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1. Introduction
We consider the problem of scheduling jobs on machines to minimize the maximum load (i.e., the problem of
makespan minimization). This is a classic NP-hard problem, with Graham’s [5] list scheduling algorithm for
identical machines being one of the earliest approximation algorithms known. If the job sizes are deterministic,
the problem is fairly well understood, with polynomial time approximation schemes (PTASs) for the cases of
identical (Hochbaum and Shmoys [7]) and related machines (Hochbaum and Shmoys [8]) and a constant-
factor approximation and APX-hardness (Lenstra et al. [17], Shmoys and Tardos [26]) for the case of unrelated
machines. Given we understand the basic problem well, it is natural to consider settings that are less stylized,
and one step closer to modeling real-world scenarios: what can we do if there is uncertainty in the job sizes?
We take a stochastic optimization approach where the job sizes are random variables (RVs) with known
distributions. In particular, the size of each job j on machine i is given by a random variable X;;. Throughout
this paper, we assume that the sizes of different jobs are independent of each other. Given just this infor-
mation, an algorithm has to assign these jobs to machines, resulting in, say, jobs J; being assigned to each
machine i. The expected makespan of this assignment is

E nil:"élxz X;il, (1)

jeli

where m denotes the number of machines. The goal for the algorithm is to minimize this expected makespan.
Observe that the entire assignment of jobs to machines is done up front without knowledge of the actual
outcomes of the random variables, and hence there is no adaptivity in this problem.

Such stochastic load-balancing problems are common in real-world systems where the job sizes are indeed
not known, but given the large amounts of data, one can generate reasonable estimates for the distribution.
Moreover, static (nonadaptive) assignments are preferable in many applications, as they are easier to implement.
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Inspired by work on scheduling and routing problems in several communities, Kleinberg et al. [15] first
posed the problem of approximating the expected makespan in 1997. They gave a constant-factor approx-
imation for the identical-machines case, that is, for the case where for each job j, the sizes X;; = X;; for all
i,i’ € [m]. A key concept in their result was the effective size of a random variable (due to Hui [9]), which is a
suitably scaled logarithm of the moment-generating function. This effective size (denoted by f,,) depended
crucially on the number m of machines. Roughly speaking, the algorithm in Kleinberg et al. [15] solved the
determinisitic makespan minimization problem by using the effective size f,(X;) of each job j as its de-
terministic size. The main part of their analysis involved proving that the resulting schedule also has
small expected makespan when viewed as a solution to the stochastic problem. See Section 2 for a more
detailed discussion.

Later, Goel and Indyk [4] gave better approximation ratios for special classes of job size distributions, again
for identical machines. Despite these improvements and refined understanding of the identical-machines case,
the above stochastic load-balancing problem has remained open, even for the related-machines setting. Recall
that related machines refers to the case where each machine i has a speed s;, and the sizes for each job j satisfy
Xi]' Si = Xl‘f]‘ Sir for all i,i’ € [Wl]

1.1. Results and Techniques
Our main result is as follows:

Theorem 1. There is an O(1)-approximation algorithm for the problem of finding an assignment to minimize the expected
makespan on unrelated machines.

Our work naturally builds on the edifice of Kleinberg et al. [15]. However, we need several new ideas to
achieve this. As mentioned above, the prior result for identical machines used the notion of effective size,
which depends on the number m of machines available. When machines are not identical, consider just the
“restricted assignment” setting, where each job needs to choose from a specific subset of machines: here it is
not even clear how to define the effective size of each job. Instead of working with a single deterministic value
as the effective size of any random variable Xj;, we use all the fi(Xj) values for k =1,2,...,m.

Then, we show that in an optimal solution, for every k-subset of machines, the total B effective size of jobs
assigned to those machines is at most some bound depending on k. Such a property for k = m was also used in
the algorithm for identical machines. We then formulate a linear program (LP) relaxation that enforces such a
“volume” constraint for every subset of machines. Although our LP relaxation has an exponential number of
constraints, it can be solved in polynomial time using the ellipsoid algorithm and a suitable separation oracle.

Finally, given an optimal solution to this LP, we show how to carefully choose the right parameter for the
effective size of each job and use it to build an approximately optimal schedule. Although our LP relaxation
has an exponential number of constraints (and it seems difficult to preserve them all), we show that it suffices
to satisfy a small subset of these constraints in the integral solution. Roughly, our rounding algorithm uses the
LP solution to identify the “correct” deterministic size for each job and then applies an existing algorithm for
deterministic scheduling (Shmoys and Tardos [26]).

1.1.1. Budgeted Makespan Minimization. In this problem, each job j has a reward r; (having no relationship to
other parameters such as its size), and we are given a target reward value R. The goal is to assign some subset
S C [n] of jobs whose total reward Xjes7; is at least R, and to minimize the expected makespan of this as-
signment. Clearly, this generalizes the basic makespan minimization problem (by setting all rewards to one
and the target R = n).

Theorem 2. There is an O(1)-approximation algorithm for the budgeted makespan minimization problem on unrelated
machines.

To solve this, we extend the ideas for expected makespan scheduling to include an extra constraint about
high reward. We again write a similar LP relaxation. Rounding this LP requires some additional ideas on top
of those in Theorem 1. The new ingredient is that we need to round solutions to an assignment LP with two
linear constraints. To do this without violating the budget, we utilize a “reduction” from the generalized
assignment problem (GAP) to bipartite matching (Shmoys and Tardos [26]) as well as certain adjacency
properties of the bipartite-matching polytope (Balinski and Russakoff [2]).
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1.1.2. Minimizing ¢, Norms. Finally, we consider the problem of stochastic load balancing under ¢, norms.
Given an assignment of J; of jobs to machines, we denote the “load” on machine i by L, := Yjes; Xij, and the
“load vector” by L = (Ly,Ly,...,Ly). The expected makespan minimization problem is to minimize E[||L||,].
The g-norm minimization problem is the following: find an assignment of jobs to machines to minimize

1/q]

Theorem 3. There is an O(@)-ﬂpproximation algorithm for the stochastic q-norm minimization problem on unrelated
machines.

B[, | = q

2 X

i=1 \jeJ;

b

Our result for this setting is the following:

The main idea here is to reduce this problem to a suitable instance of deterministic g-norm minimization
with additional side constraints. We then show that existing techniques for deterministic g-norm minimization
(Azar and Epstein [1]) can be extended to obtain a constant-factor approximation for our generalization as
well. We also need to use/prove some probabilistic inequalities to relate the deterministic subproblem to the
stochastic problem. We note that using general polynomial concentration inequalities (Kim and Vu [14],
Schudy and Sviridenko [25]) only yields an approximation ratio that is exponential in 4. We obtain a much
better O(q/ log g)-approximation factor by utilizing the specific form of the norm function. Specifically, we use
the convexity of norms, a second-moment calculation, and a concentration bound (Johnson et al. [12]) for the
gth moment of sums of independent random variables.

We note that Theorem 3 implies a constant-factor approximation for any fixed 4> 1. However, our
techniques do not extend directly to provide an O(1)-approximation algorithm for all g-norms.

1.2. Other Related Work

The stochastic load-balancing problem on identical machines has also been studied for specific job-size
distributions: Goel and Indyk [4] showed that Graham's [5] algorithm achieves a 2-approximation for Poisson
distributions, and they obtained a PTAS for exponential distributions. Kleinberg et al. [15] also considered
stochastic versions of knapsack and bin-packing problems: given an overflow probability p, a feasible single-
bin packing here corresponds to any subset of jobs such that their total size exceeds one with probability at
most p. Goel and Indyk [4] gave better/simpler algorithms for these problems, under special distributions.

Recently, Deshpande and Li [18] and Li and Yuan [19] considered several combinatorial optimization
problems, including shortest paths and minimum spanning trees, where elements have weights (which are
random variables) and one would like to find a solution (i.e., a subset of elements) whose expected utility is
maximized. These results also apply to the stochastic versions of knapsack and bin-packing problems from
Kleinberg et al. [15] and yield bicriteria approximations. The main technique here was a clever discretization
of probability distributions. However, to the best of our knowledge, such an approach is not applicable to
stochastic load balancing.

Stochastic scheduling has been studied in many different contexts, in different fields (see, e.g., Pinedo [23]).
The work on approximation algorithms for these problems is more recent; see Mohring et al. [21] for some
early work and many references. In this paper, we consider the (nonadaptive) fixed assignment model, where jobs
have to be assigned to machines up front, and then the randomness is revealed. Hence, there is no element of
adaptivity in these problems. This makes them suitable for settings where the decisions cannot be instan-
taneously implemented (e.g., for virtual circuit routing, or assigning customers to physically well-separated
warehouses). A number of papers (Gupta et al. [6], Im et al. [11], Megow et al. [20], Mohring et al. [21]) have
considered scheduling problems in the adaptive setting, where assignments are done online and the assignment
for a job may depend on the state of the system at the time of its assignment. See Section 2 for a comparison of
adaptive and nonadaptive settings in the load-balancing problem.

Very recently (after the preliminary version of this paper appeared), Molinaro [22] obtained an O(1)-ap-
proximation algorithm for the stochastic g-norm problem for all 4 > 1, which improves over Theorem 3. In
addition to the techniques in our paper, the main idea in Molinaro [22] is to use a different notion of effective
size, based on the L-function method (Latata [16]). We still present our algorithm /analysis for Theorem 3, as it
is conceptually simpler and may provide better constant factors for small 4.
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2. Preliminaries

The stochastic load-balancing problem (StocMaxespaN) involves assigning n jobs to m machines. For each job
j € [n] and machine i € [m], we are given a random variable X;; that denotes the processing time (size) of job j
on machine i. We assume that the random variables Xj;, X;» are independent when j # j* (the sizes of job j on
different machines may be correlated). We assume access to the distribution of these random variables via
some (succinct) representation. A solution is a partition {J;}!*; of the jobs among the machines, such that
Ji € [n] is the subset of jobs assigned to machine i€ [m]. The expected makespan of this solution is
E[maxi’; ey, Xj;]. Our goal is to find a solution that minimizes the expected makespan.

The deterministic load-balancing problem is known to be N%-hard even on identical machines. The sto-
chastic version introduces considerable additional complications. For example, Kleinberg et al. [15] showed
that, given Bernoulli random variables {X;}, it is #P-hard to compute the overflow probability, that is,
Pr[X; X; > B] for some target B. (Note that a Bernoulli random variable X is specified by two parameters: a size
s > 0 and a probability 4, which means that X = s with probability g and X = 0 otherwise.) We now show that it
is #%-hard even to compute the objective value of a given assignment in the identical-machines setting.

Theorem 4. It is #%P-hard to compute the expected makespan of a given assignment for stochastic load balancing on
identical machines.

Proof. We will reduce the overflow probability problem (Kleinberg et al. [15]) to this problem. An instance of the
overflow probability problem consists of a target integer B and independent Bernoulli trials Y7, ..., Y;, where each Y;
has integer size s; with probability g;. The objective is to compute Pr(XL; ¥; > B). This problem was shown to
be #%-hard in Kleinberg et al. [15, theorem 2.1].

From an instance of the overflow probability problem, we construct two instances of stochastic load
balancing. In addition to the # jobs given by Yj,...,Y,, we have job Zp of deterministic size B and job Zp,; of
deterministic size B + 1. The first instance $’ of stochastic load balancing contains m = 2 machines and jobs
Yq,...,Y, and Zg. The second instance §”” contains m = 2 machines and jobs Yi,...,Y, and Zp,;. We want to
compute the expected makespan of the following assignment for both instances: assign jobs Yi,...,Y, to
machine 1 and the remaining job to machine 2. We use Objg and Objp.1 to denote the expected makespans of
instances $’ and $”’. Then we have

=

Obj = E =B+E

max< B, Y;
=1

max{O, Zn] Y, - B}

=1

n

=B+ > Pr

t>B+1

Y > t|.

=1

Similarly,

Obj3+1 =B+1+ Z PI‘(anY]’Zt).

t2B+2  \j=1

It follows that Pr(Z;?=1 Y;>B) = Pr(Z]"’=1 Y; > B+ 1) = Obj — Objp,1 + 1. So, if we could compute the expected
makespan of any given assignment for stochastic load balancing, then we can also compute the overflow
probability, which is #P-hard. This completes the proof. O

2.1. Scaling the Optimal Value
Using a standard binary search approach, in order to obtain an O(1)-approximation algorithm for Sroc-
Makespa, it suffices to solve the following problem. Given a bound M > 0, either find a solution with expected
makespan O(M) or establish that the optimal makespan is (QQ(M). Moreover, by scaling down all random
variables by factor M, we may assume that the target makespan is one.

We now provide some definitions and background results that will be used extensively in the rest of
this paper.

2.2. Truncated and Exceptional Random Variables

It is convenient to divide each random variable Xj; into its truncated and exceptional parts, defined below:
* Xj = Xij-Iix;<1) (called the truncated part) and
. X{j’ = Xy Lo (called the exceptional part).
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Note that Xj; = X, + X7/. The reason for doing this is that these two kinds of random variables behave very
differently with respect to the expected makespan. It turns out that expectation is a good notion of deter-
ministic size for exceptional RVs, whereas one needs a more nuanced notion (called effective size) for
truncated RVs; this is discussed in detail below.

We will use the following result (which follows from Kleinberg et al. [15]) to handle exceptional RVs.

Lemma 1 (Exceptional ltems’ Lower Bound). Let X1, X», ..., X; be nonnegative discrete random variables, each taking value
zero or at least L. If 3 E[X;] > L, then E[max; X;] > L/2.

Proof. The Bernoulli case of this lemma appears as lemma 3.3 in Kleinberg et al. [15]. Although lemma 3.3 of
Kleinberg et al. [15] is stated for nonstrict inequalities, it also holds for strict inequalities. The extension to the
general case is easy. For each Xj, introduce independent Bernoulli random variables {Xjk}, where each X cor-
responds to a particular instantiation sy of X, that is, Pr[Xj = si] = Pr[X; = sj]. Note that max; Xj; is stochastically
dominated by Xj, so E[max; X;] > E[maxj Xj|. Moreover, X E[Xj]| = X; E[X;] > L. So the lemma follows from the
Bernoulli case. O

2.3. Effective Size and Its Properties

As is often the case for stochastic optimization problems, we want to find some deterministic quantity that is a
good surrogate for each random variable, and then use this deterministic surrogate instead of the actual
random variable. Here, we use the effective size, which is based on the logarithm of the (exponential) moment-
generating function (Elwalid and Mitra [3], Hui [9], Kelly [13]).

Definition 1 (Effective Size). For any random variable X and integer k > 2, define
— 1 (logk)X
Br(X) = ogk o8 E[e ] )

Also define $1(X) := E[X].
To get some intuition for this, consider independent RVs Yj,...,Y,. Then if ¥;Bi(Y;) <D,

logk)Y;
. E[elongiY,] ~ Hi]E[e( gk) ]

Pr e(log k)c - e(log k)c

— Pr[elongiY,- > e(logk)c]

ZY,‘ZC
i

Taking logarithms, we get

<

1
log Pr =

ZYiZC Slng[Zﬁk(Yz)—Cl = PI‘ZY,‘ZC

The above calculation, very reminiscent of the standard Chernoff bound argument, can be summarized by the
following lemma (shown, e.g., in Hui [9]).

Lemma 2 (Upper Bound). For independent random variables Y1, ..., Yy, if 3 pe(Y:) < b, then Pr[3;Y; > c] < (1/k)°".
The usefulness of this definition comes from a partial converse, proved in Kleinberg et al. [15, lemma 3.2]:

Lemma 3 (Lower Bound). Consider independent Bernoulli random variables Y1, ...,Y,, where each Y; has nonzero size s;
being an inverse power of 2 such that 1/(logk) <s; < 1. If 3 pi(Y;) 2 7, then Pr[3;Y; > 1] > 1/k.

2.3.1. Outline of the Algorithm for Identical Machines. In using the effective size, it is important to set the
parameter k carefully. For identical machines, Kleinberg et al. [15] used k = m, the total number of machines.
Using the facts discussed above, we can now outline their algorithm/analysis (assuming that all RVs are
truncated). If the total effective size is at most, say, 20m, then the jobs can be assigned to m machines in a way
that the effective-size load on each machine is at most 21. By Lemma 2 and a union bound, it follows that the
probability of some machine exceeding load 23 is at most m - (1/m)*> = 1/m. On the other hand, if the total
effective size is more than 20m, then even if the solution was to balance these evenly, each machine would
have effective-size load at least 7. By Lemma 3, it follows that the load on each machine exceeds one with
probability 1/m, and so with m machines, this gives a certificate that the makespan is Q(1).
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2.3.2. Challenges with Unrelated Machines. For unrelated machines, this kind of argument breaks down even in
the restricted-assignment setting, where each job can go on only some subset of machines. This is because we
do not know what probability of success we want to aim for. For example, even if the machines had the same
speed, but there were jobs that could go on only /m of these machines, and others could go on the remaining
m —+/m of them, we would want their effective sizes to be quite different (see the example in Section 2.3.3).
And once we go to general unrelated machines, it is not clear whether any combinatorial argument would
suffice. Instead, we propose an LP-based lower bound that enforces one such constraint (involving effective
sizes) for every subset of machines.

2.3.3. Bad Example for Simpler Effective Sizes. For stochastic load balancing on identical machines, Kleinberg
et al. [15] showed that any algorithm that maps each RV to a single real value and performs load balancing on
these (deterministic) values incurs an Q(log)ﬁ) gm) approximation ratio. This is precisely the reason they in-
troduced the notion of truncated and exceptional RVs. For truncated RVs, their algorithm showed that it
suffices to use f,,(X;) as the deterministic value and perform load balancing with respect to these. Exceptional
RVs were handled separately (in a simpler manner). For unrelated machines, we now provide an example that
shows that even when all RVs are truncated, any algorithm that maps each RV to a single real value must
incur approximation ratio at least Q(loglog ). This suggests that more work is needed to define the “right”
effective sizes in the unrelated machine setting.

There are m +1 machines and m + v/m jobs. Each RV X; takes the value 1 with probablhty — (and 0
otherwise). The first \/m jobs can only be assigned to machme 1. The remaining m jobs can be a551gned to any
machine. Note that OPT < 2, which is obtained by assigning the first y/m jobs to machine 1, and each of the
remaining m jobs in a one-to-one manner. Given any fixed mapping of RVs to reals, note that all the X; get the
same value (say, 0) as they are identically distributed. So the optimal value of the corresponding (deter-
ministic) load-balancing instance is v/m - 6. Hence, the solution which maps /m jobs to each of the first 1 + v/m
machines is an optimal solution to the deterministic instance. However, the expected makespan of this as-

. . logm
signment is Q(loglogm).

We will use the following specific result in dealing with truncated RVs.

Lemma 4 (Truncated ltems’ Lower Bound). Let X1, Xa, ..., X, be independent [0, 1] RVs, and let {J;}}2, be any partition
of [n]. If b} Bu(X;) = 17m, then E[maxi’; S, X;] = Q(1).

Proof. This is a slight extension of Kleinberg et al. [15, lemma 3.4], with two main differences. First, we want to
consider arbitrary instead of just Bernoulli RVs. Second, we use a different definition of effective size than they do.
We provide the details below.

At the loss of factor 2 in the makespan, we may assume (by rounding down) that the only values taken by
the X; RVs are inverse powers of 2. For each RV X;, applying lemma 3.10 of Kleinberg et al. [15] yields
independent Bernoulli random variables {Yj} so that for each power-of-2 value s we have

Pr[X;=s| =Pr

SSZij<2S.
k

Let X; = 3 Yjr. It now follows that X; is stochastically dominated by Xj, and X; is stochastically dominated
by 2 X;. Moreover, f,(X;) = 3 ﬁm(ij) Note also that $,,(X;) > ﬁm(X) Hence, 3 fn(Yix) = Z L1 Bu(X)) = 17m.
Now, consider the assignment of the Yj RVs corresponding to {J;}i.,; that is, for each i € [m] and j €], all the
{Yix} RVs are assigned to part i. We now apply lemma 3.4 of Kleinberg et al. [15], which works for Bernoulli
RVs to lower bound the expected makespan. Note that the above lemma used a different notion of effective
size: B, (X) := min{s,sqm’} for any Bernoulli RV X taking value s with probability . However, as shown in
Klelnberg et al. [15, proposition 2.5], Bu(X) < B/, (X), which implies P L1 Bym(X5) = zi 1Bm(Xj) = 17m, as
required by Kleinberg et al. [15, lemma 3.4]. So we have E[max}’; X, 2k Yjx] = Q(1). Finally, using the fact
that X; stochastically dominates ;X;,

maxZX

=S

>-FE

maxZX

Jeli

maxZZ i

=1 j€li k

= Q(1),

1
2

which completes the proof. O



Gupta et al.: Stochastic Load Balancing on Unrelated Machines
Mathematics of Operations Research, 2021, vol. 46, no. 1, pp. 115-133, © 2020 INFORMS 121

Remark 1. The constant in the (1) notation of Lemma 4 is at least (1 —1) > 0.31. The factor 1 comes from the
reduction from general to Bernoulli RVs, and the factor 1 — 1/e comes from the proof of Kleinberg et al. [15, lemma 3.4]
for Bernoulli RVs.

2.4. Nonadaptive and Adaptive Solutions

We note that our model involves computing an assignment that is fixed a priori, before observing any random
instantiations. Such solutions are commonly called nonadaptive. A different class of solutions (called adaptive)
involves assigning jobs to machines sequentially, observing the random instantiation of each assigned job.
Designing approximation algorithms for the adaptive and nonadaptive models are mutually incomparable.
For makespan minimization on identical machines, Graham's [5] list scheduling already gives a trivial
2-approximation algorithm in the adaptive case (in fact, it is 2-approximate on a per-instance basis), whereas
the nonadaptive case is quite nontrivial, and the Kleinberg et al. [15] result was the first constant-factor
approximation.

We now provide an instance with identical machines where there is an Q(loglogm) gap between the best
nonadaptive a551gnment (the setting of this paper) and the best adaptive assignment. The instance consists of m
machines and n = m? jobs, each of which is identically distributed taking size 1 with probability L (and 0 oth-
erwise). Recall that Graham's [5] algorithm considers jobs in any order and places each job on the least loaded
machine. It follows that the expected makespan of this adaptive pohcy is at most 1+ 1 E[Z"’ X;] = 2. On the
other hand, the best static assignment has expected makespan Q(1 oglog °), which is obtained by assigning m jobs
to each machine.

2.5. Useful Probabilistic Inequalities

Theorem 5 (Jensen’s Inequality). Let Xy, Xa, ..., X; be random variables and f(x1,...,x:) any convex function. Then
]E[f(Xll ceey Xt)] Zf(E[Xl]/ e /E[Xt])

Theorem 6 (Rosenthal Inequality; Johnson et al. [12], Latata [16], Rosenthal [24]). Let X3, X, ..., X; be independent
nonnegative random variables. Let ¢ > 1 and K = ©(q/logq). Then it is the case that

Zj]xj q Zj:E[X]-] q,zj]E[xj‘.’]}.

<K7. max{

3. Makespan Minimization
The main result of this section is Theorem 1: There is an O(1)-approximation algorithm for the problem of finding an
assignment to minimize the expected makespan on unrelated machines.

Using a binary search scheme and scaling, it suffices to find one of the following:

(i) an upper bound, a solution with expected makespan at most O(1), or

(if) a lower bound, a certificate that the optimal expected makespan is more than one.

Hence, we assume that the optimal solution for the instance has unit expected makespan, and try to find a
solution with expected makespan O(1); if we fail, we output a lower bound certificate.

At a high level, the ideas we use are the following: First, in Section 3.1, we show a more involved lower
bound based on the effective sizes of jobs assigned to every subset of machines. This is captured using an
exponentially sized LP that is solvable in polynomial time. Then, to show that this lower bound is a good one,
we give a new rounding algorithm for this LP in Section 3.2 to get an expected makespan within a constant
factor of the lower bound.

3.1. A New Lower Bound

Our starting point is a more general lower bound on the makespan. The (contrapositive of the) following
lemma says that if the effective sizes are large, then the expected makespan must be large too. This is in the
same spirit as Lemma 3, but for the general setting of unrelated machines. The first inequality below, (3),
focuses on the exceptional parts and loosely follows from the intuition that if the sum of biases of a set of
independent coin flips is large (exceeds two in this case), then you expect one of them to come up heads. The
second inequality, (4), focuses on the truncated parts and applies to every subset K C [m] of machines.
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Lemma 5 (New Valid Inequalities). Consider any feasible solution that assigns jobs J; to each machine i € [m]. If the expected
makespan E[maxj’; e, Xj] < 1, then

f} )y ]E[X,f].’] <2, and 3)

i=1 JjeJ;

S5 5k(xg].) < O(1) -k, forall KC[m], wherek=|K|. (4)

icK jeJ;

Proof. The first inequality, (3), follows from Lemma 1 applied to {X}/ : j € J;,i € [m]}.

For the second inequality, (4), consider any subset K C [m] of the machines. Then, applying Lemma 4 only to
the k machines in K and the truncated random variables {XJ; : i € K,j € J;} corresponding to jobs assigned to
these machines, we obtain the desired inequality. O

Remark 2. Using explicit constants from Lemma 4, one can also obtain an explicit constant in the O(1) term in
Lemma 5. In particular, if the expected makespan is at most 1 (1 — 1) (instead of one), then the O(1) term in (4) is 17,
and the constant 2 in (3) is still valid.

Given these valid inequalities, our algorithm now seeks an assignment satisfying (3) and (4). If we fail, the
lemma assures us that the expected makespan must be large. On the other hand, if we succeed, such a “good”
assignment by itself is not sufficient. The challenge is to show the converse of Lemma 5, that is, that any
assignment satisfying (3) and (4) gives us an expected makespan of O(1).

Indeed, toward this goal, we first write an LP relaxation with an exponential number of constraints,
corresponding to (4). We can solve this LP using the ellipsoid method. Then, instead of rounding the fractional
solution to satisfy all constraints (which seems very hard), we show how to satisfy only a carefully chosen
subset of the constraints (4) so that the expected makespan can still be bounded. Let us first give the LP
relaxation.

In the integer program formulation of the above lower bound, we have binary variables y;; to denote the
assignment of job j to machine i, and fractional variables z;(k) to denote the total load on machine i in terms of
the deterministic effective sizes ff;. Lemma 5 shows that the following feasibility LP is a valid relaxation:

Zyij =1, Vje[n], (5)
i=1
zik) = ) B (X;].) =0, Vie[m], Vk=1,2,...,m, 6)
j=1
> B[] vy <2, @)
i=1 j=1
S zik) < b-k, VK C [m] with [K| =k, Vk=1,2,...,m, )
ieK
yij/ Z,’(k) > O, Vi,j, k. (9)

In the above LP, b = O(1) denotes the constant multiplying k on the right-hand side of (4).

Although this LP has an exponential number of constraints (because of (8)), we can give an efficient
separation oracle. Indeed, consider a candidate solution (v, zi(k)) and some integer k. Suppose we want to
verify (8) for sets K with |K| = k. We just need to look at the k machines with the highest z;(k) values and check
that the sum of z;(k) for these machines is at most bk. So, using the Ellipsoid method, we can assume that we
have an optimal solution (y,z) for this LP in polynomial time. We can summarize this in the following
proposition.

Proposition 1 (Lower Bound via LP). The linear program (5)—(9) can be solved in polynomial time. Moreover, if it is
infeasible, then the optimal expected makespan is more than 1.

3.2. The Rounding

In order to get some intuition about the rounding algorithm, let us first consider the case when the assignment
variables y;; are either 0 or 1, that is, the LP solution assigns each job integrally to a machine. In order to bound
the expected makespan of this solution, let Z; denote the variable Xj;, where j is assigned to i by this solution.
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First consider the exceptional parts Z’ of the random variables. Constraint (7) implies that Z]-IE[Z]'»'] is at
most 2. Even if the solution assigns aﬁ of these jobs to the same machine, the contribution of these jobs to
the expected makespan is at most Zj]E[Z]'-’], and hence at most 2. Thus, we need to worry about only the trun-
cated Z variables.

Now for a machine i and integer k € [m], let z;(k) denote the sum of the effective sizes ‘Bk(Z]f) for the truncated
RVs assigned to i. We can use Lemma 2 to infer that if z;(1) = 3; assigned to i fm(Zj) < b, then the probability that
these jobs have total size at most b + 2 is at least 1 — 1/m?. Therefore, if z;(m) < b for all machines i € [m], then
by a trivial union bound, the probability that makespan is more than b + 2 is at most 1/m. Unfortunately, we
are not done. All we know from constraint (8) is that the average value of z;(im) is at most b (the average being
taken over the m machines). However, there is a clean solution. It follows that there is at least one machine 7 for
which z;(m) is at most b, and so the expected load on such machines stays O(1) with high probability. Now we
can ignore such machines and look at the residual problem. We are left with k < m machines. We recurse on
this subproblem (and use the constraint (8) for the remaining set of machines). The overall probability that the
load exceeds O(1) on any machine can then be bounded by applying a union bound.

Next, we address the fact that y; may be not be integral. It seems very difficult to round a fractional solution
while respecting all the (exponentially many) constraints in (8). Instead, we observe that the expected
makespan analysis (outlined above) utilizes only a linear number of constraints in (8), although this subset
is not known a priori. Moreover, for each machine 7, the above analysis uses z;(k) only for a single value of k
(say, ki). Therefore, it suffices to find an integral assignment that bounds the load of each machine i in terms of
effective sizes . It turns out that this problem is precisely an instance of the generalized assignment problem
(GAP), for which we utilize the algorithm from Shmoys and Tardos [26].

3.2.1. The Rounding Procedure. We now describe the iterative procedure formally. Given an LP solution
{Wiitietm jern) {210 }ikepm); the rounding algorithm is as follows.

Algorithm 1
1. Initialize £ < m, L « [m], c;j < E[X{j’].
2. While (¢ > 0) do:
(a) Set L’ « {i € L : z;(¢) < b}. Machines in L’ are said to be in class ¢.
(b) Set p;j « Pe(X}) for all i€ L” and j € [n].
(c) Set L— L\L and ¢ =|L|.
3. Define a deterministic instance $ of the GAP as follows: the set of jobs and machines remains unchanged.
For each job j and machine i, define p;; and c;; as above. The makespan bound is b. Use the algorithm of
Shmoys and Tardos [26] to find an assignment of jobs to machines. Output this solution.

Recall that in an instance $ of the GAP, we are given a set of m machines and 7 jobs. For each job j and
machine i, we are given two quantities: p;; is the processing time of j on machine i, and c; is the cost of
assigning j to i. We are also given a makespan bound b. Our goal is to assign jobs to machines to minimize the
total cost of assignment, subject to the total processing time of jobs assigned to each machine being at most b. If
the natural LP relaxation for this problem has optimal value C*, then the algorithm in Shmoys and Tardos [26]
finds in polynomial time an assignment with cost at most C* and makespan at most b + max;; p;;.

3.3. The Analysis
We begin with some simple observations.

Observation 1. The above rounding procedure terminates in at most m iterations. Furthermore, for any 1 < £ < m,
there are at most £ machines of class at most ¢.

Proof. The first statement follows from the fact that L’ # @ in each iteration. To see this, consider any iteration
involving a set L of £ machines. The LP constraint (8) for L implies that Xe; z;(€) < b - £, which means there is some
i € L with z;(€) < b, thatis, L # 0. The second statement follows from the rounding procedure: the machine classes
only decrease over the run of the algorithm, and the class assigned to any unclassified machine equals the current
number of unclassified machines. O

Observation 2. The solution y is a feasible fractional solution to the natural LP relaxation for the GAP instance $.
This solution has makespan at most b and fractional cost at most 2. The rounding algorithm of Shmoys and
Tardos [26] yields an assignment with makespan at most b + 1 and cost at most 2 for the instance $.
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Proof. Recall that the natural LP relaxation is the following:

min 3 cii
ZJ piyii b, Vi, (10)
7
Syi=1 Vi, )
| i =0, Vijstp;>1, (12)
y=0.

First, note that by (5), y is a valid fractional assignment that assigns each job to one machine, which
satisfies (11).

Next we show (10), that is, that maxiZ; XL, pjj - yij < b. This follows from the definition of the deterministic
processing times p;;. Indeed, consider any machine i € [m]. Let £ be the class of machine i, and let L be the
subset of machines in the iteration when i is assigned class ¢. This means that p;; = B/(X},) for all j € [n]. Also,
because machine i € L', we have z;(€) = £ fe(X) - yij < b. So we have XL, pj; - yij < b for each machine i € [m].

Finally, because the random variable Xj; is at most 1, we get that for any parameter k > 1, f(X}) < 1; this
implies that pj. := max;;p; <1, and hence the constraints (12) are vacuously true. By (7), the objective is
ity Xk G- Yy = 2ty X E[X] ] - vy < 2. Therefore, the rounding algorithm (Shmoys and Tardos [26]) yields
an assignment of makespan at most b + pmax < b+ 1, and of cost at most 2. O

In other words, if J; is the set of jobs assigned to machine i by our algorithm, Observation 2 shows that this
assignment has the following properties (let £; denote the class of machine i):

Zm;ZE[x;jf] <2, and (13)
i=1 jej;
SBu(X;) <b+1, vie[m). (14)
jeli

Note that we ideally wanted to give an assignment that satisfied (3) and (4), but instead of giving a bound for
all subsets of machines, we bound the g, values of the jobs for each machine i. The key Lemma 6 shows that
this is enough. First, we need another simple observation:

Observation 3. For any machine 7, Pr[¥;e, X}; > b+ 1+a] < £ forall > 0.

Proof. Inequality (14) for machine i shows that Y, f,(X};) < b + 1. But recalling the definition of the effective size
(Definition 1), the result follows from Lemma 2. O

Lemma 6 (Bounding the Makespan). The expected makespan of the assignment {J;};c, is at most 3b +9.

Proof. Let I" denote the index set of machines of class 3 or higher. Observation 1 shows that there are at most two
machines that are not in ™. For a machine i, let T; = 3 iel; X,f]. denote the total load due to truncated sizes of jobs
assigned to it. Clearly, the makespan is bounded by

m
Iirel%ix{Ti} + ZTi + ZZXI']'

it [hi i=1 jeJ;

The expectation of third term is at most two, using (13). We now bound the expectation of the second term
above. For any random variable X and k > 1, using Jensen’s inequality (Theorem 5) for the convex function
f(x) = el°8h* we obtain Br(X) > E[X]. Then applying inequality (14) shows that E[T;] < b + 1 for any machine i.
Therefore, the expected makespan of our solution is at most

E +2(b+1)+2. (15)

max{T;
ielhi{ l}




Gupta et al.: Stochastic Load Balancing on Unrelated Machines
Mathematics of Operations Research, 2021, vol. 46, no. 1, pp. 115-133, ® 2020 INFORMS 125

It remains to bound the first term above. To this end, we will show that

Pr[max{Ti} >b+1+a

iefhi

<27%/(@-2), Va>2. (16)

Using Observation 3 for each i € "' and a union bound, we get

m

<> DLV PrTi>b+1+4a]

Pr[max{T,-} >b+1+a
iel® (=3 il=t

< Z ™% - (# of class ¢ machines)
=3

m 0o 2—a+2
< 2 :g—a+l < / x—¢x+1dx — 5 .
x=2 a -

The first inequality uses a trivial union bound, the second inequality uses Observation 3 above, and the third
inequality is by Observation 1. This proves (16). Finally, using (16), we get

00

da < (b+4)+/ 27%y < b+5.

E[max{T,}
iehi a=3

= (b+4)+/ Pr[max{T,} >b+1+a
a=3 jehi

Inequality (15) now shows that the expected makespan is at most (b+5)+2(b+1)+2. O
This completes the proof of Theorem 1.

3.3.1. Explicit Approximation Ratio. Recall that our algorithm runs within a binary search scheme, where each
iteration involves a bound M and the algorithm either finds a solution of expected makespan O(M) or finds a
certificate that the optimal makespan is at least M. We now calculate the constant explicitly. We assume that
the optimal makespan is at most M and proceed as follows. By scaling all RVs by (1 -1)%; and applying
Lemmas 4 and 5, it follows that the linear program (5)—(9) is feasible with b = 17. (If we find that this LP is
infeasible, it gives a proof that the original optimal value is at least M.) Then, by Lemma 6, our rounding
produces a solution of expected makespan at most 3b +9 (after the scaling). For any constant € > 0, we can
ensure that the value M at the end of the binary search is within a 1+ € factor of the optimal value. So the
overall approximation ratio is -2 (3b + 9)(1 + €) < 190. Although we have not tried to optimize the constant via
our approach, we think getting a constant factor close to 2 (which is known for the deterministic problem)
would require new ideas.

4. Budgeted Makespan Minimization

We now consider a generalization of the problem StocMakespan, called BubgerStocMakespaN, where each job j
also has reward r; > 0. We are required to schedule some subset of jobs whose total reward is at least some
target value R. The objective, again, is to minimize the expected makespan. If the target R = X, 7j, then we
recover the problem StocMakespan. We show Theorem 2: There is an O(1)-approximation algorithm for the
budgeted makespan minimization problem on unrelated machines.

Naturally, our algorithm/analysis will build on the ideas developed in Section 3, but we will need some
new ideas to handle the fact that only a subset of jobs need to be scheduled. As in the case of StocMakesraN, we
can formulate a suitable LP relaxation. A similar rounding procedure reduces the stochastic problem to a
deterministic problem, which we call Bupbcerep GAP. An instance of Bupcerep GAP is similar to an instance of
the GAP, besides the additional requirement that jobs have rewards and we are required to assign jobs with a
total reward of at least some target R. Rounding the natural LP relaxation for Bupcerep GAP turns out to be
nontrivial. Indeed, using ideas from Shmoys and Tardos [26], we reduce this rounding problem to rounding a
fractional matching solution with additional constraints, and solve the latter using polyhedral properties of
bipartite-matching polyhedra.
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As before, using a binary search scheme (and by scaling down the sizes), we can assume that we need to
either (i) find a solution of expected makespan O(1) or (ii) prove that the optimal value is more than 1. We use
a natural LP relaxation that has variables y;; for each job j and machine i. The LP includes the constraints (6)—(9)
for the base problem, and in addition it has the following two constraints:

2y sl Vi=1,...,n, (17)

2 2y 2 R (18)
=R

The first constraint, (17), replaces constraint (5) and says that not all jobs need to be assigned. The second
constraint, (18), ensures that the assigned jobs have total reward at least the target R. For technical reasons that
will be clear later, we also perform a preprocessing step: for i,j pairs where E[X]/] > 2, we force the asso-
ciated y;; variable to zero. Note that by Lemma 5, this variable fixing is valid for any integral assignment that
has expected makespan at most one (in fact, we have ZiZjIE[le]f |-y <2 for such an assignment). As in
Section 3.1, this LP can be solved in polynomial time via the ellipsoid method. If the LP is infeasible, we get a
proof (using Lemma 5) that the optimal expected makespan is more than one. Hence, we assume the LP is
feasible and proceed to round the solution along the lines of Section 3.2.

Recall that the rounding algorithm in Section 3.2 reduces the fractional LP solution to an instance of the
GAP. Here, we will use a further generalization of the GAP, which we call Bupcerep GAP. An instance of this
problem is similar to an instance of the GAP. We are given m machines and 7 jobs, and for each job j and
machine i, we are given the processing time p;; and the associated assignment cost c;;. Now each job j has a
reward 7, and there are two target parameters: the reward target R and the makespan target B. We let p;,, and
Cmax denote the maximum values of processing time and cost, respectively. A solution must assign a subset of
jobs to machines such that the total reward of assigned jobs is at least R. Moreover, as in the case of the GAP,
the goal is to minimize the total assignment cost subject to the condition that the makespan is at most B. Our
main technical theorem of this section shows how to round an LP relaxation of this Bubcerep GAP problem.

Theorem 7. There is a polynomial-time rounding algorithm for Bupcerep GAP that, given any fractional solution to
the natural LP relaxation of cost C*, produces an integer solution having total cost at most C* + Cyqy and makespan at
most B + 2P ax.

Before we prove this theorem, let us use it to solve BunGerStocMakespan and prove Theorem 2. Proceeding as
in Section 3.2, we perform Steps 1 and 2 from the rounding procedure. This rounding gives us values p;; and c;;
for each job/machine pair. Now, instead of reducing to an instance of the GAP, we reduce to an instance $’ of
Bupcerep GAP. The instance 9" has the same set of jobs and machines as in the original BubGerStocMakEsPAN
instance $. For each job j and machine i, the processing time and the assignment cost are given by p;; and cj;,
respectively. Furthermore, the reward 7; for job j and the reward target R are the same as those in $. The
makespan bound B = b = O(1) (as in (8)). It is easy to check that the fractional solution y;; is a feasible fractional
solution to the natural LP relaxation for $’ (given below), and the assignment cost of this fractional solution is
at most 2. Applying Theorem 7 yields an assignment {J;}*;, which has the following properties:

* The makespan is at most b +2 = O(1), that is, e}, pij < b + 2pyax < b + 2 for each machine i. Here we use
the fact that py.. < 1.

* The cost of the solution, X}, X, cjj, is at most 4. This uses the fact that the LP cost C'=y Cij+yij <2 and
Cmax < 2 by the preprocessing on the E[X]/] values.

* The total reward for the assigned jobs, Xy, 7j, is at least R.

Now, arguing exactly as in Lemma 6, the first two properties imply that the expected makespan is at most
3b + 14 (instead of 3b +9). The third property implies that the total reward of assigned jobs is at least R and
completes the proof of Theorem 2.

Remark. Based on the same arguments as at the end of Section 3.3, we can calculate an explicit constant factor

of 22.(3b +14)(1 + €) < 206.
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Proof of Theorem 7. Let $ be an instance of BunGetep GAP as described above. The natural LP relaxation for this
problem is as follows:

min 3 ¢y
ipijyij <B, Vi, (19)
i
Zj: v <1, V], (20)
Z‘ iy = R (21)
] =0, Vijst p;>b, (22)
y>0.

Let {y;;} denote an optimal fractional solution to this LP. For each machine i, let ¢, := [ 3; ;] be the (rounded)
fractional assignment to machine i. Using the algorithm in theorem 2.1 of Shmoys and Tardos [26], we obtain a
bipartite graph G = (V3 UV, E) and a fractional matching y” in G, where we have the following:

e Vi = [n] is the set of jobs, and V; (indexed by i =1,...,m’) consists of t; copies for each machine i € [m].
The cost cyj = ¢;; for any job j € [n] and any machine copy i of machine i € [m].

* For each job j € [n], we have 3}, y; = X,y < 1 for all j € [n].

* The reward X, = yi; 2 R and the cost P Zihy Criy = C* are the same as for .

e The jobs of V; incident to copies of any machine i € [m] can be divided into (possibly overlapping) groups
H;i,...,H;;, where

Syy=1foralll<g<ti-1 and > y;<1,

jEHi,g ]AEH,"[].

and for any two consecutive groups H;, and H;g.1, we have p;; > p;y for all j € H;¢ and j* € Hj¢41. Informally,
this is achieved by sorting the jobs in nonincreasing order of p; and assigning the kth unit of 3;y; to the kth
machine copy for each 1 <k <#;.

A crucial property of this construction shown in Shmoys and Tardos [26] is that any assignment that places
at most one job on each machine copy has makespan at most B + p;.y in the original instance $ (where for
every machine i, we assign to it all the jobs that are assigned to a copy of 7 in this integral assignment). We will
use the following simple extension of this property: if the assignment places fwo jobs on one machine copy and
at most one job on all other machine copies, then it has makespan at most B + 2p,,x in the instance $.

Observe that the solution y’ is a feasible solution to the following LP with variables {z;j}; e

min > ¢z (23)
ij
> zp<1, Vi€ [n], (24)
ie[m'):(if)<E
Z Zjj < 1, Vie [m’], (25)
jeln]:(ij)eE
Z ri-zij >R, (26)
(ij)eE
z>0. (27)

So the optimal value of this auxiliary LP is at most C*. We note that its integrality gap is unbounded even
when cyqr is small; see the example below. So this differs from Shmoys and Tardos [26] for the usual GAP
where the corresponding LP (without (26)) is actually integral. However, we show below how to obtain a good
integral solution that violates the matching constraint for just a single machine copy in V.

Indeed, let z be an optimal extreme point solution to this LP, so ¢’z < C*. Note that the feasible region of this
LP is just the bipartite-matching polytope on G intersected with one extra linear constraint (26) that corre-
sponds to the total reward being at least R. So z must be a convex combination of two adjacent extreme points
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of the bipartite-matching polytope. Using the integrality and adjacency properties (see Balinski and Russakoff [2])
of the bipartite-matching polytope, it follows that z = A; - 1y, + A3 - 1py,, where

e Ai+A=1and Ay, Ay >0,

* M; and M, are integral matchings in G, and

¢ the symmetric difference M; ® M, is a single cycle or path.

For any matching M, let c¢(M) and (M) denote its total cost and reward, respectively. Without loss of
generality, we assume that r(M;) > r(Ma). If c(M,) < c(M>), then M, is itself a solution with reward at least R
and cost at most C*. So we assume c(M;) > c(M,) below.

If My ® M, is a cycle, then we output M, as the solution. Note that the cycle must be an even cycle, so the
sets of jobs assigned by M; and M, are identical. As the reward function is dependent only on the assigned
jobs (and not the machines used in the assignment), it follows that r(Mz) = r(M;) = R. So M, is indeed a
feasible solution and has cost c(M,) < ¢'z < C*.

Now consider the case where M; @ M, is a path. If the sets of jobs assigned by M; and M, are the same, then M,
is an optimal integral solution (as above). The only remaining case is that M; assigns one additional job (say, j*
to i*) over the jobs in M,. Then we return the solution M, U {(/*,i*)}. Note that this is not a feasi-
ble matching. But the only infeasibility is at machine copy i*, which may have two jobs assigned; all other
machine copies have at most one job. The reward of this solution is #(M;) > R. Moreover, its cost is at most
c(M,) + e < C* + Chax-

Now, using this (near-feasible) assignment gives us the desired cost and makespan bounds and completes
the proof of Theorem 7. O

4.2. Integrality Gap for Budgeted Matching LP

Here we show that the LP (23)—(27) used in the algorithm for Bupcerep GAP has an unbounded integrality gap,
even if we assume that ¢, << OPT. The instance consists of 1 jobs and m = n — 1 machines. For each machine
i € [m], there are two incident edges in E: one to job i (with cost 1) and the other to job i + 1 (with cost n). So E
is the disjoint union of two machine perfect matchings M; (of total cost m) and M, (of total cost mmn). The
rewards are

1 ifj=1,
rp=194 if2<j<n-1,
2 ifj=mn,

and the target is R = 4(n —2) + 1 + ¢, where € — 0. Note that the only (minimal) integral solution involves
assigning the jobs {2,3,...,n}, which has total reward 4(n —2) + 2. This solution has cost OPT = mn and
corresponds to matching M. On the other hand, consider the fractional solution z = €1y, + (1 — €)1y, This is
clearly feasible for the matching constraints, and its reward is e(4(n —2) +2) + (1 —€)(4(n —2) +1) =R.So zis a
feasible fractional solution. The cost of this fractional solution is at most m + e(mn) < OPT.

5. {;~-Norm Objectives

In this section, we consider the stochastic load-balancing problem with g-norm objectives. Given an as-
signment of jobs to machines {J;};Z;, the load L; on machine i is the RV L; := 3¢, Xj;. Our goal is to find an
assignment to minimize the expected g-norm of the load vector L := (L1, Ly, ..., Ly). Recall that the makespan
is [|Ll|o, which is approximated within constant factors by [|L||;g - So the g-norm problem is a generalization
of StocMakespaN. Our main result here is Theorem 3: There is an O(lo?g q)-approximation algorithm for the stochastic
g-norm minimization problem on unrelated machines.

We begin by assuming that we know the optimal value M of the g-norm. Our approach parallels that for the
case of minimizing the expected makespan, with some changes. In particular, the main steps are as follows: (i)
find valid inequalities satisfied by any assignment for which IE[||L||q] <M, (ii) reduce the problem to a de-
terministic assignment problem for which any feasible solution satisfies the valid inequalities above, (iii) solve
the deterministic problem by writing a convex programming relaxation and give a rounding procedure for a
fractional solution to this convex program, and (iv) prove that the resulting assignment of jobs to machines has
a small expected g-norm of the load vector.
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5.1. Useful Bounds
We start with stating some valid inequalities satisfied by any assignment {J;}},. For each j € [n], define Y; = Xj;,
where j € J;. By definition of M, we know that

%

i=1

1/q
<M. (28)

ny)q

]E]l

As in Section 3, we split each random variable Y; into two parts: truncated, Y]’- =Y Iy;<m, and exceptional,
Y7 =Yj-Iys>m. The lemma below is analogous to (3) and states that the total expected size of the exceptional
parts cannot be too large.

Lemma 7. For any schedule satisfying (28), we have ¥, E[Y}'] < 2M.

Proof. Suppose for a contradiction that XL, E[Y]’.’] > 2M. Lemma 1 implies E[max]“=1 Y]’.’] > M. Now, using the
monotonicity of norms and the fact that Y]f’ <Yj, we have

" q\ 1/q
maxY” <|I(Y7,.. ,YZ)“q < (Z (Z YJ’) ) ’

=1 i=1 \ jeJ;

which contradicts (28). O

Our next two bounds deal with the truncated RVs Y}. The first one states that if we replace Y] by its
expectation E[Y}], the g-norm of this load vector of expectatlons cannot exceed M. The second bound states
that the expected qth moment of the vector (Y}).; is bounded by a constant times M?.

Lemma 8. For any schedule satisfying (28), we have

S (zefy -

i=1 \ je;

Proof. Because the function

1/q

)= (3

i=1

il

j€li

is a norm and hence convex, Jensen’s inequality (Theorem 5) implies E[f(Y7,...,Y})] > f(E[Y]], ..., E[Y}]).
Raising both sides to the gth power and using (28), the lemma follows. O

Lemma 9. Let a = 271 + 8. For any schedule satisfying (28), we have
$ 9

E[Y]) |<a-M.
R[N

Proof. Define Z := 3, (Y7)7 as the quantity of interest. Observe that it is the sum of independent [0, M7] bounded
random variables. Because g > 1 and the RVs are nonnegative, Z < ", (3¢, Y’)q Thus, (28) implies E[ZY/7] < M.
However, now Jensen’s inequality cannot help upper bound E[Z].

Instead, we use a second-moment calculation. To reduce notation, let Z; := (Y]'- ),s0 Z = Z]’-’Zl Z;. The variance

of Z is var(Z) =E[Z%] -E[Z]* < Z’-Izl IE[Z]Z] <M?1-E[Z], as each Z; is [0, M7] bounded. By Chebyshev’s inequality,
q.
E[Z] var(Z) < var(Z) < 2M17 - E[Z] - 1

= (E[Z]/2 + 4M7)? ~ (E[Z]/2) - 4M7 ~ E[Z] - 4M7 ~

Pr [Z <— 4M”7}
This implies

E[Z9) =5 (E[Z] 4Mq)w.
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Using the bound E[Z!/1] < M from above, we now obtain E[Z] <2 - ((2M)? + 4MY) as desired. O

In the next subsections, we show that the three bounds above are enough to get a meaningful lower bound
on the optimal g-norm of loads.

5.2. Reduction to a Deterministic Scheduling Problem

We now formulate a surrogate deterministic scheduling problem, which we call g-DerSchep. An instance of
this problem has 7 jobs and m machines. For each job j and machine i, there is a processing time p;; and two
costs c;; and dj;. There are also bounds C and D on the two cost functions, respectively. The goal is to find an
assignment of jobs to machines that minimizes the g-norm of the machine loads subject to the constraint that
the total c-cost and d-cost of the assignments are at most C and D, respectively. We now show how to convert
an instance $g, of the (stochastic) expected g-norm minimization problem to an instance $4; of the
(deterministic) problem g-DEeTScHED.

Suppose $s1,c has m machines and 7 jobs, with random variables X;; for each machine i and job j. As before,
let XZ’] = Xjj - Ixym and lej’ = Xjj - Ix;om denote the truncated and exceptional parts of each random variable Xj;,
respectively. Then, instance $4; has the same set of jobs and machines as those in $. Furthermore, define

* the processing time pj;; = E[X]],

* the c-cost ¢;; = ]E[lej’ ] with bound C =2M, and

* the d-cost d;; = E[(X{j)q] with bound D = a - M9, where a = 21*1 + 8.

Observation 4. If there is any schedule of expected g-norm at most M in the instance J,, then the optimal value
of the instance $,4,; is at most M.

Proof. The proof follows directly from Lemmas 7, §, and 9. O

5.3. Approximation Algorithm for g-DerScHeb
Our approximation algorithm for g-DerScuep is closely based on the algorithm for unrelated machine
scheduling to minimize £;-norms (Azar and Epstein [1]). We show the following:

Theorem 8. There is a polynomial-time algorithm that, given any instance $4 of g-DETSCHED, finds a schedule with
(i) g-norm of processing times at most 21729 - OPT($ 4;), (ii) c-cost at most 3C, and (iii) d-cost at most 3D.

Proof. We provide only a sketch, as many of these ideas parallel those from Azar and Epstein [1]. Start with a
convex programming “relaxation” with variables x;; (for assigning job j to machine i):

m
i q q
min > 0 +> Pij - Xij
i=1 i

s.t. 57’ = Z Pz] . x,‘]', Vl,

]
Z xij = 1/ v]/
i
Z Ci]' . x,-]- < C,
i
Z d,'j “Xij < D,
i
x>0.

This convex program can be solved to arbitrary accuracy, and its optimal value is V < 2- OPT($4.)7. Let (x, {)
denote the optimal fractional solution below.

We now further reduce this g-norm problem to the generalized assignment problem. The GAP instance $g
has the same set of jobs and machines as those in $4,. For aqjob j and machine i, the processing time remains p;;.

L i dy Py .
However, the cost of assigning j to i is now y;; := %’ +5t %. Furthermore, we impose a bound of ¢; on the total

processing time of jobs assigned to each machine i (i.e., the makespan on i is constrained to be at most ¢;). Note
that the solution x to the convex program is also a feasible fractional solution to the natural LP relaxation for
the GAP with an objective function value of 3;; y;; - x;; < 3. The rounding algorithm in Shmoys and Tardos [26]
can now be used to round x into an integral assignment {A;;} with y-cost also at most 3, and load on each
machine i being L; < {; + m;, where m; denotes the maximum processing time of any job assigned to machine i
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by this algorithm. The definition of y and the bound on the y-cost imply that the c-cost and d-cost of this
assignment are at most 3C and 3D, respectively. To bound the g-norm of processing times,

e2 (S e St <20 (Ve S
i i ij

Above, the first inequality uses (2 + b)? < 2771(a + b"), and the third inequality uses the fact that ;; Pqu] <V
3, VijAij < 3V by the bound on the y-cost. The proof is now completed by using V <2-OPT(%)". ©

< 2NV +3V) =271 . V.

M=

Il
—_

5.4. Interpreting the Rounded Solution

Starting from an instance $,. of the expected g-norm minimization problem, we first constructed an instance
$4et of g-DETScHED. Let $ = ([1,...,Ji) denote the solution found by applying Theorem 8 to the instance % 4. If
the g-norm of processing times of this assignment (as a solution for ;) is more than 2!*2/1M, then, using
Observation 4 and Theorem 8, we obtain a certificate that the optimal value of $,. is more than M. So we
assume that $ has objective at most 21*2/1M (as a solution to $4;). We use exactly this assignment as a solution
for the stochastic problem as well. It remains to bound the expected g-norm of this assignment.

By the reduction from $g to F4, and the statement of Theorem 8, we know that

I3 E[X;;] =3 S ey < 6M, (29)

=1 jeJ; i=1 jeJ;

m q
> ZE[X] (Zm) <212 M, (30)
i=1 \ jeJ; =1 \jeli

iZ]E[( )]:iZdijssan. (31)

i=1 je i=1 jeJ;
We now derive properties of this assignment as a solution for $..

Lemma 10. The expected q-norm of exceptional jobs E[(Z}L; (Zjey, Xif INV] < 6M.

Proof. This follows from (29), because the {;-norm of a vector is at most its £{;-norm. O
Lemma 11. The expected g-norm of truncated jobs E[(X}L,(Zjes, X, )’7)1/‘7] < O( )M

Proof. Define random variables Q; := (3¢, lej)q, so that the g-norm of the loads is

(o) -2

i=1

q\ 1/q

>,

Jeli

Because f(Q1,...,Qun) = (X, Q)7 is a concave function for g > 1, using Jensen’s inequality (Theorem 5)
on —f (Ql,...,Qm) which is a convex function,

m 1/
E[Q] < (Z E[Qi]) . (32)
i=1

We can bound each E[Q;] separately using Rosenthal’s inequality (Theorem 6):

o (s | < ([spel] + el

J€li J€li J€li

E[Qi] =

where K = O(g/logg). Summing this over all i =1,...,m and using (30) and (31), we get
STE[Qi] < K7- (2772 + 3a)M". (33)
i=1

Recall that a = 29" + 8. Now, plugging this into (32), we obtain E[Q] < O(K)-M. ©
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Finally, using Lemmas 10 and 11 and the triangle inequality, the expected g-norm of solution ¢ is O(@) M,
which completes the proof of Theorem 3.

5.4.1. Explicit Approximation Ratio. Here we state our approximation ratios explicitly. By Equations (32)
and (33), the expected g-norm of truncated jobs is

E[Q] < (K1- (27 + 3a)M7) "= (2072 4 321 4 8))) kM = 2(10 +3-279) kM

And the expected g-norm of exceptional jobs is at most 6M by Lemma 10. By the triangle inequality, the
expected g-norm of solution ¢ is at most (6 +2(10+ 3 - 23-0)1/1 . K)M. Note that for any constant € > 0, we can
ensure that M is within a 1 + € factor of the optimal value (by the binary search approach). Hence, the overall
approximation ratio for the g-norm is (6 + 2(10 + 3 - 25-1)7K)(1 + €), for any € > 0, where K is the parameter in
Theorem 6 (Rosenthal’s inequality).

The following known result provides a bound on the parameter K7 in Theorem 6.

Theorem 9 (Ibragimov and Sharakhmetov [10]). Let Z denote a random variable with Poisson distribution with parameter 1,
that is, Pr[Z = k] = ™! /k! for integer k > 0. The parameter of Theorem 6 (Rosenthal inequality) is K = (EZ9)'/1.

We note that Theorem 6 holds for any set of RVs, and only the constant K depends on the Poisson rate 1
random variable Z.

Example 1. For the £,-norm, K <EZ? =2 = K < V2. The overall approximation ratio is (6 + (10 +3-21)/22v2)(1 +¢) =
(6+8V2)(1+€)~17.31(1 +¢). For the £3-norm, K> < 5 = K < {5, and the approximation ratio is (6 + (10 + 3)1/32 \3/3) .
(1+¢) ~ 14.04(1 + €).

6. Conclusion

We obtained the first constant-factor approximation algorithm for stochastic makespan minimization on
unrelated machines. We also extended this result to a budgeted version of the problem. Finally, we considered
the stochastic problem with g-norm objectives and obtained a constant approximation for fixed . An in-
teresting open problem is to extend these techniques to deal with other stochastic discrete optimization
problems with makespan objectives.
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