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ABSTRACT
Rank statistics {R1, . . . , Rn} of actual variates {X1, . . . , Xn} play an important role in university undergraduate
nonparametric statistics courses. This article derives explicit expressions of the correlation coefficients
between Xi and Rj for not only i = j but also i �= j, for iid continuous variables X1, . . . , Xn with a distribution

function FX (·) of X and n ≥ 2: (a) ρXi ,Ri
=

√
n−1
n+1 ρX ,FX (X) ∈ (0,

√
n−1
n+1 ] for any i, revealing that the correlation

can be as close to one as expected, while may also unexpectedly decrease approaching zero for other
distributions of X ; (b) ρXi ,Rj

= − 1
n−1ρXi ,Ri

∈ [− 1√
n2−1 , 0) for any i �= j, inferring a negligible negative

association with ranks from other data; (c) the partial correlation coefficient between Xi and Ri on Xj for any

i �= j equals ρ(Xi ,Ri)�Xj = ρXi ,Ri
/
√
1− ρ2Xj ,Ri

∈ (ρXi ,Ri
, n−1√

n2−2 ], invariably exceeding ρXi ,Ri
. Implications of the

results necessitate more relevant interpretation of ranks in sharing information of data.
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1. Introduction

In nonparametric statistics, the notion of “rank” plays a key role
in learning utilities of distribution-free methods in analyzing
data, when the information underlying their distributions is
lacking or unknown. See Richardson (2019, p. 361) and refer-
ences therein. Ranks (e.g., {Ri}ni=1) which are transformed from
original data (e.g., {Xi}ni=1) are typically interpreted to extract
as much numerical information of and relax as much distribu-
tional assumptions on {Xi} as possible. Indeed, nonparametric
methods are developed largely from rank statistics together with
order-statistics.
It is thus natural to quantify more precisely the direction and

magnitude of the association between variables Xi and ranks
Rj, regardless of the scale types (continuous or discrete) and
location indices (i or j). Some empirical assessment can bemade
from simulation studies. We simulate N random samples of
observations {X(b)

1 , . . . ,X
(b)
n } iid∼ X, b = 1, . . . ,N, from a num-

ber of commonly used distributions of X, including uniform,
Exponential, Gaussian, Laplace, Weibull, mixture of Gaussians,
Student’s t, F, and log-normal, and denote the ranks within
each sample by {R(b)

1 , . . . ,R
(b)
n }. Figure 1 in Appendix A in the

supplementary materials displays boxplots of Pearson product-
moment sample correlation coefficients ρ̂

(b)
1 for {(X(b)

i ,R
(b)
i ) :

i = 1, . . . , n}, ρ̂(b)
2 for {(X(b)

i ,R
(b)
i+1) : i = 1, . . . , n − 1} and

ρ̂
(b)
3 for {(X(b)

i ,R
(b)
i−1) : i = 2, . . . , n}, respectively, b = 1, . . . ,N,

with N = 1000 and n = 1000. Evidently, both ρ̂
(b)
2 and ρ̂

(b)
3 are

small in magnitude, centered around zero. In contrast, values of
ρ̂

(b)
1 are invariably strictly positive, and closer to one in most
cases than in the other cases (e.g., Weibull(1, 0.5) with shape
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parameter 0.5, F2,6, and log-normal). Nonetheless, the boxplot
in Figure 2 (right panel) in the supplementarymaterials exhibits
the near zero tendency of ρ̂(b)

1 for the Weibull(1, k) distribution
as k decreases to 0, which seems to be unexpected.
For N → ∞, Stuart (1954, eq. (10)) derived the limit of the

sample correlation coefficient between {X(b)
i : i = 1, . . . , n; b =

1, . . . ,N} and their ranks {R(b)
i : i = 1, . . . , n; b = 1, . . . ,N}

to be

{ 12(n − 1)
var(X)(n + 1)

}1/2[E{XFX(X)} − 1/2 E(X)], (1)

where FX(·) is the cumulative distribution function (c.d.f .)
of X, and computed (1) for uniform, Gaussian and Gamma
distributions. Result (1) agrees with the population correla-
tion coefficient ρXi ,Ri

between Xi and Ri, derived in Gibbons
and Chakraborti (2003, eq. (5.10), p. 194) via an alternative
approach, which directly employed (without prior justification)
the independence property between order-statistics and ranks,
though not straightforwardly obvious. Likewise, the tools used
in Stuart (1954) and Gibbons and Chakraborti (2003) could be
difficult to be extended in dealing with other cases such as {ρ̂(b)

2 }
and {ρ̂(b)

3 } in the Monte Carlo study above, that is, difficult to
characterize their population analogues ρXi ,Rj

for i �= j.
Propositions 1 and 2 in this article explicitly evaluate the cor-

relation coefficients, ρXi ,Rj
, between Xi and Rj, for not only i = j

but also i �= j, in a different, more elementary, and rigorous way,
enabling interpretations with broader perspectives. Students in
introductory nonparametric statistics courses can easily follow
the derivations presented in this article.

© 2020 American Statistical Association
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(i) Interestingly, ρXi ,Rj
, for all 1 ≤ i, j ≤ n, are proportional to

a common correlation coefficient, ρX,FX (X)
, between X and

FX(X). Particularly, for i = j, the deduced form ρXi ,Ri
=√

n−1
n+1 ρX,FX (X)

∈ (0,
√

n−1
n+1 ] in (14) is equivalent to (1) as

expected, while enhances interpretability. For any i �= j,
the deduced ρXi ,Rj

= − 1
n−1ρXi ,Ri

∈ [− 1√
n2−1 , 0) in (15)

infers a negligible negative impact on ranks from other
observations.

(ii) For the Gaussian distribution, we demonstrate that
ρX,FX (X)

= 0.977 is directly connected with the celebrated
Stein’s identity (Stein 1981), which may partly explain the
close proximity to one attained by the uniformdistribution.

(iii) For the family of Weibull(1, k) distributions with shape
parameter k, the left panel of Figure 2 in the supplementary
materials plots the analytic form (21) of ρX,FX (X)

, which
confirms the empirical observation in the right panel of
Figure 2 in the supplementary materials.

(iv) Moreover, for a contaminated sample, from for example, a
mixture ofGaussians, containing a proportion of outliers in
practical applications, the explicit form of ρX,FX (X)

and plots
in Figure 3 in the supplementary materials depict lower
correlations between Xi and Ri from a Gaussian mixture
than from a single Gaussian distribution.

(v) An application to the partial correlation coefficient is dis-
cussed in (25).

The major derivations of Propositions 1 and 2 appear to be
new. The derivations are easy to follow for advanced undergrad-
uate and beginning graduate students and thus will be beneficial
in gaining additional insights into and a better understanding
of the flexibility and limitations of ranks used in nonparametric
statistics. The online supplementary file collects all figures and
proofs in the article.

2. Notations, Definitions, and Some Auxiliary Results

The covariance between two random variables X and Y
is cov(X,Y), and the correlation coefficient is ρX,Y =
cov(X,Y)/{√var(X)

√
var(Y)}. Two results relevant to succeed-

ing discussions are listed below.

(R1) For X having a location-scale family of distributions,
where the c.d.f . is FX(x) = FZ( x−μ

σ
), with a location

parameterμ and a scale parameter σ ∈ (0,∞), it is readily
seen that

ρX,FX (X)
= ρZ,FZ(Z) , (2)

where Z has the c.d.f . FZ(·).
(R2) For U ∼ Unif(0, 1), FU(U) = U, E(U) = 1/2, var(U) =

1/12, and thus
ρU,FU (U)

= 1. (3)

For X1, . . . ,Xn
iid∼ X, where X has the c.d.f . FX and proba-

bility density function (p.d.f .) fX , with a finite second moment,
the variables Xi, order-statistics X(i) and ranks Ri are related
according to

Xi = X(Ri), i = 1, . . . , n, (4)
X(i) = X�i , i = 1, . . . , n, (5)

where {�1, . . . ,�n} is a permutation over {1, . . . , n}, illustrated
in the diagram below,

X1 · · · Xi · · · Xn
‖ · · · ‖ · · · ‖

X(R1) · · · X(Ri) · · · X(Rn)

namely,
X�1 < · · · X�i · · · < X�n
‖ · · · ‖ · · · ‖

X(1) < · · · X(i) · · · < X(n)

Before proving Propositions 1 and 2, we first list below
required results on ranks and order-statistics, among which,
basic results (6) and (7) are well-known in nonparametric statis-
tics textbooks (including Daniel 1990; Conover 1999; Higgins
2004; Sprent and Smeeton 2007; Corder and Foreman 2014;
Hollander, Wolfe, and Chicken 2014) reviewed in Richardson
(2019), results (8)–(12) are nontrivial but more explicit deriva-
tions are lacking, and themore advanced statement (13) appears
in Lemma 13.1 of van der Vaart (1998) which omits the proof.
For concise and complete derivations of Propositions 1 and
2 to be accessible to undergraduate students, Appendix B in
the supplementary materials supplies proofs of (8)–(13) using
standard uniform random variables, U1, . . . ,Un

iid∼ Unif(0, 1),
associated with order-statistics U(1) ≤ · · · ≤ U(n). In the rest of
the article, I(·) denotes an indicator operator.
(R3) The ranks R1, . . . ,Rn are identically (though not indepen-

dently) distributed, that is,

Ri ∼ Unif{1, . . . , n}, E(Ri) = (n + 1)/2,
var(Ri) = (n2−1)/12; P(Ri = r,Rj = s) = 1/{n(n−1)},
for i �= j and r �= s; P(R1 = r1, . . . ,Rn = rn) = 1/n!,
for any permutation {r1, . . . , rn} of {1, . . . , n}. (6)

(R4)

fU(1),...,U(n) (u1, . . . , un) = n! I(0 < u1 < · · · < un < 1),

fU(k) (u) = n!
(k − 1)!(n − k)!u

k−1(1− u)n−k I(0 < u < 1),

(7)

and satisfying
n∑

k=1
fU(k) (u) = n, (8)

n∑
k=1

kfU(k) (u) = n(n − 1)u + n. (9)

(R5)

E{X(k)} =
∫

x
n!

(k − 1)!(n − k)! {FX(x)}k−1

{1− FX(x)}n−kfX(x) dx, (10)
n∑

k=1
E{X(k)} = nE(X), (11)

n∑
k=1

kE{X(k)} = n(n − 1)E{XFX(X)} + nE(X). (12)

(R6)

(R1, . . . ,Rn) is independent of (X(1), . . . ,X(n)). (13)
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3. Correlation Coefficient BetweenVariates and Ranks

3.1. ρXi ,Ri
for 1 ≤ i ≤ n

We first evaluate the correlation coefficient between Xi and Ri.
Proposition 1 confirms that ρXi ,Ri

is proportional to ρX,FX (X)
,

and bounded below and above by 0 and
√

(n − 1)/(n + 1),
respectively.

Proposition 1. Let X1, . . . ,Xn
iid∼ X, where X has the c.d.f . FX

and p.d.f . fX , with mean E(X) and variance var(X) ∈ (0,∞).
Then for i = 1, . . . , n with n ≥ 2, the correlation coefficient
between Xi and Ri is

ρXi ,Ri
=

√
n − 1
n + 1 ρX,FX (X)

∈
(
0,

√
n − 1
n + 1

]
. (14)

As seen from (2) and (3), the upper bound in (14) is achieved
for X ∼ Unif(a, b).

3.2. ρXi ,Rj
for 1 ≤ i �= j ≤ n

For i �= j, Proposition 2 verifies that the correlation coefficient
ρXi ,Rj

is negatively proportional to ρX,FX (X)
, and bounded below

by−1/√n2 − 1.

Proposition 2. Let X1, . . . ,Xn
iid∼ X, where X has the c.d.f . FX

and p.d.f . fX , with mean E(X) and variance var(X) ∈ (0,∞).
Then for 1 ≤ i �= j ≤ n with n ≥ 2, the correlation coefficient
between Xi and Rj is

ρXi ,Rj
= − 1√

n2 − 1ρX,FX (X)
∈

[
− 1√

n2 − 1 , 0
)
. (15)

As seen from (2) and (3), the lower bound in (15) is attained for
X ∼ Unif(a, b).

3.3. The CommonQuantity ρX,FX (X)
in Propositions 1 and 2

Recall that ρXi ,Rj
in Propositions 1–2, for any 1 ≤ i, j ≤ n, are

proportional to ρX,FX (X)
,

ρX,FX (X)
= E{XFX(X)} − E(X)/2√

var(X)
√
1/12

, (16)

where FX(X) ∼ Unif(0, 1). It is thus natural to compute ρX,FX (X)

for some commonly used distributions of X. Examples 1–6
explicitly evaluate ρX,FX (X)

, which are also supported by centers
of boxplots in Figure 1 in the supplementary materials.

Example 1. For the uniformdistributionUnif(a, b)with−∞ <

a < b < ∞,
ρX,FX (X)

= ρX,X = 1 (17)

agreeing with a direct calculation using (16).

Example 2. For the Exponential distribution Exp(λ) with 0 <

λ < ∞,
ρX,FX (X)

= √
3/2 ≈ 0.866. (18)

Example 3. For the Gaussian distributionN(μ, σ 2) with μ ∈ R

and σ ∈ (0,∞),

ρX,FX (X)
= √

3/π ≈ 0.977. (19)

Example 4. For the Laplace distribution Laplace(μ, σ)withμ ∈
R and σ ∈ (0,∞),

ρX,FX (X)
= 3√6/8 ≈ 0.9186. (20)

Example 5. For the Weibull distribution Weibull(λ, k) with the
scale parameter λ ∈ (0,∞) and shape parameter k ∈ (0,∞),

ρX,FX (X)
=

√
3(1− 1/21/k)√

(22/k/
√

π)�(1/2+ 1/k)/�(1+ 1/k) − 1 , (21)

which is graphed in Figure 2 (left panel) in the supplementary
materials as k varies, where �(·) denotes the Gamma function.
Particularly, ρX,FX (X)

= 3√3/(4√5) ≈ 0.5809 for k = 0.5. Con-
trary tomany other distributions,ρX,FX(X)

decreases approaching
zero, at the rate O((1/k)1/4/21/k), as k drops from 0.5 to 0.

Example 6. For the mixture distribution of N(μ1, σ 21 ) and
N(μ2, σ 22 ) with proportions p and 1 − p, where p ∈ (0, 1),
μ1 ∈ R,μ2 ∈ R, σ1 ∈ (0,∞), and σ2 ∈ (0,∞), we can compute
ρX,FX (X)

as in (16), where

cov{X, FX(X)}

=
p(1− p)

[
μ2

{
�

(
μ2−μ1√
σ 21+σ 22

)
− 1
2

}
+ μ1

{
�

(
μ1−μ2√
σ 21+σ 22

)
− 1
2

}]
+ p2σ1+(1−p)2σ2

2
√

π
+ p(1− p)

√
σ 21 + σ 22 φ

(
μ1−μ2√
σ 21+σ 22

)
,

(22)

and

var(X) = p(1− p)(μ1 − μ2)
2 + {pσ 21 + (1− p)σ 22 }. (23)

Particularly, if μ1 = μ2, then

ρX,FX (X)
= √

3/π
p2σ1 + (1− p)2σ2 + p(1− p)

√
2
√

σ 21 + σ 22√
pσ 21 + (1− p)σ 22

;

(24)

moreover, if σ1 = σ2, then (24) reduces to (19) for a single
Gaussian distribution. For two special cases, (i) μ1 = μ2 and
σ1 = k σ2, and (ii) μ1 − μ2 = k σ and σ1 = σ2 = σ , plots
in Figure 3 in the supplementary materials using p = 0.8 and
p = 0.1 indicate that ρX,FX (X)

can be as low as 0.6 in case (i) and
0.57 in case (ii) as k varies.

4. Discussion

Propositions 1 and 2 have implications useful for some other
aspects. For example, the partial correlation coefficient between
Xi and Ri on Xj, for 1 ≤ i �= j ≤ n with n ≥ 2, can
be computed from ρXi ,Ri

and ρXi ,Rj
according to ρ

(Xi ,Ri)�Xj =
ρXi ,Ri

−ρXi ,Xj
ρXj ,Ri√

1−ρ2Xi ,Xj

√
1−ρ2Xj ,Ri

= ρXi ,Ri√
1−ρ2Xj ,Ri

, which combined with (14) and

(15) implies

ρXi ,Ri
< ρ

(Xi ,Ri)�Xj ≤ n − 1√
n2 − 2 . (25)
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Again, as seen from (2) and (3), the upper bound in (25) is
achieved for X ∼ Unif(a, b).
It may also be helpful to discuss results with discrete vari-

ables, where the distribution of ranks in (6) may not hold due to
ties in ranksRi. As an illustration, Figure 4 in the supplementary
materials displays (in away similar to Figure 1 in the supplemen-
tary materials) Pearson sample correlation coefficients using
commonly used discrete distributions. In all examples,Xi andRi
are highly correlated, whereas Xi and Rj in the case of i �= j are
nearly uncorrelated. Rigorous derivations are beyond the scope
of the current article, and we hope to present in future work.

Supplementary Materials

The online supplementary file collects all figures and proofs in the article.
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Appendix A: Figures in the paper

Figure 1: (Simulation studies for continuous variables) Boxplots of ρ̂
(b)
1 for

{(X(b)
i , R

(b)
i )}ni=1 in the top panel, ρ̂

(b)
2 for {(X(b)

i , R
(b)
i+1)}n−1

i=1 in the middle panel, and ρ̂
(b)
3 for

{(X(b)
i , R

(b)
i−1)}ni=2 in the bottom panel, b = 1, . . . , N , with N = 1000 and n = 1000. Choices

of the distribution of X, Unif(0, 1), Exp(1), N(0, 1), Laplace(0, 1), Weibull(1, 0.5), mixture
Gaussians 0.8N(0, 12)+0.2N(0, 42), t3, F2,6, χ

2
1, log-normal, from left to right, are indicated

below the boxplot.

1



Figure 2: (X ∼ Weibull(1, k)) Left panel: Plot of (21) versus k > 0. Right panel:

Boxplots of ρ̂
(b)
1 for {(X(b)

i , R
(b)
i )}ni=1, b = 1, . . . , N , with N = 1000 and n = 1000, for

X ∼ Weibull(1, k), with choices of k indicated below the boxplot.

Figure 3: (X ∼ mixture Gaussian distribution) Left panels: plot of ρ
X,FX (X)

versus

k, where X ∼ pN(μ, (k σ)2) + (1− p)N(μ, σ2) with p = 0.8 and p = 0.1. Right panels: plot
of ρ

X,FX (X)
versus k, where X ∼ pN(μ+k σ, σ2)+(1−p)N(μ, σ2) with p = 0.8 and p = 0.1.

2



Figure 4: (Simulation studies for discrete variables) Boxplots of ρ̂
(b)
1 for

{(X(b)
i , R

(b)
i )}ni=1 in the top panel, ρ̂

(b)
2 for {(X(b)

i , R
(b)
i+1)}n−1

i=1 in the middle panel, and ρ̂
(b)
3 for

{(X(b)
i , R

(b)
i−1)}ni=2 in the bottom panel, b = 1, . . . , N , with N = 1000 and n = 1000. Choices

of the distribution of X, discrete uniform distribution on integers {1, . . . , 15}, Bernoulli
with success probability 0.3, Bernoulli with success probability 0.5, Binomial with param-
eters (5, 0.9), Binomial with parameters (10, 0.1), Poisson with parameter 5, Geometric
with parameter 0.9, Hyper-Geometric with parameters (15, 8, 5), Negative-Binomial with
parameters (5, 0.6), from left to right, are indicated below the boxplot.

3



Appendix B: Proofs in the paper

Lemma 1 Suppose that F (x) and G(x) are similarly ordered on the real line. Then for a

random variable X, it follows that cov{F (X), G(X)} ≥ 0.

Proof : Our proof is motivated from the Tchebychef’s inequality (p. 43 and p. 168 of

Hardy et al. (1988)), which states that for similarly ordered functions F (x) and G(x) on

the interval I, it holds that |I| ∫I F (x)G(x) dx ≥ ∫
I F (x) dx

∫
I G(y) dy.

We expand this inequality as follows. Let FX(x) be the C.D.F. of X. The fact

{F (x)− F (y)}{G(x)−G(y)} ≥ 0 for any x, y ∈ R implies that
∫∫ {F (x)− F (y)}{G(x)−

G(y)} dFX(x) dFX(y) ≥ 0, in which the double integral can be re-written as

=

∫
F (x)G(x) dFX(x)

∫
dFX(y)−

∫
F (x) dFX(x)

∫
G(y) dFX(y)

−
∫

F (y) dFX(y)

∫
G(x) dFX(x) +

∫
F (y)G(y) dFX(y)

∫
dFX(x)

= 2E{F (X)G(X)} − 2E{F (X)}E{G(X)} = 2 cov(F (X), G(X)).

This completes the proof. �

Proofs of (8) and (9). Result (8)
∑n

k=1 fU(k)
(u) = n

∑n
k=1

(n−1)!
(k−1)!(n−k)!

uk−1(1 − u)n−k

follows from applying (7) and the Binomial formula.

Similarly, (k − 1)fU(k)
(u) = n(n− 1)u (n−2)!

(k−2)!(n−k)!
uk−2(1− u)n−k gives

n∑
k=1

(k − 1)fU(k)
(u) = n(n− 1)u. (B.1)

Thus (9) follows from (B.1) and (8). �

Proofs of (10), (11) and (12). For X1, . . . , Xn
i.i.d.∼ FX , Xk = F−1

X (Uk), and thus X(k) =

F−1
X (U(k)). Applying (7) gives

E{X(k)} = E{F−1
X (U(k))} =

∫ 1

0

F−1
X (u)fU(k)

(u) du.

By the change of variables x = F−1
X (u), i.e., u = FX(x), (10) is proved.

Note that

n∑
k=1

E{X(k)} =
n∑

k=1

E(Xk) = nE(X),

4



which verifies (11). Using (9),

n∑
k=1

k E{X(k)} =
n∑

k=1

k E{F−1
X (U(k))}

=

∫ 1

0

F−1
X (u)

n∑
k=1

kfU(k)
(u) du

=

∫ 1

0

F−1
X (u){n(n− 1)u+ n} du

=

∫
x{n(n− 1)FX(x) + n} dFX(x),

which proves (12). �

Proof of (13). Recall that for X ∼ FX(·), (X(1), . . . , X(n))
D
= (F−1

X (U(1)), . . . , F
−1
X (U(n))).

It thus suffices to show that for U1, . . . , Un
i.i.d.∼ Unif(0, 1), the vector of ranks (R1, . . . , Rn)

is independent of the vector of order-statistics (U(1), . . . , U(n)).

To show this, let Sn denote the set of all n! permutations of {1, . . . , n}. For any

{r1, . . . , rn} ∈ Sn, and 0 < u1 < · · · < un < 1, consider

lim
δ→0+

P(R1 = r1, . . . , Rn = rn | U(1) ∈ u1 ± δ/2, . . . , U(n) ∈ un ± δ/2)

=

lim
δ→0+

P(R1 = r1, . . . , Rn = rn, U(1) ∈ u1 ± δ/2, . . . , U(n) ∈ un ± δ/2)/δn

lim
δ→0+

P(U(1) ∈ u1 ± δ/2, . . . , U(n) ∈ un ± δ/2)/δn

= I1/I2,

where I2 = n! as in (7). By (4) and (5),

I1 = lim
δ→0+

P(∪{π1,...,πn}∈Sn{Uπ1 < · · · < Uπn ,

R1 = r1, . . . , Rn = rn, U(1) ∈ u1 ± δ/2, . . . , U(n) ∈ un ± δ/2})/δn
=

∑
{π1,...,πn}∈Sn

lim
δ→0+

P({Uπ1 < · · · < Uπn ,

R1 = r1, . . . , Rn = rn, Uπ1 ∈ u1 ± δ/2, . . . , Uπn ∈ un ± δ/2})/δn
=

∑
{π1,...,πn}∈Sn

lim
δ→0+

P({πr1 = 1, . . . , πrn = n,

Uπ1 ∈ u1 ± δ/2, . . . , Uπn ∈ un ± δ/2})/δn,
=

∑
{π1,...,πn}∈Sn

I(πr1 = 1, . . . , πrn = n)

lim
δ→0+

P(Uπ1 ∈ u1 ± δ/2, . . . , Uπn ∈ un ± δ/2)/δn

=
∑

{π1,...,πn}∈Sn

I(πr1 = 1, . . . , πrn = n)

= 1.
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Thus, I1/I2 = 1/n!, i.e., the conditional distribution of (R1, . . . , Rn) given (X(1), . . . , X(n))

is identical to the unconditional distribution (6) of (R1, . . . , Rn). �

Proof of Proposition 1. From (4), (13), (6) and (12), we can write

E(XiRi) = E{X(Ri)Ri}
=

n∑
k=1

E{X(k)k I(Ri = k)}

=
n∑

k=1

k E{X(k)}P(Ri = k)

=
1

n

n∑
k=1

k E{X(k)}
= (n− 1) E{XFX(X)}+ E(X).

This, combined with (6) and the fact of FX(X) ∼ Unif(0, 1), gives

cov(Xi, Ri) = E(XiRi)− E(Xi) E(Ri)

= (n− 1) E{XFX(X)}+ E(X)− E(X)(n+ 1)/2

= (n− 1)[ E{XFX(X)} − 1/2E(X)]

= (n− 1)cov(X,FX(X)).

Also, note that the function FX(x) is monotone increasing in x. Applying Lemma 1 in

Appendix B, we conclude that cov(X,FX(X)) ≥ 0. Moreover, P{(X − E(X))FX(X) >

0} > 0 indicates cov(X,FX(X)) > 0, and in turn cov(Xi, Ri) > 0.

Utilizing (6) and FX(X) ∼ Unif(0, 1) again gives

ρ
Xi,Ri

=
cov(Xi, Ri)√

var(X)
√

(n+ 1)(n− 1)/12

=

√
n− 1

n+ 1

cov(X,FX(X))√
var(X)

√
1/12

=

√
n− 1

n+ 1
ρ

X,FX (X)
. �

Proof of Proposition 2. For 1 ≤ i �= j ≤ n, using (4) and (13),

E(XiRj) = E{X(Ri)Rj}
=

n∑
k=1

E{X(k)Rj I(Ri = k)}

=
n∑

k=1

E{X(k)}E{Rj I(Ri = k)}. (B.2)
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For E{Rj I(Ri = k)} in (B.2), we obtain from (6)

E{Rj I(Ri = k)} =
∑∑

1≤r2 �=r1≤n

r2 I(r1 = k) P(Rj = r2, Ri = r1)

=
∑

r2:r2 �=k

r2 P(Rj = r2, Ri = k)

=
1

n(n− 1)

∑
r2:r2 �=k

r2 =
1

n(n− 1)
(1 + · · ·+ n− k)

=
(n+ 1)

2(n− 1)
− k

1

n(n− 1)
. (B.3)

Putting (B.3) into (B.2), we obtain

E(XiRj) =
n∑

k=1

E{X(k)}
{ (n+ 1)

2(n− 1)
− k

1

n(n− 1)

}

=
(n+ 1)

2(n− 1)

n∑
k=1

E{X(k)} − 1

n(n− 1)

n∑
k=1

k E{X(k)}

=
(n+ 1)

2(n− 1)
nE(X)− 1

n(n− 1)
[n(n− 1) E{XFX(X)}+ nE(X)]

=
n+ 2

2
E(X)− E{XFX(X)},

where (11) and (12) are used. It follows that

cov(Xi, Rj) = E(XiRj)− E(Xi) E(Rj)

=
n+ 2

2
E(X)− E{XFX(X)} − n+ 1

2
E(X)

= E(X)/2− E{XFX(X)}
= −[ E{XFX(X)} − E(X) E{FX(X)}]
= −cov(X,FX(X)). (B.4)

Combining (6) and (B.4) leads to

ρ
Xi,Rj

=
cov(Xi, Rj)√

var(X)
√

(n2 − 1)/12

=
−1√
n2 − 1

cov(X,FX(X))√
var(X)

√
1/12

= − 1√
n2 − 1

ρ
X,FX (X)

. �

Detailed derivations in Section 3.3.

Example 1: From (2), it suffices to consider X ∼ Unif(0, 1), with FX(x) = x. It is

immediate to obtain (17). �

7



Example 2: From (2), it suffices to consider X ∼ Exp(1). Using fX(x) = e−x I(x > 0),

FX(x) = 1− e−x, E(X) = 1, and var(X) = 1, we get

E{XFX(X)} =

∫ ∞

0

x(1− e−x)e−x dx = 3/4,

and thus (18). �

Example 3: From (2), it suffices to consider X ∼ N(0, 1). Recall fX(x) = φ(x) =

exp(−x2/2)/
√
2π, FX(x) = Φ(x), E(X) = 0, and var(X) = 1. By the Stein

identity Stein (1981), E{XFX(X)} = E{ZΦ(Z)} = E{Φ′(Z)} = E{φ(Z)}, with
Z ∼ N(0, 1), where

E{φ(Z)} =
1

2π

∫ +∞

−∞
e−x2

dx = 1/(2
√
π). (B.5)

Thus, using (16) gives (19). �

Example 4: From (2), it suffices to consider μ = 0 and σ = 1. Recalling fX(x) =

2−1e−|x| = 2−1ex I(x ≤ 0) + 2−1e−x I(x > 0), FX(x) = 2−1ex I(x ≤ 0) + (1 −
2−1e−x) I(x > 0), E(X) = 0, and var(X) = 2, we obtain

E{XFX(X)} =

∫ 0

−∞
x
(1
2
ex
)1
2
ex dx+

∫ +∞

0

x
(
1− 1

2
e−x

)1
2
e−x dx

= 3/8,

and thus (20). �

Example 5: From (2), it suffices to consider λ = 1. We use fX(x) = kxk−1e−xk
I(x ≥ 0),

FX(x) = 1 − e−xk
, E(X) = Γ(1 + 1/k), and var(X) = Γ(1 + 2/k) − Γ2(1 + 1/k), to

compute

E{XFX(X)} =

∫ ∞

0

x(1− e−xk

)kxk−1e−xk

dx

= (1− 1/21/k+1)Γ(1 + 1/k),

and use (16) to get

ρ
X,FX (X)

=
(1− 1/21/k+1)Γ(1 + 1/k)− (1/2)Γ(1 + 1/k)√

Γ(1 + 2/k)− Γ2(1 + 1/k)
√

1/12

=
1/2− 1/21/k+1√

Γ(1 + 2/k)/Γ2(1 + 1/k)− 1
√

1/12
,

i.e., (21). �
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Example 6: In this case, direct calculations give FX(x) = pΦ(x−μ1

σ1
) + (1 − p)Φ(x−μ2

σ2
),

fX(x) = p 1
σ1
φ(x−μ1

σ1
) + (1 − p) 1

σ2
φ(x−μ2

σ2
), E(X) = pμ1 + (1 − p)μ2, E(X2) = {pμ2

1 +

(1− p)μ2
2}+ {pσ2

1 + (1− p)σ2
2}, and (23). Accordingly,

E{XFX(X)} = p2
∫

xΦ
(x− μ1

σ1

) 1

σ1

φ
(x− μ1

σ1

)
dx

+(1− p)2
∫

xΦ
(x− μ2

σ2

) 1

σ2

φ
(x− μ2

σ2

)
dx

+p(1− p)

∫
xΦ

(x− μ1

σ1

) 1

σ2

φ
(x− μ2

σ2

)
dx

+p(1− p)

∫
xΦ

(x− μ2

σ2

) 1

σ1

φ
(x− μ1

σ1

)
dx

= I1 + I2 + I3 + I4, (B.6)

where

I1 = p2 E{(μ1 + σ1Z)Φ(Z)}
= p2[μ1 E{Φ(Z)}+ σ1 E{ZΦ(Z)}]
= p2

(
μ1 × 1

2
+ σ1

1

2
√
π

)
,

in which (B.5) is used, and similarly,

I2 = (1− p)2
(
μ2 × 1

2
+ σ2

1

2
√
π

)
.

In (B.6),

I3 = p(1− p) E
{
(μ2 + σ2Z)Φ

(μ2 − μ1

σ1

+
σ2

σ1

Z
)}

= p(1− p)
[
μ2 E

{
Φ
(μ2 − μ1

σ1

+
σ2

σ1

Z
)}

+ σ2 E
{
ZΦ

(μ2 − μ1

σ1

+
σ2

σ1

Z
)}]

= p(1− p)
{
μ2 Φ

( μ2 − μ1√
σ2
1 + σ2

2

)
+

σ2
2√

σ2
1 + σ2

2

φ
( μ1 − μ2√

σ2
1 + σ2

2

)}

is obtained by calculus, and similarly,

I4 = p(1− p)
{
μ1 Φ

( μ1 − μ2√
σ2
1 + σ2

2

)
+

σ2
1√

σ2
1 + σ2

2

φ
( μ2 − μ1√

σ2
1 + σ2

2

)}
.

Hence,

E{XFX(X)}
= pμ1/2 + (1− p)μ2/2

+p(1− p)
[
μ2

{
Φ
( μ2 − μ1√

σ2
1 + σ2

2

)
− 1

2

}
+ μ1

{
Φ
( μ1 − μ2√

σ2
1 + σ2

2

)
− 1

2

}]
+
p2σ1 + (1− p)2σ2

2
√
π

+ p(1− p)
√

σ2
1 + σ2

2φ
( μ1 − μ2√

σ2
1 + σ2

2

)
,
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which yields (22).

If μ1 = μ2 = μ, then

E{XFX(X)} = μ× 1

2
+

1

2
√
π

{
p2σ1 + (1− p)2σ2 + p(1− p)

√
σ2
1 + σ2

2

√
2
}
,

cov{X,FX(X)} =
1

2
√
π

{
p2σ1 + (1− p)2σ2 + p(1− p)

√
σ2
1 + σ2

2

√
2
}
,

which gives (24). �
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