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Abstract. We propose a new algorithm for numerical path tracking in polynomial homotopy
continuation. The algorithm is “robust” in the sense that it is designed to prevent path jumping,
and in many cases it can be used in (only) double precision arithmetic. It is based on an adaptive
stepsize predictor that uses Padé techniques to detect local difficulties for function approximation
and danger for path jumping. We show the potential of the new path tracking algorithm through
several numerical examples and compare it with existing implementations.
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1. Introduction. Homotopy continuation is an important tool in numerical al-
gebraic geometry. It is used for, among other things, isolated polynomial root finding
and the numerical decomposition of algebraic varieties into irreducible components.
For introductory texts on numerical algebraic geometry and homotopy continuation,
we refer the reader to [1, 35, 46, 47, 48] and references therein. The reader who is
unfamiliar with algebraic varieties may also consult, e.g., [15] for an excellent intro-
duction.

Let X be an affine variety of dimension n with coordinate ring R = C[X] (this
is the ring of polynomial functions on X; see [15, Chapter 5, section 4]), and let
hi, i = 1, . . . , n, be elements of R[t] = C[X × C] = C[X] ⊗C C[t]. The hi define the
map

H : X × C→ Cn

given by H(x, t) = (hi(x, t))
n
i=1. Such a map H should be thought of as a family of

morphisms X → Cn parametrized by t, which defines a homotopy with continuation
parameter t. This gives the solution variety

Z = H−1(0) = {(x, t) ∈ X × C | hi(x, t) = 0, i = 1, . . . , n} ⊂ X × C.

We will limit ourselves to the cases X = Cn, R = C[x1, . . . , xn] and X = (C \
{0})n, R = C[x±1

1 , . . . , x±1
n ]. We will refer to the second case as the toric case,
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ROBUST NUMERICAL PATH TRACKING A3611

and (C \ {0})n is called the algebraic torus. In both cases, we will use the coor-
dinates x = (x1, . . . , xn) on X. Note that for every fixed parameter value t∗ ∈ C,
Ht∗ : X → Cn : x 7→ H(x, t∗) represents a system of n (Laurent) polynomial equa-
tions in n variables with solutions H−1

t∗ (0) ⊂ X. Typically, for some parameter value
t0 ∈ C, Ht0 is a start system with known, isolated, and regular solutions, and for
some other t1 6= t0, Ht1 represents a target system that we are interested in. Consider
a point (z0, t0) ∈ Z. The task of a homotopy continuation algorithm is to track the
point (z0, t0) ∈ Z to a point (z1, t1) ∈ Z along a continuous path

{(x(s),Γ(s)), s ∈ [0, 1)} ⊂ Z,
with Γ : [0, 1] → C and x(s) ∈ X, s ∈ [0, 1) such that Γ(0) = t0, x(0) = z0,Γ(1) =
t1, x(1) = z1. We will mainly restrict ourselves to paths of the form {(x(t), t), t ∈
[0, 1)} (i.e., Γ(s) = s), but other Γ will be useful for constructing illustrative examples.
The reason for excluding the point s = 1 from some of the intervals in these definitions
is that continuous paths in Z might “escape” from X × C when the parameter t
approaches the target value t1. For example, solutions may move to infinity or out of
the algebraic torus. This kind of behavior, together with singular points on the path
(e.g., path crossing), may cause trouble for numerical path tracking (we will make
this more precise in section 2). Many tools have been developed for dealing with such
situations [28, 40, 41, 44]. In this paper, we do not focus on these kinds of difficulties.
Existing techniques can be incorporated into the algorithms we present.

In typical constructions, such as linear homotopies for polynomial system solving,
H is randomized such that the paths that need to be tracked do not contain singular
points with probability one [48]. This implies, for example, that all paths are disjoint.
However, there might be singularities very near the path in the parameter space. In
this situation, the coordinates in X along the path may become very large, which
causes scaling problems,1 or two different paths may be very near to each other
for some parameter values. The latter phenomenon causes path jumping, which is
considered one of the main problems for numerical path trackers. Path jumping
occurs when, along the way, the solution that is being tracked “jumps” from one path
to another. The typical reason for this is that starting from a point in H−1

t∗ (0), the
predictor step in the path tracking algorithm returns a point in X ×{t∗+ ∆t} which,
according to the corrector step, is a numerical approximation of a point in H−1

t∗+∆t(0)
which is on a different path than the one being tracked. It is clear that path jumping
is more likely to occur in the case where two or more paths come near each other.
Ideally, a numerical path tracker should take small steps ∆t in such “difficult” regions
and larger steps where there is no risk of path jumping. There have been many
efforts to design such adaptive stepsize path trackers [22, 33, 45, 53]. However, the
state-of-the-art homotopy software packages, such as PHCpack [60], Bertini [5], and
HomotopyContinuation.jl [11], still suffer from path jumping, as we will show in our
experiments. A typical way to adjust the stepsize is by an a posteriori step control.
This is represented schematically (in a simplified way) by Figure 1.

In the figure, 0 < β < 1 is a real constant, the ‖ · ‖ should be interpreted as
a relative measure of the backward error, and z̃ is the predicted solution which is
refined to zt∗+∆t by the corrector. If tol ≤ ε, then the corrector stage is not needed.
If tol = ∞, then the first feedback loop never happens. Such extreme choices for tol
are not recommended. With well-chosen values for tol and ε, the second feedback

1Scaling problems caused by large coordinates can be resolved in homogeneous coordinates, after
a projective transformation [39].
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A3612 SIMON TELEN, MARC VAN BAREL, AND JAN VERSCHELDE

∆t← β∆t
predictor corrector

‖H(z̃, t∗ + ∆t)‖ > tol

‖H(zt∗+∆t, t
∗ + ∆t)‖ > ε

Fig. 1. Two feedback loops in a predictor-corrector method for a posteriori step control.

loop never occurs, as Newton’s method converges to the required accuracy of ε in just
a couple of steps. This type of feedback loop is implemented in, e.g., PHCpack [60]
and Bertini [4]. Recently, Timme developed a new adaptive stepsize algorithm that is
implemented in HomotopyContinuation.jl (v1.1) [53]. In this algorithm, the first ∆t
that enters the loop in Figure 1 is computed such that it is an (estimate for an) upper
bound for all “feasible stepsizes,” and the corrected stepsize in the case of rejection is
computed in a novel way. For details, see [53].

Certified path trackers have been developed to prevent path jumping [8, 13, 58,
64], but they require more computational effort. Moreover, the certification assumes
that the coefficients of the input systems are exact rational numbers, as stated in [8].

In this paper, we propose an adaptive stepsize path tracking algorithm that is
robust yet efficient. As opposed to standard methods, we use a priori step control:
we compute the appropriate stepsize before taking the step. We use Padé approxi-
mants [3] of the solution curve x(t) in the predictor step, not only to generate a next
approximate solution, but also to detect nearby singularities in the parameter space.
In the case of type (L, 1) approximants (see section 3 for a definition), this is a di-
rect application of Fabry’s ratio theorem (Theorem 3.3). The Padé approximants are
computed from the series expansion of x(t). We use the iterative, symbolic-numeric
algorithm from [10] to compute this series expansion. For an appropriate starting
value x(0)(t) ∈ C[[t]], we prove “second order convergence” of this iteration in the
sense that x(t)− x(k)(t) = 0 mod 〈t2k〉, where x(k)(t) ∈ C[[t]] is the approximate se-
ries solution after the kth iteration, and 〈·〉 denotes the ideal generated in the power
series ring C[[t]] (see Proposition A.2). We use information contained in the Padé
approximant to determine a trust region for the predictor and use this as a first crite-
rion to compute the adaptive stepsize. A second criterion is based on an estimate for
the distance to the most nearby path and a standard approximation error estimate
for the Padé approximant.

We note that Padé approximants have been used before in path tracking algo-
rithms [22, 45]. In these articles, their use has been limited to type (2, 1) Padé
approximants (see Definition 3.1) and they have not been used as nearby singularity
detectors. In [30], Padé approximants are used in the context of symbolic deforma-
tion methods. Padé approximants are applied to solve nonlinear systems arising in
power systems [56]. In [57], conceptual differences with continuation methods are
discussed. Recent practical comparisons between this holomorphic embedding based
continuation method and polynomial homotopy continuation can be found in [63].

The paper is organized as follows. In the next section, we describe numerical path
tracking algorithms for smooth paths in general and give some examples. In section 3
we discuss fractional power series solutions and Padé approximants. Our path tracking
algorithm is described in section 4 and implemented in version 2.4.72 of PHCpack,
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ROBUST NUMERICAL PATH TRACKING A3613

which is available on github (https://github.com/janverschelde/PHCpack). We show
the algorithm’s effectiveness through several numerical experiments in section 5. We
make comparisons with the built-in path tracking routines in (previous versions of)
PHCpack [60], Bertini [5], and HomotopyContinuation.jl [11]. Appendix A contains
a description of an algorithm introduced in [10] for computing power series solutions
and a new proof of convergence.

2. Tracking smooth paths. Let H(x, t) : X×C→ Cn be as in the introduction
where X is either Cn or (C \ {0})n. We denote Z = H−1(0), and we assume that
dim(Z) = 1. To avoid ambiguities, we will denote t for the coordinate on C in X ×C
and t∗ ∈ C for points in C. We define the projection map π : Z → C : (x, t) 7→ t.
By [48, Theorem 7.1.1] π is a ramified cover of C with ramification locus S consisting
of a finite set of points in C, such that the fiber π−1(t∗) consists of a fixed number
deg π = δ ∈ N of points in Z if and only if t∗ ∈ C \ S. Let

JH(x, t) =

(
∂hi
∂xj

)
i,j=1,...,n

be the Jacobian matrix of H with respect to the xj .

Definition 2.1. Let H,Z be defined as above. Let Γ : [0, 1] → C, and let P =
{(x(s),Γ(s)), s ∈ [0, 1)} ⊂ Z be a continuous path in Z. We say that P is smooth if
JH(x, t) ∈ GL(n,C) for all (x, t) ∈ P .

If P = {(x(s),Γ(s)) | s ∈ [0, 1)} ⊂ Z is continuous with Γ([0, 1)) ∩ S = ∅, then
P ⊂ π−1(C \S) is smooth. In this case, Γ is called a smooth parameter path. In more
down-to-earth terms, Γ is smooth if {Γ(s), s ∈ [0, 1)} ⊂ C contains only parameter
values t∗ for which Ht∗ represents a (Laurent) polynomial system with the expected
number of regular solutions.

Example 2.2. Consider the homotopy taken from [33] defined by

(2.1) H(x, t) = x2 − (t− 1/2)2 − p2,

where p ∈ R is a parameter which we take to be 0.1 in this example. It is clear that
a generic fiber π−1(t∗) consists of the two points

±
√

(t∗ − 1/2)2 + p2,

and the ramification locus is S = {1/2± p
√
−1}. Note that JH = ∂H

∂x is equal to zero
at π−1(t∗) for t∗ ∈ S. We consider three different parameter paths:

Γ1 : s 7→ s,

Γ2 : s 7→ s− 4ps(s− 1)
√
−1,

Γ3 : s 7→ s+ 0.2 sin(πs)
√
−1.

In Figure 2 these paths are drawn in the complex plane. The background color at
t∗ ∈ C in this figure corresponds to the absolute value of JH evaluated at a point in
π−1(t∗): dark (blue) regions correspond to a small value, as opposed to light (yellow)
regions.

For each Γi, we track two different paths in Z for s ∈ [0, 1] starting at (z
(1)
0 , 0) =

(
√

1/4 + p2, 0) and (z
(2)
0 , 0) = (−

√
1/4 + p2, 0), respectively. The result is shown in

Figure 3.
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A3614 SIMON TELEN, MARC VAN BAREL, AND JAN VERSCHELDE

Fig. 2. The image of [0, 1] under Γ1 (full line), Γ2 (dashed line), and Γ3 (dotted line) as defined
in Example 2.2.

s

Re(x)

Im(x)
s

Re(x)

Im(x)
s

Re(x)

Im(x)

Fig. 3. Solution curves with respect to s using, from left to right, Γ1,Γ2, and Γ3.

Denote the corresponding paths on Z by P
(i)
j = {(x(i)(s),Γj(s)), s ∈ [0, 1]} where

x(i)(0) = z
(i)
0 . Since Γ1 and Γ3 do not hit any singular points in the parameter

space (Figure 2), the corresponding paths P
(i)
j are disjoint and smooth. The paths

corresponding to Γ2, on the other hand, cross a singularity. They intersect at s = 1/2,
as can be seen from Figure 3. We conclude that Γ2 is not smooth.

An important application of smooth path tracking is the solution of systems of
polynomial equations. The typical setup is the following. Define

F : X → Cn : x 7→ (f1(x), . . . , fn(x))

with fi ∈ R. We want to compute F−1(0), that is, all points x ∈ X such that
fi(x) = 0, i = 1, . . . , n. The homotopy approach to this problem is to construct
H : X × C → Cn such that H1 : x 7→ H(x, 1) satisfies Z1 = H−1

1 (0) = F−1(0) (the
target system is equivalent to F ), and the start system G = H0 : x 7→ H(x, 0) is such
that Z0 = G−1(0) is easy to compute and contains the expected number δ of regular
solutions. The number δ is equal to, for example, the Bézout number in the case of
total degree homotopies, or the mixed volume of the Newton polytopes in the case
of polyhedral homotopies [48, 27, 62]. Moreover, H has the additional property that
Γ : [0, 1)→ C : s 7→ s is a smooth parameter path. We denote

Z0 = G−1(0) = {z(1)
0 , . . . , z

(δ)
0 },

and by smoothness of Γ, we have that

Zt∗ = H−1
t∗ (0) = {z(1)

t∗ , . . . , z
(δ)
t∗ }
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ROBUST NUMERICAL PATH TRACKING A3615

consists of δ distinct points in X for t∗ ∈ [0, 1), and the paths {(z(i)
t∗ , t

∗), t∗ ∈ [0, 1)}
are smooth and disjoint. Depending on the given system F , Z1 may consist of fewer
than δ points, or it might even consist of infinitely many points. Two or more paths
may approach the same point as t∗ → 1, or paths may diverge to infinity. As stated
in the introduction, several end games have been developed to deal with these kinds
of situations [28, 40, 41, 44]. Here we will focus on the path tracking before the
paths enter the end game operating region. We assume, for simplicity that this region
is [tEG, 1] for tEG a parameter value “near” 1. Algorithm 2.1 is a simple template

algorithm for smooth path tracking. With a slight abuse of notation, we use z
(i)
t∗ for

both actual points on the path and “satisfactory” numerical approximations of the

z
(i)
t∗ .

Algorithm 2.1. Template path tracking algorithm with a priori step control.

1: procedure Track(H,Z0)
2: Z1 ← ∅
3: for z

(i)
0 ∈ Z0 do

4: t∗ ← 0
5: while t∗ < tEG do
6: (z̃,∆t)← predict(H, z

(i)
t∗ , t

∗)

7: z
(i)
t∗+∆t ← correct(H, z̃, t∗ + ∆t)

8: t∗ ← t∗ + ∆t
9: end while

10: z
(i)
1 ← end game(H, z

(i)
t∗ , t

∗)

11: Z1 ← Z1 ∪ {z(i)
1 }

12: end for
13: return Z1

14: end procedure

The algorithm uses several auxiliary procedures. The predictor (line 6) computes

a point z̃ ∈ X and a stepsize ∆t such that z̃ is an approximation for z
(i)
t∗+∆t. Some

existing predictors use an Euler step (tangent predictor) or higher order integrating
techniques, such as RK4.2 Intuitively, the computed stepsize ∆t should be small
in “difficult” regions. Algorithms that take this into account are called adaptive
stepsize algorithms. The main contribution of this paper is the adaptive stepsize
predictor algorithm which we present in detail in section 4. Our predictor computes an
appropriate stepsize before the step is taken (a priori step control). The corrector step

(line 7) then refines z̃ to a satisfactory numerical approximation of z
(i)
t∗+∆t. Typically,

satisfactory means that the relative backward error of z
(i)
t∗+∆t is of size ± the unit

roundoff. The end game procedure in line 10 finishes the path tracking by performing
an appropriate end game.

3. Padé approximants. Let R = C[x±1
1 , . . . , x±1

n ] be the ring of Laurent poly-
nomials in n variables, and let X = (C \ {0})n be the n-dimensional algebraic torus.
Let C[[t]] be the ring of formal power series in the variable t, and let m = 〈t〉 be its
maximal ideal. We denote by C[t]≤d ' C[[t]]/md+1 the C-vector space of polynomials
of degree at most d. For f, g ∈ C[[t]], the notation f = g + O(td+1) means that
f − g ∈ md+1. The field of fractions of C[t] is denoted C(t).

2Some higher order predictors need several previous points on the path in order to compute z̃.
The predictor we present in this algorithm uses only the last computed point; hence we have the
notation in Algorithm 2.1.
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A3616 SIMON TELEN, MARC VAN BAREL, AND JAN VERSCHELDE

We consider a homotopy given by H(x, t) : X × C → Cn. A series solution at
t∗ ∈ C of H(x, t) is a parametrization of the form

(3.1) xj(s) = ajs
ωj

(
1 +

∞∑
`=1

aj`s
`

)
, j = 1, . . . , n, and t(s) = t∗ + sm,

with m ∈ N \ {0}, ω = (ω1, . . . , ωn) ∈ Zn, a = (a1, . . . , an) ∈ (C \ {0})n, aj` ∈ C, and
such that H(x(s), t(s)) = H(x1(s), . . . , xn(s), t(s)) ≡ 0, and there is a real ε > 0 such
that the series xj(s) converge for 0 < |s| ≤ ε. Such a series representation can be
found for all irreducible components of Z = H−1(0) not contained in the hyperplane
{t = t∗} (see, for instance, [28, 37, 38, 41]). Substituting s = (t − t∗)1/m in (3.1)
gives a set of Puiseux series xj(t) locally capturing the behavior of the solutions
around t = t∗. If JH(x, t∗) ∈ GL(n,C) for some (x, t∗) ∈ Zt∗ , the corresponding
series solution is a set of Taylor series xj(t) ∈ C[[t]], j = 1, . . . , n. This is the case
when t∗ belongs to a smooth parameter path, as defined in section 2. From such a
set of power series, we would like to estimate the location of nearby parameter values
at which some xj(t) is singular. For this we will use Padé approximants. Note that it
follows from (3.1) that the types of singularities we can encounter are branch points
(m > 1) or poles (ωj < 0,m = 1).

Motivated by this discussion, in this section we discuss Padé approximants and the
way they behave in the presence of poles and branch points. An extensive treatment
of Padé approximants can be found in [3]. We will limit ourselves to the definition
and the properties that are relevant to the heuristics of our algorithm.

The following definition uses some notation of [3].

Definition 3.1 (Padé approximant). Let x(t) =
∑∞
`=0 c`t

` ∈ C[[t]]. The type
(L,M) Padé approximant of x(t) is

[L/M ]x =
p(t)

q(t)
∈ C(t)

such that p(t) ∈ C[t]≤L, and q(t) ∈ C[t]≤M is a unit in C[[t]], with

(3.2) [L/M ]x − x ∈ mk

for k maximal.

Informally, Padé approximants are rational functions agreeing with the Maclaurin
series of a function x up to a degree that is as large as possible. They are generaliza-
tions of truncated Maclaurin series, which are type (L, 0) Padé approximants. Just as
Maclaurin expansions are specific instances of Taylor expansions, it is straightforward
to define Padé approximants around points t = t∗ in the complex plane different from
0. Without loss of generality, we consider only approximants around t∗ = 0, since
the general case reduces to this case after a simple change of coordinates. The type
(L,M) Padé approximant is known to exist and is unique. Multiplying the condition
(3.2) by q yields

(3.3) p(t)− x(t)q(t) ∈ mk or, equivalently, p(t) = x(t)q(t) +O(tk)

for k maximal. Writing p(t) = a0 + a1t+ · · ·+ aLt
L, q(t) = b0 + b1t+ · · ·+ bM t

M and
equating terms of the same degree, this gives k linear conditions on the ai, bi, which
can always be satisfied for k ≤M +L+1. So for the linearized condition (3.3), k is at
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ROBUST NUMERICAL PATH TRACKING A3617

least M +L+ 1. Computing the ai and bi in practice is a nontrivial task. Difficulties
are, for instance, degenerate situations where deg(p) < L or deg(q) < M and the
presence of so-called Froissart doublets (spurious pole-zero pairs [54, Chapter 27]).
Some of the issues are discussed in [3, Chapter 2] and [7, 25, 29]. In [25], a robust
algorithm is proposed for computing Padé approximants. We will use this algorithm
to compute Padé approximants from the coefficients ci in our algorithm, presented in
section 4. The algorithm we use to compute the ci is discussed in the next section.

What is important for our purpose is that a Padé approximant can be used to
detect singularities of x(t) of the types we are interested in (poles and branch points)
close to t∗ = 0, even for relatively small L and M . The idea is to compute Padé
approximants of the coordinate functions xj(t) from local information on the path
(the series coefficients c`) and use them as a radar for detecting difficulties near the
path. We are now going to motivate this. Since we intend to use Padé approximants
to detect only nearby singularities, a natural first class to consider is that of type
(L, 1) approximants. We allow the approximant to have only one singularity, and we
hope that it chooses to place this singularity near the actual nearest singularity to
capture the nearby nonanalytic behavior. Here is a powerful result due to Beardon
[6].

Theorem 3.2. Let xj(t) be analytic in {t∗ ∈ C | |t∗| ≤ r}. An infinite subse-
quence of {[L/1]xj}∞L=0 converges to xj(t) uniformly in {t∗ ∈ C | |t∗| ≤ r}.

Proof. We refer the reader to [6] or [3, Theorem 6.1.1] for a proof.

This applies in our case as follows. Suppose that (a, 0) ∈ X × C is a regular
point of the variety Z = H−1(0), and the irreducible component of Z containing
(a, 0) is not contained in {(x, t∗) ∈ X × C | t∗ = 0}. Then there is a holomorphic
function x : C→ X such that x(0) = a and H(x(t∗), t∗) = 0 for t∗ in some nonempty
open neighborhood of 0 (see, for instance, Theorem A.3.2 in [48]). That is, if a is a
regular solution of H0, then the corresponding power series solution (3.1) consists of
n Taylor series xj(t). The function x(t) can be continued analytically in a disk with
radius r if no singularities lie within a distance r from the origin. Theorem 3.2 makes
the following statement precise. For large enough degrees L of the numerator of the
Padé approximant, the [L/1]xj

are expected to approximate the coordinate functions
xj(t) in a disk centered at the origin with radius ± the distance to the most nearby
singularity. The fact that for sufficiently large L, the pole of [L/1]xj is expected to
give an indication of the distance to the nearest singularity (also if it is a branch
point) can be seen as follows. Write xj(t) =

∑∞
`=0 c`t

` for the Maclaurin expansion
of the coordinate function xj(t). Then a simple computation shows that if cL 6= 0,

[L/1]xj
= c0 + c1t+ · · ·+ cL−1t

L−1 +
cLt

L

1− cL+1t/cL
.

Hence the pole of [L/1]xj
is cL/cL+1 (or it is∞ if cL+1 = 0). For large L, the modulus

|cL/cL+1| can be considered an approximation of the limit

lim
L→∞

∣∣∣∣ cLcL+1

∣∣∣∣
if this limit exists. Also, if this limit exists, it is a well-known expression for the
convergence radius of the power series xj(t) =

∑∞
`=0 c`t

`, which is the distance to
the nearest singularity. Since the main application we have in mind is polynomial
system solving, in which the homotopy is usually “randomized,” in practice this limit
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A3618 SIMON TELEN, MARC VAN BAREL, AND JAN VERSCHELDE

exists, and for reasonably small L, |cL/cL+1| is a satisfactory approximation of the
convergence radius of the power series. Theorem 3.2 suggests that more is true: it can
be expected that the ratio cL/cL+1 is a reasonable estimate for the actual location of
the most nearby singularity. This is Fabry’s ratio theorem [20]; see also [9, 18, 51].

Theorem 3.3. If the coefficients of the power series xj(t) =
∑∞
`=0 c`t

` satisfy
limL→∞ cL/cL+1 = ts, then t = ts is a singular point of the sum of this series. The
point t = ts belongs to the boundary of the circle of convergence of the series.

Proof. See [20].

We now briefly discuss the behavior of type (L,M) Padé approximants in the
presence of poles and branch points, and we end the section with two illustrative
examples.

3.1. Padé approximants and nearby poles. Since Padé approximants are
rational functions, it is reasonable to expect that they can capture this kind of behavior
quite well. The following theorem, due to De Montessus [16], gives strong evidence of
this intuition.

Theorem 3.4. Suppose xj(t) is meromorphic in the disk {t∗ ∈ C | |t∗| ≤ r},
with µ distinct poles z1, . . . , zµ ∈ C in the punctured disk {t∗ ∈ C \ {0} | |t∗| < r}.
Furthermore, suppose that mi is the multiplicity of the pole zi and

∑µ
i=1mi = M .

Then limL→∞[L/M ]xj
= xj on any compact subset of {t∗ ∈ C | |t∗| ≤ r, t∗ 6= zi, i =

1, . . . , µ}.
Proof. This is Theorem 6.2.2 in [3].

Loosely speaking, this tells us that the poles of [L/M ]xj , for large enough L, will
converge to the M most nearby poles of xj(t) (counting multiplicities) if these are the
only singularities encountered in the disk {t∗ ∈ C | |t∗| ≤ r}. For the [L/1]xj

approxi-
mant, this means that convergence may be expected beyond the nearest singularity if
this is a simple pole, and the pole of [L/1]xj

will approximate the actual nearby pole.
This may be considered as a practical approach to analytic continuation [55]. Padé
approximants also give answers to the inverse problem: the asymptotic behavior of
the poles of [L/M ]xj as L → ∞ can be used to describe meromorphic continuations
of the function xj(t). We do not give any details here; the interested reader is referred
to [24, 50, 59].

3.2. Padé approximants and nearby branch points. Many singularities
encountered in polynomial homotopy continuation are not poles but branch points.
This situation is more subtle since the Padé approximant, being a rational function,
cannot have branch points. For an intuitive description of the behavior of Padé
approximants for functions with multivalued continuations, the reader may consult
[3, section 2.2]. The conclusion is that the poles and zeros of [L/M ]xj are expected
to delineate a “natural” branch cut. The authors of [3] also describe some ways to
estimate the location and winding number of branch points using Padé approximants.
We should also mention that there are convergence results in the presence of branch
points which involve potential theory. We refer the reader to [49] for some important
results for convergence of sequences of Padé approximants with L,M →∞, L/M → 1
(so-called near-diagonal sequences). These results are beyond the scope of this paper,
mainly because we will limit ourselves to near-polynomial approximants: we allow
only a small number of poles (often we even take M = 1), and we will estimate
nearby singularities directly from [L/M ]xj

. This is an unusual choice, since near-
diagonal approximants tend to show better behavior for the approximation of algebraic
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ROBUST NUMERICAL PATH TRACKING A3619

functions (see, e.g., [42, section 6.2]). The reason for this choice will become clear
from the example in section 3.3.2.

We will show in experiments that in this way, even for small L, we can predict
at least the order of magnitude of the distance to the nearest branch point, which is
enough to sound an alarm when this distance gets small, and often we can do much
better.

The reason for limiting ourselves to a small number of parameters L+M and for
not trying to compute a very accurate location of the nearest branch point and its
winding number is, of course, efficiency. Moreover, for the purpose of this paper, a
local approximation of the coordinate functions and a rough estimate of the nearest
singularity suffice. The above-mentioned techniques for computing more information
about nearby branch points may be powerful for approximation of algebraic curves
in compact regions of the complex plane and for computing monodromy groups. We
leave this for future research.

3.3. Examples. Our first example shows the potential of using Padé approx-
imants for locating nearby singularities in the parameter space. The second one
motivates the choice of type (L, 1) approximants over near-diagonal approximants.

3.3.1. Padé approximants for a family of hyperbolas. We consider again
the homotopy (2.1) from Example 2.2. Let us first take p = 0.19 and consider the
smooth parameter path Γ3. It is clear that the singularity z+ = 1/2 + p

√
−1 ∈ S is

the closest singularity to nearly every point in Γ3([0, 1]). As s moves closer to 1/2, it
moves closer to z+. To show how this causes difficulties for the local approximation
using Padé approximants, we have performed the following experiment. For several
points t∗ on the parameter path Γ3([0, 1]), we have plotted the contour in C where the
absolute value of the difference between x(t) =

√
(t− 1/2)2 + p2 and its type (6, 1)

Padé approximation around t∗ equals 10−4. The result is shown in Figure 4. It is
clear that the local approximation can be “trusted” in a much larger region if the
singularity is far away.

0 0.5 1
0

0.2

0.4

Re(t)

Im
(t
)

Fig. 4. Contours of the approximation error as described in section 3.3.1. The color of a
contour is the color of the corresponding dot on the parameter path. The singularity z+ is shown as
a small black cross.

We now investigate the behavior of the pole of [L/1]x as we move along the path.
We consider the four cases defined by p = 0.15, 0.19 and L = 2, 6. The results are
shown in Figure 5.

The figure shows that as we move closer to Γ(0.5) on the path, the pole of the
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

Re(t)

Im
(t
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

Re(t)

Im
(t
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

Re(t)

Im
(t
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

Re(t)

Im
(t
)

Fig. 5. The path Γ3([0, 1]) and the corresponding path described by the pole of the type (L, 1)
Padé approximant (associated points on the two paths have been given the same color) for p = 0.15
(first row), p = 0.19 (second row), L = 2 (left column), L = 6 (right column).

Padé approximant moves closer to the actual branch point. What is important is that
in the trouble region of the path (s close to 0.5), the pole of [L/1]x is fairly close to z+.
It gives, at the least, an indication of the order of magnitude of the distance to z+.
Another way to see this is to note that on a point of the path near z+, the (L, 1) Padé
approximant is not so much influenced by the presence of z−. For instance, at t∗ = 0,
the pole is real because z+ and z− are complex conjugates, and they are located at the
same distance from Γ3(0). For t∗ near Γ3(0.5), the pole has a relatively large positive
imaginary part. A comparison of the first row to the second row in the figure shows
that this effect gets stronger when a singularity moves closer to the path. Comparing
the left column to the right column, we see that the approximation of z+ gets better
as L increases, which is to be expected. If we use Γ1 instead of Γ3, for whatever p, the
branch points z+ and z− will have the same distance to each point of the path. The
result is that the (L, 1) Padé approximant will have poles on the real line. For L = 4,
p = 0.001, t∗ ∈ [0, 1], the pole is contained in the real interval [0.4997, 0.5003], so the
local difficulties are detected. However, in this specific situation, it is more natural to
use type (L, 2) approximants. The result for L = 6, p = 0.05 is shown in Figure 6.

0 0.5 1
−0.1

0

0.1

Re(t)

Im
(t
)

Fig. 6. The path Γ1([0, 1]) and the corresponding paths described by the poles of the type (6, 2)
Padé approximant (associated points on the two paths have been given the same color) for p = 0.05.

We note that in a randomized homotopy, it is not to be expected that at a general
point of the path two poles are equally important. As we move along the path, the
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0 5 10
10−2

10−1

100

101

`

Quantities 1, 2

(`, `)

(2`− 1, 1)

0 5 10
10−15

10−10

10−5

100

`

Approximation error on |t| ≤ 1/2

(`, `)

(2`− 1, 1)

Fig. 7. Results of the experiment in section 3.3.2.

most important singularity may change, and the type (L, 1) approximant can be
expected to relocate its pole accordingly.

3.3.2. Near-diagonal versus near-polynomial approximants. Consider the
algebraic function x(t) =

√
(t+ 1.01)(t2 − t+ 37/4) with branch points

S = {−1.01, 1/2 + 3
√
−1, 1/2− 3

√
−1}.

For ` = 1, . . . , 13, we compute both type (`, `) and type (2`−1, 1) Padé approximants
(around t = 0) of x(t) using a MATLAB implementation of the algorithm in [25]. For
all these approximants we compute the following:

1. the minimum of the distances of the poles of the Padé approximant to the
branch point −1.01;

2. the difference between the smallest modulus of the poles of the Padé approx-
imant and the modulus of the nearest branch point, which is 1.01; and

3. an estimate for the approximation error (the infinity norm of a discretized
approximation) of x(t) on the disk |t| ≤ 1/2 in the complex plane.

Results are shown in Figure 7. The right part of the figure shows that the diagonal
approximants behave better for function approximation. However, for small `, the
near-polynomial approximants are competitive.

For the type (2` − 1, 1) approximant, the first two quantities coincide since the
pole is real. For the (`, `) case, the first quantity is a lower bound for the second
one. This is illustrated by the difference between the dashed line and the full blue
line in Figure 7. What happens is the following. One of the poles of the type (`, `)
approximant approximates the branch point −1.01, but some other pole indicates
that there could be a branch point with smaller modulus. This is illustrated in Figure
8 for ` = 3, 4 (for ` = 4, one of the poles of the (`, `) approximant lies close to that
of the (2` − 1, 1) approximant, and the corresponding dot is nearly invisible). The
pole of the type (3, 3) approximant that is closest to the origin actually comes from a
Froissart doublet, which was not detected using the default settings in the algorithm
of [25]. As a consequence, this spurious pole tells us that a singularity is nearby such
that only a small step can be taken (see section 4.1.3), while the actual branch point
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A3622 SIMON TELEN, MARC VAN BAREL, AND JAN VERSCHELDE

is quite far away. Detecting such Froissart doublets is often tricky. Since we will
use only low orders, the approximation quality of the (L, 1) approximant suffices for
our purpose. Moreover, this example shows that they are more robust for estimating
the distance to the nearest singularity. We will use this type of approximant in our
default settings.

Fig. 8. Poles of the type (`, `) approximant (red dots) and pole of the type (2`−1, 1) approximant
(green dot) for ` = 3, 4 (left and right respectively). The origin is indicated with a black cross. The
background color corresponds to |x(t)|. (See online version for color.)

4. A robust algorithm for tracking smooth paths. In this section we show
how the results of the previous sections lead to a smooth path tracking algorithm.
More specifically, we propose a new adaptive stepsize predictor for homotopy path
tracking. We will use Γ(s) = s and assume that this is a smooth parameter path
for simplicity, but the generalization to different parameter paths is straightforward.
The aim of this section is to motivate the heuristics and to present and analyze the
algorithm. In the next section we will show some convincing experiments.

We will use Padé approximants for the prediction. The stepsize computation is
based on two criteria. That is, we compute two candidate stepsizes {∆t1,∆t2} based
on two different estimates of the largest “safe” stepsize. The eventual value of ∆t
that is returned by the predictor (line 6 in Algorithm 2.1) is min{∆t1,∆t2, tEG− t∗}.
For the first criterion we estimate the distance to the nearest point of a different path
in X × {t∗}. This estimate is only accurate if we are actually in a difficult region.
Comparing this to an estimate for the Padé approximation error, we compute ∆t1
such that the predicted point z̃ is much closer to the correct path than it is to the
nearest different path. The value of ∆t2 is an estimate for the radius of the “trust
region” of the Padé approximant, which is influenced by nearby singularities in the
parameter space (see section 3). We discuss these two criteria in detail in the first
subsection. In the second subsection we present the algorithm. In the last subsection
we present a complexity analysis of our algorithm.

4.1. Adaptive stepsize: Two criteria. The values of ∆t1 and ∆t2 are com-
puted from an estimate of the distance to the nearest different path, the approximation
error of the Padé approximant for small stepsizes, and an estimate for some global
“trust radius” of the Padé approximants. We discuss these estimates first and then
turn to the computation of ∆t1 and ∆t2 from these estimates.
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ROBUST NUMERICAL PATH TRACKING A3623

4.1.1. Distance to the nearest path. We will use ‖·‖ to denote the Euclidean
2-norm for vectors and use the induced operator norm for matrices. Consider the

homotopy H : X × C→ Cn. Suppose that for some t∗ ∈ [0, 1), we have H(z
(1)
t∗ , t

∗) =

H(z
(2)
t∗ , t

∗) = 0, so z
(1)
t∗ 6= z

(2)
t∗ ∈ Zt∗ lie on two different solution paths. We assume

that z
(1)
t∗ is close to z

(2)
t∗ . Denote ∆z = z

(2)
t∗ − z(1)

t∗ ∈ Cn, and think of ∆z as a column
vector. Our goal here is to estimate ‖∆z‖. Neglecting higher order terms, we get

(4.1) H(z
(2)
t∗ , t

∗) ≈ H(z
(1)
t∗ , t

∗) + JH(z
(1)
t∗ , t

∗)∆z +
v

2
, v =


〈H1(z

(1)
t∗ , t

∗)∆z,∆z〉
...

〈Hn(z
(1)
t∗ , t

∗)∆z,∆z〉

 ,
where (Hi(x, t))j,k = ∂2hi

∂xj∂xk
, 1 ≤ j, k ≤ n, are the Hessian matrices of the individual

equations, and 〈·, ·〉 is the usual inner product in Cn. To simplify the notation, we

denote Hi = Hi(z(1)
t∗ , t

∗) and JH = JH(z
(1)
t∗ , t

∗). The Hessian matrices are Hermit-
ian, so they have a unitary diagonalization Hi = ViΛiV

H
i , where ·H is the Hermitian

transpose, and the Vi are unitary matrices with eigenvectors of Hi in their columns.
We may write ∆z = Viwi for some coefficient vector wi such that ‖wi‖ = ‖∆z‖.
We have 〈Hi∆z,∆z〉 = 〈Λiwi, wi〉. Let σk,` = σ`(Hk) be the `th singular value
of Hk. The absolute values of the diagonal entries of Λi are exactly the singu-
lar values, so that |〈Hi∆z,∆z〉| ≤ σi,1 ‖wi‖2 = σi,1 ‖∆z‖2. It follows easily that

‖v‖ ≤
√
σ2

1,1 + · · ·+ σ2
n,1 ‖∆z‖2. Since ‖JH∆z‖ ≥ σn(JH) ‖∆z‖ and by (4.1) we have

‖JH∆z‖ ≈ ‖v‖ /2, it follows that

(4.2) ‖∆z‖ & 2σn(JH)(σ2
1,1 + · · ·+ σ2

n,1)−
1
2 .

Intuitively, the “more regular” the Jacobian, the larger ‖∆z‖, and the more curvature,
the smaller ‖∆z‖. Motivated by (4.2), we state the following definition.

Definition 4.1. For z
(i)
t∗ ∈ Zt∗ , t

∗ ∈ [0, 1), set JH = JH(z
(i)
t∗ , t

∗) and σk,` =

σ`(Hk(z
(i)
t∗ , t

∗)), and define ηi,t∗ = 2σn(JH)(σ2
1,1 + · · ·+ σ2

n,1)−
1
2 .

The numbers ηi,t∗ are estimates for the distance to the most nearby different
path. To make sure the prediction error ‖x(t∗ + ∆t)− x̃(t∗ + ∆t)‖ (where x̃(t) is the
coordinatewise Padé approximant) is highly unlikely to cause path jumping, we will
solve ‖x(t∗ + ∆t)− x̃(t∗ + ∆t)‖ = β1ηi,t∗ for a small fraction 0 < β1 � 1 to compute
an adaptive stepsize ∆t. We now discuss how to estimate ‖x(t∗ + ∆t)− x̃(t∗ + ∆t)‖.

4.1.2. Approximation error of the Padé approximant. Without loss of
generality, we take the current value of t to be zero and consider Padé approximants
around t∗ = 0 as in section 3. Suppose that we have computed a type (L,M) Padé
approximant [L/M ]xj = pj(t)/qj(t) of a coordinate function xj(t) around 0. Given a
small real stepsize ∆t, we want to estimate the error

(4.3) |ej(∆t)| =
∣∣∣∣pj(∆t)qj(∆t)

− xj(∆t)
∣∣∣∣ =

∣∣∣∣ a0 + a1∆t+ · · ·+ aL∆tL

b0 + b1∆t+ · · ·+ bM∆tM
− xj(∆t)

∣∣∣∣ .
From Definition 3.1 we know that ej(t) ∈ mk (where usually k = L+M + 1), so (4.3)
can be written as |e0,j∆t

k + e1,j∆t
k+1 + · · · | with e0,j 6= 0. For small ∆t, the first

term is expected to dominate the sum, and so |ej(∆t)| ≈ |e0,j∆t
k|. This estimate

is also used in [22] for the case L = 2,M = 1, and a similar strategy is common
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A3624 SIMON TELEN, MARC VAN BAREL, AND JAN VERSCHELDE

for estimating the error in a power series approximation. An alternative is to use an
estimate for the “linearized” error

(4.4) |qj(∆t)ej(∆t)| = |pj(∆t)− xj(∆t)qj(∆t)|,

which is equal to

|(b0 + b1∆t+ · · ·+ bM∆tM )(e0,j∆t
k + e1,j∆t

k+1 + · · · )| ≈ |b0e0,j∆t
k|.

Since qj(t) is a unit in C[[t]], b0 6= 0, and we can scale pj and qj such that b0 = 1, and
the estimates of (4.3) and (4.4) coincide. Taking b0 = 1, we see that the constant e0,j

is the coefficient of tk in (a0 +a1t+ · · ·+aLt
L)− (1+ b1t+ · · ·+ bM t

M )(c0 +c1t+ · · · ),
which is easily seen to be

(4.5) e0,j = ak − (ck + b1ck−1 + · · ·+ bMck−M ),

where ak = 0 if k > L and cj = 0 for j < 0. Doing this for all j and assuming that k
is the same for all coordinates, we get an estimate

(4.6)

∥∥∥∥x(∆t)−
(
p1(∆t)

q1(∆t)
, . . . ,

pn(∆t)

qn(∆t)

)∥∥∥∥ ≈ ‖e0‖ |∆t|k,

with e0 = (e0,1, . . . , e0,n).

4.1.3. Trust region for the Padé approximant. As discussed in section 3
and illustrated in section 3.3.1, branch points in the parameter space that are close
to the parameter path cause problems for the Padé approximation. If none of the
poles of [L/M ]xj

are close to a current parameter value on the path, we may be able
to take a reasonably large step forward without getting into difficulties. However,
since we take L and M to be small, we cannot expect the approximants [L/M ]xj to
have already converged in a disk with radius the distance to the nearest singularity;
nor can we expect that the poles of [L/M ]xj

are very good approximations of the
actual singularities. Taking the distance D to the most nearby pole of [L/M ]xj

as an
estimate for the convergence radius is a very rough estimate in this case. However,
we observe that D does give an estimate of the order of magnitude of the region in
which [L/M ]xj is a satisfactory approximation. The conclusion is that we do not use
D itself but rather β2D, where 0 < β2 < 1 is a safety factor.

4.1.4. The candidate stepsizes ∆t1 and ∆t2. We now use the ingredients
presented above to compute two candidate stepsizes ∆t1 and ∆t2. For ∆t1, we use
the estimate ηi,t∗ for the distance to the nearest path and the estimate ‖e0‖ |∆t|k
for the approximation error of the Padé approximant. The heuristic is that we want
the approximation error to be only a small fraction of the estimated distance to the
nearest path, so that the predicted point z̃ is much closer to the path being tracked
than it is to the nearest different path. That is, we solve ‖e0‖ |∆t1|k = β1ηi,t∗ for
∆t1, where β1 > 0 is a small factor. Since the attraction basins of Newton correction
can behave in unexpected ways, it is best to take β1 to be fairly small, for instance,
β1 = 0.005. This gives

(4.7) ∆t1 =
k

√
β1ηi,t∗ ‖e0‖−1

.

Both the estimates ηi,t∗ and ‖e0‖ |∆t|k are only accurate in the case when trouble
is near (they are based on lowest order approximations). The case when ‖e0‖ ≈ 0
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ROBUST NUMERICAL PATH TRACKING A3625

causes trouble in the formula for ∆t1, but for too small values of ‖e0‖, we may set
∆t1 simply to one. If the resulting ∆t1 is large, the only thing this tells us is that we
are not on a difficult point on the path with high probability. The second candidate
stepsize, ∆t2, will make sure we do not take a step that is too large in this situation.
At the same time, ∆t2 will be small when singularities in the parameter space are
near the current point on the path. Let D be the distance to the nearest pole out of
all the poles of the [L/M ]xj

, j = 1, . . . , n. We set

(4.8) ∆t2 = β2D,

where 0 < β2 < 1 is a safety factor which should not change the order of magnitude,
for instance, β2 = 0.5.

Example 4.2. As mentioned above, the estimate ηi,t∗ for the distance to the near-
est different path is only accurate when another path is actually near. If this is not
the case, ∆t1 may be too large, and we need ∆t2 to make sure the resulting stepsize
is still safe. To see that it is not enough to take only ∆t2 into account, consider the
homotopy

H(x, t) = (x− (t− (a+ b
√
−1))2)(x+ (t− (a+ b

√
−1))2), t ∈ [0, 1],

with a, b ∈ R, 0 < a < 1, and |b| small. The paths corresponding to the two solutions
are smooth and can be analytically continued in the entire complex plane: there
are no singular points in x1(t), x2(t). However, for t = a + b

√
−1 the two solutions

coincide. By the assumptions on a and b, this value of t lies close to the parameter
path [0, 1]. Intuitively, the singularity of the Jacobian JH = ∂H/∂x is canceled by a
zero of ∂H/∂t: along the solution paths we have

dx

dt
=
−∂H∂t
∂H
∂x

=
4(t− (a+ b

√
−1))3

2x
=

4(t− (a+ b
√
−1))3

±2(t− (a+ b
√
−1))2

= ±2(t− (a+ b
√
−1)).

For t = a, the solutions are x1 = −b2, x2 = b2, so for small b, the paths are very
close to each other. The type (1, 1) Padé approximant will have no poles (or will only
have very large ones due to numerical artefacts), so taking only this criterion into
account would allow for taking large steps. However, the estimate (4.2) at t = a gives
|∆z| ≈ 4b2/2, which is exactly the distance to the nearest different path.

4.2. Path tracking algorithm. We are now ready to present the path track-
ing algorithm. Since our contribution is in the predictor step (line 6 in Algorithm
2.1), we focus on this part. The predictor algorithm is Algorithm 4.1 below. It is
straightforward to embed this predictor algorithm in the template Algorithm 2.1.

We briefly discuss some of the steps in Algorithm 4.1. In step 2, The algorithm of
[10] is used. We included a description of the algorithm and a proof of convergence in
Appendix A. The point around which we compute the series is t∗, the current param-
eter value on the path. The parameter w = L + M + 2 is the number of coefficients
needed to compute the Padé approximant of type (L,M) and the approximation error

estimate. The starting value of the power series is the constant vector x(0) = z
(i)
t∗ ,

satisfying H(z
(i)
t∗ , t

∗) = 0 such that convergence of the algorithm in [10] is guaran-
teed. In step 6, the type (L,M) Padé approximant of the coordinate function xj(t)
is computed using the algorithm of [25]. Algorithm 4.1 has more input parameters
than the predictor in the template algorithm. We will usually take M very small
(and often 1), motivated by the conclusions of section 3. The value of L is chosen,

D
ow

nl
oa

de
d 

11
/1

0/
20

 to
 1

28
.2

48
.1

56
.4

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3626 SIMON TELEN, MARC VAN BAREL, AND JAN VERSCHELDE

Algorithm 4.1. Predictor algorithm.

1: procedure Predict(H, z
(i)
t∗ , t

∗, L,M, β1, β2, tEG)
2: {x1(t), . . . , xn(t)} ← series solution of H at t = t∗ computed up to order L+M + 2

such that x(0) = z
(i)
t∗

3: D ←∞
4: compute ηi,t∗ as in Definition 4.1
5: for j = 1, . . . , n do
6: pj , qj ← PadéApprox(xj(t), L,M)
7: compute e0,j using (4.5)
8: D ← min {D,min{|z| | qj(z) = 0}}
9: end for

10: e0 ← (e0,1, . . . , e0,n)

11: ∆t1 ← k

√
β1ηi,t∗
‖e0‖

12: ∆t2 ← β2D
13: ∆t← min {∆t1,∆t2, tEG − t∗}
14: z̃ ← (p1(∆t)/q1(∆t), . . . , pn(∆t)/qn(∆t))
15: return z̃,∆t
16: end procedure

for instance, such that L+M + 2 is a power of 2, e.g., L = 5,M = 1, because of the
quadratic convergence property of the power series algorithm proved in Proposition
A.2. Reasonable values for β1, β2 are β1 = 0.005, β2 = 0.5 as stated before. The
parameter tEG is the beginning of the end game operating region as in section 2.

4.3. Complexity analysis. To conclude this section, we analyze the cost of one
predictor-corrector step of our adaptive stepsize algorithm as a function of the number
of variables n. The total cost of the algorithm consists roughly of two main parts: the
cost of the numerical linear algebra and the evaluation/differentiation operations.

Lemma 4.3. Consider a homotopy in n variables. Let L + M + 1 be O(n). The
cost of the linear algebra operations of Algorithm 4.1 is O(n4).

Proof. The dominant linear algebra operations in Algorithm 4.1 are the following:
line 2: solving a lower triangular block Toeplitz linear system,
line 4: computing the SVD of the Hessian matrices Hi,
line 6: computing the Padé approximant from the series coefficients,
line 8: computing the roots of the denominators of the Padé approximants.

The lemma will follow from investigating the complexity of each of these computations.
Exploiting the block structure of the linearized representations of the power series,

we see that the cost of the linear algebra operations in one Newton step on a series
truncated to degree ` requires O(n3) + O(`n2) operations [10]. In our application,
` = L + M + 1, which is O(n). Counting on the quadratic convergence of Newton’s
method, we need O(log(n)) steps, so the linear algebra cost to compute the power
series is O(log(n)n3), which is O(n4).

The cost of one SVD decomposition of an n-by-n matrix is O(n3); see. e.g., [17,
section 5.4]. The bound (4.7) requires n SVD decompositions, so we obtain O(n4).

The power series are input to n Padé approximants of degrees L and M , bounded
by O(n), as solutions of linear systems of size O(n). The total cost of computing the
coefficients of the Padé approximants is bounded by O(n4).

The pole distance requires the computation of the roots of the denominators of the
Padé approximants. The denominators have degree M, and M is O(n). Computing
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ROBUST NUMERICAL PATH TRACKING A3627

all eigenvalues of n companion matrices is O(n4) using classical eigenvalue algorithms,
and O(n3) using a specialized algorithm; see, e.g., [2].

Thus the cost of all linear algebra operations is O(n4).

Lemma 4.4. The cost to differentiate and evaluate the n Hessians Hk is 2n times
the cost of computing the Jacobian matrix JH .

Proof. We apply a result from algorithmic differentiation; see [26] and, in par-
ticular, [14]. Let f be a function in n variables. If Wf is the cost to evaluate
f and its gradient, then the cost of the evaluation of the Hessian matrix of f is
2nWf . The lemma follows by application of this result to all polynomials hi in the
homotopy H.

Lemma 4.5. Let WN be the cost of evaluation and differentiation for applying
Newton’s method on H(x, t) at (zt∗ , t

∗) ∈ X×C. The cost of evaluation and differen-
tiation for applying Newton’s method on H(x, t) at the series x(t) truncated at degree
O(n) is O(n log(n))WN .

Proof. If we evaluate a polynomial in a power series, then we have to perform
as many multiplications of power series as there are multiplications in the evaluation
of the polynomial at constant numbers. The overhead cost is therefore the cost to
multiply two power series, denoted by M(n) for power series truncated to degree n.
According to [12], M(n) is O(n log(n)).

The lemmas lead to the following result.

Theorem 4.6. The overhead cost of the a priori adaptive step control algorithm
(Algorithm 4.1) relative to the a posteriori adaptive step control algorithm for a ho-
motopy in n variables is at most O(n log(n)).

Proof. Consider a predictor-corrector step in an a posteriori step control algo-
rithm. The predictor is typically a fourth order extrapolator and runs in O(n). The
corrector applies a couple of Newton steps, which requires O(n3) linear algebra op-
erations, with evaluation and differentiation cost WN . According to Lemma 4.3, the
overhead cost of the linear algebra operations is O(n). By Lemma 4.4, O(n) is also
the overhead cost for the computation of the Hessians. The O(n log(n)) is provided
by Lemma 4.5.

We comment on the “at most O(n log(n))” in Theorem 4.6.
1. The cost of evaluation/differentiation relative to linear algebra. For very

sparse polynomial systems, the cost of evaluation and differentiation could be
independent of the degrees and as low as, for example, O(n2) or even O(n).
In that case, the evaluation and differentiation cost to compute the power
series would be O(n3 log(n)) or even as low as O(n2 log(n)). In both cases,
the cost of the linear algebra operations would dominate, and the overhead
cost drops to O(n).

2. The value of ` = L+M + 1 versus n. Our analysis was based on the assump-
tion that ` is O(n). For many polynomial systems arising in applications, the
number of variables n . 10. A typical value for ` is 7, as our default values
for L and M are 5 and 1, respectively, so our assumption is valid.
For cases when n � `, the overhead cost of working with power series then
becomes O(` log(`)), and ` may even remain fixed to 8. In cases when n� `,
the overhead cost drops again to O(n), as the cost of linear algebra operations
dominates.

The focus of our cost analysis was on one step of applying our a priori adaptive step
control algorithm and not on the total cost of tracking one entire path. This cost
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Table 1
Results of the experiment of subsection 5.1 for p = 10−k, k = 1, . . . , 7. An “7” indicates that

path jumping occurred.

Solver
k

1 2 3 4 5 6 7

brt DP 3 3 3 7 7 7 7
brt AP 3 3 3 3 7 7 7
HC.jl 3 7 7 7 7 7 7
phc -p 3 7 7 7 7 7 7
phc -u 3 3 3 3 3 3 3

depends on the number of steps required to track a path. We observe in experiments
(see section 5) that using our algorithm allows some paths to be tracked successfully
by taking only very few steps, even for high degree problems.

5. Numerical experiments. In this section we show some numerical experi-
ments to illustrate the effectiveness of the techniques proposed in this article. The
proposed method is implemented in PHCpack (v2.4.72), available at https://github.
com/janverschelde/PHCpack, and in Padé.jl, an implementation of our algorithm in
Julia. In the experiments, our implementations are compared with the state of the art.
We will use the following short notation for the different solvers in our experiments:

brt DP Bertini v1.6 using double precision arithmetic (MPTYPE = 0) [5];
brt AP Bertini v1.6 using adaptive precision (MPTYPE = 2) [4];
HC.jl HomotopyContinuation.jl v1.1 [11];
phc -p the phc -p command of PHCpack v2.4.72 [60];
phc -u our algorithm, used in PHCpack v2.4.72 via phc -u;
Padé.jl our algorithm, implemented in Julia.
We use default double precision settings for all solvers except brt AP, for which

we use default adaptive precision settings. The experiments in all but the last sub-
section are performed on an 8 GB RAM machine with an Intel Core 17-6820HQ CPU
working at 2.70 GHz. We restrict all solvers to the use of only one core for all the
experiments, unless stated otherwise. We will use Γ : [0, 1] 7→ C : s 7→ s, which will be
a smooth parameter path as defined in section 2 by the constructions in the experi-
ments. Therefore, the parameter s will not occur in this section, and paths are of the
form {(x(t), t), t ∈ [0, 1)} ⊂ X×[0, 1). In all experiments, we use β1 = 0.005, β2 = 0.5.
To measure the quality of a numerical solution of a system of polynomial equations,
we compute its residual as a measure for the relative backward error. We use the
definition of [52, section 7] to compute the residual.

5.1. A family of hyperbolas. Consider again the homotopy (2.1) from Exam-
ple 2.2, which represents a family of hyperbolas parametrized by the real parameter p.
Recall that the ramification locus is S = {1/2 + p

√
−1}. We will consider p 6= 0 here,

such that [0, 1] is a smooth parameter path. The smaller |p|, the closer the branch
points move toward the line segment [0, 1]. As the value of p > 0 decreases, the two
solution paths approach each other for parameter values t∗ ≈ 0.5 which causes danger
for path jumping. This is confirmed by our experiments. Table 1 shows the results.
We used L = 5,M = 1 in phc -u. The Julia implementation HC.jl checks whether
the starting solutions are (coincidentally) solutions of the target system. For this
reason, with this solver, we track for t ∈ [0.1, 1].

5.2. Wilkinson polynomials. As a second experiment, consider the Wilkinson
polynomial Wd(x) =

∏d
i=1(x − i) for d ∈ N>0. When d > 10, it is notoriously hard
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Table 2
Results for the experiment of subsection 5.2.

d
phc -p HC.jl brt DP brt AP phc -u

e T e T e T e T e T #
10 5 8.0e-3 0 2.5e-3 0 4.5e-2 0 2.5e-2 0 4.0e-2 23-42
11 7 2.9e-2 0 3.6e-3 0 1.9e-1 0 1.4e+0 0 5.2e-2 12-45
12 9 3.4e-2 0 6.7e-3 0 1.5e-1 0 2.0e+0 0 6.9e-2 12-50
13 10 3.5e-2 0 4.1e-3 0 3.2e-1 0 2.8e+0 0 1.1e-1 35-54
14 11 2.4e-2 1 6.2e-3 0 4.8e-1 0 3.8e+0 0 1.0e-1 12-69
15 13 1.7e-2 1 9.0e-3 15 1.5e-2 15 1.6e-2 0 1.2e-1 43-63
16 15 2.1e-2 6 6.7e-3 16 1.6e-2 16 1.4e-2 0 1.7e-1 12-74
17 16 1.6e-2 10 3.2e-3 17 1.8e-2 17 1.3e-2 0 1.9e-1 11-73
18 18 6.0e-3 11 1.4e-2 18 1.8e-2 18 1.4e-2 0 2.4e-1 57-81
19 18 1.8e-2 13 7.0e-3 19 1.8e-2 19 1.4e-2 0 2.6e-1 12-83

to compute the roots of these polynomials numerically when they are presented in
the standard monomial basis. For Bertini and HomotopyContinuation.jl, we use the
blackbox solvers to find the roots of the Wd(x). In PHCpack, we use

H(x, t) = (xd − 1)(1− t) + γWd(x)t,

with γ a random complex number.3 We use default settings for other solvers and use
L = 5,M = 1 in our algorithm to solve Wd(x) for d = 10, . . . , 19. The results are
reported in Table 2.

The number e is the number of failures, i.e., d minus the number of distinct
solutions (up to a certain tolerance) returned by each solver with residual < 10−9,
and T is the computation time in seconds. The column indexed by “#” gives the
minimum and maximum number of steps on a path for our solver. We conclude
this section with a brief comparison with certified tracking algorithms. For W4(x),
the algorithm4 proposed in [8] takes 6261.6 steps for the path starting at z0 = −1
(this is averaged out over five experiments with random, rational γ). For W15(x), the
certified tracking algorithm of [64] (which is specialized for the univariate case) takes
on average 790 steps per path.

5.3. Generic polynomial systems. In this subsection, we consider random,
square polynomial systems and solve them using the different homotopy continuation
packages and the algorithm proposed in this paper. We now specify what “random”
means. Fix n and d ∈ N \ {0}. A generic polynomial system of dimension n and
degree d is given by F : Cn → Cn : x 7→ (f1(x), . . . , fn(x)), where

fi(x) =
∑
|q|≤d

ci,qx
q ∈ R = C[x1, . . . , xn],

with q = (q1, . . . , qn) ∈ Nn, |q| = q1+· · ·+qn, and ci,q are complex numbers whose real
and imaginary parts are drawn from a standard normal distribution. The solutions
of F are the points in the fiber F−1(0) ⊂ Cn, and by Bézout’s theorem, there are dn

such points. In order to find these solutions, we track the paths of the homotopy

H(x, t) = G(x)(1− t) + γF (x)t, t ∈ [0, 1],

3The other solvers use Γ(s) = 1− s by default. This is not important here.
4We use a Macaulay2 implementation, available at http://people.math.gatech.edu/∼aleykin3/

RobustCHT/ to perform these experiments.
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Table 3
Results for the experiment of subsection 5.3.

n d
phc -p HC.jl brt DP brt AP phc -u

e T e T e T e T e T # h

1

20 0 5.0e+0 0 1.7e-3 0 3.1e-2 0 7.5e-2 0 4.2e-2 6-16 0.09
50 0 2.6e-2 0 6.3e-3 0 1.3e-1 0 2.3e+0 0 2.4e-1 5-27 0.07
100 2 9.1e-2 0 1.1e-2 49 5.3e-1 0 1.2e+1 0 8.9e-1 4-27 0.13
200 2 2.7e-1 0 3.2e-2 97 1.6e+0 1 4.5e+1 0 2.9e+0 5-25 0.13
300 5 6.6e-1 × × 221 2.8e+0 27 3.3e+2 0 8.3e+0 4-49 0.13

2

10 0 1.8e-1 0 1.5e-2 0 3.8e-1 0 2.4e+0 0 2.1e+0 8-37 0.10
20 2 2.2e+0 0 8.9e-2 0 1.4e+1 0 1.2e+2 0 2.6e+1 8-55 0.13
30 8 1.2e+1 0 3.3e-1 0 9.9e+1 0 2.0e+3 0 1.3e+2 8-68 0.13
40 22 3.7e+2 0 9.1e-1 68 3.5e+2 0 7.8e+3 0 4.2e+2 6-57 0.15
50 39 8.7e+2 0 2.3e+0 12 1.4e+3 0 3.4e+4 0 1.0e+3 7-57 0.14

3
5 0 3.5e-1 0 3.0e-2 0 7.0e-1 0 7.0e-1 0 4.8e+0 9-55 0.09
9 1 8.5e+0 0 2.3e-1 0 2.1e+1 0 4.8e+1 0 9.8e+1 8-56 0.10
13 4 6.8e+1 0 1.5e+0 0 2.3e+2 0 1.0e+3 0 8.3e+2 8-85 0.11

where γ is a random complex constant, and G : Cn → Cn : x 7→ (xd1 − 1, . . . , xdn − 1)
represents the start system with dn known, regular solutions. Results are given in
Table 3.

In the table, n and d are as in the discussion above, and e is the number of failures
(i.e., dn minus the number of successfully computed solutions, as in subsection 5.2).
For phc -u, the column indexed by “#” gives the minimum and maximum number of
steps on a path, and the column indexed by h gives the ratio of the number of steps
for which ∆t = ∆t1 is the first candidate stepsize. In this experiment, we took L =
5,M = 1, and we set the maximum stepsize to be 0.5. Note that even for this type of
generic system, the “difficulty” of the paths (based on the number of steps needed) can
vary widely. The case n = 1, d = 300 is not supported by HC.jl, because only one byte
is used to represent the degree. Note that HC.jl performs extremely well in all other
cases in this experiment in terms of both speed and robustness. The extra comparative
experiment in the next subsection will show that, for difficult (nongeneric) paths, our
heuristic shows better results (this was also shown in subsections 5.1 and 5.2).

5.4. Clustered solutions. Homotopies that cause danger for path jumping are
such that for some parameter value t∗ on the path, the map H(x, t∗) is a polynomial
system with some solutions that are clustered together. Motivated by this, we con-
struct the following experiment. Let nc be a parameter representing the number of
solution clusters, and let CS represent the “cluster size.” We consider the set of clus-
ters {C1, . . . , Cnc

} where Ci = {zi,1, . . . , zi,CS} ⊂ C is a set of complex numbers that

are “clustered” in the following sense. Take ci = e
i−1
nc

2π
√
−1, and for a real parameter

α, we define zi,j = ci + αu1/CSe
j−1
CS 2π

√
−1, where u is the unit roundoff (≈ 10−16 in

double precision arithmetic). Define the polynomial E(x) =
∏nc

i=1(
∏CS
j=1(x − zi,j)).

For α = 1, we know from classical perturbation theory of univariate polynomials
that the roots of E(x) look like the roots of a slightly perturbed version of a polyno-
mial whose nc roots are the cluster centers, which have multiplicity CS. We will use
α ≥ 10, such that the roots of E(x) are not “numerically singular.” Let d = ncCS.
Let G(x) = xd − 1, and let F (x) be a polynomial of degree d with random complex
coefficients, with real and imaginary parts drawn from a standard normal distribution.
We consider the homotopy

H(x, t) = (1− t)(1/2− t)G(x) + γ1t(1− t)E(x) + γ2t(1/2− t)F (x), t ∈ [0, 1],
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Table 4
Results for nc = 5.

α
Solver

CS
1 2 3 4 5

10
HC.jl 1.0 0.740 0.100 0.060 0.080
Padé.jl 1.0 0.990 0.993 0.995 0.988

100
HC.jl 1.0 1.0 0.627 0.985 0.980
Padé.jl 1.0 1.0 1.0 0.985 0.996

1000
HC.jl 1.0 1.0 1.0 1.0 1.0
Padé.jl 1.0 1.0 0.987 1.0 1.0

Table 5
Results for nc = 10.

α
Solver

CS
1 2 3 4 5

10
HC.jl 1.0 0.095 0.083 0.078 0.504
Padé.jl 1.0 0.995 1.0 1.0 0.990

100
HC.jl 1.0 0.530 0.673 0.982 1.0
Padé.jl 1.0 1.0 0.997 0.988 1.0

1000
HC.jl 1.0 0.995 0.990 1.0 0.310
Padé.jl 1.0 0.995 0.997 1.0 0.992

where γ1 and γ2 are random complex constants. G(x) represents the start system with
starting solutions the dth roots of unity. By tracking the homotopy H, the polynomial
G(x) is continuously transformed into the random polynomial F (x), passing through
the polynomial (γ1/4)E(x) (for t∗ = 1/2) with clustered solutions. The success rate

(SR) of a numerical path tracker for solving this problem is defined as follows. Let d̂ be
the number of points among the solutions of F (x) that coincide with a point returned

by the path tracker up to a certain tolerance (e.g., 10−6). We set SR = d̂/d. For
fixed α, nc,CS and track 10 homotopies H(x, t) constructed as above with different
random γi using HC.jl and Padé.jl. We compute the average success rate for these
10 runs. Results are reported in Tables 4 and 5. For each problem, the best average
success rate is highlighted in bold print.

5.5. Benchmark problems. Parallel computations were applied for the prob-
lems in this section. For two families of structured polynomial systems, our experi-
ments show that no path failures and no path jumpings occur, even when the number
of solution paths goes past one million.

5.5.1. Hardware and software. The program for the experiments is available
in the MPI folder of PHCpack, available in its source code distribution on github,
under the current name mpi2padcon. The code was executed on two 22-core 2.2
GHz Intel Xeon E5-2699 processors in a CentOS Linux workstation with 256 GB
RAM. The number of processes for each run equals 44. The root node manages the
distribution of the start solutions and the collection of the end paths. In a static
workload assignment, each of the other 43 processes tracks the same number of paths.

5.5.2. The katsura-n systems. The katsura family of systems is named af-
ter the problem posed by Katsura [31]; see [32] for a description of its relevance to
applications. The katsura-n problem consists of n quadratic equations and one lin-
ear equation. The number of solutions equals 2n, the product of the degrees of all
polynomials in the system.
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Table 6 summarizes the characteristics and wall clock times on katsura-n for n
ranging from 12 to 20. While the times with HOM4PS-2.0para [34] are much faster
than those in Table 6, Table 3 of [34] reports two and four curve jumpings, respectively,
for katsura-19 and katsura-20. In the runs with the MPI version for our code, no
path failures and no path jumpings occurred.

The good results we obtained required the use of homogeneous coordinates. When
tracking the paths first in affine coordinates, we observed large values for the coordi-
nates, which forced too small stepsizes, which then resulted in path failures.

Although the defining equations are nice quadrics, the condition numbers of the
solutions gradually increase as n grows. For example, for n = 20, the largest condition
number of the Jacobian matrix was of the order 107, observed for 66 solutions. Table 6
reports the number of real solutions in the column with header #real and the number
of solutions with nonzero imaginary part under the header #imag.

Table 6
Wall clock time on 44 processes on the katsura problem, in a static workload balancing schedule

with one manager node and 43 worker nodes. Only the workers track solution paths.

n #sols #real #imag Wall clock time (seconds)
12 4,096 582 3,514 7.925e+1 1m 19s
13 8,192 900 7,292 2.081e+2 3m 28s
14 16,384 1,606 14,778 5.065e+2 8m 27s
15 32,768 2,542 30,226 1.456e+3 24m 16s
16 65,536 4,440 61,096 4.156e+3 1h 9m 16s
17 131,072 7,116 123,956 1.001e+4 2h 46m 50s
18 262,144 12,458 249,686 2.308e+4 6h 24m 15s
19 524,288 20,210 504,078 5.696e+4 15h 49m 20s
20 1,048,576 35,206 1,013,370 1.317e+5 36h 34m 11s

The progression of the wall clock times in Table 6 illustrates that our new path
tracking algorithm scales well for increasing dimensions despite the O(n4) factor in
its cost.

5.5.3. A model of a neural network. An interesting class of polynomial
systems [43] was introduced to the computer algebra community by [21]. The n-
dimensional system consists of n cubic equations and originated from a model of a
neural network. A linear-product root bound provides a sharp root count. Although
the permutation symmetry could be exploited, with a symmetric homotopy using the
algorithms in [61], this did not happen for the computations summarized in Table 7.
Homogeneous coordinates were also applied in the runs. The formulation of the poly-
nomials in [43] depends on one parameter c, which was set to 1.1. The number of real
solutions is reported in Table 7 in the column with header #real, and the number of
solutions with nonzero imaginary part is under the header #imag.

Because every new equation is of degree three and the number of paths triples,
the wall clock time increases more than in the previous benchmark. As before, no
path failures and no path jumpings occurred.

6. Conclusion and future work. We have proposed an adaptive stepsize pre-
dictor algorithm for numerical path tracking in polynomial homotopy continuation.
The resulting algorithm can be used to solve challenging problems successfully using
only double precision arithmetic and is competitive with existing software. An imple-
mentation is available in PHCpack (available on github). It is expected that analogous
techniques can be used to track paths that contain singular points for t ∈ [0, 1), to
compute monodromy groups, and to design efficient new end games for dealing with
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Table 7
Wall clock times on 44 processes on polynomial systems modeling a neural network, in a static

workload balancing schedule with one manager node and 43 worker nodes. Only the worker nodes
track solution paths.

n #sols #real #imag Wall clock time (seconds)
10 59,029 21 59,008 3.478e+3 57m 58s
11 177,125 23 177,102 1.594e+4 4h 25m 37s
12 531,417 25 531,392 7.202e+4 20h 0m 17s
13 1,594,297 27 1,594,270 3.030e+5 84h 9m 58s

singular endpoints and solutions at infinity. Another possible direction for future re-
search is investigating whether the methods of this paper can be made certifiable, for
instance, by bounding the factors β1, β2. One could also choose the parameters L and
M based on an analysis of the Padé table at several points on the path. Finally, the
use of generalized Padé approximants could speed up the computations [23].

Appendix A. Computing power series solutions. In this appendix we
discuss the algorithm for computing a power series solution of

H(x, t) = (h1(x, t), . . . , hn(x, t))

at t∗ = 0 proposed in [10] and prove a result of convergence. An analogous result
for the case n = 1 can be found in [36]. We will consider the situation where the
series solution has the form (3.1) with parameters satisfying ωi ≥ 0. Furthermore,
we assume that the winding number m is known. If this is not the case, m can
be computed by using, for instance, monodromy loops. Note that it is sufficient
to consider the case where m = 1, since if m is known and m > 1, we can con-
sider the homotopy Ĥ(x, τ) = (h1(x, τm), . . . , hn(x, τm)) with power series solution
xj(s) = ajs

ωj
(
1 +

∑∞
`=1 aj`s

`
)
, j = 1, . . . , n, and τ(s) = s. Therefore, we can avoid

introducing the extra parameter s, and the unknown power series solution is given by

(A.1) xj(t) = ajt
ωj

(
1 +

∞∑
`=1

aj`t
`

)
, j = 1, . . . , n.

We think of H(x, t) as a column vector [h1 · · · hn]> in R[[t]]n ' Rn[[t]], and the
Jacobian matrix JH(x, t) is considered an element of R[[t]]n×n ' Rn×n[[t]]. For any
h(x, t) ∈ R[[t]]n, plugging in y(t) ∈ C[[t]]n gives h(y(t), t) ∈ C[[t]]n, and the same can
be done for J(x, t) ∈ R[[t]]n×n, which gives J(y(t), t) ∈ C[[t]]n×n.

Definition A.1. Let ? be either Cn or Cn×n. For v =
∑∞
`=0 v`t

` ∈ ?[[t]] \ {0},
the order of v is

ord(v) = min
`
{v` 6= 0},

where v` ∈ ?, ` ∈ N. For w 6= v ∈ ?[[t]] we denote v = w + O(tk) if ord(v − w) ≥ k.
For v = 0, we define ord(v) =∞.

Note that this means that for a vector or matrix v with power series entries,
v = O(tk) if and only if every entry of v is in mk, where m is the maximal ideal of C[[t]].
With elementwise addition and multiplication in C[[t]]n and the usual addition and
multiplication in C[[t]]n×n, it is clear that for v, w ∈ ?[[t]], ord(v) = ord(−v), ord(v+
w) ≥ min(ord(v), ord(w)), and ord(vw) ≥ ord(v) + ord(w). For the product rule,
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equality holds if ? = Cn. Matrix-vector multiplication C[[t]]n×n × C[[t]]n → C[[t]]n

is defined in the usual way, and for M ∈ C[[t]]n×n, v ∈ C[[t]]n we have ord(Mv) ≥
ord(M) + ord(v).

Given x(0)(t) = (x
(0)
1 (t), . . . , x

(0)
n (t)) ∈ C[[t]]n, fix positive integers wk ∈ N \ {0},

and consider the sequence {x(k)(t)}k≥0 defined by

x̃(k+1)(t) = x(k)(t)− JH(x(k)(t), t)−1H(x(k)(t), t) =

∞∑
`=0

b`t
`,

x(k+1)(t) =

wk−1∑
`=0

b`t
`,

(A.2)

where we assume that JH(x(k)(t), t) is a unit in C[[t]]n×n for all k, and this is equiv-
alent to assuming that JH(x(k)(0), 0) ∈ GL(n,C) for all k ≥ 0. The iteration is
clearly based on the well-known Newton–Raphson iteration for approximating a root
of a nonlinear system of equations. The following proposition specifies the statement
that the iteration has similar “quadratic” convergence properties. It is related to a
multivariate version of Hensel lifting; see, for instance, [19, Exercise 7.26].

Proposition A.2. Let H(x, t) : X × C → C be a homotopy with power series
solution x(t) ∈ C[[t]]n given by (A.1), and let {x(k)(t)}k≥0 be a sequence generated as
in (A.2). If JH(x(k)(t), t) is a unit in C[[t]]n×n for all k ≥ 0, then

ord(x(k+1)(t)− x(t)) ≥ min(2ord(x(k)(t)− x(t)), wk), k ≥ 0.

Proof. We know that x(t) = (x1(t), . . . , xn(t))> ∈ C[[t]]n satisfies H(x(t), t) = 0.
Take x(k)(t) ∈ C[[t]]n and define e(k)(t) = x(k)(t)− x(t). We have
(A.3)

0 = H(x(k)(t)− e(k)(t), t) = H(x(k)(t), t)− JH(x(k)(t), t)e(k)(t) +O(t2ord(e(k)(t))).

By assumption, JH(x(k)(t), t) is a unit, and thus ord(JH(x(k)(t), t)−1) = 0. We now
multiply (A.3) from the left with JH(x(k)(t), t)−1, and we get (using e(k)(t) = x(k)(t)−
x(t))

−JH(x(k)(t), t)−1H(x(k)(t), t) + (x(k)(t)− x(t)) = O(t2ord(e(k)(t))).

It follows that x̃(k+1)(t)− x(t) = O(t2ord(e(k)(t))). So we find that

ord(e(k+1)(t)) ≥ min(2ord(e(k)(t)), wk).

It follows that if e(0)(t) has order ≥ 1, the iteration converges to the solution
x(t), and the order of the error doubles in every iteration, as long as the trunca-
tion orders wk allow for it. Also, if ord(e(0)(t)) ≥ 1, H(x(0)(0), 0) = 0, and thus
ord(H(x(0)(t), t)) ≥ 1. It follows that the term −JH(x(k)(t), t)−1H(x(k)(t), t) has or-
der at least 1, and so the constant terms of x(1) and x(0) agree. This holds true for
the following iterations as well. We conclude that if ord(e(0)(t)) ≥ 1, the assumption
that JH(x(k)(t), t) is a unit for all k translates to the assumption that x(0)(0) = a is
a regular solution of the polynomial system defined by H0. If we want to compute
a series solution that is accurate up to order w, and ord(e(0)(t)) = r ≥ 1, we set
wk = min(r2k, w) and execute dlog2(w/r)e steps of the iteration. This can be done
by solving a lower triangular block Toeplitz system of linear equations. For details,
we refer the reader to [10].
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