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ABSTRACT

Rank statistics {R1, ..., Rn} of actual variates {X1, . .

function Fy(-) of Xand n > 2: (a) Py =

distributions of X; (b) Py,

., Xn} play an important role in university undergraduate
nonparametric statistics courses. This article derives explicit expressions of the correlation coefficients
between Xj and R; for not only i = jbut also i # j, for iid continuous variables Xy, . .
e e € (O, D 1for any i, revealing that the correlation
can be as close to one as expected, while may also unexpectedly decrease approaching zero for other
= —n%]pxiﬁi € [—\/%,0) for any i # j, inferring a negligible negative
association with ranks from other data; (c) the partial correlation coefficient between X; and R; on X; for any
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. . _ _ 2 n—1 . . . . .
i # jequals Pogriyy = Pxigi /)1 Ps € (Ox; o, 7«/ﬁ]’ invariably exceeding py. p . Implications of the
results necessitate more relevant interpretation of ranks in sharing information of data.

1. Introduction

In nonparametric statistics, the notion of “rank” plays a key role
in learning utilities of distribution-free methods in analyzing
data, when the information underlying their distributions is
lacking or unknown. See Richardson (2019, p. 361) and refer-
ences therein. Ranks (e.g., {R;}}_;) which are transformed from
original data (e.g., {X;}}_,) are typically interpreted to extract
as much numerical information of and relax as much distribu-
tional assumptions on {X;} as possible. Indeed, nonparametric
methods are developed largely from rank statistics together with
order-statistics.

It is thus natural to quantify more precisely the direction and
magnitude of the association between variables X; and ranks
R;, regardless of the scale types (continuous or discrete) and
location indices (i or j). Some empirical assessment can be made
from simulation studies. We simulate N random samples of
observations {X;h), D ¢! i X,b=1,...,N, from a num-
ber of commonly used distributions of X, including uniform,
Exponential, Gaussian, Laplace, Weibull, mixture of Gaussians,
Student’s ¢, F, and log-normal, and denote the ranks within
each sample by {Rﬁb), R Figure 1 in Appendix A in the
supplementary materials displays boxplots of Pearson product-
moment sample correlation coefficients Z)\fb) for {(Xl-(b),Rgb)) :
, 1), /’5§b) for {(Xi(b)>R§i)1) :i=1,...,n— 1} and

b b b .
ﬁg ) for{(Xi( ),Rl(. )1) i=2,..

i=1,...

with N = 1000 and #n = 1000. Evidently, both Z)\éb) and Z)\;b) are
small in magnitude, centered around zero. In contrast, values of
,be) are invariably strictly positive, and closer to one in most

cases than in the other cases (e.g., Weibull(1, 0.5) with shape

., n}, respectively, b = 1,..., N,

parameter 0.5, F5 6, and log-normal). Nonetheless, the boxplot
in Figure 2 (right panel) in the supplementary materials exhibits
the near zero tendency of ﬁfb) for the Weibull(1, k) distribution
as k decreases to 0, which seems to be unexpected.

For N — o0, Stuart (1954, eq. (10)) derived the limit of the
sample correlation coefficient between {Xl.(b) ci=1,...,mb=

1,...,N} and their ranks {Rl@ :i=1,...,mb =1,...,N}
to be

200 =D V2 g XEyo0) — 1/2E(X 1
oo ] [EXECO) = 1/2EC0L ()
where Fx(-) is the cumulative distribution function (c.d.f.)
of X, and computed (1) for uniform, Gaussian and Gamma
distributions. Result (1) agrees with the population correla-
tion coefficient py . between X; and R;, derived in Gibbons
and Chakraborti (2003, eq. (5.10), p. 194) via an alternative
approach, which directly employed (without prior justification)
the independence property between order-statistics and ranks,
though not straightforwardly obvious. Likewise, the tools used
in Stuart (1954) and Gibbons and Chakraborti (2003) could be
difficult to be extended in dealing with other cases such as {f)éh)}

and {ﬁgb)} in the Monte Carlo study above, that is, difficult to
characterize their population analogues Px,x; for i # j.

Propositions 1 and 2 in this article explicitly evaluate the cor-
relation coefficients, P> between X; and R;, for not only i = j
butalso i # j, in a different, more elementary, and rigorous way,
enabling interpretations with broader perspectives. Students in
introductory nonparametric statistics courses can easily follow
the derivations presented in this article.
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(i) Interestingly, pXi)Rj, forall 1 <i,j < n, are proportional to
a common correlation coefficient, Px ) between X and
Fx(X). Particularly, for i = j, the deduced form Px.r; =

Z—jri Pxrgco € (o, \/2:1%] in (14) is equivalent to (1) as
expected, while enhances interpretability. For any i # j,
the deduced Pxry = _ﬁpxi’Ri € [—\/n+7_1,0) in (15)
infers a negligible negative impact on ranks from other
observations.

(i) For the Gaussian distribution, we demonstrate that
Pxpgey = 0.977 is directly connected with the celebrated
Stein’s identity (Stein 1981), which may partly explain the
close proximity to one attained by the uniform distribution.

(iii) For the family of Weibull(1,k) distributions with shape
parameter k, the left panel of Figure 2 in the supplementary
materials plots the analytic form (21) of py ;. ,» which
confirms the empirical observation in the right panel of
Figure 2 in the supplementary materials.
Moreover, for a contaminated sample, from for example, a
mixture of Gaussians, containing a proportion of outliers in
practical applications, the explicit form of py ;. ,, and plots
in Figure 3 in the supplementary materials depict lower
correlations between X; and R; from a Gaussian mixture
than from a single Gaussian distribution.

(v) An application to the partial correlation coefficient is dis-
cussed in (25).

(iv)

The major derivations of Propositions 1 and 2 appear to be
new. The derivations are easy to follow for advanced undergrad-
uate and beginning graduate students and thus will be beneficial
in gaining additional insights into and a better understanding
of the flexibility and limitations of ranks used in nonparametric
statistics. The online supplementary file collects all figures and
proofs in the article.

2. Notations, Definitions, and Some Auxiliary Results

The covariance between two random variables X and Y
is cov(X,Y), and the correlation coefficient is p,, =

cov(X, Y)/{s/var(X)+/var(Y)}. Two results relevant to succeed-

ing discussions are listed below.

(R1) For X having a location-scale family of distributions,
where the c.d.f. is Fx(x) = FZ(X;—“), with a location
parameter 1 and a scale parameter ¢ € (0, 00), it is readily
seen that

Px ) = Prry) (2)
where Z has the c.d.f. Fz(-).
(R2) For U ~ Unif(0,1), Fy(U) = U, E(U) = 1/2,var(U) =
1/12, and thus

pU,FU(U) =1 (3)

iid
For X1,..., X, =~ X, where X has the c.d.f. Fx and proba-
bility density function (p.d.f.) fx, with a finite second moment,
the variables X;, order-statistics X(;) and ranks R; are related
according to
Xi = X(ry)»
Xi = Xm,

i=1,...,n (4)
i=1,...,n (5)
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where {I1y, ..., I1,} is a permutation over {1,. . ., n}, illustrated
in the diagram below,
Xy oo Xp oo X, Xm, < --- Xq, -+ < X,
I I -+ I |namely,| | R l
Xy o+ KR« X(Ry) Xy < Xay - < Xy

Before proving Propositions 1 and 2, we first list below
required results on ranks and order-statistics, among which,
basic results (6) and (7) are well-known in nonparametric statis-
tics textbooks (including Daniel 1990; Conover 1999; Higgins
2004; Sprent and Smeeton 2007; Corder and Foreman 2014;
Hollander, Wolfe, and Chicken 2014) reviewed in Richardson
(2019), results (8)-(12) are nontrivial but more explicit deriva-
tions are lacking, and the more advanced statement (13) appears
in Lemma 13.1 of van der Vaart (1998) which omits the proof.
For concise and complete derivations of Propositions 1 and
2 to be accessible to undergraduate students, Appendix B in
the supplementary materials supplies proofs of (8)-(13) using

i
standard uniform random variables, Uy, ..., U, ~ Unif (0, 1),
associated with order-statistics U;y < --- < Uy). In the rest of
the article, I(-) denotes an indicator operator.

(R3) TheranksRy, ..., R, are identically (though not indepen-
dently) distributed, that is,

R; ~ Unif{1,...,n}, E(R) = (n+1)/2,
var(R;) = (n"*—1)/12; P(R; = r,R; = 5) = 1/{n(n—1)},

fori #jandr # s P(Ry =r1,...,Ry =1y) = 1/nl,
for any permutation {ry,...,7,} of {1,...,n}. (6)
(R4)
fU(l),...,U(n) (ul; e un) =n! I(O <U < < Uy < 1),
_ n! k—1 n—k
fU(k)(u) = mu 1—u) 10 < u < 1),
(7)
and satisfying
n
> fug ) = n, (8)
k=1
n
Zkfu(k)(u) =nn—Du+n. 9)
k=1
(R5)

n! -~
E{Xw} = /xm{FX(x)}k !

{1 — Fx(0))" Ffx(x) dx, (10)

n

> B{Xp} = nEX),

k=1

(11)

ZkE{X(k)} = n(n — 1) E{XFx(X)} + nEX). (12)
k=1

(R6)

(Ri1,...,Ry) is independent of (X(1),...,Xm). (13)
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3. Correlation Coefficient Between Variates and Ranks
3.1. pypfor1 <i=<n

We first evaluate the correlation coeflicient between X; and R;.
Proposition 1 confirms that Py, 18 proportional to PX.Fy 0>

and bounded below and above by 0 and /(n — 1)/(n+ 1),

respectively.

Proposition 1. Let Xi,..., Xy i X, where X has the c.d.f. Fx
and p.d.f. fx, with mean E(X) and variance var(X) € (0, 00).
Then fori = 1,...,n with n > 2, the correlation coefficient
between X; and R; is

n—1 n—1
Pras =\ gy Pemo © (o n+1]'

As seen from (2) and (3), the upper bound in (14) is achieved
for X ~ Unif(a, b).

(14)

3.2, Px.x; for1 <i#j<n

For i # j, Proposition 2 verifies that the correlation coefficient
P, is negatively proportional to Px 0 and bounded below

by —1/+/n* — 1.
dd
Proposition 2. Let Xi,..., Xy ~ X, where X has the c.d.f. Fx

and p.d.f. fx, with mean E(X) and variance var(X) € (0, c0).
Then for 1 < i # j < nwithn > 2, the correlation coefficient

between X; and R; is
_ 1 [ 1 0
e R s i Il R e )

As seen from (2) and (3), the lower bound in (15) is attained for
X ~ Unif(a, b).

(15)

3.3. The Common Quantity p, ., in Propositions 1 and 2

Recall that P, in Propositions 1-2, for any 1 < i,j < n, are
proportional to py ;. v,

_ E{XFx(X)} — E(X)/2
Pxryx) = mm s

where Fx(X) ~ Unif (0, 1). It is thus natural to compute Px. 0
for some commonly used distributions of X. Examples 1-6
explicitly evaluate py ;. ,, which are also supported by centers
of boxplots in Figure 1 in the supplementary materials.

(16)

Example 1. For the uniform distribution Unif (a, b) with —oo <
a<b< oo

=Py =1 (17)

IOX,I-‘X x)

agreeing with a direct calculation using (16).

Example 2. For the Exponential distribution Exp(X) with 0 <
A < 00,

Py = V/3/2 7 0.866. (18)

Example 3. For the Gaussian distribution N(u, 0%) with © € R
and o € (0,00),

=/3/7 ~0.977.

Example 4. For the Laplace distribution Laplace(u, o) with u €
Rand o € (0, 00),

(19)

pX,FX(X)

Pxryx = 3\/8/8 ~ 0.9186. (20)

Example 5. For the Weibull distribution Weibull(A, k) with the
scale parameter A € (0, 00) and shape parameter k € (0, c0),

V31 —1/2'7%)
V@RI T2+ 1/k)/TA+1/k) — 1
which is graphed in Figure 2 (left panel) in the supplementary
materials as k varies, where I'(-) denotes the Gamma function.

Particularly, Pxren = 34/3/(4+/5) ~ 0.5809 for k = 0.5. Con-
trary to many other distributions, py ;. ,, decreases approaching

zero, at the rate O((l/k)1/4/21/k), as k drops from 0.5 to 0.

(21)

Pxryx) =

Example 6. For the mixture distribution of N(m,alz) and
N(u2,04) with proportions p and 1 — p, where p € (0,1),
n1 € Ry € R,01 € (0,00),and o, € (0, 00), we can compute
Pxpyoo 8 in (16), where

cov{X, Fx(X)}
_ra=pfeo(gs) i) v o) ]

T Pat(-ple _ 2 2 (m—uz )
+ NG +p(1—p)/oi +o5¢ Jorrol)

(22)

and

var(X) = p(1 — p)(u1 — p2)? + {po? + (1 — p)o?}. (23)

Particularly, if ;1 = u2, then

pPo1+ (1 —p)lor + p(1 — p)v/2,/0? + 02

Jpot + (1= p)o3

moreover, if 07 = 07, then (24) reduces to (19) for a single
Gaussian distribution. For two special cases, (i) #1 = p2 and
01 = koy, and (ii) w1 — w2 = ko and 07 = 0, = o, plots
in Figure 3 in the supplementary materials using p = 0.8 and
p = 0.1 indicate that Py ey x) €AN be as low as 0.6 in case (i) and
0.57 in case (ii) as k varies.

Pxry = V 3/7

(24)

4. Discussion

Propositions 1 and 2 have implications useful for some other
aspects. For example, the partial correlation coeflicient between
X;and R; on Xj, for 1 < i # j < nwithn > 2, can
be computed from Px,x, and P, according to Porx;

pX,',R,- _pX,',X]' pXj,Ri pXi’Ri

1—02 1—p2 - 1—p2
\/ ’OXi,)(j\/ pXj,Ri \/ 'OXj,Ri

(15) implies

, which combined with (14) and

n—1

ﬁ. (25)

<
Px.r; = p(xi,Ri).xj =



Again, as seen from (2) and (3), the upper bound in (25) is
achieved for X ~ Unif(a, b).

It may also be helpful to discuss results with discrete vari-
ables, where the distribution of ranks in (6) may not hold due to
ties in ranks R;. As an illustration, Figure 4 in the supplementary
materials displays (in a way similar to Figure 1 in the supplemen-
tary materials) Pearson sample correlation coefficients using
commonly used discrete distributions. In all examples, X; and R;
are highly correlated, whereas X; and R; in the case of i # j are
nearly uncorrelated. Rigorous derivations are beyond the scope
of the current article, and we hope to present in future work.

Supplementary Materials

The online supplementary file collects all figures and proofs in the article.
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Appendix A: Figures in the paper

(a) boxplots of pl) for (X(b) R(b))"
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(b) boxplots of ﬁ(zb) for {(X(b) R(b)l)
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Figure 1 (Simulation studies for continuous variables) Boxplots of ﬁl) for
{(X; )}” 1 In the top panel, ;’5§) for {(X; l(i)l) ! in the middle panel, and ﬁé) for

{(Xi(b), Rz@l) " , in the bottom panel, b=1,. .. ,N, with N = 1000 and n = 1000. Choices
of the distribution of X, Unif(0, 1), Exp(1), N(0, 1), Laplace(0, 1), Weibull(1, 0.5), mixture
Gaussians 0.8N(0, 12) +0.2N(0,4%), t3, Fyg, X3, log-normal, from left to right, are indicated

below the boxplot.



1 X ~ Weibull(1, k) boxplots of ﬁﬁb) for {(Xi(b), Rz(b));’zl}
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Figure 2: (X ~ Weibull(1, k)) Left panel: Plot of (21) versus k > 0. Right panel:
Boxplots of p\ for {(X® R}, b = 1,...,N, with N = 1000 and n = 1000, for
X ~ Weibull(1, k), with choices of k indicated below the boxplot.
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Figure 3: (X ~ mixture Gaussian distribution) Left panels: plot of Px py(x) VEISUS
k, where X ~ pN(p, (ko)?) + (1 — p)N(u, 0?) with p = 0.8 and p = 0.1. Right panels: plot
of Py p (x, Versus k, where X ~ pN(u+k o, %)+ (1—p)N(u, %) withp = 0.8 and p = 0.1.



(a) boxplots of ﬁlb) for {(Xi(b), Rgb))?zl}
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Figure 4: (Simulation studies for discrete variables) Boxplots of foﬁb) for
{(x” RV in the top panel, pY for {(X", Rl@l) »~! in the middle panel, and p for

K3
{(x® R \}n_, in the bottom panel, b=1,..., N, with N = 1000 and n = 1000. Choices
of the distribution of X, discrete uniform distribution on integers {1,...,15}, Bernoulli
with success probability 0.3, Bernoulli with success probability 0.5, Binomial with param-
eters (5,0.9), Binomial with parameters (10,0.1), Poisson with parameter 5, Geometric
with parameter 0.9, Hyper-Geometric with parameters (15,8,5), Negative-Binomial with

parameters (5,0.6), from left to right, are indicated below the boxplot.
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Appendix B: Proofs in the paper

Lemma 1 Suppose that F(z) and G(z) are similarly ordered on the real line. Then for a
random variable X, it follows that cov{F(X),G(X)} > 0.

Proof: Our proof is motivated from the Tchebychef’s inequality (p. 43 and p. 168 of
Hardy et al. (1988)), which states that for similarly ordered functions F(z) and G(z) on
the interval Z, it holds that |Z| [ F(x)G(x)dx > [, F(z)dz [; G(y) dy.

We expand this inequality as follows. Let Fx(z) be the C.D.F. of X. The fact
{F(z) — F(y){G(x) — G(y)} > 0 for any z,y € R implies that [[{F(x) — F(y)}{G(z) —
G(y)} dFx(z)dFx(y) > 0, in which the double integral can be re-written as

—(/ﬂ@ﬂ@ﬁﬂm/Mk@—/F@M&m/ﬁ@M&@)
—/mwﬁmw/amﬁww+/ﬂwmwﬁmw/wam
— 2B{F(X)G(X)} 2 2E{F(X)} E{G(X)} = 2cov(F(X),G(X)).

This completes the proof. l

Proofs of (8) and (9). Result (8) Y5, fu,, (1) = nY i, g fgmet (1 — u)"™*

follows from applying (7) and the Binomial formula.

Similarly, (k — 1) fy,,, (u) = n(n — 1)u%uk_2(l —u)"* gives
> (k= 1) fu,, () =n(n - 1)u. (B.1)
k=1

Thus (9) follows from (B.1) and (8). W

Proofs of (10), (11) and (12). For Xi,..., X, ES Fyx, X = Fx'(Uy), and thus X =
F'(Uy). Applying (7) gives

B{Xw} = BUFF W)} = [ B @

By the change of variables x = Fi;*(u), i.e., u = Fx(z), (10) is proved.
Note that

n

> E{Xw} = B(X)) = nE(X),

k=1 k=1

3



which verifies (11). Using (9),
D EE{Xw} = > kE{F'(Uw)}
k=1 k=1

= /0 Fgl(u)Zk‘wa)(u) du

= /0 Fit(w){n(n — u+n}du

= /x{n(n — 1)Fx(z) +n}dFx(z),
which proves (12). B

Proof of (13). Recall that for X ~ Fx(-), (Xa),-.., X)) = (F<'(Uw), - -, Fx' (Uwy)).

It thus suffices to show that for Uy, ..., U, £ Unif (0, 1), the vector of ranks (Ry,..., R,)
is independent of the vector of order-statistics (U, ..., Un)).
To show this, let S,, denote the set of all n! permutations of {1,...,n}. For any

{ri,....,rp} € Sp,and 0 < uy < -+ < w, < 1, consider

lim P(Rlzrl,...,anrn|U(1)€u1i5/2,...,U(n)€uni5/2)

5—>0+
61i%1 P(Rl =7ry,..., R, = Tn,U(l) € Uy :t5/2, .. .,U(n) € Uy :|:(5/2)/5n
B lim P(Uqy € ur £6/2,...,Upy) € un, £6/2) /6"
§~)O+
= [1/127

where Iy = n!l as in (7). By (4) and (5),

1111

Ry=r1,...,Ry =7, Uy €ur £0/2,..., Uy € up, £6/2})/6"
— Z hl’ﬂ P({Uﬂ—l <0 < Uﬂ'na

5~>O+

Il - 6{%1 P(U{ﬂ'l Wn}esn{Uﬂ'l << Uﬂ'n?

— Z lim P({'/Tm =1,...,m, =n,

Ur €ur £6/2,...,U,, €u,+6/2})/0",
= Z (m,, =1,...,7m, =mn)

lim P(Uy, € uy £6/2,...,U,, € u, £6/2)/0"

5—)0+



Thus, I,/I, = 1/n!, i.e., the conditional distribution of (Ry,..., R,) given (Xqy,..., Xwu))
is identical to the unconditional distribution (6) of (Ry,...,R,). B

Proof of Proposition 1. From (4), (13), (6) and (12), we can write
B(X;R) = E{Xn R}
= Y E{X@kI(R; =k)}

k=1

= Y kBE{X(y}P(R =k)

= %ZkE{X(k)}
() B{X Py (X)) + B(X),

This, combined with (6) and the fact of Fix(X) ~ Unif(0, 1), gives

cov(Xi, R) = E(X;R) — E(X))E(R)

(n—1)E{XFx(X)} + E(X)— E(X)(n+1)/2
(n— D)[E{XFx(X)} —1/2E(X)]

(n —1)cov(X, Fx(X)).

Also, note that the function Fx(z) is monotone increasing in x. Applying Lemma 1 in
Appendix B, we conclude that cov(X, Fx(X)) > 0. Moreover, P{(X — E(X))Fx(X) >
0} > 0 indicates cov(X, Fx(X)) > 0, and in turn cov(X;, R;) > 0.

Utilizing (6) and Fx(X) ~ Unif(0, 1) again gives

cov(X;, R;)

P = a0 /n + D(n - 1)/12
n—1 cov(X, Fx (X))

n+1,/var(X)\/1/12
n—1

Proof of Proposition 2. For 1 <i # j < n, using (4) and (13),
B(XiR;j) = E{Xg,)R;}

= 3 EB{X@R IR = k)

k=1
n

= Y E{Xw}E{RI(R; = k)}. (B.2)

k=1



For E{R;I(R; = k)} in (B.2),

we obtain from (6)

DY ml(r =k)P(R; =ry, Ri = 1)

1<ro#r1<n

> e P(R; =1y, Ri = k)

ro:roF£k
1 1
-~ n(n—1) 7'2;275]6712 n(n—l)(1+m+n_k)
(n+1) 1
= =1 =D (B:3)
Putting (B.3) into (B.2), we obtain
- (n+1) 1
BXR) = ; EXoH o1y~ Faim 1)
— 2(81t11>) > E{Xw} - m > kE{Xw}
IR VR SR ;
oD B(X) = oy n(n = DE{XFx (X)) + n E(X)
- 5 B(X) — E{XFx(X)},
where (11) and (12) are used. It follows that
cov(X;, R;) = E(X;Rj) — E(X;)E(R))
= 200 - B A0y - B
B(X)/2 — B{XFx(X)}
—[B{XFx(X)} = E(X) E{Fx(X)}]
= —cov(X, Fx(X)). (B.4)

Combining (6) and (B.4) leads to

Px; r,

10°t]

COV()(Z'7 R])

Vvar(X)y/(n? —1)/12
-1 cov(X, Fx(X))

Vn? —1/var(X)\/1/12
! u

poR— Px.rx(x)"

Detailed derivations in Section 3.3.

Example 1: From (2), it suffices to consider X ~ Unif(0,1), with Fx(z) = z. It is
immediate to obtain (17). W



Example 2: From (2), it suffices to consider X ~ Exp(1). Using fx(z) = e *I(x > 0),
Fy(x)=1—e" E(X) =1, and var(X) = 1, we get

E{XFx(X)} = /OO z(l—e®)e "dax =3/4,
and thus (18). W

Example 3: From (2), it suffices to consider X ~ N(0,1). Recall fx(z) = ¢(z) =
exp(—22/2)/V27, Fx(r) = ®(z), E(X) = 0, and var(X) = 1. By the Stein
identity Stein (1981), E{XFx(X)} = E{Z®(Z)} = E{?'(Z)} = E{¢(Z)}, with
Z ~N(0,1), where

+o0
Bo(2)} = 5 [ 7 de=1/2vR) (B.5)

2m J_o
Thus, using (16) gives (19). B

Example 4: From (2), it suffices to consider p = 0 and 0 = 1. Recalling fx(z) =
27le ol = 27lem [(x < 0) + 27l I(z > 0), Fx(z) = 27" I(z < 0) + (1 —
27le7®)I(z > 0), E(X) =0, and var(X) = 2, we obtain

E{XFx(X)} = /0 x(%ex) %e”” dz + /+Ooa:(1 — %ez) %ez dz
0

—0o0

— 38,
and thus (20). W

Example 5: From (2), it suffices to consider A = 1. We use fx(z) = ka* e~ I(z > 0),
Fx(z) =1—e", BE(X)=T(1+1/k), and var(X) = ['(1 + 2/k) — T%(1 + 1/k), to

compute

oo

E{XFx(X)} = /0 2(1— e ka" e da
= (1—1/2"FND(1+ 1/k),

and use (16) to get

(1 =12V + 1/k) — (1/2)0(1 + 1/k)
Pxrxx) = VT4 2/k) —T2(1 + 1/k)+/1/12
1/2 — 1/21/k+1

VI +2/k)/T2(1 4+ 1/k) — 1,/1/12

ie,(21). m



Example 6: In this case, direct calculations give Fix(z) = p®(*) + (1 — p)®(*12),

fx(@) = po-o(5) + (1 = p) - o(512), B(X) = pn + (1 — p)pa, BE(X?) = {ppi +
(1 —p)ud} + {po? + (1 — p)os}, and (23). Accordingly,

E{XFy(X)} = pQ/xq)(-T_,Ul) (3?—#1>d

o1 ’
o a2 o
o [ Lo
) [ro(E) Lo )
= L+ L+ 13+ 14 (B.6)
where
L = pE{(m +012)0(2)}
= P E{®(2)} + 01 E{Z®(Z)}]
1 1
= p (Ml X —+012\/—>
in which (B.5) is used, and similarly,
L, = (1 —p)2<u2 X % +02ﬁ>.
In (B.6),
L = p(l —p)E{(u2+a2Z)q>(“2;“l + Z—jz)}
Bl G U G ) S G
— o _
= ot Tt )

is obtained by calculus, and similarly,

I, = p(l—p){m@( i “22>+ L 2¢>( bz MQ)}-
V01 + 03 \/01+U2 \/01 + 03

Hence,

001 {o(Jt) - g {o(J25) - 3

2
H1 — M2
+p1—p\/02+02¢<—),
2y U=port ool s




which yields (22).
If gy = po = p, then

1

B{XFx(X)} = pxj+ {p o1+ (1= p)oz + p(1 = )/t + 732},

ENG

cov{X, Fx(X)} = p’or + (1 —p)?os +p(1 —p) cr%—i—o%ﬁ},

27 {
which gives (24). B
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