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Abstract Instrumental observations indicate that Amazon precipitation and streamflow extremes have
increased during the last 40 years, possibly due to anthropogenic changes and natural variability. How
unprecedented these changes might be is difficult to determine because some paleoclimatic, instrumental,
and climate model simulations suggest that Amazonian precipitation and streamflow may be subject to
multidecadal variability with return intervals longer than most direct observations. A new 258-year long
tree-ring chronology of Cedrela odorata has been developed in the eastern Amazon and has been used to
reconstruct wet season precipitation totals from 1759-2016. Reconstructed drought extremes are associated
with significant sea surface temperature anomalies over the tropical Pacific and Atlantic Oceans. Strong
multidecadal variance is identified in the reconstruction that may reflect a component of natural rainfall
variability relevant to forest ecosystem dynamics and suggesting that recent hydroclimate changes over the
eastern Amazon may not be unprecedented over the past 258 years.

Plain Language Summary Drought and flood extremes in the Amazon River basin have
increased in frequency during the last 40 years, but how unprecedented these recent changes might be is
difficult to determine because most instrumental records do not extend before 1950. A new tree-ring
chronology of Cedrela odorata has been developed in the eastern equatorial Amazon, confirming the exact
dating and climate signal of the single existing tree-ring chronology from the region. A tree-ring
reconstruction of wet season precipitation based on this new chronology extends from 1759-2016 and
documents strong multidecadal variability that impacted the frequency of reconstruction precipitation
extremes over the past 258 years.

1. Introduction

The vast Amazon basin still preserves the largest tropical forests on Earth and plays a significant role in the
general circulation of the atmosphere and the global energy balance (Nobre et al., 2016). Climate model simu-
lations of hydroclimatic variability in the Amazon indicate that anthropogenic forcing may amplify the hydro-
logic cycle, resulting in more severe drought, extreme floods, and a decline in annual precipitation over most
of the watershed (Feng & Fu, 2013). Some of these hydroclimatic changes may already be evident in observa-
tional records (Espinoza et al., 2014; Gloor et al., 2013; Marengo & Espinoza, 2016). Precipitation and stream-
flow extremes have increased in the Amazon during the last 40 years, possibly due to interactions between
deforestation and climate (Khanna et al., 2017), intensification of the Walker Circulation (Barichivich
et al., 2018), or global climate change (Nobre et al., 2016). How unprecedented these recent changes in
extremes might be is difficult to determine because instrumental precipitation records have become widely
available across the Amazon in only the last 50 years and high-resolution paleoclimate proxies are scarce.

The El Nifio/Southern Oscillation (ENSO) strongly modulates the interannual variability of rainfall over
Amazonia, with drought often developing during El Nifio events (Marengo & Espinoza, 2016; Ronchail
et al., 2002; Ropelewski & Halpert, 1987; Zeng, 1999). Lower-frequency variability may also modulate preci-
pitation over the equatorial Amazon, and multidecadal regimes have been identified in speleothem proxies,
instrumental observations, and climate model simulations over the basin (Ault et al., 2012; Chelliah &
Bell, 2004; Fernandes et al., 2015; Labat et al., 2004; Marengo, 2004; Wang et al., 2011; Wang et al., 2017).
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Figure 1. The rainfall recording stations in the Amazon basin operating

during each of 4 years are mapped from 1920-2000 (a-d; from ANA,
Brazil, and in the Western Amazon from the Climatic Research Unit).
Instrumental rainfall totals (mm) for Manaus are plotted for the wet (e;

1902-2016, October—June) and dry season (f; 1901-2015, July-September).
These seasonal totals are not homogeneous when compared with Rio Negro

maximum and minimum water levels (p < 0.05). The two C. odorata
chronologies from the Rio Paru basin are plotted (g; RPA = red,

RPB = black) along with the correlation between the chronologies (for
1786-2016 and 1851-2016) and the sample size each year for RPB.

Decadal episodes without drought or flood extremes are apparent in the
Amazon River water level records at Manaus and Obidos from 1903-
2015 (Barichivich et al., 2018), and in precipitation and terrestrial water
storage indices from 1980-2016 (Chaudhari et al., 2019). Low-frequency
variations are nevertheless difficult to document in the short, sparse,
and often-interrupted instrumental measurements of precipitation in
the Amazon that begin mostly in the mid- to late-20th century (e.g.,
Marengo, 2004; Garreaud et al., 2009). High-resolution proxy precipita-
tion data could help document multidecadal variability in the preinstru-
mental period. The first moisture sensitive tree-ring chronologies of
Cedrela odorata have recently been developed in the Amazon basin
(Brienen et al., 2012; Granato-Souza et al., 2018), a significant accomplish-
ment because most tropical tree species do not form consistent annual
growth rings suitable for dendroclimatic analysis. The 231-year long
Cedrela chronology from the eastern Amazon was used to reconstruct
wet season rainfall from 1786-2016 (Granato-Souza et al., 2018).

A new 258-year long tree-ring chronology of C. odorata has been devel-
oped in the Rio Paru drainage basin of the eastern Amazon (Rio
Paru-Baixo [RPB]). This chronology confirms the exact dating and preci-
pitation response of the first Cedrela chronology developed from a sepa-
rate location on the Rio Paru (i.e., Rio Paru-Alto; Granato-Souza
et al., 2018). Positive and especially negative growth extremes in the
new RPB Cedrela chronology are associated with above and below average
precipitation at many instrumental rainfall stations across the Amazon
basin. The RPB chronology is used to reconstruct wet season precipitation
totals for the eastern equatorial Amazon from 1759-2016. The reconstruc-
tion is associated with ENSO extremes and exhibits significant multideca-
dal variability. Strong low frequency variability in reconstructed wet
season precipitation suggests that the recent increase in high and low
rainfall extremes may not be entirely unprecedented over the eastern
Amazon basin in the context of natural variability.

2. Data and Methods

The new RPB chronology was developed from cross sections of C. odorata
salvaged at a logging concession in the eastern Amazon (0.997522°S
53.2667°W) located 10 km to the southeast and 80 m lower in elevation
than the site at Rio Paru-Alto (RPA; 0.97669°S 53.32586°W). The owners
and employees of the logging firm CEMAL and the Environmental and
Sustainability Agency in the state of Para facilitated the collection of cores
and cross sections from legally harvested trees. All tree-ring specimens
have been cataloged and permanently stored in the Tree Ring
Laboratory of the Federal University of Lavras where they are available
for further scientific research.

All cross sections were dried and highly polished to reveal the cellular anatomy of the annual rings.
Well-formed concentric growth rings were found for both of the sites from the Rio Paru, and a new chron-
ology dating from 1759-2016 was developed based on 120 radii from 60 trees at RPB using graphical compar-
isons of ring width time series and visual dating under the microscope (Douglass, 1941; Stokes &
Smiley, 1996). All cross sections from the two sites on the Rio Paru can be dated with dendrochronology,
but some specimens were too short or irregular to have value for long chronology development. The chron-
ology from RPB used for these analyses was instead based on the most strongly cross-correlated subset of 50
dated radii from 22 trees. The “Schulman Shift” (Schulman, 1956) was not used in the dating of the ring
width series from Rio Paru sites because the wet season typically begins in February in this equatorial area
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and both chronologies respond to precipitation during the same calendar year as the wet season
(Granato-Souza et al., 2018).

The dendrochronologically dated ring widths were measured with a precision of 0.01 mm on a stage micro-
meter. The computer program COFECHA (Holmes, 1983) was used to check dating and measurement accu-
racy. The dated time series were detrended and standardized using data adaptive cubic smoothing splines
with a 50% frequency response of 100 years to minimize short-period growth excursions associated with non-
climatic stand dynamics in these closed canopy rain forests using the ARSTAN program (Cook &
Krusic, 2005). All ring width index series were averaged on a year-by-year basis producing the final robust
mean index chronology (Cook & Krusic, 2005).

Correlation and composite analyses with monthly precipitation data were computed in order to define the
strength and seasonality of the rainfall signal of this new Cedrela chronology. Monthly precipitation data
for all Brazilian recording stations in the Amazon basin were obtained from the Agéncia Nacional de
Aguas from 1920 to 2016 (ANA, National Water Agency). The RPB chronology was correlated with the
gridded monthly precipitation data from the Global Precipitation Climatology Centre (GPCC) V7 0.5° data
set (Becker et al., 2013; Schneider et al., 2014) to identify the strongest regional rainfall response. The GPCC
data for the wet season (February-July) were then regionally averaged, and that instrumental time series
was used for reconstruction.

A reconstruction based on the single new RPB chronology was computed using bivariate regression to cali-
brate the standardized ring width chronology from the Rio Paru with February-July precipitation data
extracted from the 0.5° gridded GPCC data set for 0-1°S and 56-57°W near Santarem and 150 km west of
the remote RPB collection site. The tree-ring chronology was calibrated with wet season rainfall totals from
1978 to 2016 when the GPCC precipitation data from the eastern Amazon are based on several reporting sta-
tions and appear to be most homogeneous. Validation of the reconstruction prior to the calibration interval
is difficult because rainfall stations in the region become increasingly scarce. Nonetheless, the reconstruc-
tion was compared with the regional average GPCC wet season rainfall data and with the totals recorded
at the Santarem station from 1939-1977. The derived reconstruction was also evaluated during the calibra-
tion interval using the leave-one-out cross-validation reduction of error (CVRE) statistic, a regression diag-
nostic similar to the Prediction Error Sum of Squares (Allen, 1974).

Semiparametric 90% prediction intervals were computed for each year of the reconstruction to estimate the
uncertainty associated with the reconstructions through time (Cook et al., 2013) using the point-by-point
regression program of Cook et al. (1999); E.R. Cook, Personal Communication, 2019). These prediction
intervals are based on standard least squares theory (Olive, 2007; Seber & Lee, 2003) and the maximum
entropy bootstrap method (Vinod, 2006) to randomly rearrange the predictors and predictands. In the gen-
eration of the semiparametric prediction intervals, estimates of regression model interpolations and extrapo-
lations were generated from the Hat matrix of predictors and were used to identify extrapolated values likely
to be least reliable for interpretation in the reconstruction (Wiesberg, 1985).

Singular spectrum analysis (Ghil et al., 2002; St. George & Ault, 2011) was performed to identify important
frequency components in the 258-year reconstruction. The Mann-Kendall test (Kendall, 1975; Mann, 1945)
was used assess the presence of significant (p < 0.05) monotonic trends in the derived reconstructed time
series of wet season precipitation. Spectral and cross spectral coherence analyses were used to compare
the two Rio Paru tree-ring chronologies in the frequency domain (Percival & Constantine, 2006), and the
95% confidence level was estimated through 10,000 runs of Monte Carlo simulations.

3. Results and Discussion

Instrumental precipitation measurements have become widespread in the Amazon basin in only the last
70 years (Figure 1). Just 33 stations were operating in the basin in 1940, but 467 were reporting observations
in 2000 (Figures 1a- 1d). However, many station observations have not been continuous even in recent dec-
ades. The precipitation records at Rio Branco in the southwest and Manaus in the central Amazon are the
two longest in the Brazilian Amazon. Both of these important records are subject to significant uncertainties
during the earliest years of observation. The wet and dry season totals for Manaus are presented in Figures 1le
and 1f, and both are inhomogeneous when cumulatively plotted with the long river level record of the Rio
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Figure 2. Average anomalies in wet season (February-July) precipitation are plotted for all available instrumental
stations in and near the Amazon basin of Brazil for the five wettest (a) and five driest years (b) recorded at Manaus
from 1980-2016 (circles = positive, triangles = negative anomalies). February-July precipitation totals are also plotted
for all stations during the five highest (c) and five lowest years of tree growth from 1980-2016 (d) in the new Rio
Paru-Baixo tree-ring chronology (location = 0.997522°S 53.2667°W). The number of above and below average
(below/above) stations is listed below each map.

Negro at Manaus in double mass analyses (Kohler, 1949). The wet season totals appear to be problematic
before circa 1920 and the dry season totals before circa 1960 (Figures le and 1f). Both seasonal totals
exhibit positive trend during the early 20th century that is not strongly present in the maxima, minima, or
annual Rio Negro or Amazon River level data (e.g., Gloor et al., 2013; Labat et al., 2004). The early
precipitation data at Manaus may be impacted by irregularities in instrumentation or observation that
would complicate the detection of low-frequency variability. Moisture sensitive tree-ring chronologies
may therefore provide a valuable proxy perspective on decadal to multidecadal variability both during and
preceding the instrumental period.

The tree-ring chronology developed at the RPB site is based on highly polished cross sections of C. odorata
that exhibit obvious and well-defined annual growth rings that are correctly dated to the calendar year of for-
mation. The Rio Paru Cedrela is fortunately not subject to the kind of obscure, suppressed, and often locally
absent growth rings observed on many tropical tree species. The internal crossdating among the individual
trees and radii at RPB is excellent, which is quantified by the fact that the Expressed Population Signal statistic
(EPS; Wigley et al., 1984) never falls below the 0.85 threshold from 1759-2016 (ranging from 0.87 to 0.97 for
50-year segments) and the average correlation among all time series (RBAR) ranges from 0.27 to 0.51.

The development of the RPB chronology confirms the exact dating of the original master chronology of
Cedrela from the nearby RPA site. The two mean index chronologies are correlated over their 230-year com-
mon interval at r = 0.63 (p < 0.0001; 1786-2016) using the autoregressively modeled “white noise” residual
versions for both chronologies. This between site correlation increases to r = 0.72 (p < 0.0001) for the period
from 1851-2016 when both chronologies are more fully replicated. The decadal components of both chron-
ologies indicate similar periods of above and below average tree growth over the past 230 years, likely in
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Figure 3.(a) Instrumental GPCC (dashed) and tree-ring reconstructed (solid) wet season precipitation totals
(February—-July) for the eastern equatorial Amazon are plotted from 1978-2016 (RSQ = Rzadj). (b) The full
reconstruction of wet season precipitation for the eastern Amazon is plotted from 1759-2016 (black) along with the 90%
prediction intervals (light red). The leading SSA waveform identified in the reconstruction is also plotted (smooth
black), highlighting the strong multidecadal variability in the reconstructed wet season precipitation over the eastern
Amazon. (c) The 10 driest years in the wet season precipitation reconstruction for the eastern Amazon are used to map
SST anomalies for the period from 1856-2016 (SSTs from Kaplan et al., 1998; grid point means significantly different
from all remaining years are stippled, p < 0.05).

response to multiyear droughts and pluvials. Cross-spectral analysis indicates that the two chronologies are
coherent at periods from 2-32 years at p < 0.05 and 2-51 years at p < 0.10.

The new C. odorata chronology from RPB not only confirms the original dating of our first Cedrela chron-
ology but also is more strongly coupled with regional rainfall totals and large-scale ocean-atmospheric varia-
bility. Station observations of wet season rainfall from ANA, Brasil (2019) were averaged for the five wettest
and five driest February-July precipitation totals at the Manaus station from 1980-2016 to illustrate this
coherence of precipitation extremes over the Amazon basin, particularly the dry extremes (Figure 2ab; note
that all 5 years had to be available for a station to be included in any one of the four maps in Figure 2). When
the five highest and five lowest values in the RPB ring width chronology were used to composite the station
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precipitation data, a consistent basin-wide pattern of above and below average wet season rainfall was also
observed (Figures 2c and 2d), very similar to the precipitation anomalies associated with extremes in the
Manaus gage. Similar results were obtained using the February-July precipitation extremes recorded at
the Santarem station and in the gridded GPCC monthly precipitation data (also for February-July; not
shown). Just 5 years were used in this analysis from 1980-2016, but the association between extremes in
the RPB chronology and station rainfall totals is present when compared with the many fewer stations avail-
able earlier in the 20th century in the ANA compilation (not shown). Correlation analyses comparing the
RPB chronology with February-July precipitation in the gridded GPCC data set identify significant
(p < 0.05) correlations over the central and eastern Amazon basin for 1978-2016, similar to, though less
widespread than, the composite pattern illustrated in Figure 2d.

The single RPB chronology was calibrated with the regional GPCC February-July precipitation data (0-1°S
and 56-57°W) using bivariate regression and explains 42% of wet season precipitation variability from
1978-2016 (R’*adj = 0.42, adjusted for the loss of degrees of freedom; Figures 3a and b). The
February-July interval is the wet season for the Rio Paru region of the northeast Amazon. The region of
GPCC data used for calibration with the RPB chronology was selected because it is well correlated with
the RPB chronology from 1978-2016 (including the GPCC data from the remote Rio Paru basin in this regio-
nal average did not improve the calibration). The cross-validation reduction of error statistic indicates little
loss of explained variance when tested against withheld instrumental observations during the calibration
period (CVRE = 0.39). However, the reconstruction is not significantly correlated with the extracted
GPCC data from 1939-1977 (r = 0.21). This lack of correlation during the precalibration period may be
due in part to deficiencies in the gridded instrumental data. The mean and variance of the regional GPCC
precipitation data become increasingly impacted by the lack of stations observations before 1978, limiting
the time interval available for cross-validation of the reconstruction. The reconstruction is modestly corre-
lated from 1939-1977 with February-July precipitation recorded at Santarem 250 km west of the collection
site (r = 0.38, p < 0.05, r = 0.46 omitting 1943). The reconstruction is also significantly correlated from 1939-
1977 with a four-station instrumental average of February-November precipitation for the central and east-
ern Amazon (Granato-Souza et al., 2018) at r = 0.41 (p < 0.01). The association between reconstructed
drought years in the eastern Amazon with warm sea surface temperature (SST) anomalies in the tropical
Pacific and Atlantic from 1870-2016 (Figure 3c) provides some additional validation of the reconstruction.

The reconstruction is plotted from 1759-2016 in Figure 3b along with the 90% regression prediction intervals
calculated from a suite of pseudoreconstructions (Cook et al., 2013). The reconstruction exhibits strong inter-
annual and low-frequency variability, including decadal to multidecadal episodes of drought and wetness.
The mid-19th century drought is especially notable because it extended with little relief from 1864-1882
(Figure 3b) and was also reconstructed by Granato-Souza et al. (2018). The two reconstructions now avail-
able from the Rio Paru sector therefore indicate that severe and sustained drought has been a feature of nat-
ural climate variability over the eastern equatorial Amazon, including decadal moisture regimes that
exceeded any recorded during the relatively short instrumental period (Figure 3).

Spectral analysis identifies concentrations of reconstructed precipitation variance at periods of approxi-
mately 4.0, 6.0, and 11.0, and especially at 35 years (p < 0.05, using the Blackman-Tukey method).
Singular spectrum analysis indicates that multidecadal variability represents approximately 20% of the var-
iance in reconstructed wet season precipitation totals over the eastern Amazon, highlighted by the leading
35.4-year waveform in Figure 3b (bandwidth = 20). Similar and significant multidecadal power peaking at
33.4 years (p < 0.01) is detected in the instrumental observations of February-July rainfall totals at
Manaus from 1901-2016, the longest instrumental precipitation record from the central and eastern
Amazon. The homogeneity of the Manaus precipitation measurements during the early 20th century is
doubtful, but significant multidecadal power is nevertheless present in February-July rainfall when the ana-
lyses are restricted to the period from 1920-2016 (p < 0.01). The Rio Negro maximum annual stream level
record at Manaus also has significant multidecadal spectral power from 1920-2013 (p < 0.05), but not for
the full period of observation from 1903-2016 (e.g., Labat et al., 2004).

The multidecadal variability of reconstructed wet season precipitation in the eastern Amazon could have
practical implications for interpretation of trends in the short instrumental precipitation data from the region.
The reconstruction was tested for significant monotonic trends using the Mann-Kendal test applied to 30-year
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segments and a 1-year time step proceeding through the time series. Significant (p < 0.05) positive and
negative trends of 30-year duration were both detected in the reconstruction during the instrumental and pre-
instrumental period. If multidecadal swings are an important component of natural wet season variability,
then significant linear trends of 30-year duration are likely to also be present. The extended perspective pro-
vided by this reconstruction suggests that the recent decade scale changes in hydroclimate over the Amazon
may not be unprecedented over the past 258 years. The wet season precipitation estimates provide analogs of
both extreme individual years (such as 1818 and 1865) and low-frequency changes in the mean.

The wet season reconstruction is only weakly correlated with SSTs in the tropical Pacific (not shown), but
composite mapping of the 10 driest years in the reconstruction over the period from 1856-2016 indicates a
strong negative response to El Nifio conditions in the tropical Pacific and a weaker but still significant nega-
tive response to SSTs in the tropical North Atlantic (Figure 3c). This pattern of response is similar to the SST
forcing of instrumental precipitation variability over the Amazon basin (Enfield, 1996; Dettinger et al., 2001;
Yoon & Zeng, 2010; Fernandes et al., 2011; Yeh et al., 2018). Unlike the instrumental precipitation data, the
tree-ring estimates are not significantly associated with cold SSTs in the tropical Pacific or Atlantic during
reconstructed wet extremes (not shown). Figure 3c also indicates a basin-wide pattern of Pacific SST anoma-
lies that could be consistent with the Pacific Decadal Oscillation (Mantua et al., 1997) or more broadly the
Inter-Decadal Pacific Oscillation (IPO; Dong and Dai, 2014). The quasi-oscillatory IPO has full period of
40-60 years, with phase reversals every 20-30 years (Dong & Dai, 2015) and may have influenced the
low-frequency variability of reconstructed precipitation in the eastern Amazon over the past 258 years.
The reconstruction is only marginally correlated with the Atlantic Multi-Decadal Oscillation (r = 0.159;
p < 0.05; June and July average, 1856-2016).

Multidecadal variability has important implications for forest ecosystem dynamics and biogeochemical
cycling in Amazonia. The recently observed decline in the long-term carbon sink of Amazon rainforests
(Brienen et al., 2015) has been attributed to increasing climate variability, including the severe droughts
of 2005 and 2010 (Aragao et al., 2018; Lewis et al., 2011). However, the influence of multidecadal variability
on rain forest dynamics in the Amazon is difficult to investigate because direct forest monitoring data rarely
exceed 30 years of record.

4. Conclusions

The new tree-ring chronology from RPB provides important validation of the master dating chronology for
C. odorata in the eastern Amazon and confirms the climate response first identified by Granato-Souza
et al. (2018). Tree-ring chronology development and climate reconstruction in the Amazon basin are both
predicted on the consistent formation of annual growth rings and their exact calendar year dating with den-
drochronology. The evidence for the exact dating of C. odorata ring width data from the Rio Paru now
includes the significant correlation between the two chronologies from the Rio Paru, the similar and signif-
icant response of both chronologies to instrumental precipitation totals, and the link between reconstructed
drought extremes and SST anomalies in the tropical Pacific where ENSO conditions have a strong impact on
instrumental precipitation over the eastern Amazon.

The new Cedrela chronology has been used to reconstruct wet season rainfall totals over the eastern equa-
torial Amazon from 1759-2016. This reconstruction confirms the severe sustained drought in the mid-19th
century first estimated with the RPA chronology by Granato-Souza et al. (2018). This mid-19th century
drought is registered by both Cedrela chronologies from the Rio Paru basin and in both cases is estimated
to have been more extreme than any reconstructed during the relatively short instrumental data for the east-
ern Amazon. Another intense and prolonged drought is reconstructed during the late-18th century
(Figure 3b), which if confirmed with additional tree-ring data would suggest that decadal droughts may
be underestimated in the available instrumental precipitation observations for the region.

Tree-ring reconstructed wet season precipitation totals in the eastern Amazon have been subject multideca-
dal regimes over the past 258 years. This multidecadal variability of reconstructed February-July rainfall has
impacted the frequency of drought extremes in the eastern Amazon. Several decadal to multidecadal
regimes without droughts in the lowest 10th percentile are reconstructed from 1759-2016 (Figure 3b).
Similar decadal episodes without drought or flood extremes have been noted in other instrumental precipi-
tation and river level data from the Amazon basin. If quasiperiodic low-frequency variability is truly an
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important component of natural precipitation that can impact the occurrence of drought and wetness
extremes, then it needs to be validated because it might help explain some of the recent increase in floods
and drought witnessed in the Amazon and would likely interact with predicted anthropogenic forcing of
future precipitation extremes.
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