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Abstract— We present a predictive runtime monitoring tech-
nique for estimating future vehicle positions and the probability
of collisions with obstacles. Vehicle dynamics model how the
position and velocity change over time as a function of external
inputs. They are commonly described by discrete-time stochas-
tic models. Whereas positions and velocities can be measured,
the inputs (steering and throttle) are not directly measurable
in these models. In our paper, we apply Bayesian inference
techniques for real-time estimation, given prior distribution
over the unknowns and noisy state measurements. Next, we
pre-compute the set-valued reachability analysis to approximate
future positions of a vehicle. The pre-computed reachability sets
are combined with the posterior probabilities computed through
Bayesian estimation to provided a predictive verification frame-
work that can be used to detect impending collisions with
obstacles. Our approach is evaluated using the coordinated-
turn vehicle model for a UAV using on-board measurement
data obtained from a flight test of a Talon UAV. We also
compare the results with sampling-based approaches. We find
that precomputed reachability analysis can provide accurate
warnings up to 6 seconds in advance and the accuracy of the
warnings improve as the time horizon is narrowed from 6 to 2

seconds. The approach also outperforms sampling in terms of
on-board computation cost and accuracy measures.

I. INTRODUCTION

As unmanned robotic vehicles are increasingly common

in crowded urban spaces, it is increasingly important to

provide a rigorous monitoring framework that can track these

vehicles over time in order to detect and prevent collisions

with buildings, pedestrians and other vehicles. However, such

a monitor has to be able to predict the possible future

positions of the vehicle over a future time horizon and use

these predictions to detect possible collisions. To be precise,

these predictions have to account for the dynamics of the

vehicle which are often nonlinear. Also, to be effective,

these predictions have to be fast: much faster than the time

horizons over which the prediction is given.

In this paper, we explore a real-time safety monitoring

framework for vehicles that relies on periodic position and

velocity measurements. We assume a nonlinear discrete-time

dynamical model that models positions and velocities over

time as a function of control inputs (throttle and steering)

and exogenous forces (wind drag and friction). In particular,

our approach focuses on the planar coordinated turn (CT)

model that has been widely used in target tracking [1], and

collision detection for air vehicles [2]. Our approach uses a

combination of Bayesian inference for tracking unmeasured

aspects of the vehicle’s dynamics that include the control

inputs applied to the vehicle at each time. This is represented

as a posterior distribution over the possible control inputs,

and updated as new vehicle state measurements are obtained.

We combine the posterior distribution with a forward

set-valued reachability analysis that computes rigorous set-

valued bounds on the possible reachable states over a given

time horizon (Cf. [3] for a survey). In particular, we use

the Taylor model approach that represents the sets of states

as low degree polynomial over uncertain noise symbols

representing various unknown inputs to the model [4], [5].

However, reachability analysis approaches are too compu-

tationally expensive in terms of time, memory and power

for potential use inside a real-time monitoring framework.

Instead, our approach precomputes reachable sets exploiting

the invariance of the vehicle models to translation and

rotations of the coordinate frames. We demonstrate how such

invariance properties reduce a potentially infinite number

of possible instances to a finite number (a few thousands)

of reachability computations that are performed offline and

stored in a table for lookup during runtime monitoring.

The combination of Bayesian inference and precomputed

reachability analysis results allows us to place upper bounds

on the probability of collisions with an obstacle over a fixed

time horizon. We evaluate our approach on experimental

flight data from a test flight of a Talon UAV using the Pix-

hawk autopilot over the Pawnee national grasslands in east-

ern Colorado [6]. This data includes accurate GPS positions,

the vehicle pose and heading at 0.4 second intervals. We use

this data to conduct a “retrospective” real-time monitoring

placing various fictitious obstacles at various distances from

the ground truth trajectories. Our experiments demonstrate

that real-time monitoring that combines reachability analysis

with Bayesian inference is effective in terms of computation

time. Also, the predictive accuracy is superior to sampling-

based approaches. We also note that our approach provides

warnings as early as 6 seconds in advance although these

warnings have a high false alarm rate, but without any

false negatives. At the same time, the false alarms resolve

themselves into more accurate warnings for smaller time

horizons of 4 and 2 seconds, respectively.

A. Related Work

The use of real-time monitors to predict and act against

imminent property violations form the basis for runtime as-

surance using L1-Simplex architectures that switch between

a lower performance but formally validated control when an

impending failure is predicted [7]. However, the key issue

lies in how impending failures are to be predicted. Often
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predicting failures involves computing control invariant sets

or solving reachability problems in real time [8], [9]. Our

previous work uses a game-theoretic viability monitoring

approach for predicting impending property violations for

linear systems [10], [11]. The approach solves a viability

problem that asks whether there exists any control input that

can be used to avoid an impending collision. However, this

approach is restricted to linear systems and essentially ig-

nores the controller for the vehicle. Both of these limitations

restrict the applicability of the viability monitor.

The use of tables to precompute information is common

in approaches such as the ACAS-Xu collision avoidance

system for UAVs [12]. However, the ACAS approach uses

an encounter model which is a finite-state Markov decision

process and stores the optimal policy in a table. The dy-

namics of the encounter model are much simpler than the

approach considered here in this paper. Deep neural networks

for collision avoidance have been proposed by Julian et

al. by using neural networks to “compress” the ACAS-X

tables [13]. Phan et al. demonstrate the use of neural network

classifiers combined with offline statistical hypothesis testing

to predict if the current state is likely to violate a property

during a future time horizon [14]. However, neural networks

are black boxes whose predictions must be currently trusted

without the underlying evidence pending the development of

efficient verification approaches.

Lygeros and Prandini (along with coworkers) have inves-

tigated the stochastic reachability analysis approaches for

detecting and avoiding collisions between aircrafts [15], [16].

Similarities included the use of stochastic models to predict

future positions with uncertainties and the use of reachability

analysis to estimate the probability of collision. However, the

use of Bayesian inference to process data during runtime and

the precomputation for efficiency are unique to this paper.

Our approach is closely related that of Althoff and

Dolan [17] which employs reachability analysis to verify that

an autonomous ground vehicle can be driven in a collision

free manner over some time horizon, in the presence of other

vehicles and pedestrians (moving obstacles). However, there

are many notable differences: we assume no knowledge of

the vehicle state which is estimated in our approach from

noisy observations. Althoff et al conservatively linearize

the model in order to compute reachable sets, whereas we

use nonlinear reachability analysis, employing invariance

under reference frame transformations to perform offline

precomputations. These invariance properties are generally

treated as symmetries of the underlying dynamical systems.

Recent approaches have studied more general frameworks

for using symmetry reductions in reachability analysis [18],

[19].

The use of the coordinated turn model to predict future

aircraft positions and compute collision probabilities has

been explored in the work of Hwang et al. [2], [20]. The

similarities include the use of state estimation to track the

unknown turn rate at each step. However, Hwang et al. also

linearize the models in order to make the computation of

the future states of the vehicle easier, whereas we work with

nonlinear models. On the other hand, Hwang et al. use a

multimodal switched system wherein the modes represent

straight line flight versus turns in different directions.

Our work is also related to the recent work of Fisac et al.

that track and predict the future states of human pedestrians

in an environment consisting of cooperating autonomous

UAVs [21]. They use Bayesian estimation to estimate a

scalar “temperature parameter” that makes the model more

uncertain of the future positions of the pedestrian. Since the

dynamics of the pedestrian themselves are kept simple, this

makes it easy to compute reachability estimates over a small

time horizon in their approach. In our work, we use a non-

linear dynamical model with multiple state variables. Also,

we do not adjust our confidence in our model predictions

based on measurements. Instead, the measurements update

the model’s unknown inputs.

II. PRELIMINARIES

We will now present discrete-time dynamical models for

vehicles that model positions and velocities over time [22].

Let x ∈ R
n denote the vector of state variables, and u ∈ R

m

denote control inputs. The state variables x(t) are updated at

time t by a continuous function f(x(t),u(t)), i.e., x(t+1) :=
f(x(t),u(t),w(t)), wherein w(t) is a stochastic disturbance

input drawn from a known distribution W .

These models are commonly used in robotics for perform-

ing path and motion planning as well as low level control

input generation for driving the vehicle along a desired

trajectory [23]. Depending on the application, the models

may simply abstract away the vehicle itself as a particle,

wherein the forces on the vehicle and its direction of travel

are predicted by the model. At the other extreme, “hi-fidelity”

models can capture aspects of the vehicle’s construction and

forces that act upon individual parts of the vehicle.

Example 2.1 (Dubins Model): The (planar) Dubins vehi-

cle model treats a vehicle as a particle with the state variables

(x, y, v, ψ), where (x, y) is the position of the center of mass

of a vehicle, v is the speed (the magnitude of the velocity

vector) of a vehicle, and ψ is the angle between the velocity

vector and the x-axis. The control inputs include the throttle

(uv) and steering input (uψ). The motion of the vehicle obeys

the following equations:

x(t+ h) = x(t) + hv cos(ψ(t)) + h2

2 uv cos(ψ(t))

y(t+ h) = y(t) + hv sin(ψ(t)) + h2

2 uv sin(ψ(t))
v(t+ h) = v(t) + huv
ψ(t+ h) = ψ(t) + huψ

Here, the control inputs (uv, uψ) represent the rate of

change of speed and the angular speed, which satisfies uv ∈
[uv,min, uv,max] and uψ ∈ [uψ,min, uψ,max], respectively.

Often, we may add exogenous disturbances to this model to

capture drag forces and friction.

Example 2.2 (The coordinated-turn (CT) Model): The

CT model describes a horizontal motion of aircraft flying

at constant speeds along an arc. The model is described by

x : (x, vx, y, vy), wherein the positions (x, y) and velocities

2112

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2021 at 21:08:16 UTC from IEEE Xplore.  Restrictions apply. 



(vx, vy) can be measured accurately. The variable Ω refers

to the unknown turning rate of the model, and is taken to

be a time-varying input to this model. The equations are

given by x(t+ h) = A(Ω, h)x(t), wherein

A(Ω, h) :









1 sin(Ωh)
Ω 0 cos(Ωh)−1

Ω
0 cos(Ωh) 0 − sin(Ωh)

0 1−cos(Ωh)
Ω 1 sin(Ωh)

Ω
0 sin(Ωh) 0 cos(Ωh)









The control input Ω is bounded by the interval [Ωmin,Ωmax].
The model is assumed to have a fixed velocity over time. We

relax this assumption by updating the velocity input with an

exogenous disturbance input wv(t) at each time step.

Given a system S , the trajectories are a sequence of states

x(0),x(h), · · · , wherein x(t + h) = f(x(t),u(t),w(t)) for

given control inputs u(t) and disturbances w(t).

III. PROBLEM STATEMENT AND OVERALL APPROACH

Let x(t) denote the vehicle state which includes its

position (x(t), y(t)), and velocity (vx(t), vy(t)). The vehi-

cle’s motion is affected by unknown control inputs u(t)
(e.g., throttle and steering inputs) as well as exogenous

disturbances. Finally, (noisy) measurements of the vehicle’s

position (x, y) and velocity (vx, vy) are available periodically

at discrete time instances t = 0, h, 2h, · · · . The measurement

errors are assumed to be normal distributions with 0 mean

and known standard deviations. The unknown control inputs

u(t) belong to a bounded range U .

Problem Setup: The inputs to the problem setup include:

1) Vehicle model with state variables x, inputs u and

exogenous inputs w. We assume that the state variables

x are known at each time step through noisy measure-

ments with known error distributions, but the inputs

u(t) are not measured. At the same time, we assume

the exogenous disturbances have a known distribution.

2) Data from the observations (measurements) at some

fixed time step h > 0.

Given this information, at some time instant t0, we wish

to know the distribution of possible states x(t0 + Nh) for

some time horizon N > 0. More specifically, we wish to

provide the probability of satisfying safety properties of the

form P(x(t0 + Nh) ∈ Xu) for some set of states Xu of

interest. The set Xu typically models an obstacle.

Our work will specifically consider vehicle models such

as the Dubins vehicle (Ex. 2.1) and the coordinated turn

model (Ex. 2.2). The table below summarizes the state

measurements obtained at each time step and the inputs that

are not measured.

Model Measurements Unknowns

Dubins (x, y, v, ψ) uv, uψ
CT Model (x, y, vx, vy) Ω

A. Overall Approach

Fig 1 provides a schematic diagram of the various

components used in our approach. We perform a Bayesian

inference starting from a prior distribution over the unknown

BAYES.

INFER.

REACH.

ANALYSIS

Post. Update Property

Meas.

Data Posterior

Probab.

Bound

Fig. 1: Overall approach at a glance.

inputs u(t) and conditioning the resulting state using the

measurements to infer a posterior distribution over the un-

known inputs. We will then use the posterior at time t to

build a prior at time t+ h.

Next, we combine the Bayesian filtering approach with a

set-valued reachability analysis that computes the possible

reachable states at time t + Nh using the initial states

given by a combination of the measured state variables (with

uncertainty) and the unknown inputs that are distributed

according to the posterior. Reachability analysis propagates

this information forward over the next Nh steps of the

model in order to estimate the reachable set of states at

time t + Nh. In our approach, we show how set-valued

reachability approaches using Taylor polynomial expansions

can be used to rigorously bound the possible future states [4],

[5]. However, reachability analysis approaches are computa-

tionally expensive in terms of computation time and memory,

as well as resources such as power. Therefore, our approach

precomputes the reachable set estimates offline and uses

a simple lookup of precomputed results on the fly. The

translation and rotational invariance properties of the model

allow us to limit the number of such precomputations. During

runtime monitoring, the conditioning of the current prior

distribution over unknown inputs using the measurement data

is first performed, and then reachability analysis is performed

using table lookups from the pre-computed results.

IV. BAYESIAN INFERENCE

Bayesian inference is used to solve the problem of esti-

mating the unknown input u(t) in a dynamical model given

observations of the state x(t) at discrete time intervals of

h > 0. The overall steps of the Bayesian inference at any

time t are three-fold:

1) At any time instant t, our approach maintains a prior

distribution P(u(t− h)) over the inputs u(t− h).
2) When a (noisy) measurement of x(t) is obtained, we

update the prior distribution P(u(t − h)) for u(t − h)
into a posterior distribution P(u(t− h)|x(t)).

3) The prior P(u(t)) for the next step is computed using

the posterior P(u(t− h)|x(t)) from the previous step.

The posterior P(u(t−h)|x(t)) is defined using Bayes rule:

P(u(t− h)|x(t)) =
P(x(t)|u(t− h)) P(u(t− h))

P(x(t− h))
. (1)

Exact inference attempts to compute a closed form for the

posterior probability. This is possible under some restricted

cases: the well-known Kalman filter uses a Gaussian prior,
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Gaussian noise sampling distribution, and a linear model over

x,u [24], [25]. However, vehicle models we consider are

often non-linear, and consequently, conjugacy relations do

not hold in these non-linear models. Approximations such as

Monte-Carlo methods are commonly used to approximate the

posterior. They give rise to a variety of filtering approaches

including particle filters [26], [27], [28]. These approaches

provide samples u1, . . . ,um from the posterior. As m→ ∞,

these samples converge in distribution to the actual posterior.

In our paper, we approximate the set of support U for the

posterior by selecting finitely many grid points u1, . . . ,uK
for some number K. The posterior update in Eq. 1 is carried

out exactly using Bayes rule on the discretized set of inputs.

In particular, each posterior P(u(t − h)|x(t)) will be a

categorial distribution over the K chosen grid points. We

first compute an “unnormalized” posterior likelihood:

L (uj |x(t)) = P (x(t)|uj) P (uj) , j = 1, . . . ,K .

The first term P(x(t)|uj) is computed from the model:

(a) apply one step of the model from x(t − h) using

control inputs uj , (b) use the measurement x(t) along with

the measurement noise to compute P (x(t)|uj). Next, we

normalize the likelihood to obtain the probability P(uj |x(t)).

Posterior to Prior Update: Finally, we use the posterior

at time step t − h computed above to obtain a prior for

the control inputs at the next time instant t. To do so, we

make a key enabling assumption that the unknown inputs

change by a bounded amount at each step, and furthermore,

we can assume that these bounds are known. This allows us

to model the update to the posterior in many ways. We use

the ǫ-transition approach that works as follows:

1) Fix a probability distribution p0(u). This is typically

the uniform distribution over the chosen grid points.

2) Update the posterior using p0 as follows:

P(u(t)) = (1− ǫ)P(u(t− h)|x(t)) + ǫp0(u) .

Here, the parameter ǫ ∈ [0, 1] and the distribution p0
are chosen at the beginning of the process.

V. REACHABILITY ANALYSIS

In this section, we will present the problem of analyzing

reachability. We will use ideas from set-valued reachability

analysis to compute a set of states that are reachable at time

t0 +Nh given the current state x(t0) along with a posterior

distribution of the current control input u(t0). This will be

computed over the forward model of the system that models

the future states x(t0 + kh) and controls u(t0 + kh).

Forward Model: Formally, we express the model dynamics

as x(t+ h) = f(x(t),u(t),w(t)), wherein u(t) is the input

at time t and w(t) represents the disturbance (noise). The

main differences between the “forward model” and that used

in the Bayesian inference are as follows:

1) First, we will assume that w(t) is bounded by an

interval [wmin,wmax]. This interval is obtained by

truncating the distribution W used in the stochastic

model in order to include a θ confidence interval for

a fixed θ such as 0.99.

2) Second, we assume that the control inputs “evolve” over

time in an uncertain manner:

u(t+ h) = u(t) + ǫ[umin,umax] ,

In other words, we assume that at each step, the control

inputs deviate compared to the control inputs at the

previous time step. This is meant to capture the same

effect as the ǫ transition used to update from the

posterior at time t to a prior at time t+ h.

3) Finally, the initial state of the model is given by

x(0) ∈ x0 + [emin, emax] and u(0) = u0, wherein

x0 comes from the measurement data, u0 is a sample

from the posterior and [emin, emax] are interval bounds

on the measurement error, accounting for at least a θ

confidence interval.

Example 5.1 (Forward Coordinated Turn Model): The

“forward model” uses the same dynamics for x(t) as

provided in Ex. 2.2. Additionally, we incorporate the

updates to model changes in the velocity and the turn rate.

vx(t+ h) = vx(t) + [−0.3, 0.3]
vy(t+ h) = vy(t) + [−0.3, 0.3]
Ω(t+ h) = Ω(t) + [−0.045, 0.045]

A. Set-Valued Reachability Analysis

In this section, we will briefly survey work on reachabil-

ity analysis techniques using ideas from interval analysis.

A more in-depth survey of this area is available else-

where [3]. Given a discrete-time dynamical model x(t+h) =
f(x(t),u(t),w(t)), wherein u(t) and w(t) are provided as

intervals, and a set of initial states x(0) ∈ X0, the approach

provides conservative bounds on the reachable states Xt over

time t ≥ 0 such that all the reachable states of the system

lie inside Xt at time t. Reachability analysis techniques

attempt to provide over-approximations of the reachable

sets in contrast to sampling-based approaches that cannot

provide guaranteed bounds but focus instead on finding

counterexamples [29], [30], [31].

Many reachability analysis techniques have been proposed

using interval analysis [32]. Therein, for each state variable

x(t), we compute an interval bound. The bounds are updated

by computing an interval x(t + h) given the interval for

x(t). However, interval analysis approaches are well known

to suffer from high overapproximation error due to the

wrapping effect [3]. Instead, other representations of states

ranging from ellipsoids [33], zonotopes [34] and “higher

order” interval analysis approaches have been proposed to

mitigate the wrapping effect. Higher order intervals express

the state x(t) as an affine or polynomial function over

noise symbols wherein each noise symbol stands for an

interval [35], [4]. Since different components of x(t) share

the same noise symbols, it is possible to avoid the wrapping

effect using this approach [36].

Our approach uses the idea of Taylor polynomial arith-

metic first proposed by Berz and Makino for computing

reachable sets of nonlinear dynamical systems in com-

plex particle physics and astronomical calculations [4],

[36]. These ideas have been incorporated in tools such
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as COSY-INFINITY, VNODE, and Flow* that can com-

pute over-approximate reachable set estimates for ODE and

switched/hybrid ODE models [5], [37], [38]. In this work,

we specialize the Taylor polynomials implemented in the tool

Flow* for discrete-time systems. Our approach can handle

discrete systems wherein the function f(x,u,w) can involve

polynomials and trigonometric functions such as sin, cos
and tan. Our reachability analysis uses Taylor polynomials

of degree at most 3 to approximate these trigonometric

functions and varies the polynomial degree at each step to

tradeoff the computation cost against the precision of the

bounds. These tradeoffs will be discussed in detail in an

extended version of this paper. The resulting reachable set

estimates are represented as a zonotope [34].

B. Computing Posterior Probabilities

In this section, we integrate the posterior probability for

P(u(t0)|x(t0)) obtained from our Bayesian inference with

the reachability analysis. First, we note that the posterior

distribution is represented as

(u0, p0), . . . , (uK , pK) ,

wherein u0, . . . ,uK are the chosen grid points and

p0, . . . , pK are the probabilities associated with each grid

point such that pi ≥ 0 for i = 0, . . . ,K and
∑K

i=0 pi = 1.

As a result, the “particles” used by our inference approach do

not change at each step. What changes is simply the posterior

probability pi associated with ui.

Let x0 denote the measurement at time t0 and e ∈
[emin, emax] bound the measurement error. As a result, our

goal is to perform reachability analysis K+1 times over the

forward model with each run using the initial state x(0) ∈
x0+[emin, emax] and the initial control input u(0) = ui for

i = 0, . . . ,K. Each reachability analysis pass provides us a

set of states Xi for i = 0, . . . ,K represented as an interval,

zonotope, ellipsoid or a convex polyhedron, depending on the

approach used, and bounds the possible states x(t0 + Nh)
for starting control value u(0) = ui.

We can now use these reachable state estimates to compute

the posterior probability that x(t0 + Nh) ∈ Xu for some

target set Xu of interest as follows:

1) Collect the set of indices J ⊆ {0, . . . ,K} of reachable

sets Xi that have a nonempty intersection with Xu:

J = {j ∈ {0, . . . ,K} | Xj ∩Xu 6= ∅} .

2) Add the posterior probabilities corresponding to J :

P(x(t0 +Nh) ∈ Xu|x(t0), . . . ,x(0)) :=
∑

i∈J

pi .

Example 5.2 (Probabilities of Collision with a Obstacle):

Consider Ex. 2.1, we observe two successive state

measurements x(0) = [0, 0, 2, 1.57] and x(0.5) =
[−0.01, 0.81, 1.85, 1.58]. The prior is assumed to be

uv(0) ∼ U(−0.5, 0.5) and uψ(0) ∼ U(−0.5, 0.5). Note

that here the time step h = 0.5. We query the probability

of collision with an obstacle O at t = 4h as shown

in Fig. 2. We approximate the set of possible control

Fig. 2: Trajectory predictions for the Dubins model: (a) predicted
reachable states using simulations (b) Reachability Analysis. The
blue lines represents the measurements obtained at each step, the red
circle is the position after 4 steps, and the rectangle represents the
target set Xu (obstacle). The gray dots on the left are the samples
from simulation whereas the polygons on the right are the reachable
set estimates. Darker shades represent higher probabilities.

inputs (uv, uψ) using 400 uniformly grid points over

[−0.5, 0.5]× [−0.5, 0.5].
Fig 2(a) shows the probability distribution of position

(x, y) at t = 4h by running forward simulations from each

grid point ui to check of any of the simulated trajectories

intersect the set Xu at time t = 4h. Next, we add up the

probabilities of all the grid points that yield an intersecting

trajectory with the target Xu. This yields an estimated

probability of collision of 0.047. Fig 2(b) shows some of

the reachable sets obtained by our Taylor model based

reachability analyzer, corresponding to various choices of the

grid points, shaded according to the posterior probability.

Numerous grid points are simply too improbable in the

posterior to be shown. These results lead to the upper bound

on the probability of collision of 0.0862.

Precomputed Reachability Bounds: Whereas reachability

analysis can be combined with Bayesian inference, exist-

ing reachability analysis methods are expensive and quite

inefficient for real-time applications. We therefore propose

a simple trick that works for models exhibiting invariance

to translation and rotations of the coordinate frames. In

particular, we precompute reachability analysis anticipating

all possible initial states up front and store the results in

a suitable data structure. During runtime monitoring, we

simply lookup the results to compute the calculations.

Briefly, we assume during reachability analysis that (a)

the vehicle’s initial position (x(0), y(0)) ∈ [−Dx, Dx] ×
[−Dy, Dy] wherein Dx, Dy model the known errors in our

position measurement method. For instance, for position

measurements obtained through GPS we will assume Dx =
Dy = 0.1 as a “reasonable” confidence interval for the error;

(b) The coordinate frames are rotated so that the vehicle’s

current heading (yaw) is along the x axis of our coordinate

frame. This allows us to simply choose vy ∈ [−Vy, Vy] for

some uncertainty bound Vy taken to be 0.1 in our approach.
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5m

Fig. 3: Simulation setting: A UAV flies along with the red lines and
an obstacles shown in gray. (Left): For collision detecting tests, a
UAV approaches to the center of an obstacle in various directions.
(Right): The obstacle is placed away from the known trajectory at
various distances to test our monitor.

We will use a bound vx ∈ [0, 30] m/s in our approach and

subdivide this interval into sub intervals of 0.1 m/s. Finally,

the initial control inputs are already given by the possible

grid points.

Putting all of this together, we precompute tens of thou-

sands of instances of the reachability analysis algorithms

each performed in a coordinate frame that allows us to preset

values for many of the state variables. For instance, we

precompute 5600 reachability analysis computations for the

CT model (as described in Section VI) and 4000 reachability

analysis calculations for the Dubins model described in

Ex. 5.2. During runtime, the results are preloaded into a sim-

ple table and the reachable set estimates are obtained simply

through a table lookup. After this, they are transformed into

the current coordinate system for property checking.

VI. EXPERIMENTS

In this section we evaluate the performance of our monitor

on a dataset collected from a test flight of a Talon UAV

flown over the Pawnee national grasslands in the USA in

2017 [6]. The dataset covers 800 seconds of flight time

in all 1, and includes GPS positions and velocities of the

UAV in the x, y, z directions recorded at h = 0.4 second

intervals. It includes trajectories that are judged as “straight

line” flights, as well as turns ranging from gentle to “tight”

turns. After classifying segments of trajectories as “straight

line” or “curved”, we selected 200 segments at random. Each

segment accounts for about 14 seconds of flying time, on the

average. The sampled trajectories included 100 straight line

trajectories and 100 turns from the data.

Collision Detection Tests: To test the effectiveness of

our monitor, we setup collision detection tests wherein we

defined obstacle regions and replayed the states from the

flight data to our monitoring implementation. The obstacles

were defined by 5×5 meter rectangular regions over the x−y
plane placed at varying distances from the trajectory seg-

ments. Obstacles placed at “0” distance represent a situation

where the UAV will collide with the obstacle in the future,

whereas obstacles placed at various distances represented

known “misses” wherein the UAV will not collide with

the obstacle in the future. These obstacle placements are

1Portions of the dataset corresponding to loitering maneuvers, takeoff and
landing had to be discarded.

illustrated in Fig 3. Note that our approach can be applied

to scenarios that include dynamic obstacles although we

consider only static obstacles in this paper. The position of

an obstacle is used when checking whether the pre-computed

reachability set is intersected with an obstacle, and does not

affect the computation time.

We precomputed reachability analysis for time horizons

of 2, 4 and 6 seconds, or alternatively, 5, 10 and 15 discrete

steps in the model. We first measured the prediction accuracy

for varying prediction time horizons and obstacle distances.

The value of the Bayesian update parameter ǫ was fixed to

0.3. Based on obstacle placement, the ground truth of each

scenario is classified as COLLISION or SAFE. Next, we

count how many instances reported by our monitor match

with ground truth. In particular, we use the probability

threshold θ = 0.95 for the monitor. The most desirable

outcomes are when the ground truth matches with our

predictions. A false positive occurs when our monitor re-

ports a COLLISION whereas no collision actually happens.

On the other hand, a false negative happens when our

monitor misses an imminent collision by declaring it as

SAFE. For each test, we used the previous 8 seconds of

UAV trajectory data as the input to the Bayesian inference.

Fig 4 plots an example scenario for various time horizons,

showing the ground truth trajectory, the obstacle (marked

by a green X) and the reachable sets computed by our

approach shaded according to their posterior probabilities.

A video of another example scenario is available at https:

//youtu.be/aXbqg iHGNg.

Comparison against Sampling: We compare our reacha-

bility approach against a sampling approach described previ-

ously for the Dubins model in Ex. 5.2, wherein we perform

100 simulations for each of the grid points to determine if

any of the trajectories will intersect the obstacle. Using this,

we add the posterior probability of the grid points that yield

trajectories intersecting the obstacle. We use θ = 0.95 as a

threshold to declare an impending collision for this approach.

Performance Evaluation: Table I shows that the results

in terms of the prediction accuracy, i.e, for what fraction

of our tests did the monitor’s prediction match the known

ground truth outcome. For cases where the known ground

truth is a COLLISION, (1− accuracy) determines the false

negative rate. On the other hand, for cases where the known

ground truth is SAFE, (1 − accuracy) determines the false

positive rate. The results are reported here for ǫ = 0.3 since

the results for ǫ = 0.1 were similar.

We note that for a prediction horizon of 2 seconds (5
steps), our approach matches the ground truth data in all

the 200 test cases. On the other hand, the sampling-based

approach has a high false negative rate, wherein it misses

real collisions. This is due to the “underapproximate” nature

of sampling, which can cause the samples to miss obstacles

and thus underestimate the true probability of collision.

The reachability analysis approach is able to flag all

impending collisions, even for longer time horizons, without

false negatives. This is due to the conservative nature of the
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(a) Prediction time: 2 seconds (b) Prediction time: 4 seconds (c) Prediction time: 6 seconds

Fig. 4: Sample trajectory segment and reachable sets (gray) in time horizon 2, 4, and 6 seconds. Darker shades of reachable sets represent
higher probabilities. A UAV is coming from the bottom right, and data points are shaded red when a UAV is updating the posterior of Ω.
The current position of the UAV where prediction starts is shown as a blue circle, and future positions of the UAV in 2, 4, and 6 seconds
that are unknown to the UAV are represented by blue diamonds. An obstacle is marked by a green X.

TABLE I: EXPERIMENTAL RESULTS

Accuracy
Time

Horizon
ǫ

Trajectory
Type

Ground
Truth

Obstacle
Distance

Reachability
Analysis

Sampling

COLLISION 0 1.0 0.69
10 1.0 1.0
20 1.0 1.0
50 1.0 1.0
70 1.0 1.0

100 1.0 1.0

Straight
SAFE

200 1.0 1.0
COLLISION 0 1.0 0.42

10 1.0 1.0
20 1.0 1.0
50 1.0 1.0
70 1.0 1.0

100 1.0 1.0

2 sec. 0.3

Curved
SAFE

200 1.0 1.0

COLLISION 0 1.0 0.1
10 0 1.0
20 0.66 1.0
50 1.0 1.0
70 1.0 1.0

100 1.0 1.0

Straight
SAFE

200 1.0 1.0
COLLISION 0 1.0 0.11

10 0.01 1.0
20 0.42 1.0
50 1.0 1.0
70 1.0 1.0

100 1.0 1.0

4 sec. 0.3

Curved
SAFE

200 1.0 1.0

COLLISION 0 1.0 0.03
10 0 0.98
20 0 1.0
50 0 1.0
70 0.5 1.0

100 1.0 1.0

Straight
SAFE

200 1.0 1.0
COLLISION 0 1.0 0.05

10 0 1.0
20 0 1.0
50 0.01 1.0
70 0.5 1.0

100 0.8 1.0

6 sec. 0.3

Curved
SAFE

200 1.0 1.0

reachability analysis, that accounts for all possible trajecto-

ries of the model. However, the false positive rate increases

as we increase the time horizon. For a time horizon of 4
seconds (10 steps), the approach is accurate for obstacles

that are 50 meters or farther away from the ground truth.

However, obstacles that are closer are flagged as potential

collisions. This is because our approach uses conservative

assumptions on how the unknown turn rate can vary in

the future. At the 6 second time horizon, the approach can

accurately forecast for obstacles that are 100 and 200 meters

TABLE II: COMPUTATION TIME IN SECONDS

Time
Horizon

Highest Degree of
Taylor Polynomials

Pre-computation
(Reachability Analysis)

Real-time Prediction

# of
Calculation

Avg. Time /
Calculation

Reachability
Analysis

Sampling

2 sec.
1 5600 1

0.1026 0.4066
2 5600 1.1

4 sec.
1 5600 2.3

0.1031 0.4312
2 5600 5.4

6 sec.
1 5600 3.5

0.1036 0.5251
2 5600 13.7

away but the approach flags all obstacles that are within 50
meters of the true flight path as potential collisions.

Computation time: We next analyze the computation

times for the reachability analysis and the sampling method.

Table II reports the pre-computation needed to generate all

possible reachable sets for reachability analysis, and real-

time computation to calculate the probability for both meth-

ods. Real-time computations were performed in Matlab(tm)

running on a MacBook Pro laptop with 2.6 GHz Intel

Core i7 and 16 GB RAM. As shown in Table II, real-time

computation is performed fast enough for both reachability

analysis and the sampling method although the latter requires

more time for longer prediction time horizons. Again, pre-

computation is carried out beforehand, and is parallelizable.

For instance, our approach used a cluster with 25 cores to

parallelize the precomputations that were performed within

4 hours in all.

VII. CONCLUSION

We conclude our analysis by noting that reachability

analysis in combination with Bayesian inference is a promis-

ing approach for real-time monitoring. Our approach can

reliably detect impending collisions 2 seconds ahead of time,

while accurately predicting for obstacles that are more than

20 meters away from the ground truth within 4 seconds,

and 100 meters within 6 seconds. We believe that more

accurate reachability analysis techniques can be applied to

our approach even though they can be more expensive, since

our approach precomputes the results. This can potentially

yield considerable improvements in accuracy. We also plan to

apply our approach to richer classes of models and situations
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involving multiple vehicles. Finally, we are also working on

integrating our approach with planning to enable approaches

for collision avoidance in addition to just monitoring.
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