. (65)

and we recover (60).
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C. Inter- and intraband currents: Anomalous
velocity, conductivity tensor and damping current

For additional physical insight, we split the current
density j(t) into semiclassical and quantum contribu-
tions. To this end, we embark on the trace formula
Eq. (60)

j(t) = q

∫
BZ

dk

(2π)d
Trn

[
(∂kh(k; t)) ρ(k; t)

]
.

Recalling Eq. (45) and (44), we derive an expression in
the dipole gauge as

j(t) = q

∫
BZ

dk

(2π)d
Trn

[
B−1 ∂kh

in(k−A(t))B ρD(k; t)
]

= q

∫
BZ

dk

(2π)d
Trn

[
B−1 ∂kBhin(k) ρD(k; t)

]
= q

∫
BZ

dk

(2π)d
Trn

[
∂kh

in(k) ρD(k; t)
]

(66)

where the last line is assuming k̇ does not depend on k,
as is the case for homogeneous electric fields. The trace
in Eq. (66) when evaluated in the stationary basis |nk〉〉
yields a formula

j(t) = q
∑
nn′

∫
BZ

dk

(2π)d
〈〈nk|∂khin(k)|n′k〉〉 ρDn′n(k; t) ,

(67)

which has frequently been used before33,34,56,64,87,95–102.
In Appendix F we derive an expression for the matrix

element

〈〈nk|∂khin(k)|n′k〉〉 = δnn′∂kεn(k)− i

q
dnn′(k)εn′n(k) .

(68)

Inserting (68) into (67), we can motivate the splitting
of (67) into intraband (n=n′) contributions and a rest
(n 6=n′). We reproduce a frequently used expression for
the intraband current,23,35,36

j̃intra(t) := q
∑
n

∫
BZ

dk

(2π)d
∂kεn(k) ρDnn(k; t) , (69)

that adds together with the interband current

j̃inter(t) := q
∑
n 6=n′

∫
BZ

dk

(2π)d
〈〈nk|∂khin(k)|n′k〉〉 ρDn′n(k; t)

(70)

= −i
∑
n 6=n′

∫
BZ

dk

(2π)d
dnn′(k) εn′n(k)ρDn′n(k; t) (71)

to the total current

j(t) = j̃intra(t) + j̃inter(t) . (72)

Embarking on (47), we can also write

j̃inter(t) =
∑
n 6=n′

∫
BZ

dk

(2π)d
dnn′(k) (∂t + qE(t)∂k)ρDn′n(k; t)

− i
∑
n 6=n′

∫
BZ

dk

(2π)d
dnn′(k) [E(t)d(k), ρD(k; t)]n′n . (73)

The first term in (73) has the interpretation of a polar-
ization current23,33,35,36,

∂tP
inter(t) :=

∑
n 6=n′

∫
BZ

dk

(2π)d
dnn′(k) ρ̇Dn′n(k; t) . (74)

As we show in Appendix G, the remaining two terms
in (73) have a natural splitting into two parts: The

first part adds to the intraband current j̃intra(t) and ac-
counts for the anomalous contribution to the (semiclas-
sical) velocity80:

vn(k) = ∂kεn(k) + qE(t)×Ωn(k) ; (75)

the Berry curvature Ωn(k) is given in three dimensions
as80

Ωn(k) =
1

q
∇k ×An(k) , (76)

with An(k) = dnn(k) as defined in Eq. (38). So, the full
intraband current reads

jintra(t) = q
∑
n

∫
BZ

dk

(2π)d
vn(k) ρDnn(k; t) . (77)

The second part takes the form σ(t)E(t) with

σij(t) =
∑
n 6=n′

∫
BZ

dk

(2π)d

[
i d

(j)
nn′(k)

(
d(i)nn(k)− d(i)n′n′(k)

)
−
(
q∂kid

(j)
nn′(k)

)]
ρDn′n(k; t) . (78)

Gauge invariance with respect to multiplicative wave-
function phase factors87 can be easily shown for the con-
ductivity tensor (78). Collecting terms, we have for the
current

j(t) = jintra(t) + ∂tP
inter(t) + σ(t)E(t) . (79)

When deriving Eq. (73) and therefore (79) we have em-
ployed the EoM (47), i.e. we have not accounted for
phenomenological damping terms. The latter can be in-
cluded by using EoM (51) instead of (47). The effect of
dephasing amounts to an effective contribution

jdeph(t) :=
1

T2

∑
n 6=n′

∫
BZ

dk

(2π)d
dnn′(k) ρDn′n(k; t) (80)
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that relates to the polarization current (74) via

∂tP
inter(t) = T2 ∂t j

deph(t) (81)

and adds to the previous result (79). Summarizing, we
have for the total current a splitting in intraband and
interband contributions

j(t) = jintra(t) + jinter(t) (82)

defining the interband current as

jinter(t) := ∂tP
inter(t) + σ(t)E(t) + jdeph(t) . (83)

Further details of the derivation of Eq. (82)/(83) are
given in Appendix G.

D. Work deposited by E(t): the case of two-bands

As a first application of our result (82), we derive
an expression for the electric work deposited per time
Ẇ (t) := j(t)E(t). We begin with the observation that the
anomalous contribution to the charge current is of the
form E×Ωn and therefore does not contribute to Ẇ (t).
We therefore can adopt (69) and (71) for intra- and in-
terband current contributions.

We focus on a two-band model for a band insulator.
With respect to dynamics we thus deal with a two-level
model with a conservation law: ρDvv(k; t)+ρDcc(k; t) = z(k)
for valence (v) and conduction (c) band. The x-axis is
taken to point along the electric field; we then have for
the intraband current

jintrax (t) = q

∫
BZ

dk

(2π)d
∂εcv(k)

∂kx
ρDcc(k; t) + jeqx , (84)

with the equilibrium current

jeqx := −
∫

dk

(2π)d
εv(k)

∂z(k)

∂kx
;

the interband current reads

jinterx (t) = 2

∫
BZ

dk

(2π)d
εcv(k) Im

(
dxvc(k) ρDcv(k; t)

)
. (85)

Recalling the EoM (51) and using integration by parts,
we decompose the interband current into

jinterx (t) =

∫
BZ

dk

(2π)d
εcv(k)

[
q
∂

∂kx
+

1

E(t)

∂

∂t

]
ρDcc(k; t)

(86)

= jeqx − jintrax (t) +

∫
BZ

dk

(2π)d
εcv(k)

E(t)

∂ρDcc(k; t)

∂t
.

(87)

For the total current jx(t) = jintrax (t)+jinterx (t), we thus
arrive at

jx(t)− jeqx =
1

E(t)

∫
BZ

dk

(2π)d
εcv(k)

∂ρDcc(k; t)

∂t
. (88)

This expression implies

Ẇ (t) =

∫
BZ

dk

(2π)d
εcv(k) ∂t

[
ρDcc(k; t)− ρDvv(k; t)

]
/ 2 ,

(89)

where Ẇ (t) = (jx(t)−jeqx )E(t) has been employed. Equa-
tion (89) represents a transparent result for the electric
work done on the system per time: whenever a particle-
hole pair is created at wavenumber k, an amount of en-
ergy εcv(k) is deposited into the system. Within this
simple model alternative routes for energy deposition do
not exist.

E. Relation to earlier work

Sipe and coworkers33,34 have considered the current
density j(t) in their work on second and third order re-
sponses. In this context they arrived at a splitting of
the total current density similar to (79). Their deriva-
tion employs a perspective focusing on the polarization as
central concept, especially in Ref. 34. Correspondingly,
it starts with a decomposition of the position operator
into an inter- and intraband constituent. Our derivation
is somewhat simpler, in the sense that no such decom-
position is imposed at any time. The constituents of our
final result (79) and their physical nature more or less
reveal themselves in the course of our calculation.

Frequently cited works23,35,36 on high-harmonics gen-
eration have used approximate variants of (82): the
anomalous velocity, σ(t)E(t), and jdeph(t) have not been
accounted for. It is important to note that the anoma-
lous term in the velocity as well as the σ-term both equal
zero when the following two conditions on dnn′(k) are
satisfied: all diagonal entries vanish, dnn(k) = 0 and the
off-diagonals dnn′ are independent of k. Indeed, models
for the dipole-matrix have frequently been adopted that
satisfy these conditions23,35,36; the main approximation
for the current calculation in these works therefore is the
neglect of jdeph(t).

IV. APPLICATION: DYNAMICS OF DIRAC
FERMIONS

Motivated by recent experiments103–111, we briefly
present an application of the SBE formalism to the den-
sity matrix dynamics for a Dirac-type dispersion driven
by an ultra-short electric field pulse. We focus on band-
structure effects and neglect mean-field interactions.
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A. Model and method

Hamiltonian. We employ a two-dimensional Dirac
cone

hin(k) = vF(kyσx − kxσy) (90)

with a Fermi velocity vF = 4.3 ·105 m/s = 1.44 ·10−3c that
is a prototypical two-band surface Hamiltonian of a topo-
logical insulator as bismuth telluride (Bi2Te3).112 Such a
model Hamiltonian can be obtained, e.g., from ab-initio
calculations by k · p perturbation theory112 or the use
of Wannier functions113,114. The eigenstates and band-
structure are computed as

|vk〉〉 =
1√
2

(
1

ieiθ

)
, |ck〉〉 =

1√
2

(
−1

ieiθ

)
,

εv(k) = −vF|k| , εc(k) = vF|k| ,

(91)

for v and c being the valence and conduction band, re-
spectively. The dipoles follow

dnn′(k) = − q

2|k|
êθ (92)

for n, n′ ∈{v, c} with θ being the polar angle and êθ the
unit vector orthogonal to k.

Electric-field pulse. An ultra-short laser pulse is
employed with an electric driving field that is polarized
in x-direction,

E(t) = E êx sin(ω0t) exp

(
− t

2

σ2

)
, (93)

where ω0 = 2π · 25 THz, E= 5 MV/cm and σ= 50 fs
throughout our calculations. The pulse shape here
adopted follows the experimental ones.2,4,115

Equations of motion. The EoM will be adopted
from Eq. (50) (Coulomb gauge) and (51) (dipole gauge).
For practical calculations, we have chosen T2 = 1 fs fol-
lowing Ref. 4, similar to Refs. 12, 23, 90, and 91; for
further discussion see Ref. 64.

The initial condition for integrating the EoM was cho-
sen with the valence band being filled and the conduction
band being empty:

%innn′(k) = δnvδn′v. (94)

For the k-domain of integration, we have allowed for the
limit π/a→∞. This corresponds to a situation where the
linear dimension of the simulation volume, kmax:=π/a,
exceeds any other characteristic wavenumber; in partic-
ular, π/a�ω0/vF and π/a� qE/ω0. The inequalities
are satisfied for typical lattice constants a and param-
eters ω0, vF, E as chosen in this work: For a= 3 Å, we
have π/a' 2 qE/ω0 such that Bloch electrons excited

at the Γ-point hardly reach the boundary kmax of the
simulation volume. Much higher field strengths up to
72 MV/cm are used to drive the Bloch electrons beyond
kmax to initiate Bloch oscillations2. For integrating the
EoM in Eq. (50), we use a backward differentiation for-
mula with a maximum adaptive timestep of 0.1 fs as
implemented in scipy116. Convergence with respect to
the k-point mesh size as well as numerical equivalence
of Coulomb and dipole gauge is demonstrated in Ap-
pendix H, especially Fig. 3 (d). The emission intensity
I(ω) is computed from Eq. (53) using the current den-
sity from Eq. (62) (Coulomb gauge) or Eq. (67) (dipole
gauge). For the simulations, we have used our in-house
program package CUED, freely available from github,
https://github.com/ccmt-regensburg/CUED.

B. Results: Dynamics in homogeneous E-field

Real-time currents. In Fig. 1 (a) we display the in-
plane current component, jx(t), directed along the elec-
tric field. For the parameter regime here considered, the
current in Fig. 1 is dominated by the semiclassical con-
tribution jintrax (t) with a shape that roughly follows the
vector potential. The deviations of jintrax (t) from the full
current are seen to be largest at early times. The rea-
son is that the system we consider starts out with the
valence band being fully occupied and the conduction
band being empty; the semiclassical current can start to
flow only after occupations of conduction band electrons
(and valence band holes) have built up.

The discrepancy between the total current and the in-
traband current is due to interband currents that are
shown in Fig. 1 (b); for a numerical check of the discrep-
ancy see Appendix H. For strong damping, T2 = 1 fs, the
dephasing contribution jdephx (t) dominates the interband
current, jinterx (t), see Fig. 1 (b), since jdephx (t) ∝ T−12 ;
in our case it exceeds the other terms, ∂tP

inter
x (t) and

σxx(t)Ex(t), by nearly an order of magnitude. In a sense,
this observation also carries over to the high-harmonic
generation: Fig. 2 (a) shows that at high-harmonic order
six and higher the emission falls below the value that it
had were it only for the intraband current alone. Only
upon adding the dephasing current, the emission decays
by up to a factor of ten down to its real value.

We comment on the significance of this observation.
Dephasing rates of order T−12 ∼ 1015Hz have frequently
been employed in numerical investigations4,12,23,64,90,91.
One of the effects of strong dephasing is to dampen oscil-
lating terms in the SBE and - consequently - also in phys-
ical observables, such as the current j(t). As has been
discussed by Floss et al. 64 , in a crude way this damping
of fluctuations mimics the spatial averaging that occurs
in experiments because different sample regions experi-
ence different strength of the laser field and therefore
contribute incoherently to the experimental signal.

Now as we have shown, adding phenomenological
terms to the SBE, in principle, gives an extra contri-
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FIG. 1. Time-dependent currents for the Dirac system.
(a) x-component of the total current (black, computed from
Eq. (67)) and the intraband current (dashed gray, computed
from Eq. (69) using jintrax (t) = j̃intrax (t) due to E(t) =Ex(t)êx).
(b) x-component of interband currents, ∂tP

inter(t) is com-
puted from (74), σ(t)E(t) from (78), jdeph(t) from (80) and

j̃inter(t) from (70).

bution to the charge current, jdephx (t), that incorporates
genuine many-body effects, such as friction. This term
will not arise with spatial averaging; therefore, this term
should be omitted in current calculations for the purpose
of mimicry. Our results in Fig. 1 and 2 emphasize the
quantitative importance of this term at large damping
and therefore underline a qualitative difference of spatial
averaging from dephasing.

The remaining contributions to the interband current,
∂tP

inter
x (t) and σxx(t)Ex(t), fall below jintrax (t) by two or-

ders of magnitude. Since they are considerably sharper
structured than jdephx (t), see Fig. 1 (b), they nevertheless
contribute significantly to the high harmonics in Fig. 2.
We explain this finding with the fact that ∂tP

inter
x (t) and

σxx(t)Ex(t) contain derivatives in time and k, respec-
tively, in contrast to jdephx (t). In passing, we note that
in Fig. 1 the extrema of jdephx (t) are seen to be the roots
of ∂tP

inter
x (t). The correlation reflects the exact identity

Eq. (81).
Emission intensity. The emission spectrum is shown

in Fig. 2. After an exponential decay by four orders
of magnitude a nearly plateau-like regime is seen from
the 5th to 20th harmonic order. Similar behaviour has
been reported in the literature for a semimetallic Hamil-
tonian26 and the Haldane model15. In Appendix I we
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FIG. 2. Composition of the emission intensity I(ω),
Eq. (53), for various combinations of currents; the plot
illustrates the relative importance of different contribu-
tions. (a) Gray: intraband current jintrax (t) from Eq. (77)
only, blue: sum of jintrax (t) and polarization related cur-
rent ∂tP

inter
x (t) from Eq. (74), green: sum of jintrax (t) and

current jdephx (t) due to dephasing from Eq. (80), blue: sum
of jintrax (t) and current σxx(t)E(t) due to the conductivity
tensor from Eq. (78), black: full current using Eq. (67).
(b) Comparison of intraband and (full) interband current,
jinterx (t) = ∂tP

inter
x (t) + jdephx (t) +σxx(t)E(t), c.f. Eq. (70).

investigate a toy-model of a semiconductor, which also
reproduces the plateau feature, see Fig. 5.

In Fig. 2 (b) the intraband current dominates the
emission spectrum up to the fifth harmonic order.
This observation is in line with previous studies on
semiconductors23 and implies that the lower frequency
response is essentially semi-classical also for the Dirac
system. At higher harmonic orders (ω/ω0> 10) the intra-
and interband currents develop a similar strength. Re-
markably, they interfere destructively, so that the com-
bined transmission is smaller by up to order of magnitude
as compared to the individual ones. This special feature
discriminates the Dirac-cone from the semi-conductor,
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see Fig. 5 in Appendix I for an semiconducting paradigm.
The increased importance of interband currents for

high harmonics manifests already in the time-dependent
currents in Fig. 1 (b): the interband currents ∂tP

inter
x (t)

and σxx(t)Ex(t) feature sharp kinks adding strong weight
to high-frequency amplitudes.

V. CONCLUSIONS AND OUTLOOK

A derivation of the semiconductor Bloch equations
(SBE) for the time evolution of the density matrix has
been presented emphasizing the close relation to the
Berry connection. This particular approach has the ap-
pealing feature that it lends itself to a semiclassical per-
spective on the SBE allowing for a simplified treatment
of magnetic-field effects by Lorentz forces that will be
presented in a forthcoming publication.

Also, expressions have been rederived connecting the
density matrix to physical observables, specifically, to the
current density. In addition to the traditional current,
summing intraband and interband-polarization contribu-
tions23,35,36, we have identified an extra term; it becomes
sizable in situations where dipole-matrix elements de-
pend strongly on the wavenumber. We have implemented
an SBE solver and applied it to Dirac metals, motivated
by the observation that dipoles are strongly k-dependent
for Dirac fermions. We find that the extra term gives a
significant contribution to the total current, in particular,
to the high-harmonic generation: the emission intensity
can deviate by more than an order of magnitude upon
neglecting the extra term.
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Appendix A: Basics of lattice periodicity

We define V as a volume containing several unit cells
with lattice vectors R. Then, an integration over V is
given by integrating over individual cells,∫

V
dr f(r) =

∑
R

∫
C
dr f(r + R) . (A1)

C denotes the integration over the (primitive) unit cell.

For vectors k−k′ from the first Brillouin zone, we recall

∑
R

ei(k−k
′)R = N δkk′ '

(2π)d

Vc
δ(k− k′) (A2)

where N :=
∑

R denotes the number of unit cells in V and
Vc = V/N is the volume of a unit cell. The rhs of (A2)
in the limit of large N implies

∑
k

f(k) ' V
(2π)d

∫
BZ

dk f(k) , (A3)

where we integrate over the first Brillouin zone.

The eigenstates of the stationary, lattice-periodic
Hamiltonian are Bloch-states |nk〉. In the context of
Eq. (15), we have defined the lattice periodic wavefunc-
tion as unk:

〈r|nk〉 =
1√
N
eikr〈〈r|nk〉〉 =:

1√
N
eikr unk(r) . (A4)

The double angular brackets indicate that the normal-
ization volume for unk is the unit cell C:

〈〈nk|n′k〉〉 :=

∫
C
dr u∗nk(r)un′k(r) = δnn′ , (A5)

while the normalization volume for Bloch states |nk〉 is V:

〈nk|n′k〉 :=
1

N

∫
V
dr u∗nk(r)un′k(r) = δnn′ . (A6)

This notation is also used to define an integration of lat-
tice periodic functions over a single unit cell as

〈〈nk|f(r)|n′k′〉〉 :=

∫
C
dr u∗nk(r)f(r)un′k′(r) . (A7)

In contrast, for expectation values of Bloch states |nk〉
we integrate over the whole volume V with a normaliza-
tion 1/N stemming from (A4)

〈nk|f(r)|n′k′〉

(A4)
=

1

N

∫
V
dr u∗nk(r)e−i(k−k

′)rf(r)un′k′(r)

(A1)
=

1

N
∑
R

∫
C
dr u∗nk(r)e−i(k−k

′)(r+R)f(r + R)un′k′(r) .

(A8)

For infinitely extended systems, we have N→∞.

In case we have an operator as the Hamiltonian h or the
density matrix ρ, that are not diagonal in r, we frequently
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evaluate matrix elements as follows:

〈nk|h(t)|n′k〉 =

∫∫
V V

〈nk|r〉〈r|h(t)|r′〉〈r′|n′k〉 dr dr′

=
1

N

∫∫
V V

e−ikru∗nk(r)〈r|h(t)|r′〉eikr
′
un′k(r′) dr dr′

(∗)
=

1

N
∑
R

∑
R′

∫∫
C C

e−ik(r+R)u∗nk(r)〈r+R|h(t)|r′+R′〉

× eik(r
′+R′)u∗n′k(r′) dr dr′

(A4)
=

∫∫
C C

〈〈nk|r〉〉
(

1

N
∑
R

∑
R′

e−ik(r+R)〈r+R|h(t)|r′+R′〉

× eik(r
′+R′)

)
〈〈r′|n′k〉〉 dr dr′

(#)
=

∫∫
C C

〈〈nk|r〉〉〈〈r|h(k; t)|r′〉〉〈〈r′|n′k〉〉 dr dr′

= 〈〈nk|h(k; t)|n′k〉〉 (A9)

where we used in (∗) that unk(r) is lattice-periodic and in
the first and last step that the the real-space basis is com-
plete. In step (#), we have defined the operator h(k; t)
via its real-space matrix elements as

〈〈r|h(k; t)|r′〉〉

=
1

N
∑
RR′

e−ik(r+R)〈r+R|h(t)|r′+R′〉eik(r
′+R′) . (A10)

Bloch states |nk〉 are eigenstates of the initial, lattice-
periodic, time-independent Hamiltonian hin,

hin |nk〉 = εn(k) |nk〉 . (A11)

We further have

εn(k)δnn′ = 〈nk|hin|n′k〉 (A9)
= 〈〈nk|hin(k)|n′k〉〉 . (A12)

After using the completeness 1 =
∑
n |nk〉〉〈〈nk| we find

the eigenvalue equation for the lattice periodic part

hin(k) |nk〉〉 = εn(k)|nk〉〉 (A13)

that is used in Eq. (16).

Appendix B: Matrix elements of local operators

We derive an identity relating matrix elements of local
operators f(r) in the basis |nk〉 to matrix elements in the
basis |nk〉〉. Employing the basic definitions of periodicity

from Appendix A, we have

〈nk|f(r)|n′k′〉

=
1

N
∑
R

∫
C
dr u∗nk(r)e−i(k−k

′)(r+R)f(r + R)un′k′(r)

=
1

N
∑
R

∫
C
dr u∗nk(r)

[
f(i∂q)e−i(k−k

′+q)(r+R)
]
q=0

un′k′(r)

=
1

N

[
f(i∂q)

∑
R

〈〈nk|e−i(k−k
′+q)(r+R)|n′k′〉〉

]
q=0

=
(2π)d

V

[
f(i∂q)〈〈nk|e−i(k−k

′+q)rδ(k−k′+q)|n′k′〉〉
]
q=0

=
(2π)d

V
〈〈nk| f(i∂k)e−i(k−k

′)rδ(k−k′) |n′k′〉〉 . (B1)

Using identity (B1) and integration by parts, we evaluate
k-sums as follows:∫

BZ

dk′

(2π)d
〈nk|f(r)|n′k′〉ψ(k′)

=
1

V

[
f(i∂k′)〈〈nk|n′k′〉〉ψ(k′)

]
k′=k

. (B2)

As an application, we consider a Hamiltonian h(t) with
a vector potential that varies in time and space A(r, t).
The Schrödinger dynamics in Bloch-state representation
reads

i∂t〈nk|ψ〉 =
∑
nk

〈nk|h(t)|nk〉〈nk|ψ〉 (B3)

with

〈nk|h(t)|nk〉 := 〈nk|h(−i∇−A(r, t))|nk〉 .

By virtue of (B2), the rhs matrix element can be rewrit-
ten with the consequence that

i∂t〈nk|ψ〉

=
∑
n

[
h(k−A(i∂k′ , t))〈〈nk|nk′〉〉〈nk′|ψ〉

]
k=k′

. (B4)

As is explicit from this result, the spatial dependency of
A(r) mixes neighboring k-values as a manifestation of
the broken translational invariance. For a homogeneous
A, however, k-coupling is absent, as one would expect.

Appendix C: Density matrix in the Coulomb gauge
in the co-moving basis

We derive the expression (41) for the density matrix in
the Coulomb gauge in the co-moving basis |nk; t〉〉=|nkt〉〉,
kt=k−A(t)

%nn′(k; t) := 〈〈nkt|ρ(k; t)|n′kt〉〉

starting from the dynamics (40) in the Coulomb gauge,

i∂tρ(k; t) = [hin(k−A(t)), ρ(k; t)] ,
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that is projected on the co-moving basis |nkt〉〉,

i〈〈nkt|(∂tρ(k; t))|n′kt〉〉
= 〈〈nkt|[hin(k−A(t)), ρ(k; t)]|n′kt〉〉
(16)
= εnn′(kt)〈〈nkt|ρ(k; t)|n′kt〉〉 . (C1)

We are interested in a time derivative of matrix elements
instead of matrix elements of the time derivative of op-
erators and therefore state

〈〈nkt|(∂tρ(k; t))|n′kt〉〉 = ∂t(〈〈nkt|ρ(k; t)|n′kt〉〉)
− (∂t〈〈nkt|)ρ(k; t)|n′kt〉〉 − 〈〈nkt|ρ(k; t)∂t|n′kt〉〉 .

With the resolution of the identity 1=
∑
n |nkt〉〉〈〈nkt|,

(∂t〈〈nkt|)|n′kt〉〉=− 〈〈nkt|∂t|n′kt〉〉 and

∂t|nkt〉〉 = −Ȧ(t)∂kt |nkt〉〉
(19)
= qE(t)∂kt |nkt〉〉 ,

we arrive at

〈〈nkt|(∂tρ(k; t))|n′kt〉〉 = ∂t(〈〈nkt|ρ(k; t)|n′kt〉〉)

+ qE(t)
∑
n

〈〈nkt|(∂kt
|nkt〉〉)〈〈nkt|ρ(k; t)|n′kt〉〉

− qE(t)
∑
n

〈〈nkt|ρ(k; t)|nkt〉〉〈〈nkt|(∂kt
|n′kt〉〉) .

(C2)

The dipole matrix elements (37)

dnn′(kt) = q〈〈nkt|i∂kt |n′kt〉〉

together with Eqs. (C1) and (C2) lead to(
i∂t−εnn′(kt)

)
〈〈nkt|ρ(k; t)|n′kt〉〉 =

E(t)
∑
n

[
〈〈nkt|ρ(k; t)|nkt〉〉dnn′(kt)

− dnn(kt)〈〈nkt|ρ(k; t)|n′kt〉〉
]
. (C3)

Eq. (C3) is identical to Eq. (39) and we conclude Eq. (41),

〈〈nkt|ρ(k; t)|n′kt〉〉 = %nn′(k; t) . (C4)

Appendix D: Illustrating the boost operator and
proof of Eq. (49)

The boost operator has been defined in the main text
in Eq. (42) as

B(t) = Te

t∫
−∞

dt′ k̇ ∂k
.

We consider this operator as a successive, time-ordered
infinitesimal shifting,

B(t) ∼=
t∏

t′=−∞

(
1 + dt′ k̇(t′)∂k

)
. (D1)

We use k̇(t) = ∂t(k−A(t)) =−Ȧ(t) for a ho-
mogeneous electric field and Taylor expansion
f(k−dt Ȧ(t)) = (1−dtȦ∂k)f(k) to show

B(t)f(k) ∼=
t∏

t′=−∞

(
1− dt′ Ȧ(t′)∂k

)
f(k)

= f
(
k− ∫ dt′Ȧ(t′)

)
= f(k−A(t)) .

Next, we prove Eq. (49),

%nn′(k; t) = ρDnn′(k−A(t); t) .

We start by specifying the inverse of B,

B−1(t) = Te
−

t∫
−∞

dt′ k̇ ∂k
(D2)

and stating

d

dt
B−1(t) = −qE(t)∂kTe

t∫
−∞

dt′ k̇ ∂k
(D3)

where we have used k̇(t) = ∂t(k−A(t)) =−Ȧ(t) = qE(t)
for a homogeneous electric field. We apply B−1(t) to the
left of the % dynamics, Eq. (39), and obtain (suppressing
the time dependence of B)

iB−1
d

dt
%nn′(k; t)− εnn′(k)B−1%nn′(k; t) =

E(t)
∑
n

(
B−1%nn(k; t)

)
dnn′(k)− dnn(k)B−1%nn′(k; t) .

We insert Eq. (D3) and obtain(
i
d

dt
+ iqE(t)∂k − εnn′(k)

)
B−1%nn′(k; t) =

E(t)
∑
n

(
B−1%nn(k; t)

)
dnn′(k)− dnn(k)B−1%nn′(k; t) .

(D4)

The EoM for B−1%nn′(k; t) in Eq. (D4) is identical to the
EoM of ρDnn′(k; t) in Eq. (47) and we conclude

B−1(t)%nn′(k; t) = ρDnn′(k; t) . (D5)

Eq. (49) follows.

Appendix E: Dynamical polarization P in
k−dependent basis

In the main text, we derive the dynamical polarization
in a Bloch basis with k-independent lattice-periodic part,
see Eq. (55). In this Appendix, we compute the polar-
ization as expectation value of the dipole operator qr in
the stationary Bloch basis |nk〉 from (15) as20

P(t) =
1

V
∑
α,β

〈α|qr|β〉ρβα(t)

=
1

V
∑
nn′

∑
kk′

〈nk|qr|n′k′〉ρn′n(k′k; t) , (E1)
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with V denoting the normalization volume. We keep the
full k-dependence of

ρnn′(kk′; t) = 〈nk|ρ(t)|n′k′〉

in (E1) to properly account for k-derivatives of dipole
matrix elements later on.

We evaluate the dipole matrix element 〈nk|r|n′k′〉 ap-
pearing in the polarization (54) adopting (B1) as

〈nk|r|n′k′〉 =
(2π)d

V
〈〈nk|

[
i∂ke

−i(k−k′)rδ(k−k′)
]
|n′k′〉〉 .

(E2)

With (56) and results from Appendix A, we obtain

P(t) = q
∑
nn′

∫
BZ

dk

∫
BZ

dk′

(2π)d
ρn′n(k′k; t)

× 〈〈nk|
[
i∂ke

−i(k−k′)rδ(k−k′)
]
|n′k′〉〉 .

= iq
∑
nn′

∫
BZ

dk

(2π)d

(
〈〈nk|∂k|n′k〉〉ρn′n(kk; t)

+ 〈〈nk|n′k〉〉 ∂ρn
′n(k′k; t)

∂k′

∣∣∣∣
k′→k

)
(E3)

where integration by parts has been used to arrive at the
last equation. We define

ρn′n(k; t) := 〈c†nk∂kcn′k〉 =
∂ρn′n(k′k; t)

∂k′

∣∣∣∣
k′→k

(E4)

so that

P =
∑
nn′

∫
BZ

dk

(2π)d

(
dnn′(k) ρn′n(k; t) + iqδnn′ρn′n(k; t)

)
(E5)

recalling

dnn′(k) = 〈〈nk|iq∂k|n′k〉〉 (E6)

and abbreviating

ρnn′(k; t) := ρnn′(kk; t) = 〈nk|ρ(t)|n′k〉
(A9)
= 〈〈nk|ρ(k; t)|n′k〉〉 . (E7)

The time derivative ∂tP of the polarization is needed
for evaluating the emission (53) and is given by

∂tP =
∑
nn′

∫
BZ

dk

(2π)d

(
dnn′(k) ρ̇n′n(k; t) + iqδnn′ ρ̇n′n(k; t)

)
=

∫
BZ

dk

(2π)d
Trn

(
d(k)ρ̇(k; t) + iqρ̇(k; t)

)
(E8)

After inserting the EoM (40), iρ̇(k; t) = [h(k; t), ρ(k; t)]
in the Coulomb gauge in the rhs of (E4) the second term
of (E8) contributes with

i
∑
n

ρ̇nn(k; t) =
∑
nn′

(∂khnn′(k, t))ρn′n(k; t) (E9)

so that the coupling to ρ(k; t) drops out due to cyclic
invariance of the trace. Recalling the EoM for ρ(t) we
arrive at:

∂tP =
∑
nn′

∫
BZ

dk

(2π)d

(
[−id(k), h(k; t)]nn′

+ q∂khnn′(k, t)
)
ρn′n(k; t)

= q
∑
nn′

∫
BZ

dk

(2π)d
〈〈nk|∂h(k; t)

∂k
|n′k〉〉 ρn′n(k; t)

= q

∫
BZ

dk

(2π)d
Trn

[
∂h(k; t)

∂k
ρ(k; t)

]
(E10)

The last line uses

∂khnn′(k, t) = ∂k〈〈nk|h(k; t)|n′k〉〉

= 〈〈nk|h∂k|n′k〉〉+ 〈〈nk|∂h
∂k
|n′k〉〉+ 〈〈nk|∂†kh|n

′k〉〉 .
(E11)

With Eq. (E10), we arrive at the same result as in
Eq. (60) that has obtained using the Bloch basis with
k-independent lattice-periodic part.

Appendix F: Proof of Eq. (68)

For the proof of Eq. (68),

〈〈nk|∂h
in(k)

∂k
|n′k〉〉 = δnn′

∂εn(k)

∂k
+

i

q
εnn′(k)dnn′(k) ,

we execute

δnn′∂kεn(k) = ∂k〈〈nk|hin(k)|n′k〉〉

= 〈〈nk|hin∂k|n′k〉〉+ 〈〈nk|∂h
in

∂k
|n′k〉〉+ 〈〈nk|∂†kh

in|n′k〉〉

= εn(k)〈〈nk|∂k|n′k〉〉+ 〈〈nk|∂h
in

∂k
|n′k〉〉 − εn′(k)〈〈nk|∂k|n′k〉〉

(37)
= −εn(k)

i

q
dnn′(k) + 〈〈nk|∂h

in

∂k
|n′k〉〉+ εn′(k)

i

q
dnn′(k) ,

where we have used 〈〈nk|∂†k|n′k〉〉=−〈〈nk|∂k|n′k〉〉.
Eq. (68) follows with εn′n(k) = εn′(k)−εn(k).

Appendix G: Derivation of the anomalous velocity
and the conductivity tensor in Eq. (82)/(83)

For the proof of Eq. (82)/(83),

j(t) = jintra(t) + ∂tP
inter(t) + σ(t)E(t) + jdeph(t) ,

we start from Eq. (69)/(71)

j(t) = j̃intra(t) + j̃inter(t)

= j̃intra(t)− i
∑
n 6=n′

∫
BZ

dk

(2π)d
dnn′(k) εn′n(k)ρDn′n(k; t) .

(G1)
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Replacing εn′n(k)ρDn′n(k; t) in Eq. (G1) by the EoM (51)
and using the definitions (74), (80) leads to

j(t) = j̃intra(t) + ∂tP
inter(t) + jdeph(t)

+
∑
n 6=n′

∫
BZ

dk

(2π)d
dnn′(k) qE(t)∂kρ

D
n′n(k; t)

− i
∑
n 6=n′

∫
BZ

dk

(2π)d
dnn′(k) [E(t)d(k), ρD(k; t)]n′n .

(G2)

We focus on the ith component of the last term. Sup-
pressing the time and k-dependence, we have:∑
n 6=n′

d
(i)
nn′ [E · d, ρD]n′n =

=
∑
j

E(j)
∑

n,n 6=n′
d
(i)
nn′

(
d
(j)
n′nρ

D
nn − ρDn′nd(j)nn

)
=
∑
j

E(j)
[ ∑
n,n′,n

d
(i)
nn′

(
d
(j)
n′nρ

D
nn − ρDn′nd(j)nn

)
−
∑
nn

d(i)nn

(
d(j)nnρ

D
nn − ρDnnd(j)nn

) ]
=
∑
j

E(j)
∑
nn′

(
d
(j)
nn′d

(i)
n′n − d

(i)
nn′d

(j)
n′n

)
ρDnn

+
∑
j

E(j)
∑
n 6=n

[∑
n′

(
d
(i)
nn′d

(j)
n′n − d

(j)
nn′d

(i)
n′n

)
− d(j)nn

(
d(i)nn − d(i)nn

) ]
ρDnn

=iq
∑
n

[E(t)×Ωn(k)](i) ρDnn

+
∑
j

E(j)
∑
n 6=n

[
d(j)nn

(
d(i)nn − d(i)nn

)
+ [d(i), d(j)]nn

]
ρDnn

(G3)

In the last step, we have identified the Berry curva-
ture Ωn(k) by using the sum rule33

[d(i), d(j)]nn =
∑
n′

(
d
(i)
nn′d

(j)
n′n − d

(j)
nn′d

(i)
n′n

)
(37)
= −q2

∑
n′

(
〈〈nk|∂ki |n′k〉〉〈〈n′k|∂kj |nk〉〉

− 〈〈nk|∂kj |n′k〉〉〈〈n′k|∂ki |nk〉〉
)

= −q2
∑
n′

(
− 〈〈nk|∂†ki |n

′k〉〉〈〈n′k|∂kj |nk〉〉

+ 〈〈nk|∂†kj |n
′k〉〉〈〈n′k|∂ki |nk〉〉

)
= −q2

(
−〈〈nk|∂†ki∂kj |nk〉〉+ 〈〈nk|∂†kj∂ki |nk〉〉

)
= −q2

(
− ∂ki〈〈nk|∂kj |nk〉〉+ 〈〈nk|∂ki∂kj |nk〉〉

+ ∂kj〈〈nk|∂ki |nk〉〉 − 〈〈nk|∂kj∂ki |nk〉〉
)

= iq
(
∂kjd

(i)
nn − ∂kid(j)nn

)

= iq
∑
ab

(δajδbi − δbjδai) ∂kad(b)nn

= iq
∑
abc

εabc εcij ∂kad
(b)
nn = iq

∑
c

εijc Ω(c)
n

where in the last line, we have used the definition of the
Berry curvature from Eq. (76) written with the Levi-
Civita tensor εabc.

We will also need a similar sum rule33 that is

i[d(j), d(i)]nn′ = q
(
∂kjd

(i)
nn′ − ∂kid

(j)
nn′

)
. (G4)

Using integration by parts in the fourth term of
Eq. (G2) and inserting (G3) into (G2), we obtain

j(t) = j̃intra(t) + ∂tP
inter(t) + jdeph(t)

− q
∑
j

E(j)(t)
∑
n 6=n′

∫
BZ

dk

(2π)d
(
∂kjdnn′(k)

)
ρDn′n(k; t)

+ q
∑
n

∫
BZ

dk

(2π)d
E(t)×Ωn(k) ρDnn(k; t)

− i
∑
j

E(j)(t)
∑
n 6=n′

∫
BZ

dk

(2π)d

[
d
(j)
nn′ (dn′n′(k)− dnn(k))

+ [d, d(j)(k)]nn′
]
ρDn′n(k; t)

(G4)
= j̃intra(t) + ∂tP

inter(t) + jdeph(t)

+ q
∑
n

∫
BZ

dk

(2π)d
E(t)×Ωn(k) ρDnn(k; t)

+
∑
j

E(j)(t)
∑
n 6=n′

∫
BZ

dk

(2π)d
i
[
d
(j)
nn′ (dnn(k)− dn′n′(k))

−
(
∂kd

(j)
nn′(k)

) ]
ρDn′n(k; t) .

(G5)

Eqs. (77), (78), (82) and (83) follow.

Appendix H: Convergence tests

k-meshes. The singular nature of the Dirac-
Hamiltonian manifests in divergences near the Γ-point,
e.g. in the dipole-matrix elements. Therefore, particu-
lar care has to be taken when discretizing the k-space.
We here investigate the convergence of the k-point in-
tegration of Eq. (62) in Fig. 3 (a) and (b). As k-point
mesh, we choose a Γ-centered Monkhorst-Pack mesh117

that is confined by a rectangle. As shown in Fig. 3 (a),
the emission intensity converges when increasing the size
of the k-mesh and the density of k-points in direction of
the E-field (x-direction). Convergence is found for 1200
k-points and a length 240ω0/vF in kx-direction.

From Fig. 3 (b), we observe that the emission inten-
sity converges when increasing the length and density
of the k-mesh orthogonal to the electric driving field

16



10−24

10−22

10−20

10−18

10−16

10−14
E
m
is
si
on

in
te
ns
ity

I(
ω
)(
at
.u
.)

800×100 k-mesh, area: 220×18.8ω20/v2F
1200×100 k-mesh, area: 240×18.8ω20/v2F
1600×100 k-mesh, area: 260×18.8ω20/v2F

(a) 1200×10 k-mesh, timestep: 0.1 fs
1200×10 k-mesh, timestep: 0.05 fs

(c)

1 5 10 15 20
10−24

10−22

10−20

10−18

10−16

10−14

Frequency ω/ω0

E
m
is
si
on

in
te
ns
ity

I(
ω
)(
at
.u
.)

1200×10 k-mesh, area: 240×4.7ω20/v2F
1200×30 k-mesh, area: 240×9.4ω20/v2F
1200×100 k-mesh, area: 240×18.8ω20/v2F
1200×300 k-mesh, area: 240×37.6ω20/v2F

(b)

1 5 10 15 20
Frequency ω/ω0

3000× 10 k-mesh, Coulomb gauge
3000× 10 k-mesh, dipole gauge
3000× 10 k-mesh, Coulomb gauge
(intraband current only)
3000× 10 k-mesh, dipole gauge
(intraband current only)

(d)

FIG. 3. Frequency-dependent emission intensity from dynamics in a Dirac-cone bandstructure when increasing the k-point
density and the edge length of the rectangle (a) in kx direction and (b) in ky direction. Convergence is found for a rectangle of
size 1500× 240ω2

0/v
2
F and a 1200× 100 k-mesh resolution. (c) Emission intensity computed with two different timesteps (0.1 fs

and 0.05 fs) when propagating the EoM finding excellent agreement between both traces. (d) Emission intensity computed
from the Coulomb and dipole gauge for a 3000× 10 k-mesh finding good agreement. Shown are the emission from the total
current and from the intraband current.

(ky-direction). Here, convergence is found for 100 k-
points and a length of 18.8ω0/vF in ky-direction. We
are left to choose a rectangular 1200× 100 k-mesh with
size 240× 18.8ω2

0/v
2
F for all k-integrations from the main

.
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FIG. 4. The component of the time-dependent interband cur-
rent j̃interx (t) directed along the electric field computed from
Eq. (70) (black) and from Eq. (83) (red dashed).

text. As maximum time step, we choose 0.1 fs. Decreas-
ing the time step to 0.05 fs hardly changes the emission
curves, see Fig. 3 (c).

Gauge independence. As an extra numerical test
proving the equivalence of gauges, we compute the cur-
rent in dipole gauge from Eq. (67) and in the Coulomb
gauge from Eq. (62). The high-harmonics spectrum fol-
lows from Eq. (53). Fig. 3 (d) displays our results: Two
emission curves are shown for currents computed in the
Coulomb and dipole gauge that lie on top of each other
demonstrating the expected equivalence of gauges.

Current formulæ. A key result of our paper is the
decomposition formula (82) and (83). We demonstrate
in Fig. 4 its equivalence with respect to the interband
current to the pre-decomposed expression (70) for the
Dirac model and a current component directed along the
electric field, say x-direction. In this simple setup, the
anomalous contribution to the velocity (E(t)×Ωn(k))x
vanishes; we have for the x-component of the interband
current

j̃interx (t) = ∂tP
inter
x (t) +σxx(t)E(t) + jdephx (t) . (H1)

As seen from Fig. 4 the results obtained from both cal-
culation methods indeed agree, as they should.
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FIG. 5. Emission intensity I(ω), Eq. (53), computed from
different currents for a toy model of a one-dimensional semi-
conductor: black: full current using Eq. (67), gray dashed:
intraband current jintra(t) from Eq. (77), dashed blue: sum
of intraband current jintra(t) and polarization related cur-
rent ∂tP

inter(t) from Eq. (74).

Appendix I: Emission from semiconductor
Hamiltonian

In Sec. IV, we have applied the SBE formalism to Dirac
fermions. For a comparison to previous SBE studies in
semiconductors23,35,36, we here investigate as a toy model
for a semiconductor a one-dimensional two-band Hamil-
tonian

hin(k) = t(k)σx + ∆σz , t(k) := t(1 + cos(ka)) (I1)

for k∈ (−π/a, π/a] that has a semiconducting spectrum

εc(k) = −εv(k) =
√

∆2 + t2(k) (I2)

with minimal gap 2 ∆. As parameters, we choose
t= 3 eV, ∆ = 1.5 eV, a= 3 Å to mimic a generic semicon-
ductor. As one-dimensional driving field, we choose a
Gaussian pulse as in Eq. (93),

E(t) = E sin(ω0t) exp

(
− t

2

σ2

)
, (I3)

with ω0 = 2π · 90 THz, E= 10 MV/cm and σ= 25 fs.

Solving the SBE (51) in the dipole gauge with T2 = 1 fs
and computing currents from Eqs. (67), (82) and (83) re-
sults in a frequency-dependent emission I(ω) [Eq. (53)]
that is shown in Fig. 5. Only odd harmonics appear triv-
ially, due to the inversion-symmetric Hamiltonian (I1),
hin(k) =hin(−k). We observe phenomenology similar to
Ref. 23: a perturbative regime exists for the first to sev-
enth harmonic that correspond to frequencies ω below
the minimal bandgap 2 ∆≈ 8ω0. A plateau follows up
to 15th harmonic order followed by an exponential decay
for harmonics exceeding 15ω0.

Also in line with Ref. 23, we observe in Fig. 5 that the
emission from the full current exceeds the emission from
the intraband current by orders of magnitude for fre-
quencies above the minimum bandgap. In addition, the
emission from the sum of intraband current and time-
derivative of the interband-polarization is very close to
the emission from the full current in clear contrast to
Dirac fermions shown in Fig. 2. Thus, we confirm that
for this application the corrections to the traditional ap-
proxmation for the total current, jintra(t) + ∂tP

inter(t),
are indeed small.
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Rev. B 95, 125403 (2017).
45 C. Attaccalite, M. Palummo, E. Cannuccia, and
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