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Abstract. In this paper, we study efficient approaches to reachability anal-
ysis for discrete-time nonlinear dynamical systems when the dependencies
among the variables of the system have low treewidth. Reachability analysis
over nonlinear dynamical systems asks if a given set of target states can be
reached, starting from an initial set of states. This is solved by computing con-
servative over approximations of the reachable set using abstract domains to
represent these approximations. However, most approaches must tradeoff the
level of conservatism against the cost of performing analysis, especially when
the number of system variables increases. This makes reachability analysis
challenging for nonlinear systems with a large number of state variables. Our
approach works by constructing a dependency graph among the variables
of the system. The tree decomposition of this graph builds a tree wherein
each node of the tree is labeled with subsets of the state variables of the
system. Furthermore, the tree decomposition satisfies important structural
properties. Using the tree decomposition, our approach abstracts a set of
states of the high dimensional system into a tree of sets of lower dimensional
projections of this state. We derive various properties of this abstract domain,
including conditions under which the original high dimensional set can be
fully recovered from its low dimensional projections. Next, we use ideas from
message passing developed originally for belief propagation over Bayesian
networks to perform reachability analysis over the full state space in an
efficient manner. We illustrate our approach on some interesting nonlinear
systems with low treewidth to demonstrate the advantages of our approach.

1 Introduction

Reachability analysis asks whether a target set of states is reachable over a finite or
infinite time horizon, starting from an initial set for a dynamical system. This problem
is fundamental to the verification of systems, and is known to be challenging for a
wide variety of models. This includes cyber-physical systems, physical and biological
processes. In this paper, we study reachability analysis algorithms for nonlinear,
discrete-time dynamical systems. The key challenge in analyzing such systems arises
from the difficulty of representing the reachable sets of these systems. As a result,
we resort to over-approximations of reachable sets using tractable set representations
such as intervals [16], ellipsoids, polyhedra [19], and low degree semi-algebraic sets [2].
Whereas these representations are useful for reachability analysis, they also trade off
the degree of over-approximation in representing various sets against the complexity of
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performing operations such as intersections, unions, projections and image computa-
tions over these sets. The theory of abstract interpretation allows us to design various
abstract domains that serve as representations for sets of states in order explore these
tradeoffs [18,17,34]. However, for nonlinear dynamical systems, these representations
often become too conservative or too expensive as the number of state variables grow.

In this paper, we study reachability analysis using the idea of tree decomposi-
tions over the dependency graph of a dynamical system. Tree decompositions are
a well-known idea from graph theory [37], used to study properties of various types
of graphs. The treewidth of a graph is an intrinsic property of a graph that relates to
how “far away” a given graph is from a tree. For instance, trees are defined to have
a treewidth of 1. Many commonly occurring families of graphs such as series-parallel
graphs have treewidth 2 and so on. Formally, a tree decomposition of a graph is
a tree whose nodes are associated with subsets of vertices of the original graph
along with some key conditions that will be described in Section 2. We use tree
decompositions to build an abstract domain. The abstraction operation projects a set
of states in the full system state space along each of the nodes of the tree, yielding
various projections of this set. The concretization combines projections back into the
high dimensional set. We study various properties of this abstract domain. First, we
characterize abstract elements that can potentially be generated by projecting some
concrete elements along the nodes of the tree (so called canonical elements, Def. 10).
Next we characterize those sets which can be abstracted along the tree decomposition
and reconstructed without any loss in information (tree decomposable sets, Def. 11).
In this process, we also derive a message passing approach wherein nodes of the tree
can exchange information to help refine sets of states in a sound manner. However,
as we will demonstrate, the abstraction is “lossy” in general since projections of tree
decomposable sets are not necessarily tree decomposable. We discuss some interesting
ways in which precision can be regained by carefully analyzing this situation.

We combine these ideas together into an approach for reachability analysis of non-
linear systems using a grid domain that represents complex non convex sets as a union
of fixed size cells using a gridding of the state-space. Although such a domain would
be prohibitively expensive, we show that the tree decomposition abstract domain can
drastically cut down on the complexity of computing reachable set overapproximations
in this domain, yielding precise reachable set estimation for some nonlinear systems
with low treewidth. We demonstrate our approach using a prototype implementation
to show that for a restricted class of systems whose dependency graphs have low
treewidth, our approach can be quite efficient and precise at the same time. Although
some interesting systems have low treewidth property, it is easy to see that many
systems will have treewidths that are too high for our approach. Our future work will
consider how systems whose dependency graphs do not have sufficiently low treewidth
can still be tackled in a conservative manner using some ideas from this paper.

1.1 Related Work

As mentioned earlier, the concept of tree decompositions and treewidth originated
in graph theory [37]. The concept of treewidth gained popularity when it was shown
that many NP-complete problems on graphs such as graph coloring could be solved
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efficiently for graphs with small treewidths [5]. Courcelle showed that the problem
of checking if a given graph satisfies a formula in the monadic second order logic of
graphs can be solved in linear time on graphs with bounded treewidth [15]. Several
NP-complete problems such as 3-coloring can be expressed in this logic. Tree decom-
positions are also used to solve inference problems over Bayesian networks leading to
representations of the Bayesian networks such as junction trees that share many of the
properties of a tree decomposition [29]. In fact, belief propagation over junction trees is
performed by passing messages that marginalize the probability distributions at various
nodes of the tree. This is analogous to the message passing approach described here.

Tree decomposition techniques have been applied to model checking problems
over finite state systems. For instance, Obdržálek show that the µ-calculus model
checking problem can be solved in linear time in the size of a finite-state system whose
graph has a bounded treewidth [35]. However, as Ferrara et al point out, requiring
the state graph of a system to have a bounded treewidth is often restrictive [24].
Instead, they study concurrent finite state systems wherein the communication graph
has a bounded tree width. However, they conclude that while it is more reasonable to
assume that the communication graph has a bounded tree width, it does not confer
much advantages to verification problems. For instance, they show that the unrolling
of these systems over time potentially results in unbounded treewidth. In this paper,
we consider a different approach wherein we study the treewidth of dependency
graphs of the system. We find that many systems have small treewidth and exploit
this property. At the same time, we note that some of the benchmarks studied have
“sparse” dependency graphs but treewidths that are too large for our approach.

Tree decomposition techniques have also been studied in static analysis of programs.
The control and data flow graphs of structured programs without goto-statements
or exceptional control flow are known to have small treewidth that can be exploited
to perform compiler optimizations such as register allocation quite efficiently [38].
Chatterjee et al have shown how to exploit small treewidth property of the control
flow graphs of procedures in programs to perform interprocedural dataflow analysis by
modeling the execution of programs with procedures as recursive state machines [11].
However, this approach seems restricted to control dominated properties such as
sequence of function calls. In a followup work, they study control and data flow
analysis problems for concurrent systems, wherein each component has constant
treewidth [10]. In contrast, our approach studies dynamical system and consider tree
decompositions of the data dependency graph.

The use of message passing in this paper closely resembles past work by Gulwani
and Jojic [27]. Therein, a program verification problem involving the verification
pre/post and intermediate assertions in a program is solved by passing messages that
can propagate information between assertions along program paths in a randomized
fashion. The approach is shown to be similar to loopy belief propagation used in
Bayesian inference. The key differences are (a) we use data dependencies and tree
decompositions rather than control flow paths to pass information along; and (b) we
formally prove properties of the message passing algorithm.

Our approach is conceptually related to a well-known idea of speeding up static
analysis of large programs using “packing” of program variables [28,4]. This ap-
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proach was used successfully in the Astreé static analyzer [4,3,21]. Therein, clusters
of variables representing small sets of dependent local and global are extracted. The
remaining program variables are abstracted away and the abstract interpretation
process is carried out over just these variables. The usefulness of this approach has
borne out in other abstract interpretation efforts, including Varvel [28]. The key
idea in this paper can be seen as a formalization of the rather informal “clustering”
approach using tree decompositions. We demonstrate theoretical properties as well
as the ability to pass messages to improve the results of the abstract interpretation.

The use of the dependency graph structure to speed up reachability analysis
approaches has been explored in the past for speeding up Hamilton-Jacobi-based
approaches by Mo Chen et al [12] as well as flowpipe based approaches by Xin
Chen et al [13]. Both approaches consider the directed dependency graph wherein
xi is connected to xj if the former appears in the dynamical update equation of
the latter variable. The approaches perform a strongly connected component (SCC)
decomposition and analyze each SCC in a topological sorted order. However, this
approach breaks as soon as the system has large SCCs, which is common. As a result,
Xin Chen et al show how SCCs can themselves be broken into numerous subsets at the
cost of a more conservative solution. In contrast, the tree decomposition approach can
be applied to exploit sparsity even when the entire dependency graph is a single SCC.

2 Preliminaries

In this section, we will describe the system model under analysis, the dependency
graph structure and the basics of tree decompositions. Let X :{x1,...,xn} be a set of
system variables and x :X 7→R represent a valuation to these system variables. Let
D be the domain of all valuations of X, that describes the state space of the system.
For convenience let xi denote x(xi). Also, let W :{w1,...,wm} represent disturbance
variables and w :W 7→R represent a vector of m≥0 external disturbance inputs that
take values in some compact disturbance space W.

Definition 1 (Dynamical Model). A model Π is a tuple 〈X,W,D,W,f,X0,U〉,
wherein X,W,D,W are as defined above, f is an arithmetic expression over variables
in X,W describing the dynamics, X0 is a set of possible initial valuations (states)
and U is a designated set of unsafe states.

The dynamics are given by x(t+1)=eval(f,x,w), wherein eval evaluates a given
an expression f, a set of valuations to the system variables x∈D and disturbances
w∈W, and returns a new set of valuations for each variable in X, denoted by x(t+1).

For simplicity, we write f(x,w) to denote eval(f,x,w) for a function expression f .
A state of the system is a valuation x :X 7→R such that x∈D. Given a finite sequence
of disturbance inputs w(0),...,w(T), for some T≥0 and w(i)∈W for all i∈ [0,T ], an
execution of the system is a sequence of states x(0),...,x(T+1), such that x(0)∈X0,
x(t)∈D for t∈ [0,T+1] and x(t+1)=f(x(t),w(t)) for all t∈ [0,T ]. According to these
semantics, the system may fail to have an execution for a given disturbance sequence
w(t), t∈ [0,T ] and initial state x(0) if for some state x(t), we have f(x(t),w(t)) 6∈D.
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A state x(t) is reachable (at time t) if there is an execution of the form x(0),...,x(t),
satisfying the constraints above. We say that the unsafe state U is reachable iff some
state x∈U is reachable. Furthermore, we say that U is reachable within a finite time
horizon T , iff some state x∈U is reachable at time t∈ [0,T ].

Example 1. Consider a nonlinear example of a dynamical model Π with state space
x :(x1,x2,x3) and w :(w1). The dynamics can be written as parallel assignments to
the state variables:

x1 := x1+0.25x2−0.05x1sin(x2), x2 := x2+w1, x3 :=x3−0.2x3x2,

The assignments are all evaluated in parallel to update the current state x(t) to a
new state x(t+1). The domain D is xi ∈ [−3,3] for i= 1,2,3 and the disturbance
w1∈ [−0.1,0.1]. The initial set X0 is x1∈ [−0.2,0.2] ∧ x2∈ [−0.3,0] ∧ x3∈ [0,0.4].

We will now define the dependency (hyper)graph of the systemΠ. For convenience,
we write the update function (expression) f of a system Π in terms of individual up-
dates (f1,...,fn), wherein x′j =fj(x,w). We say that system variable xi (or disturbance
variablewj) is a proper input to the expression fk if xi (orwj) occurs as a subterm in fk.
Let inps(fk) denote the set of all proper input variables to the function (expression) fk.

As an example, consider X={x1,...,x4} and W ={w1,w2} and the expression
f : x1x4−w1. The proper inputs to f are {x1,x4,w1}. We exclude cases such as

g : sin
2(x1)+cos2(x1)

sin2(x2)+cos2(x2)
that has {x1,x2} as proper inputs. However a simplification using

elementary trigonometric rules can eliminate them. We will assume that all expressions
are simplified to involve the least number of variables.

Definition 2 (Dependency Hypergraph). A dependency hypergraph of a system
Π has vertices V : X ∪W , given by the union of the system and disturbance
variables with hyperedge set E⊆2V given by E={e1,...,en}, wherein for each update
xk := fk(x,w) (k = 1,...,n), we have the hyperedge ek : {xk}∪ inps(fk). In other
words, each update xk :=fk(x,w) yields an edge that includes xk along with all the
system/disturbance variables that are proper inputs to fk.

Example 2. The dependency hypergraph for the system from Example 1 has the
vertices V :{x1,x2,x3,w1} and the edges {e1 :{x1,x2}, e2 : {x2,w1} and e3 : {x2,x3}}.

2.1 Tree Decomposition

We will now discuss tree decompositions and the associated concept of treewidth of
a hypergraph G :(V,E). The tree decomposition will be applied to the dependency
hypergraphs ( Def. 2) for systems Π (Def. 1).

Definition 3 (Tree Decomposition and Treewidth). Given a hypergraph G :
(V,E), a tree decomposition is a tree T : (N,C) and a mapping verts :N 7→ 2V ,
wherein N is the set of tree nodes, C is the set of tree edges and verts(·) associates
each node u∈N with a set of graph vertices verts(n)⊆V . The tree decomposition
satisfies the following conditions:
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1. For vertex v∈V there exists (at least one) n∈N such that v∈verts(n).
2. For each hyperedge e∈E there exists (at least one) n∈N: e⊆verts(n).
3. For each vertex v, for any two nodes n1, n2 such that v ∈ verts(n1) and
v ∈ verts(n2), then v ∈ verts(n) for each node n along the unique path be-
tween n1 and n2 in the tree. Stated another way, the subset of nodes Nv :{n∈
N | v∈verts(n)} induces a subtree of T (denoted Tv).
The width of a tree decomposition is given by max{|verts(n)| | n ∈ N}− 1.

In other words, we find the node n in the tree whose associated set of vertices has
the largest cardinality. We subtract one from this maximal cardinality to obtain the
treewidth. A tree decomposition is optimal for a graph G if no other tree decomposition
exists with a strictly smaller width. The treewidth of a hypergraph G is given by width
of an optimal tree decomposition.

It is easy to show that if the graph G is a tree, it has treewidth 1. Likewise, a
cycle has tree width 2.

Example 3. The tree decomposition of the hypergraph G from Ex. 2 has three nodes
{n1,n2,n3} with edges (n1,n2) and (n2,n3). The nodes along with the associated
vertex sets are as follows:

n2 : {x2,w1} n1 : {x2,x3} n3 : {x1,x2}

Although the tree decomposition is not a rooted tree, we often designate an arbi-
trary node r∈N as the root node, and consider the tree T as a rooted tree with root r.

Finding a Tree Decomposition: Interestingly, the problem of finding the
treewidth of a graph is itself a NP-hard problem. However, many practical ap-
proaches exist for graphs with small treewidths. For instance, Bodlaender presents
an algorithm that runs in time O(kO(k3)) to construct a tree decomposition of width
at most k or conclude that the treewidth of the graph is at least k+1 [6]. Such an
approach can be quite useful if a given graph is suspected to have a small tree width
in the first place. Besides this, many efficient algorithms exist to approximate the
treewidth of a graph to some constant factor. A detailed survey of these results is
available elsewhere [7,8]. Open-source packages such as HTD can compute treewidth
for graphs with thousands of nodes [1]. Finally, we note that if a tree decomposition
of width k can be found, then one can be found with at most |V | nodes.

Lemma 1. Let T be a tree decomposition for a (multi)graph G with vertices V and
treewidth k. There exists a tree decomposition T̂ of G with the same treewidth k, and
at most |V | nodes.
A proof is provided in the extended version of the paper.

3 Abstract Domains Using Tree Decompositions

In this section, we will define abstract domains using tree decompositions of the
dependency hypergraph of the system under analysis. Let Π be a transition system
over system variables X. The concrete states are given by x∈D, wherein x :X 7→R
maps each state variable xj∈X to its value x(xj) (denoted xj).
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Definition 4 (Projections). The projection of a state x to a subset of state variables
J⊆X, denoted as proj(x,J), is a valuation x̂ :J 7→R such that x̂(xi)=x(xi) for all
xi∈J. For a set of states S⊆D and a subset of state variables J⊆X, we denote the
projection of S along (the dimensions of) J as proj(S,J):{proj(x,J) | x∈S}.

Definition 5 (Extensions). Let R be a set of states involving just the variables
in the set J1⊆X, i.e, R⊆proj(D,J1). We define the extension of R into a set of
variables J2⊇J1 as extJ2

(R): {x∈proj(D,J2) | proj(x,J1)∈R}.
In other words, the extension of a set embeds each element in the larger dimensional

space defined by J2 allowing “all possible values” for the dimensions in J2\J1.

We will use the notation ext(S) to denote the set extX(S), i.e, its extension to the
entire set of state variables X. For a state xS, we will use ext(xS) denote ext({xS}).

Definition 6 (Product (Join) of Sets). Let R1⊆proj(D,J1) and R2⊆proj(D,J2).
We define R1⊗R2 : {x :J1∪J2 7→R | proj(x,J1)∈R1 and proj(x,J2)∈R2}.

Let T : (N,C) be a tree decomposition of the dependency hypergraph of the
system. Recall that for each node n∈N we associate a set of system/disturbance
variables denoted by verts(n). Let vertsX(n) denote the set of system variables:
verts(n)∩X. We say that an update function xk :=fk(x,w) is associated with a
node n in the tree iff {xk}∪inps(fk)⊆verts(n).

Lemma 2. For every system variable xk, its update xk := fk(x,w) is associated
with at least one node n∈N.

Proof. This follows from those of a tree decomposition that states that every hyperedge
in the dependency hypergraph must belong to verts(n) for at least one node n∈N .

3.1 Abstraction and Concretization

We consider subsets of the concrete states for the system Π, i.e, the set 2D, ordered by
set inclusion as our concrete domain. Given a tree decomposition, T , we define an ab-
stract domain through projection of a concrete set along verts(n) for each node n of T .

Definition 7 (Abstract Domain). Each element s of the abstract domain AT is
a mapping that associates each node n∈N with a set s(n)⊆proj(D,vertsX(n)).

For s1,s2∈AT , s1vs2 iff s1(n)⊆s2(n) for each n∈N.

We will use the notation proj(S,n) for a node n∈N to denote proj(S,vertsX(n)).

Definition 8 (Abstraction Map). Given a tree decomposition T , the abstraction
map αT takes a set of states S⊆D and produces a mapping that associates tree node
n∈N to a projection of S along the variables vertsX(n). Formally,

αT (S): λn :N. proj(S,n).

Thus, an abstract state s is a map that associates each node n of the tree to a
set s(n)⊆Dn. We now define the concretization map γT .
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Definition 9 (ConcretizationMap). The concretization γT (s) of an abstract state
is defined as γT (s) :

⋂
n∈N ext(s(n)). In other words, we take s(n) for every node

n∈N, extend it to the full dimensional space of all system variables and intersect the
result over all nodes n∈N.

Example 4. Consider a simple tree decomposition T with 2 nodes n1,n2 and a single
edge (n1,n2). Let verts(n1):{x1,x2} and verts(n2):{x2,x3}. Let the domain D be

the set xi∈{1,2,3} for i=1,2,3. We use the notation (
x1

v1,
x2

v2,
x3

v3) to denote a state x
that maps x1 to the value v1, x2 to the value v2 and so on.

Now consider the set S={(
x1

1,
x2

1,
x3

1),(
x1

1,
x2

1,
x3

2),(
x1

1,
x2

2,
x3

3)}. We have that s :α(S) is the map-
ping that projects S onto the dimensions (x1,x2) for node n1 and (x2,x3) for node n2:

n1 7→{(
x1

1,
x2

1),(
x1

1,
x2

2)}, n2 7→{(
x2

1,
x3

1),(
x2

1,
x3

2),(
x2

2,
x3

3)}.

Likewise, we verify that the concretization map γ(s) will yields us:

γ(s):{(
x1

1,
x2

1,
x3

1),(
x1

1,
x2

1,
x3

2),(
x1

1,
x2

2,
x3

3)}.

For convenience, if the tree T is clear from the context, we will drop the subscripts
to simply write α and γ for the abstraction and concretization map, respectively.

Theorem 1. For any tree decomposition T , the maps α and γ form a Galois con-
nection. I.e, for all S⊆D and s∈AT : α(S)vs iff S⊆γ(s).

Proof. Let S,s be such that α(S)vs. Therefore, proj(S,n)⊆s(n) ∀n∈N by the defi-
nition of v. Pick any, x∈S. First, proj(x,n)∈proj(S,n) and therefore, proj(x,n)∈s(n)
for all n∈N . Thus, x∈ext(s(n)) for each node n∈N . Therefore, x∈

⋂
n∈Next(s(n)),

and hence, x∈γ(s), by defn. of γ. Therefore, S⊆γ(s).
Conversely, assume S⊆γ(s). Since γ(s)=

⋂
n∈Next(s(n)) (from Def. 9). Therefore,

S ⊆ ext(s(n)) forall n ∈ N. Therefore, for all x ∈ S, proj(x,n) ∈ s(n). Therefore,
proj(S,n)⊆s(n) for every n∈N . Finally, this yields α(S)vs.

The meet operation is defined as s1us2 : λn. s1(n)∩s2(n), and likewise, the join
is defined as s1ts2 : λn. s1(n)∪s2(n). We recall two key facts that follow from Galois
connection between α and γ.
1. For any set S⊆D, we have S⊆γ(α(S)). Abstracting a concrete set and concretiz-

ing it back again “loses information”. To see why, we start from α(S)vα(S) and
apply the Galois connection to derive S⊆γ(α(S)).

2. Likewise, for any abstract domain object s∈A, we have α(γ(s))vs. I.e, for any
element s, taking its concretization and abstracting it “gains information”. To
prove this, we start from γ(s)⊆γ(s) and conclude that α(γ(s))vs.

Example 5. Returning back to Ex. 4, now consider the set

Ŝ={(
x1

1,
x2

1,
x3

2),(
x1

1,
x2

2,
x3

3),(
x1

2,
x2

1,
x3

2),(
x1

2,
x2

2,
x3

4)}.

Its abstraction ŝ :α(Ŝ) is given by the mapping:

n1 7→{(
x1

1,
x2

1),(
x1

1,
x2

2),(
x1

2,
x2

1),(
x1

2,
x2

2)}, n2 7→{(
x2

1,
x3

2),(
x2

2,
x3

3),(
x2

2,
x3

4)}.
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We note that γ(ŝ) is the set: {(
x1

1,
x2

1,
x3

2),(
x1

1,
x2

2,
x3

3),(
x1

1,
x2

2,
x3

4),(
x1

2,
x2

1,
x3

2),(
x1

2,
x2

2,
x3

3),(
x1

2,
x2

2,
x3

4)}. Thus

Ŝ⊆ γ(ŝ). Notice that (
x1

2,
x2

2,
x3

3) and (
x1

1,
x2

2,
x3

4) are part of γ(ŝ) but not the original set

Ŝ. Similarly, consider the abstract element s1: n1 7→{(
x1

1,
x2

1),(
x1

1,
x2

2)}, n2 7→{(
x2

1,
x3

3)}. We

note that γ(s1):{(
x1

1,
x2

1,
x3

3)} and therefore α(γ(s1)) yields the abstract element s2vs1:
n1 7→{(

x1

1,
x2

1)}, n2 7→{(
x2

1,
x3

3)}.

3.2 Canonical Elements and Message Passing

In the tree decomposition, various nodes share information about the subsets of
vertices associated with each node. Since the subsets have elements in common, it
is possible that a node n1 has information about a variable x2 that is also present in
some other node n2 of the tree. We will now see how to take an abstract element s and
refine each s(n) by exchanging information between nodes in a systematic manner.

For each edge (n1,n2)∈C of the tree, define the set of variables in common as
CV(n1,n2): verts(n1)∩verts(n2) and CVX(n1,n2): vertsX(n1)∩vertsX(n2)

Definition 10 (Canonical Elements). An abstract element s is said to be canon-
ical if and only if for each edge (n1,n2)∈C in the tree:

proj(s(n1),CVX(n1,n2))=proj(s(n2),CVX(n1,n2)).

In other words, if we took the common variables vertsX(n1)∩vertsX(n2), the set
s(n1) projected along these common variables is equal to the projection of s(n2) along
the common variables.

Example 6. Consider the abstract element s1 from Ex. 5: n1 7→{(
x1

1,
x2

1),(
x1

1,
x2

2)}, n2 7→
{(

x2

1,
x3

3)}. proj(s1(n1),CV(n1,n2)) is the set {
x2

1,
x2

2} whereas proj(s1(n2),CV(n1,n2)) is

simply {
x2

1}. Therefore, s1 fails to be canonical.

The key theorem of tree decomposition is that a canonical element in the abstract
domain can be seen as the projection of a concrete set S along vertsX(n) for each
node n of the tree. To prove that we will first establish a useful property of a canonical
element s.

Lemma 3. For every canonical element s∈A, node n∈N and element xn∈s(n),
we have that ext(xn)∩γ(s) 6=∅.

Stated another way, the lemma claims that for any canonical s, any xn∈s(n) can be
extended to form some element of γ(s). A proof is provided in the extended version.

Theorem 2. An element s is canonical (Def.10) if and only if s=α(S) for some
concrete set S.

Ideally, in abstract interpretation, we would like to work with abstract domain
objects that satisfy s=α(γ(s)). One way to ensure that is to take any given domain
element s0 and simply calculate out α(γ(s0)) by applying the maps. However, γ(s0)
in our domain takes lower dimensional projections and reconstructs a set in the
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full states pace. It may thus be too expensive to compute. Fortunately, canonical
objects satisfy the equality s=α(γ(s)). Therefore, given any object s∈A that is not
necessarily canonical, we would like to make it canonical: I.e, we seek an object ŝ
such that γ(ŝ)=γ(s), but ŝ is canonical. As mentioned earlier, directly computing
ŝ=α(γ(s)) can be prohibitively expensive, depending on the domain. We now describe
a message passing approach.

First, we convert the tree T to a rooted tree by designating an arbitrary node
r∈N as the root of the tree.

Message Passing along Edges: Let (n1,n2) be an edge of the tree and s be an
abstract element. A message from n1 to n2 is defined as the set msg(s,n1→n2) :
proj(s(n1),CV(n1,n2)). In other words, we project the set s(n1) along the dimensions
that are common to (n1,n2).

Once a node n2 receives M :msg(s,n1→n2), it processes the message by updating
s(n2) as s(n2):=s(n2)∩extverts(n2)(M). In other words, it intersects the message
(extended to the dimensions in n2) with the current set that is associated with n2.

Example 7. Consider a tree decomposition with three nodes {n1,n2,n3} and the
edges (n1, n2) and (n2, n3). Let verts(n1) : {x1, x2}, verts(n2) : {x2, x4} and
verts(n3): {x2,x3}. LetD be the domain {1,2,3,4}4. Consider the abstract element s:

n1 7→{(
x1

1,
x2

2),(
x1

3,
x2

3),(
x1

1,
x2

4)}, n2 7→{(
x2

1,
x4

1),(
x2

2,
x4

2),(
x2

3,
x4

3),(
x2

4,
x4

4)}, n3 7→{(
x2

4,
x3

4),(
x2

2,
x3

3)}.

A message msg(s,n1→n2) is given by the set proj(s(n1),{x2}) : {
x2

2,
x2

3,
x2

4}. This

results in the new abstract object s′ wherein the element (
x2

1,
x4

1) is removed from s(n2) :

n1 7→{(
x1

1,
x2

2),(
x1

3,
x2

3),(
x1

1,
x2

4)}, n2 7→{�
��(

x2

1,
x4

1),(
x2

2,
x4

2),(
x2

3,
x4

3),(
x2

4,
x4

4)}, n3 7→{(
x2

4,
x3

4),(
x2

2,
x3

3)}.

Upwards Message Passing: The upwards message passing works from leaves up
to the root of the tree according to the following two rules:
1. First, each leaf of the tree n passes a message to its parent np. The parent node
np intersects its current value s(np) with the message to update its current set.

2. After a node has received (and processed) a message from all its children, it
passes a message up to its parent, if one exists.
The upwards message passing terminates at the root since it does not have a

parent to send a message to.

Example 8. Going back to Ex. 7, we designate n2 as the root and the upwards pass
sends the messages msg(s,n1→n2) and msg(s,n3→n2). This results in the following
updated element:

n1 7→{(
x1

1,
x2

2),(
x1

3,
x2

3),(
x1

1,
x2

4)}, n2 7→{�
��(

x2

1,
x4

1),(
x2

2,
x4

2),�
��(

x2

3,
x4

3),(
x2

4,
x4

4)}, n3 7→{(
x2

4,
x3

4),(
x2

2,
x3

3)}.

Downwards Message Passing: The downwards message passing works from the
root down to the leaves.
1. To initialize, the root sends a message to all its children.
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2. After a node has received (and processed) a message from its parent, it sends
a message to all its children.
The overall procedure to make a given abstract object s canonical is as follows: (a)

perform an upwards message passing phase and (b) perform a downwards message
passing phase.

Example 9. Going back to Ex. 8, the downward message passing phase sends messages
from n2→n1 and n2→n3. The resulting element ŝ is

n1 7→{(
x1

1,
x2

2),�
��(

x1

3,
x2

3),(
x1

1,
x2

4)}, n2 7→{�
��(

x2

1,
x4

1),(
x2

2,
x4

2),�
��(

x2

3,
x4

3),(
x2

4,
x4

4)}, n3 7→{(
x2

4,
x4

4),(
x2

2,
x4

3)}.

On the other hand, it is important to perform message passing upwards first
and then downwards second. Reversing this does not yield a canonical element. For
instance going back to Ex. 7, if we first performed a downwards pass from n2, the
result is unchanged:

n1 7→{(
x1

1,
x2

2),(
x1

3,
x2

3),(
x1

1,
x2

4)}, n2 7→{(
x2

1,
x4

1),(
x2

2,
x4

2),(
x2

3,
x4

3),(
x2

4,
x4

4)}, n3 7→{(
x2

4,
x3

4),(
x2

2,
x3

3)}.

Performing an upwards pass now yields the element s2:

n1 7→{(
x1

1,
x2

2),(
x1

3,
x2

3),(
x1

1,
x2

4)}, n2 7→{�
��(

x2

1,
x4

1),(
x2

2,
x4

2),�
��(

x2

3,
x4

3),(
x2

4,
x4

4)}, n3 7→{(
x2

4,
x4

4),(
x2

2,
x4

3)}.

However this is not canonical, since the element (
x1

3,
x2

3) in s2(n1) violates the requirement
over the edge (n1,n2).

Let ŝ be the resulting abstract object after the message passing procedure finishes.

Theorem 3. The result of message passing ŝ is a canonical object, and it satisfies
γ(ŝ)=γ(s).

Proof (Sketch). First, we note that whenever a message is passed for an abstract
value s from node m to n along an edge (m,n) resulting in a new abstract value s′:
(P1) γ(s′)=γ(s); and (P2) the projection of s′(n) along the dimensions CV(m,n) is
now contained in that of s′(m) along CV(m,n). Furthermore, property (P2) remains
unchanged regardless of any future messages that are passed along the tree edges.

Next, it is shown that after each upwards pass, when a message is passed, property
(P2) (stated above) holds for each node m and its parent node n since a message
is passed from m to n. During the downwards pass, property (P2) holds for each
node n and its child node m in the tree. Combining the two, we note that for each
edge (m,n) in the tree, we have property (P2) in either direction guaranteeing that
proj(s∗(m),CV(m,n))=proj(s∗(n),CV(m,n)), for the final result s∗, or in other words
that s∗ is canonical.

3.3 Decomposable Sets and Post-Conditions

We have already noted that for any concrete set over S ⊆D, the process of ab-
stracting it by projecting into nodes of a tree T , and re-concretizing it is “lossy”: I.e,
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S⊆γ(α(S)). In this section, we study “tree decomposable” concrete sets S for which
γ(α(S))=S. Ideally, we would like to prove that if a set S is tree decomposable then
so is the set post(S,Π) of next states. However, we will disprove this by showing a
counterexample. Nevertheless, we will present an analysis of why this fact fails and
suggest approaches that can “manage” this loss in precision.

Definition 11 (Decomposable Sets). We say that a set S is tree decomposable
given a tree T iff γ(α(S))=S.

This is in fact a “global” definition of decomposability. In fact, a nice “local” def-
inition can be provided that is reminiscent of the notion of conditional independence
in graphical models. We will defer this discussion to an extended version of this paper
due to space limitations.

Example 10. Consider set S :{(
x1

1,
x2

2,
x3

1),(
x1

2,
x2

2,
x2

2)} and tree T below:

n1 : {x1,x2} n2 : {x2,x3}

We wish to check if S is T -decomposable. We have s :α(S) as

s(n1):proj(S,n1): {(
x1

1,
x2

2),(
x1

2,
x2

2)} s(n2):proj(S,n2){(
x2

2,
x3

1),(
x2

2,
x3

2)}.

Now, γ(s) : {(
x1

1,
x2

2,
x3

1),(
x1

1,
x2

2,
x2

2),(
x1

2,
x2

2,
x3

1),(
x2

2,
x2

2,
x2

2).}. We note that the set S is not tree

decomposable. On the other hand, one can verify that the set S1 :{(
x1

1,
x2

2,
x3

2),(
x1

2,
x2

2,
x2

2)}
is tree decomposable.

The following lemma will be quite useful.

Lemma 4. Let S1,S2 be tree decomposable sets over T . Their intersection is tree
decomposable.

Let Π be a transition system over system variables in x∈D. For a given set
S⊆D, us define the post-condition post(S,Π) to be the set of states reachable in one
step starting from some state in S:

post(S,Π): {x′ | x∈S, x′=eval(f,x)}.

Let us also consider a transition relation R over pairs of states (x,x′)∈D⊗D:

R={(x,x′) | x,x′∈D and x′=eval(f,x)}.

The relation R can be viewed as the intersection of n relations: R :
⋂

xj∈XRj, wherein

Rj : {(x,x′) | x,x′∈D and x′j =eval(fj,x)}.

In other words, Rj is a component of R that models the update of the system variable
xj. Also for each xj ∈X, let ej : inps(fj)∪xj be the inputs to the update function
fj and the node xj itself.
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Given the tree T , we define the extended tree T ′ as having the same node set N
and edge set C as T . However, vertsT ′(n)=vertsT (n)∪{x′j |xj∈vertsT (n)}. Note
that T ′ with the labeling vertsT ′ satisfies all the condition of a tree decomposition
for a graph G save the addition of vertices x′i in each node of the tree. We will write
verts′(n) to denote the set vertsT ′(n).

Lemma 5. The transition relation R of a system Π is tree T ′ decomposable.

The proof is provided in the extended version and is done by writing R as an
intersection of tree decomposable relations Rj, and appealing to Lemma 4.

First, we show the negative result that the image of a tree (T) decomposable set
under a tree (T ′) decomposable transition relation is not tree decomposable, in general.

Example 11. Let X = {x1,x2,x3} and consider again the tree decomposition from

Ex. 10. Let S be the set {(
x1∗,

x2∗,
x3∗)}, wherein we use the wild card character as notation

that can be substituted for any element in the set {1,2}. Therefore, we take S to be
a set with 8 elements. Clearly S is tree decomposable in the tree T from Ex. 10.

Consider the transition relation R that will be written as the intersection of three
transition relations:

R1 :{(X,X′) | x′1=x2}, R2 :{(X,X′) | x′2∈{1,2}}, R′3 : {(X,X′) | x′3=x2}.

Clearly R is tree T ′ decomposable. We can now compute the post-condition of S

under this relation. The reader can verify the post-condition Ŝ : {(
x1

1,
x2∗,

x3

1),(
x1

2,
x2∗,

x3

2)}.
However, Ŝ is not tree decomposable. We note that ŝ : α(Ŝ) is the set ŝ(n1): {(

x1∗,
x2∗)}

and ŝ(n2): {(
x1∗,

x2∗)}. Therefore γ(ŝ) is the set {(
x1∗,

x2∗,
x3∗)}.

As noted above, the set R is tree T ′ decomposable. If S is tree decomposable,
we can extend S to a set S′ : extX′(S) that is now defined over X ∪X′ and is
also tree decomposable. As a result S′∩R is also tree decomposable. However, the
postcondition of S is the set proj(S′∩R,X′). Thus, the key operation that failed was
the projection operation involved in computing the post-condition. This suggests a
possible solution to this issue albeit an expensive one: at each step, we maintain the
reachable states using both current and next state variables, thus avoiding projection.
In effect, the reachable states at the ith step will be entire trajectories of the system
expressed over variables X0∪X1∪···Xi. This is clearly not practical. However, a more
efficient solution is to note that some of the current state variables can be projected
out without losing the tree decomposability property. Going back to Ex. 11, we note
that we can safely project away {x1,x3}, while maintaining the new reachable set
in terms of (x2,x

′
1,x
′
2,x
′
3). In this way, we may recover the lost precision back.

In conclusion, we note that tree decompositions may lose precision over post-
conditions. However, the loss in precision can be avoided if carefully selected “previous
state variables” are maintained as the computation proceeds. The question of how
to optimally maintain this information will be investigated in the future.
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4 Grid-Based Interval Analysis

We now combine the ideas to create a disjunctive interval analysis using tree decom-
positions. The main idea here is to apply tree decompositions not to the concrete
set of states but to an abstraction of the concrete domain by grid-based intervals.

We will now describe the interval-based abstraction of sets of states dynamical
system Π in order to perform over-approximate reachability analysis. Let us fix a
system Π :〈x,w,D,W,f,X0,U〉 as defined in Def. 1. We will assume that the domain of
state variables D is a hyper-rectangle given by D : [L(x1),U(x1)]×···×[L(xn),U(xn)]
for L(xj),U(xj) ∈R and L(xj)≤U(xj) for each j = 1,...,n. In other words, each
system variable xj lies inside the interval [L(xj),U(xj)]. Likewise, we will assume
that W :

∏m
k=1[L(wk),U(wk)] such that L(wk)≤U(wk) and L(wk),U(wk)∈R.

We will consider a uniform cell decomposition wherein each dimension is divided
into some natural number M>0 of equal sized subintervals. The ith subinterval of
variable xj is denoted as subInt(xj,i), and is given by [L(xj)+iδj,L(xj)+(i+1)δj] for

i=0,...,M−1 and δj :
(U(xj)−L(xj))

M . Similarly, we will define subInt(wk,i) for distur-
bance variables wk whose domains are also divided into M subdivisions. The overall
domain D×W is therefore divided into Mm+n cells wherein each cell is indexed by
a tuple of natural numbers i :〈i1,...,in,in+1,...,in+m〉, such that ij∈{0,...,M−1} and
the cell corresponding to i is given by:

γC(i):

n∏
j=1

subInt(xj,ij) ×
m∏

k=1

subInt(wk,in+k) (1)

Definition 12 (Grid-Based Abstract Domain). The grid based abstract domain
is defined by the set C : P(i∈{0,...,M}m+n), wherein each abstract domain element
is a set of grid cells. The sets are ordered simply by set inclusion ⊆ between sets of
grid cells. The abstraction map αC :P(D)→C is defined as follows:

αC(S):{i∈C | γC(i)∩S 6=∅}.

The concretization map γC is defined above in (1).

Definition 13 (Interval Propagator). An interval propagator (IP) is a higher
order function that takes in the description of a function f with k real-valued inputs
and p real valued outputs, and an interval I : [l1,u1]×···× [lk,uk] and outputs an
interval (hyperrectangle over Rp) IntvlProp(f,I) such that the following soundness
guarantees hold:

(∀x∈D)

k∧
j=1

xj∈ [lj,uj] ⇒ eval(f,x)∈IntvlProp(f,I).

In practice, interval arithmetic approaches have been used to build sound interval
propagators [33]. However, they suffer from issues such as the wrapping effect that
make their outputs too conservative. This can be remedied by either (a) performing a
finer subdivision of the inputs (i.e, increasing M) to ensure that the intervals I being
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input into the IntvlProp are sufficiently small to guarantee tight error bounds; or
(b) using higher order arithmetics such as affine arithmetic or Taylor polynomial
arithmetic [25,32].

The interval propagator serves to define an abstract post-condition operation over
sets of cells Ŝ⊆C. Given such a set, Ŝ, we compute the post condition in the abstract
domain. Informally, the post condition is given (a) by iterating over each cell in S;
and (b) computing the possible next cells using IntvlProp. Formally, we define the
abstract post operation as follows:

postC(Ŝ,Π):
⋃
i∈Ŝ

αC(IntvlProp(f,γC(i))).

Given this machinery, an abstract T -step reachability analysis is performed in the
standard manner: (a) abstract the initial state; (b) compute post condition for T steps;
and (c) check for intersections of the abstract states with the abstraction of the unsafe
set. We can also define and use widening operators to make the sequence of iterates con-
verge. The grid based abstract domain can offer some guarantees with respect to the
quality of the abstraction. For instance, we can easily bound the Hausdorff distance be-
tween the underlying concrete set and the abstraction as a function of the discretization
sizes δj. However, the desirable properties come at a high computational cost since the
number of cells grows exponentially in the number of system and disturbance variables.

4.1 Tree Decomposed Analysis

We now consider a tree-decomposed approach based on the concept of nodal abstrac-
tions. The key idea here is to perform the grid-based abstraction not on the full set
of system and disturbance variables, but instead on individual nodal abstractions
over a tree decomposition T .

Definition 14 (Nodal Abstractions). A nodal abstractionNodalAbstraction(Π,n)
corresponding to a node n∈N is defined as follows:

:
1. The set of system variables are given by Xn : vertsX(n) with domain given by
Dn : proj(D,Xn).

2. The initial states are given by proj(X0,Xn).
3. The unsafe set is given by proj(U,Xn).
4. The set of disturbance variables are Yn : vertsW (n) with domain given by
Wn : proj(W,Wn).

5. The updates are described by a relation R(Xn,X
′
n) that relate the possible current

states Xn and next states X′n. The relation is constructed as a conjunction of
assertions over variables xi,x

′
i wherein xi∈Xn.

(a) If the update xi :=fi(x,w) is associated with the node n, we add the conjunct
x′i=fi(Xn,Wn), noting that the proper inputs to fi are contained in verts(n).

(b) Otherwise, x′i∈proj(D,{xi}) that simply states that the next state value of
the variable xi is some value in its domain.

Given a system Π, the nodal abstraction is a conservative abstraction, and
therefore, it preserves reachability properties.
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Lemma 6. For any reachable state x of Π at time t, its projection proj(x,Xn) is a
reachable state of NodalAbstraction(Π,n) at time t.

Since each nodal abstraction involves at most ω+1 variables, the abstraction at
each node can involve at most Mω+1 cells where ω is the tree width. Also, note that a
tree decomposition can be found with tree width ω that has at most |X|+|W | nodes.
This implies that the number of nodal abstractions can be bounded by (|X|+|W |).

Let Π(n) : NodalAbstraction(Π,n) be the nodal abstraction for tree node
n∈N. For each node n∈N, we instantiate a grid based abstract domain for Π(n)
ranging over the variables vertsX(n). At the ith step of the reachability analysis,
we maintain a map si each node n to a set of grid cells si(n) defined over verts(n).
1. Compute ŝi(n):postC(si(n),Π(n)).
2. Make ŝi canonical using message passing between nodes to obtain si+1.

The message passing is performed not over projections of concrete states but over
cells belonging to the grid based abstract domain. Nevertheless, we can easily extend
the soundness guarantees in theorem 3 to conclude soundness of the composition.

Once again, we can stop this process after T steps or use widening to force
convergence. We now remark on a few technicalities that arise due to the way the
tree decomposition is constructed.

Intersections with Unsafe Sets: Checking for a non-empty intersection with the
unsafe sets may require constructing concrete cells over the full dimensional space if the
unsafe sets are not tree decomposable for the tree T . However in many cases, the unsafe
states are specified as intervals over individual variables, which yields a tree decompos-
able set. In such cases, we need to intersect the abstraction at each node with the unsafe
set and perform message passing to make it canonical before checking for emptiness.

Handling Guards and Invariants: We have not discussed guards and invariants.
It is assumed that such guards and invariants are tree decomposable over the tree
T . In this case, we can check which abstract cells have a non-empty intersection with
the guard using message passing. The handling of transition systems with guards
and invariants will be discussed as part of future extensions.

5 Experimental Evaluation

In this section, we describe an experimental evaluation of our approach over a set of
benchmark problems. Our evaluation is based on a C++-based prototype implemen-
tation that can read in the description of a nonlinear dynamical system over a set of
system and disturbance variables. The dynamics can currently include polynomials,
rational functions and trigonometric functions. Our implementation uses the MPFI
library to perform interval arithmetic over the grid cells [36]. We use the HTD library
to compute tree decompositions [1]. The system then computes a time-bounded
reachable set over the first T steps of the system’s execution. Currently, we plot the
results and compare the reachable set estimates against simulation data. We also
compare the reachable sets computed by the tree decomposition approach against
an approach without using tree decompositions. However, we note that the latter
approach timed out on systems beyond 4 state variables.
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Table 1. Results on benchmark examples. |X|: Number of state variables, |W |: number of
disturbance variables, Tree Decomp.: reachability using tree decompositions, Monolithic:
reachability analysis without tree decompositions. SAPO: number of directions (|L|), number
of bundles (|T |) and running time. All timings are reported in seconds on a Macbook
pro laptop running MacOS 10.14 with 16GB RAM and 3.4 GHz Intel core i7 processor.
Reachability analysis was carried out for 15 time steps.

Name |X| |W | Tree Tree Decomp. Monolithic SAPO
Width Time # Cells Time # Cells (|L|,|T |) Time

System # 1 3 1 1 14.4 0.22M 1047.6 7.6M -n/a-
System # 2 4 1 2 2.7 24K 652 3.1M -n/a-
SIR [23,40] 3 0 1 4.1 95K 143 2M (3,1) 0.1
1D-Lattice-10 [39] 10 0 2 99 1.1M TO (1.5 hours) (16,6) 679
ebola-epidemic [14] 5 0 2 799.4 1.9M TO (1.5 hours) (5,5) 0.02
p53-gene-reg [31] 6 0 2 135.8 98K TO (1.5 hours) -n/a-
influenza-epidemic [22] 4 0 2 517.9 1.4M TO (1.5 hours) (7,4) 0.1
coupled-vanderpol 6 0 2 10.5 0.1M TO (1.5 hours) (10,5) 2.5
Laub-Loomis [30,20] 7 0 3 1755.1 2.6M TO (1.5 hours) (12,6) 1.8
Honeybee* [23,9] 6 4 3 206.1 2.1M TO (1.5 hours) (8,4) 0.7
Phosporelay [22] 7 0 3 1566.2 7.5M TO (1.5 hours) (10,4) 1.2
Coord. Vehicles (1) 5 1 2 150.2 0.5M TO (1.5 hours) -n/a-
Coord. Vehicles (2) 10 2 2 1175.2 2M TO (1.5 hours) -n/a-
Coord. Vehicles (4) 20 4 2 2206.7 3.9M TO (1.5 hours) -n/a-

Table 1 presents the results over a small set of challenging nonlinear systems
benchmarks along with a comparison to two other approaches (a) the approach with-
out tree decomposition and (b) the tool SAPO [22] which computes time bounded
reachable sets for polynomial systems using the technique of parallelotope bundles
described by Dreossi et al [23]. The benchmarks range in number of system variables
from 3 to 20 state variables. We describe the sources for each benchmark where
appropriate. Note that the SAPO tool does not handle nonpolynomial dynamics or
time varying disturbances at the time of writing.

The treewidths range from 1 for the simplest system (Ex. 1) to 3 for the 7-state
Laub Loomis oscillator example [30]. We note that the tree decomposition was con-
structed within 0.01 seconds for all the examples. We also note that systems with
as many as 20 state variables are handled by our approach whereas the monolithic
approach cannot handle systems beyond 4 state variables. We now compare the
results of our approach to that of the monolithic approach on the two cases where
the latter approach completed.

System # 1: Consider again the system from Ex. 1 with 3 state variables and 1 dis-
turbance. We have already noted a tree decomposition of tree width 1 for this example.

System # 2: In this example, we consider a system over 4 state variables {x,y,z,w}
and one disturbance variable w1.

x := 0.5x+y+0.05xy−w1, y := −0.7y−0.03x, z := z−0.4y, w := w−0.05xw

The domains include (x,y,z,w)∈ [−1,1]4 and divided into 16×108 grid cells (200
for each state variable). The disturbance w1∈ [−0.1,0.1]. The initial conditions are
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Fig. 1. Reachable set projections (shaded blue) for System# 2 (left) and the SIR model [22]
(right). Top : tree decomposition approach and Bottom: monolithic approach without tree
decompositions. Reachable sets are identical for the SIR model. Note the difference in range
of z for the system #2. The red dots show the results of simulations.

x∈ [0.08,0.16],y∈ [−0.16,−.05],z∈ [0.12,0,31] and w∈ [−0.15,−0.1]. We obtain a tree
decomposition of width 2, wherein the nodes include n1 : {x,y,w1}, n2 : {y,z} and
n3 : {x,w} with the edges (n1,n2) and (n1,n3).

Figure 1 compares the resulting reachable sets for the tree decomposed reacha-
bility analysis versus the monolithic approach. We note differences between the two
reachable sets but the loss in precision is not significant.

Coordinated Vehicles: In this example, we study nonlinear vehicle models of
vehicles executing coordinated turns. Each vehicle has states (xi,yi,vx,i,vy,i,ω), rep-
resenting positions, velocities and the rate of change in the yaw angle, respectively,
with a disturbance wi. The dynamics are given by

xi :=xi+0.1vx,i, yi :=yi+0.1vy,i, vx,i=vx,i+0.1vx,icos(0.1ωi)−0.1vy,isin(0.1ωi)
ωi=0.5ωi+0.5ω0+0.1wi

The vehicles are loosely coupled with ωi representing the turn rate of the ith

vehicle and ω0 that of the “lead” vehicle. The ith vehicle tries to gradually align
its turn rate to that of the lead vehicle. This model represents a simple scenario of
loosely coupled systems that interact using a small set of state variables. applications
including models of cardiac cells that are also loosely coupled through shared action
potentials [26]. The variables xi,yi are set in the domain [−15,15] and subdivided into
300 parts along each dimension. Similarly, the velocities range over [−10,10] and are
subdivided into 500 parts each and the yaw rate ranges over [−0.2,0.2] radians/sec
and subdivided into 25 parts. The disturbance ranges over [−0.1,0.1]. Table 1 reports
results from models involving 1,2 and 4 vehicles. Since they are loosely coupled, the
treewidth of these models is 2.

Laub-Loomis Model: The Laub-Loomis model is a molecular network that pro-
duces spontaneous oscillations for certain values of the model parameters. The model’s
description was taken from Dang et al [20]. The system has 7 state variables each
of which was subdivided into 100 cells yielding a large state space with 1014 cells. We
note that the tree width of the graph is 3, yielding nodes with upto 4 variables in them.
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Comparison With SAPO SAPO is a state-of-the-art tool that uses polytope
bundles and Bernstein polynomials to represent and propagate reachable sets for
polynomial dynamical systems [22,23]. We compare our approach directly on SAPO
for identical models and initial sets. Note that SAPO does not currently handle
non-polynomial models or models with time-varying disturbances. Table 1 shows that
SAPO is orders of magnitude faster on all the models, with the sole exception of the
1D-Lattice-10 model. Figure 2 shows the comparison of the reachable sets computed by
our approach (shaded blue region) against those computed by SAPO (black rectangles)
for five different models. We note that for three of the models compared, neither
reachable set is contained in the other. For the one dimensional lattice model, SAPO
produces a better reachable set, whereas our approach is better for the influenza model.
We also note that both for our approach the precision can be improved markedly
by increasing the number of subdivisions, albeit at a large computational cost that
depends on the treewidth of the model. The same is true for SAPO, where the number
of directions and the template sizes have a non-trivial impact on running time.

Models with Large Treewidths We briefly report on a few models that we
attempted with large treewidths. For such models, our approach of decomposing the
space into cells becomes infeasible due to the curse of dimensionality.

A model of how honeybees select between different sites [9,23] has 6 variables and
its tree width is 5 with a single tree node containing all state variables. However, the
large treewidth is due to two terms in the model which are replaced by disturbance vari-
ables that overapproximate their value. This brings down the treewidth to 3, making it
tractable for our approach. Details of this transformation are discussed in our extended
version. Treewidth reduction using abstractions is an interesting topic for future work.

We originally proposed to analyze a 2D grid lattice model taken from Vleck
et al [39]. However, a 2D 10×10 lattice model has a dependency hypergraph that
forms a 10×10 grid with treewidth 10. Likewise, the 17-state crazyflie benchmark
for SAPO [22] could not be analyzed by our approach since its treewidth is too large.

6 Conclusions

We have shown how tree decompositions can define an abstract domain that projects
concrete sets along the various subsets of state variables. We showed how message
passing can be used to exchange information between these subsets. We analyze
the completeness of our approach and show that the abstraction is lossy due to the
projection operation. We show that for small tree width models, a gridding-based
analysis of nonlinear system can be used whereas such approaches are too expensive
when applied in a monolithic fashion. For the future, we plan to study tree decompo-
sitions for abstract domains such as disjunctions of polyhedra, parallelotope bundles
and Taylor models. The process of model abstraction to reduce treewidth is another
interesting future possibility.
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Fig. 2. Comparison of various projections of the reachable sets computed by our approach
shown in blue, the reachable set computed by SAPO shown as black rectangles and states
obtained through random simulation shown in red dots. Top row: ebola model, second row:
phosporelay, third row: 1d-lattice-10, fourth row: vanderpol (35 steps) and bottom row:
influenza model.
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