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ABSTRACT

Magnetic Resonance Elastography (MRE) is a non-invasive imaging technique which involves motion-encoding
MRI for the estimation of the shear viscoelastic properties of soft tissues through the study of shear wave
propagation. The technique has been found informative for disease diagnosis, as well as for monitoring of the
effects of therapies. The development of MRE and its validation have been supported by the use of tissue-
mimicking phantoms. In this paper we present our new MRE protocol using a low magnetic field tabletop
MRI device at 0.5 T and sinusoidal uniaxial excitation in a geometrical focusing condition. Results obtained for
gelatin are compared to those previously obtained using high magnetic field MRE at 11.7 T. A multi-frequency
investigation is also provided via a comparison of commonly used rheological models: Maxwell, Springpot, Voigt,
Zener, Jeffrey, fractional Voigt and fractional Zener. Complex shear modulus values were comparable when
processed from images acquired with the tabletop low field scanner and the high field scanner. This study serves
as a validation of the presented tabletop MRE protocol and paves the way for MRE experiments on ex-vivo tissue

samples in both normal and pathological conditions.

1. Introduction

Elastography is a non-invasive imaging technique for the estimation
of shear viscoelastic properties in soft tissues (Yamakoshi et al., 1990;
Parker et al., 1990; Krouskop et al., 1987; Emelianov et al., 1995; Sar-
vazyan et al., 2011, 2013; Muthupillai et al., 1995) and is related to
manual palpation, a fundamental step in a clinical physical evaluation.
Elastography techniques can be classified into quasi-static and dynamic
approaches (Varghese, 2009): while the former apply a time-invariant
force to the tissue, the latter use a time-varying force that results in
the propagation of mechanical waves, both of the compressional and
shear kinds (Taljanovic et al., 2017). Dynamic elastography techniques
observe shear wave propagation and produce quantitative stiffness maps
compared to quasi static methods that only quantify contrast (relative
stiffness values), without quantitative information about boundary
conditions (Klatt et al., 2010a; Gennisson et al., 2013). Elastography
measurements can be made using different imaging modalities, such as
ultrasound (Yamakoshi et al., 1990; Parker et al., 1990; Dutt et al., 2000;
Deffieux et al., 2011; Wang et al., 2013), optics (Von Gierke et al., 1952;
Liang and Boppart, 2009; Larin and Sampson, 2017; Khan et al., 2018),

or magnetic resonance imaging (MRI) (Muthupillai et al., 1995; Plewes
et al., 1995); in particular, the last approach is referred to as Magnetic
Resonance Elastography (MRE), which involves motion-encoding MRI.
MRE offers resolution up to hundreds of micrometers (Hiscox et al.,
2018; Hughes et al., 2015), great penetration depth (Guidetti and Roy-
ston, 2018) and added value in a multiparametric MRI approach (Low
etal., 2016). MRE has high diagnostic accuracy for the staging of hepatic
fibrosis (Talwalkar, 2008) and has diagnostic potential for the detection
of breast (Balleyguier et al., 2018), thyroid (Bahn et al., 2009) and
prostate cancers (Reiter et al., 2020; Kemper et al., 2004). Promising
studies on kidney (Lee et al., 2012), brain (Xu et al., 2007), heart (Sack
et al., 2009) and muscle (Basford et al., 2002) tissues have also been
reported. The development of these MRE approaches and their valida-
tion have been supported by the use of tissue-mimicking phantoms.
Phantoms play an essential role in the development of elastography:
given their accessibility and convenience, they have been used as a
means of standardization and validation (Mun et al., 2013), and they
have also been employed to improve the performance and reliability of
inversion algorithms to obtain material properties maps, called elasto-
grams (Nguyen et al., 2014; Cao et al., 2017; Muthupillai et al., 1995),
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and to evaluate motion acquisition approaches (Kolipaka et al., 2009;
Klatt etal., 2013). Thus, scientific literature contains many studies about
phantom materials: the reviews by Cao et al. (2017) and Culjat et al.
(2010) classify the different types of tissue mimicking materials and
describe their fabrication, benefits and disadvantages. Gelatin is the
most common tissue substitute used in investigations (Amador et al.,
2011; Quan et al., 1993; Doyley et al., 2001; Hall et al., 1997). Doyley
et al. have used gelatin phantoms for assessing the quality of elastograms
produced using an innovative imaging system for clinical breast elas-
tography (Doyley et al., 2001), while Hall proposed numerous me-
chanical tests of tissue-like gelatin materials for elastography
experiments (Hall et al., 1997). Other examples of materials used for
tissue-like phantoms are agar-agar gel (Hamhaber et al., 2003; Manduca
et al., 2001; Zell et al., 2007), agar-gelatin (Plewes et al., 2000; Madsen
et al., 2005; Ringleb et al., 2005; Pavan et al., 2010), ecoflex (Brinker
and Klatt, 2016; Brinker et al., 2018), polyurethane gel (Madsen and
Frank, 1997), oil in gelatin (Madsen et al., 2003; Nguyen et al., 2014),
aqueous polyvinyl alcohol solutions (Mori et al., 1997; Zell et al., 2007),
silicone (Zell et al., 2007), polyacrylamide gel (Zell et al., 2007), glyc-
erol in oil-based gel (Cabrelli et al., 2017), paraffin gel (Vieira et al.,
2013) and copolymer in oil from mixtures of
styrene-ethylene/butylene-styrene (Oudry et al., 2009).

Customarily, MRE on phantoms has been performed using MRI
scanners at high (Bp > 1 T (Oudry et al., 2009; Hamhaber et al., 2003;
Ringleb et al., 2005)) and ultra-high (Bg > 7 T (Guidetti et al., 2019;
Yasar et al., 2013)) magnetic field, taking advantage of the high sensi-
tivity resulting in increased resolution and Signal-to-Noise Ratio (SNR)
and reduced scan time (Ladd, 2007) compared to using scanners at low
magnetic field. Nevertheless, both ultra-high and high magnetic field
scanners come with high costs and are extremely bulky, thus requiring
large magnet rooms. A higher field strength results in longer T; relax-
ation times and thus longer repetition times in most of the pulse se-
quences for accurate relaxometry mapping (Bottomley et al., 1984). The
chemical shift artifact is particularly evident as well, especially along the
readout direction and this pitfall may necessitate either increasing the
readout bandwidth or switching to fat suppression techniques, which
can lead to Specific Absorption Rate (SAR) issues. Recently, a setup
based on a 0.5 T tabletop MRI scanner was used for investigations of
viscoelastic properties of small ex-vivo tissue samples and gel phantoms
through MRE (Ipek-Ugay et al., 2015; Braun et al., 2018). With a per-
manent magnet in a tabletop device, the paradigm shift to the low field
imaging comes with advantages: lower initial purchase price, opera-
tional and maintenance costs, lower fringe field effects — so a lower
projectile risk and easier field shielding — as well as the decrease of
chemical shift and susceptibility artifacts.

In this paper we present our new MRE protocol using a low magnetic
field tabletop MRI device at 0.5 T and sinusoidal uniaxial excitation in a
geometrical focusing condition. Results obtained for gelatin are
compared to previously implemented ultra-high magnetic field MRE at
11.7 T. A multi-frequency investigation at 0.587 T is also provided via a
comparison of commonly used rheological models. This study serves as a
validation of the presented tabletop MRE protocol and paves the way for
MRE experiments on ex-vivo tissue samples in both normal and patho-
logical conditions.

2. Materials and methods
2.1. Materials

A total of 5 samples for each of the 4 concentrations of gelatin so-
lutions — 5%, 10%, 15% and 20% weight over volume (w/v) — were
prepared with the intent to span over the shear stiffness range of bio-
logical tissue by solubilization of Gelatin Powder (IS16003, Lab Grade,
Innovating Science ™, Aldon Corporation, Avon, NY) in distilled water
and inserted in glass test tubes of 8 mm inner diameter (Amador et al.,
2011). Within the deformation regime of MRE, gelatin — as soft tissues —
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can be modeled as linear viscoelastic materials which are characterized
by a storage modulus and a loss modulus ((Ortiz and Lagos, 2015; Yang
and Church, 2006; Zhang et al., 2007; Maccabi et al., 2018)). The ma-
terial is considered as nearly incompressible with a Poisson’s ratio
approxim able to 0.5 and with density of water (p = 1000 kg/m®). Given
these assumptions, the relationship between Young’s modulus E and
shear modulus y is E ~ 3u.

2.2. Experimental setup

MRE experiments at low magnetic field were performed using a 10
mm diameter vertical bore tabletop MR scanner with a 0.5 T permanent
magnet (MagSpec, Pure Devices GmbH, Wiirzburg, Germany). The
scanner is controlled by a driver console (drive L, Pure Devices GmbH,
Wiirzburg, Germany), requiring a licensed version of MATLAB (Math-
works, Natick, MA, USA) not older than Version 2012a. An external
gradient amplifier (DC 600, Pure Devices GmbH, Wiirzburg, Germany)
and an integrated custom-built piezoelectric actuator system were
added to the setup (see Table 1). A similar system was used in the studies
of Ipek-Ugay et al. (2015) and Braun et al. (2018).

Our setup includes a custom-made piezoelectric actuator support, as
shown in Fig. 1, which is made of polycarbonate characterized by very
low relative magnetic permeability, high density, high Poisson ratio and
high Young’s modulus: it has been designed using SolidWorks (Dassault
Systemes, Vélizy-Villacoublay, France) with the aim of building a high-
inertial, deformation-resistant and durable support at low cost. The
components of the support were first fabricated separately and then
chemically bonded; the support is provided with two flat sustains that
touch the upper case of the scanner and with two holes on the lateral
blocks hosting plastic screws, so that possible movements of the scanner
are rigidly transferred to the support. The hollowed top block hosts the
actuator in its cavity, with a H6 ISO tolerance to ensure the lowest
clearance and, thus, an axial transmission of the displacement provided
by the actuator through a threaded rod (hooking the sample tube ex-
tremity at one end and screwed in the actuator at the other end). The
piezoelectric driver has an external diameter of 20 mm and a length of
72 mm. MRE at 0.5 T was followed by a comparison at ultra-high

Table 1

Experimental parameters for the three scanners used in this study. For the sake
of simplicity, we report the magnetic field intensities of the scanners truncated at
the first decimal digit throughout the text.

Parameter MagSpec 310/ASR Advance III
(Pure Devices) (Agilent) HD
(Bruker)
Magnetic Field [T] 0.587 (25 9.4 (400 MHz)  11.74 (500
MHz) MHz)
Piezoelectric actuator PAHL 60/20 P-840.1 (**) 1000/50 N
(@) ()]
Oscillation amplitude [pm] 6 6 11
Excitation and MEG [0.5, 1.0, 1.5, [0.5, 1.0, 1.5, [1.0, 2.0, 3.0,
frequencies [kHz] 2.0] 2.0] 4.0]
FOV dimensions 10 mm x 10 68 mm x 68 10 mmx 10
mm mm mm
Inner/Outer sample bin 8/10 58/62 8/10
diameter [mm]
Matrix size 128 x 128 64 x 64 128 x 128
Spatial resolution [ym] 78 x 78 1063 x 1063 78 x 78
Slice thickness [mm] 5 1 1
Slice volume [mm?] 251.3 2642.1 50.3
MEG strength [mT/m] 200 250 1200
TE/TR [s/s] 0.0358/0.5 0.02128/1 0.00395/0.12
MEG duration [ms] 20 16 2
Number of averages 2 1 1
Scan time/frequency ~11 min ~9 min ~5 min
MRE sequence SE-based SLIM-MRE SLIM-MRE

(*) Piezosystem Jena, Jena, Germany. (**) Physik Instrumente GmbH & Co.,
Karlsruhe, Germany.
SLIM = SampLe Interval Modulation, SE = Spin-Echo.
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Fig. 1. (a) Picture of the MRE setup for piezoelectric actuator support mounted on the tabletop MRI machine by Pure Devices GmbH, Wiirzburg, Germany. (b)

SolidWorks model of the piezoelectric actuator support.

magnetic field using the experimental setups of MRE described in pre-
vious publications (Reiter et al., 2020; Kearney et al., 2017; Yasar et al.,
2013; Guidetti et al., 2019). These experiments were performed on a 56
mm vertical bore MR scanner (Bruker 11.7 T, Billerica, MA) and on a
310 mm horizontal bore MR Scanner (Agilent 9.4 T 310/ASR, Santa
Clara, CA) with the same setup as in Yasar et al. (2013). A total of 3
samples with 3 concentrations — 5%, 10% and 15% w/v — were prepared
for the 11.7 T experiments, similarly as discussed for tabletop experi-
ments. At 9.4 T we acquired data from a single sample with 10% w/v
concentration only as a validation at that specific concentration.

2.3. MRE experiments

The piezoelectric driver was fed with a sinusoidal alternating current
with a vibration-amplitude dependent voltage (maximum 90 V) and 4
driving frequencies (f = 500, 1000, 1500 and 2000 Hz). The range of
frequencies was chosen on the basis of the study of Guidetti et al. (2019),
by which the lower bound frequency is chosen relying on the ratio of the
test tube diameter to the wavelength. This makes sure that at least half a
wavelength can be detected for the reconstruction procedure. On the
other hand, the higher frequency limit is selected based on the attenu-
ation given by the damping effect. In order to encode vibrations into the
MRI phase map values using a spin echo pulse sequence, the sinusoidal
excitation provided by the actuator was synchronized to the application
of a bipolar 8-lobes trapezoidal motion-encoding gradient (MEG). Data
acquisition was performed during the echo formation after switching off
both the MEG and the mechanical excitation. Complex phase subtraction
was performed to correct for static phase offsets, requiring two acqui-
sitions with inverse-polarity MEGs at each of the four time instances per
frequency.

The vibrations inside the test tube were polarized along the main axis
of the cylinder due to the constrained axial motion direction of the
actuator (Fig. 1a). Shear waves were introduced into the samples from
the cylinder walls by producing concentric cylinder waves propagating
from the outer sample boundaries towards the central axis of the test
tube. This setup allowed the motion field acquisition to be limited by
uniaxial z-component encoding and represented the geometric focusing
technique (Yasar et al., 2013), which compensates for the damping ef-
fect due to the viscoelastic properties of the analyzed materials. When a

viscoelastic isotropic material is considered, the cylindrical coordinate
wave equation provides the out-of-plane displacement u, as a function of
the radial position r:

Jo(k
(ot k) = 228

. e 1
Jo (k/ia) W

with u,, being the oscillation amplitude for r = a, ks = © MTPM being

the shear wave number, Jo(z) the Bessel function of the first kind 0
order, with j = v/—1, p the density, o the angular frequency, y; and ugr
referring to the imaginary and real part of the complex shear modulus p
respectively, a being the radius of the test tube, and u,, the amplitude of
the harmonic excitation set on the boundary by the piezoelectric
actuator.

For MRE at 9.4 T and at 11.7 T a similar kind of sample materials and
similar actuation setups were used as for the low field MRE experiments,
with different piezoelectric actuators and MRE sequences and adjusted
container dimensions. When using the SLIM-MRE sequence (Klatt et al.,
2013), the motion was encoded by concentrating the gradient power in
the slice direction and setting to zero the gradient amplitudes along the
other two directions. A complete list of the acquisition parameters can
be found in Table 1.

2.4. Data processing and analysis

Complex wave images were taken from the first harmonic after
applying a discrete Fourier transform of the MR phase-difference images
along the four time instances. For isotropic and homogeneous materials,
the diameter profiles — lines representing the out-of-plane complex
displacement crossing the center of the sample — can be used to estimate
u(w) at different frequencies by matching the analytical closed form
solution in Equation (1). Subsequently, rheological model parameters
can be fit to the complex shear modulus when MRE is performed at
multiple frequencies. With respect to propagation of shear waves over a
broad frequency range, linear viscoelastic materials such as tissues and
gelatin phantoms generally show an increase of shear storage and loss
moduli with excitation frequency (Yasar et al., 2013; Guidetti et al.,
2019; Klatt et al., 2010a; Liu et al., 2014). The displacement profiles
were acquired along 4 arbitrary directions with equispaced angles.
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Standard deviation was defined over the four fitted profiles at each
excitation frequency and median-averaged over the samples with the
same concentration. The complex modulus was computed by fitting the
analytical closed solution to the real and imaginary parts of the complex
displacement profiles through a constrained least-square optimization
for a minimum search performed using the fmincon MATLAB function.
To compare the SNR among different scanners, we computed the Coef-
ficient of Variation (CV) as the standard deviation over the mean of the
values of the magnitude of the displacement along each visible circular
wave crest. Wave crests were automatically detected as displacement
local maxima along a diameter after using a 3 pixel moving-average.

The mechanical behavior of soft tissues and their mimicking phan-
toms can be modeled through linear viscoelasticity when assuming the
small deformation regime of MRE; the constitutive equations of rheo-
logical models are obtained by the combination of basic elements in
serial or parallel arrangements. It is preferable to minimize the number
of independent parameters in the constitutive model that is used (Sack
et al., 2013). Constitutive models incorporating fractional derivative
elements in them have been shown to optimally describe dynamic
behavior of such materials using a minimal number of independent
parameter (Bagley and Torvik, 1983; Pritz, 2003; Taylor et al., 2002;
Chen et al., 2003; Kiss et al., 2004). Essentially, a generalization of
conventional viscoelastic models is obtained by using a fractional basic
rheological element, commonly referred to as the springpot, in addition
to the spring and the dashpot. The springpot is described by two inde-
pendent parameters. The first is p,, and the second is a (0 < a < 1),
which is an interpolation parameter that represents the matrix geometry
and varies between the pure elastic (@ = 0) and viscous (@ = 1) cases.
The complex modulus of the springpot in the frequency domain is simply
given as

/'1(117{1 (jopo)* (2)

where j = v/—1, w is the circular frequency in radians/second and g is
support variable typically set to 1 Pa-s (Yasar et al., 2013).

The storage and loss moduli of the springpot by itself are the real and
imaginary parts, respectively, of this expression. Combining the
springpot with other basic elements, such as springs, dashpots or addi-
tional springpots leads to a variety of rheological models with anywhere
from 2 (springpot by itself) to more independent parameters. Some
commonly used rheological models, with and without the springpot,

Table 2
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include the following: springpot by itself, Maxwell, Voigt, fractional
Voigt, Jeffrey, Zener, and fractional Zener (Klatt et al., 2007, 2010a; Liu
et al., 2014; Kohandel et al., 2005; Okamoto et al., 2011; Holte-
n-Andersen et al., 2014). An overview of the scheme, and the complex
modulus function of these rheological models are shown in Table 2.

The merit function for the optimization algorithm was chosen to be
the square root of the Residual Sum of Squares, RSS, computed as

RSS = (.uk,fit - :uk.exp)z (€)

k=1

thus representing the sum of the square difference between the theo-
retical and experimental values of the complex modulus for all the n
sampled frequencies.

2.5. Statistical analysis

The storage and loss moduli were computed for each gelatin sample
as the average optimized value along 4 equispaced angles: Lilliefors tests
rejected data normality for the data populations at each frequency,
concentration and magnetic field intensities, so non-parametric tests
were adopted and performed with MATLAB version 2016b. The level of
significance was set to p = 0.05 for all the statistical tests performed,
which included a one-way ANOVA for different gelatin concentrations,
same excitation frequency and magnetic field, and also another one-way
ANOVA for different excitation frequency but same gelatin concentra-
tion and magnetic field. A Wilcoxon rank-sum (Mann-Whitney) test was
performed to compare data from 0.5 T to 11.7 T scanners.

3. Results and discussion

More than 90% of the data did not show any significant difference
among magnetic field strengths (see Table 3): based on this observation
the storage modulus values for all frequencies and gelatin concentra-
tions at 0.5 T were comparable with the ones at 11.7 T, and same applied
to loss modulus data except for the lowest concentration (p-value < 0.05
at 5% w/v). However, for low gelatin concentrations the number of
visible wavelength is reduced due to high attenuation.

MRE using the tabletop system was able to detect differences of
complex shear moduli for different gelatin concentrations considered at
all excitation frequencies: indeed, the real part and magnitude were

Rheological models: graphical depiction and complex modulus as a function of excitation frequency.

Model Scheme Complex modulus
Maxwell (Roylance, 2001) n H Hjon
O—] —mew—0 jon + g
Springpot (Yasar et al., 2013; Liu et al., 2014; Posnansky et al., 2012) U & i (jop)*
Voigt (Liu et al., 2014) n u+ jon
M
Zener (Zener, 1948) nooH 1 +d(jwr) gt + o n
—_ ==, T=—
. i:]w o M T Fjor Ha h
pZ
Jeffrey (Rudolph and Osswald, 2014) n, o ony — jp
bl =t jw(n + 1)
o—
H
Frac Voigt (Yasar et al., 2013; Liu et al., 2014) Uy @ N (jwu,,)“
m pAp|—
”
[
Frac Zener (Okamoto et al., 2011) Voo W

1+ d(jor)* [d _ M tH Ha

. (jor)* Uy C e m
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Table 3
Comparison of the complex modulus values between 0.5 T and 11.7 T at specific
concentrations and excitation frequencies by means of the p-value.

1000 Hz 2000 Hz

Real Imaginary Magnitude Real Imaginary Magnitude
5% 0.07 0.14 0.07 0.07 0.04 0.25
10% 0.27 0.80 0.27 0.19 0.57 0.19
15% 0.10 0.10 0.10 0.57 0.10 0.57

different in all the cases, specifically denoting an increase in stiffness
corresponding to increasing gelatin concentrations. On the other hand,
75% of the imaginary part values did not exhibit differences, which
suggests that the damping characteristics are less sensitive to gel con-
centrations. Values for real and imaginary parts of the complex shear
modulus are reported in Fig. 2 for different excitation frequencies and
gelatin concentrations at 0.5, 9.4 and 11.7 T, respectively. A slight but
not significant increasing trend in complex shear moduli was detected
for increasing frequencies.

An example of Coefficient of Variation (CV) computation is reported
for the same gelatin concentration (10%) and excitation frequency
(2000 Hz). Examples of displacement magnitude image used for CV
calculation are represented in Fig. 3 (with both 0.5 T and 11.7 T scanner)
where blue and yellow colors refer to in- and out-of-plane displacement,
respectively. CV values at 2000 Hz for a 10% gelatin were 0.5970 for the
tabletop scanner and 0.2302 for the high-field scanner. Although in the
same order of magnitude, CV values reveal higher SNR in the images
from high-field scanner as expected from the monotonic increasing de-
pendency of MR signal on the static magnetic field.

Fig. 4 illustrates both the experimental data at 0.5 T and the fitting
results for the models reported in Table 2. Values of the fitted parame-
ters and computed errors are found in Table 4, subdivided for gelatin
concentration.

The best performing models are Zener and its fractional version,
which display identical errors except for at 10% concentration, and the
Jeffrey model, which outperforms the others for the 10% gelatin. In
three out of four analyzed gelatin concentrations, the fractional Zener is

57
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equivalent to the Zener model as can be deduced by the value of the
fractional coefficient (@ = 1) (IV parameter in Table 4).

This is in agreement with previous studies performed in brain and
liver tissues (Klatt et al., 2007), where the Zener model has shown to
provide the best agreement between fit and experimental data among
the 3-parameter models in a lower frequency range than the one used in
this study. The Zener model parameters were also highly reproducible,
while the fractional Zener model fit parameters scattered in a wide range
in follow-up studies and provided only an equal or marginally better fit
quality in individual experiments.

The imaginary part of the Maxwell model fitting always showed a
broad peak for low frequency values, resulting in generally high errors,
while the higher order Jeffrey model fitting had a narrower peak in a
lower frequency regime, thus generally impacting less the optimization
error.

Maxwell and Voigt models generally show higher fitting errors since
the lower number of parameters is unable to follow data dynamics.

Indeed, Maxwell and Voigt models can be seen as subsets of more
complex models such as the Zener model (Parker et al., 2019): while the
Voigt model can be interpreted as a low-frequency approximation to the
Zener model, the Maxwell model can be interpreted as its
high-frequency approximation, which could would make them appro-
priate models for specific frequency ranges.

The Fractional Voigt model provided lower errors with respect to the
non-fractional equivalent, benefiting from the additional fractional
parameter.

Springpot and fractional Voigt models follow data variability at all
concentrations with average error values.

Table 4 also shows an increasing trend for the fitted parameters with
concentration, in particular for the parameters corresponding to y and 1
coherently with their physical meaning.

As can be seen in Fig. 4, the gelatin samples show a large variability
in the estimation of the shear moduli. We hypothesize that this could be
explained by the lack of a standardization process in the production of
the samples, by the temperature variations in the scanner room and by
the estimation errors provided by the fitting algorithm (approximately
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Fig. 2. Real (solid line) and imaginary (dashed line) parts of the complex shear modulus estimated at 0.5 T (red and orange), 9.4 T (green and chartreuse) and 11.7 T
(blue and light blue) from the gelatin samples at different concentrations: 5% w/v (a), 10% w/v (b), 15% w/v (c) and 20% w/v (d). Points represent the median
values while error bars define population minimum and maximum values at each frequency. Outliers (represented as crosses) were chosen as the data points having
an imaginary part of the complex shear modulus equal to zero or with a difference of more than an order of magnitude with respect to the median value.



M.A. Zampini et al.

Real displacement

20
40

0.587T 60
80

100

120
20 40 60 80 100 120

20

40

11.74T 60
80

100

120

20 40 60 80 100 120

um
i1

Journal of the Mechanical Behavior of Biomedical Materials 120 (2021) 104587

Imaginary displacement -

20 s
/ ' 0.5
60 ;
80 s .d‘!
-0.5

100
120

20 40 60 80 100 120

20
40
60
80

100

120

20 40 60 80 100 120

Fig. 3. Real and imaginary part of the complex displacement at 2000 Hz for a 10% gelatin concentration imaged at 0.5 T (a) and at 11.7 T (b).

Gelatin 10% wiv

Gelatin 5% wiv

o

—Hexp, real
-
exp, imag

—Maxwell g,

- —-Maxwell Hgt imag
___Springpot 41

- Springpot

it real

it, imag

0 500 1000 1500 2000 0

Gelatin 15% wiv

2000 Voigt ity e
Voigt g,

500 1000 1500

fit,imag

Gelatin 20% wiv —Zener g,

Real and Imaginary
shear modulus [kPa]
S

fit, real

P ey s
Jeffrey

Jeffrey p

it, real

it,imag

Fractional Voigt ug, ..,

Fractional Voigt s

fit,imag

—»—Fractional Zenerum_ _—

-« -Fractional Zener j,

fit,imag

J 0
1500 2000 0

Frequency [Hz]

Fig. 4. Experimental values for complex moduli (storage modulus: circles - loss modulus: squares) and fitted curves based on the rheological modeling results in
Table 4. Some of the models perform similarly and appear overlapped for the following cases and gelatin concentrations: Zener and Maxwell at 10%, Zener and its
fractional version at all concentrations where @ was estimated at 1, the imaginary parts for Zener and Voigt at 5%, Springpot and fractional Voigt at 10% and 20%.

5-10%).

In our setup, samples with diameters up to 10 mm can be scanned,
which thus require higher frequencies of the piezoelectric actuator to be
visualized (Manduca et al., 2021). Although the excitation frequencies
applied do not match those for in vivo tissue analysis, which are found in
the 50-400 Hz range (Tang et al., 2015; Glaser et al., 2012), these have
been previously used for the characterization and study of the diagnostic
potential of neurodegeneration in mouse models (Majumdar and Klatt,
2021). Also, this study could be extended for small-scale MRI scanners
for other preclinical analysis and imaging of ex vivo human tissue
samples such as biopsy samples. Therefore, this study represents a

validation study of the new low-cost MRE system, in line with prior
studies that compared tissue mechanical properties across MRE systems
(Brinker et al., 2018; Yasar et al., 2013; Liu et al., 2014; Klatt et al.,
2010Db). Further studies are needed to identify the best suited model for
tissue and phantom modeling. Indeed, the use of a wide range of fre-
quencies densely sampled especially in the low frequency range is sug-
gested to improve rheological model fitting and, consequently,
parameter estimation. It is a limitation of the presented study that the
analysis of earlier collected data using the high field scanners was per-
formed retrospectively and with a limited sample size. Therefore, there
is a limited overlapping in the excitation frequency ranges. A thorough
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Table 4
Values of model parameters fit to experimental data at 0.5T with units as
follows:

I: 5y [Pa-s] 1I: p [Pa] (Maxwell);

Lal-] 1I: p, [Pa] (Springpot*);

I: n [Pa-s] II: u [Pa] (Voigt);

I: n [Pa-s] 1I: yy [Pa] 1L us [Pa] (Zener);

I: 7y [Pa-s] 1I: 5 [Pa-s] IIL: p [Pa] (Jeffrey);

I: p [Pa] 1I: y, [Pa-s] IIL: « [-] (Fractional Voigt);
I: g, [Pas] II: p; [Pa] IIL: po [Pal Vi [-] (Fractional Zener).
5% I I juis v VRSS
Maxwell 8.72%-1 1.989e3 3.92
Springpot 2.617e-1 1.183e3 3.22
Voigt 9.286e-2 1.752e3 3.09
Zener 9.782e-2 4.704e3 1.608e3 3.04
Jeffrey 9.877 8.943e-2 1.786e3 3.09
Voigt frac 1.507e3 8.752e-2 7.994e-1 3.05
Zener frac 9.782e-2 4.704e3 1.608e3 1.000 3.04
10% I I I v VRSS
Maxwell 3.945 5.151e3 6.21
Springpot 1.472e-1 4.713e3 6.04
Voigt 1.243e-1 4.869e3 6.58
Zener 3.945 5.151e3 4.698e-4 6.21
Jeffrey 5.644 6.599e-2 5.126e3 5.90
Voigt frac 4.546e2 9.998e4 1.617e-1 6.05
Zener frac 4.227 7.515e3 6.447e-4 4.102e-1 6.01
15% I I I v VRSS
Maxwell 9.877 1.006e4 17.4
Springpot 1.328e-1 1.051e4 16.1
Voigt 2.087e-1 9.760e3 17.0
Zener 4.876e-1 4.708e3 7.983e3 15.8
Jeffrey 2.683el 1.602e-1 9.923e3 16.9
Voigt frac 3.922e3 4.541 2.158e-1 16.1
Zener frac 4.876e-1 4.708e3 7.983e3 1.000 15.8
20% I I juit v VRSS
Maxwell 8.926 1.778e4 324
Springpot 1.481e-1 1.968e4 31.1
Voigt 2.836e-1 1.645e4 33.2
Zener 1.616 9.911e3 1.093e4 29.8
Jeffrey 9.998e2 2.800e-1 1.646e4 33.2
Voigt frac 1.806e3 9.976e4 1.652e-1 31.1
Zener frac 1.616 9.911e3 1.093e4 1.000 29.8

(*) In Springpot model an additional parameter yo was considered and kept
constant to the value of 1 Pa-s.

study with a greater match between frequencies used at low and high
field scanners and simulations replicating the experimental conditions
should be performed to better validate the results presented in this
study.

4. Conclusion

An MRE characterization of gelatin phantoms dynamic properties
using a compact low field scanner was presented. Complex shear stiff-
ness values were comparable when processed from images acquired
with the tabletop low field scanner and an 11.7 T scanner, while the
Coefficient of Variation of the former was double. Nevertheless, MRE on
the tabletop system is capable of detecting differences of complex shear
moduli for increasing gelatin concentrations. This indicates the feasi-
bility of future low-cost MRE experiments on ex-vivo samples for the
characterization of tissue in both normal and pathological states. The
Springpot model provides the best fit among the 2-parameter models
while this is the case for the Zener model among the 3-parameter
models. The addition of a further parameter in the fractional Zener
model improved the fit quality only at one of the four concentrations.
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