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NUMERICAL SCHUBERT CALCULUS VIA THE

LITTLEWOOD-RICHARDSON HOMOTOPY ALGORITHM

ANTON LEYKIN, ABRAHAM MARTÍN DEL CAMPO, FRANK SOTTILE, RAVI VAKIL,
AND JAN VERSCHELDE

Abstract. We develop the Littlewood-Richardson homotopy algorithm,
which uses numerical continuation to compute solutions to Schubert prob-
lems on Grassmannians and is based on the geometric Littlewood-Richardson
rule. One key ingredient of this algorithm is our new optimal formulation of
Schubert problems in local Stiefel coordinates as systems of equations. Our
implementation can solve problem instances with tens of thousands of solu-
tions.

The Schubert calculus on the Grassmannian [15] studies the linear subspaces
that have specified positions with respect to fixed flags of linear spaces. This is a
rich class of well-understood geometric problems that appear in applications such
as the pole placement problem in linear systems theory [2, 3, 13, 35] and in in-
formation theory [1]. Schubert problems serve as a laboratory for investigating
new phenomena in enumerative geometry, such as possible numbers of real solu-
tions [5, 9, 26, 27, 33] or monodromy/Galois groups [18, 21, 22, 29]. While classical
algorithms count the number of solutions [4], these applications drive a need to
compute the actual solutions to Schubert problems.

General blackbox symbolic and numerical methods for solving systems of poly-
nomial equations do not perform well on large Schubert problems, as they are not
complete intersections. Numerical Schubert calculus consists of numerical algo-
rithms adapted to the structure of Schubert problems. A homotopy algorithm is
optimal when no solution path diverges for generic instances of the problem. The
Pieri homotopy algorithm for solving special Schubert problems [11] is an optimal
algorithm for Schubert calculus. That algorithm is based on a proof of Pieri’s rule
using geometric specializations [25]. It was implemented and refined [20, 33, 35],
and has been used to compute feedback laws for linear systems [35] and to com-
pute Galois groups of Schubert problems [18]. Special Schubert problems can be
formulated as imposing simple rank-deficiency on several matrices of general linear
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forms. Specialized algorithms for solving simple rank-deficiency on a matrix with
polynomial entries were recently developed in [8].

The more general Littlewood-Richardson rule was given a proof using geometric
specializations organized by a combinatorial checkers game [30,31]. This geometric
rule leads to our main contribution, the first general Littlewood-Richardson ho-
motopy algorithm. A preliminary study for this was carried out in [28] for some
Schubert problems with a handful of solutions. The present work is far more intri-
cate and the resulting algorithm is applicable to any Schubert problem on a Grass-
mannian. A novel feature is that in the homotopy, the underlying space and its
parametrization change, but the equations do not. We implemented the Littlewood-
Richardson homotopy algorithm both in the NumericalSchubertCalculus package
of Macaulay2 [6] and in PHCpack [32]. Our software is free and open source, avail-
able on github, and capable of solving problems with tens of thousands of solutions,
which are currently far out of reach for all other available methods.

Section 1 gives background on the Schubert calculus and numerical homotopy
continuation. This includes a new formulation for Schubert varieties using the
fewest possible number of equations. Section 2 describes the geometric Littlewood-
Richardson rule, which is the foundation of our algorithm. Section 3 is the heart of
the paper, for it describes the Littlewood-Richardson homotopy algorithm in detail.
Section 4 gives some examples of what our software can compute. Details of the
implementations will appear in [17].

1. Schubert calculus and homotopy continuation

We describe Schubert problems and explain how they may be represented on
a computer with an efficient set of equations. This is in terms of local Stiefel
coordinates and exploits the Plücker embedding. We conclude with a discussion on
numerical homotopy continuation. We will fix positive integers k < n throughout.

1.1. Schubert problems. The Grassmannian Gr(k, n) of k-planes in Cn is a com-
plex manifold of dimension k(n−k). It has Schubert subvarieties indexed by brack-
ets , which are k-element subsets α of [n] := {1, . . . , n}, written in increasing order

α : α1 < · · · < αk. Write
(
[n]
k

)
for the set of all brackets. A flag F is an increasing

sequence of linear subspaces,

F : F1 ⊂ F2 ⊂ · · · ⊂ Fn = C
n , with dimFi = i .

A bracket α ∈
(
[n]
k

)
and a flag F determine a Schubert variety ,

XαF := {H ∈ Gr(k, n) | dim(H ∩ Fαi
) ≥ i for i = 1, . . . , k} .

This variety has dimension |α| :=
∑k

i=1(αi−i) and its codimension in Gr(k, n) is
‖α‖ := k(n−k)− |α|.

The bracket [3, 4, 7, 8] ∈
(
8
4

)
and a flag F in C8 determine the Schubert variety,

(1) X[3,4,7,8]F = {H ∈ Gr(4, 8) | dimH ∩ F3 ≥ 1 , dimH ∩ F4 ≥ 2 ,

dimH ∩ F7 ≥ 3 , and dimH ∩ F8 ≥ 4} .
This subvariety of Gr(4, 8) has dimension 12 = (3− 1) + (4− 2) + (7− 3) + (8− 4)
and codimension 4 = 4 · (8− 4)− 12.

The geometric problems studied in Schubert calculus are given by lists of brackets
(α1, . . . , αs) and flags F 1, . . . , F s, and involve understanding the set of k-planes in
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NUMERICAL SCHUBERT CALCULUS 1409

the intersection

(2) Xα1F 1 ∩ Xα2F 2 ∩ · · · ∩ XαsF s .

When the flags F 1, . . . , F s are general and the brackets satisfy ‖α1‖+ · · ·+ ‖αs‖ =
k(n−k), this intersection (2) is zero-dimensional and transverse [14], and its num-
ber of points, d(α1, . . . , αs), does not depend on the flags. This number may be
computed using combinatorial algorithms from the Schubert calculus [4]. A list of
brackets (α1, . . . , αs) satisfying ‖α1‖+ · · ·+ ‖αs‖ = k(n−k) is a Schubert problem.
An instance of that Schubert problem is given by flags F 1, . . . , F s, and its solutions
are the points of the intersection (2).

The most basic Schubert problem is (α, β) where ‖α‖ + ‖β‖ = k(n−k). An
instance is given by two general flags F,M . The intersection XαF ∩XβM is empty
unless βk+1−i = n+1− αi for i = 1, . . . , k, and in that case it is the singleton,

(3) XαF ∩XβM =
{ k⊕

i=1

Fαi
∩Mn+1−αi

}
.

As the flags F and M are in general position, Fαi
∩Mn+1−αi

is one-dimensional.

1.2. Representing Schubert problems on a computer. To solve a Schubert
problem on a computer requires that it be formulated as a system of polynomial
equations in some coordinates. There are several formulations, including global
Plücker coordinates, local Stiefel coordinates, and more exotic primal-dual [7] or
lifted [10] coordinates. An advantage of local Stiefel coordinates is that they involve
the fewest variables.

An ordered basis f1, . . . , fn of Cn forms the columns of an invertible matrix in
Cn×n and vice-versa, with the standard basis corresponding to the identity matrix,
I. Given such a basis/matrix, we obtain a flag whose i-dimensional subspace is
the span of the columns f1, . . . , fi. Therefore, two matrices F, F ′ correspond to
the same flag if and only if there is an invertible upper triangular matrix T such
that F ′ = FT . We use the same symbol for an invertible matrix and for the
corresponding flag.

The Stiefel manifold is the set Mk,n of n × k matrices of full rank k. Taking
column span leads to a map φ : Mk,n � Gr(k, n) which is a principal GLk(C)-
bundle. This admits a (discontinuous) section given by putting any matrix in a
fiber into reverse column reduced echelon form. The set Xα of echelon matrices
with pivots in rows α is isomorphic to C|α|. Under φ, the set Xα is isomorphic
to a dense open subset of the Schubert variety XαI. For example, when n = 6
and k = 3, here are the sets Xα for the brackets α = [4, 5, 6], [2, 4, 6], and [2, 3, 5],
respectively, where xij indicates an indeterminate:⎛

⎜⎜⎜⎜⎜⎜⎝

x11 x12 x13

x21 x22 x23

x31 x32 x33

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x11 x12 x13

1 0 0
0 x32 x33

0 1 0
0 0 x53

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x11 x12 x13

1 0 0
0 1 0
0 0 x43

0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

A set Y ⊂ Mk,n will be called Stiefel coordinates for a subvariety Y of Gr(k, n),
if there is an invertible matrix M such that φ(MY) is dense in Y and the map
φ ◦ M : Y → Y is birational. Thus Xα gives Stiefel coordinates for the Schubert

Licensed to Univ of Illinois at Chicago. Prepared on Sun Mar 21 21:20:21 EDT 2021 for download from IP 128.248.156.45.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1410 A. LEYKIN ET AL.

varietyXαI and also for XαM . This definition allows the mild but useful ambiguity
that for M invertible, both Xα and MXα are Stiefel coordinates for both XαI and
for XαM .

Given a point H ∈ Mk,n, the condition that the k-plane φ(H) lies in XαF may
be expressed in terms of the rank of augmented matrices,

(4) rank ( H | Fαi
) ≤ k+αi−i for i = 1, . . . , k .

Equivalently, for each i = 1, . . . , k, all square (k+αi−i+1) × (k+αi−i+1) minors
of the matrix (H | Fαi

) vanish. This gives

k∑
i=1

(
n

k+αi−i+1

)(
k+αi

k+αi−i+1

)

equations, which are polynomials in the entries of H with coefficients depending
upon F . There are no minors when αi = n−k+i, and conditions are redundant if
αk = n, or when 1+αi = αi+1. For example, when k = 4, n = 8, and α = [3,4, 7, 8],
the only meaningful condition in the definition (1) of X[3,4,7,8]F is dimH ∩F4 ≥ 2,
or equivalently rank(H | F4) ≤ 6. This is given by the vanishing of the 64 non-
maximal 7× 7 minors of the 8× 8 matrix (H | F4).

This discussion shows that we may model the intersection of a subset Y ⊂
Gr(k, n) with a collection of Schubert varieties,

Y ∩ Xα1F 1 ∩Xα2F 2 ∩ · · · ∩XαsF s ,

by first selecting a set Y ⊂ Mk,n of Stiefel coordinates for Y and then generating
the minors imposing the rank conditions (4), for each pair (αi, F i).

The Littlewood-Richardson Homotopy Algorithm (Algorithm 2 in Section 3.3)
takes as input two positive integers k < n indicating the Grassmannian Gr(k, n),
brackets α1, . . . , αs representing a Schubert problem on Gr(k, n), and general flags
F 1, . . . , F s in C

n. Given these, it computes all the solutions to the corresponding
instance (2).

Theorem 1.1. For any Schubert problem (α1, . . . , αs) and general flags F 1, . . . , F s,
the Littlewood-Richardson Homotopy Algorithm finds all points in the intersec-
tion (2).

The proof of Theorem 1.1 is included in the proof of correctness of the Littlewood-
Richardson Homotopy Algorithm.

1.3. Efficient representation of Schubert problems. We formulate member-
ship of a 4-plane in X[3,4,7,8]F in terms of the Stiefel manifold M4,8. The condi-
tion (4) on augmented matrices is rank(H | F4) ≤ 6, where the 4-plane H is the
column space of a 8×4 matrix of indeterminates and we write the (constant) entries
of the 8× 4 matrix F4 as ∗s,

(H | F4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 x13 x14 ∗ ∗ ∗ ∗
x21 x22 x23 x24 ∗ ∗ ∗ ∗
x31 x32 x33 x34 ∗ ∗ ∗ ∗
x41 x42 x43 x44 ∗ ∗ ∗ ∗
x51 x52 x53 x54 ∗ ∗ ∗ ∗
x61 x62 x63 x64 ∗ ∗ ∗ ∗
x71 x72 x73 x74 ∗ ∗ ∗ ∗
x81 x82 x83 x84 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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NUMERICAL SCHUBERT CALCULUS 1411

The rank condition is given by the vanishing of the 64 non-maximal minors of
(H | F4) obtained by deleting one row and one column. Half of these equations are
homogeneous cubics and half are homogeneous quartics. The ideal of X[3,4,7,8]F in
M4,8 is generated by only 16 cubic minors, but it is not clear a priori which 16
suffice. We present another formulation of this Schubert variety that involves only
17 linearly independent quartics.

The Plücker embedding Gr(k, n) ↪→ P(∧k
C

n) is induced by the map Matn×k(C)
→ ∧kCn given by the

(
n
k

)
maximal minors of a matrix H = (hi,j) ∈ Matn×k(C)

H �−→
(
pα(H) | α ∈

(
[n]
k

))
∈

k∧
C

n .

Here, pα(H) := det(hαi,j)
k
i,j=1 is the determinant of the square submatrix consisting

of the rows indexed by α in H. These minors pα(H) are the Plücker coordinates of
H. The image is Gr(k, n) and it is cut out by the quadratic Plücker relations [4, §9.1,
Lemma 1].

The Schubert variety XαI is cut out from Gr(k, n) by a subset of Plücker coor-

dinates. Specifically, H ∈ XαI if and only if pβ(H) = 0 for all β ∈
(
[n]
k

)
with β 
≤ α.

This may be seen as follows. Given a general matrix H ∈ XαI, the rank of the
square submatrix formed by its rows β1, . . . , βk is k unless βi < αi for some i. This

uses the partial order on the index set
(
[n]
k

)
of brackets, defined by α≤β ⇐⇒ αi ≤ βi

for i = 1, . . . , k.

Example 1.2. When n = 8, k = 4, and α = [3, 4, 7, 8], there are 17 brackets β
with β 
≤ α:

[5, 6, 7, 8] , [4, 6, 7, 8] , [3, 6, 7, 8] , [4, 5, 7, 8] , [2, 6, 7, 8] , [3, 5, 7, 8] , [4, 5, 6, 8] ,

[1, 6, 7, 8] , [2, 5, 7, 8] , [3, 5, 6, 8] , [4, 5, 6, 7] , [1, 5, 7, 8] , [2, 5, 6, 8] , [3, 5, 6, 7] ,

[1, 5, 6, 8] , [2, 5, 6, 7] , [1, 5, 6, 7] . �

Observe that H ∈ XαF if and only if F−1H ∈ XαI if and only if pβ(F
−1H) = 0

for all β 
≤ α. Using the Cauchy-Binet formula, we can write

pβ(F
−1H) =

∑
γ∈([n]

k )

pβ,γ(F
−1)pγ(H) ,

where pβ,γ(F
−1) :=det((F−1)βi,γj

)ki,j=1 is the (β, γ)-th entry in the matrix ∧k(F−1).
We summarize this discussion with the following theorem.

Theorem 1.3 (Efficient equations for Y ∩XαF ). Let Y be Stiefel coordinates

for Y ⊂ Gr(k, n) and compute the Plücker vector P (Y) := (pβ(Y) | β ∈
(
[n]
k

)
) for

Y. Compute the rectangular matrix P (α)(F−1) := (pβ,γ(F
−1) | β 
≤ α, γ ∈

(
[n]
k

)
).

The entries in the matrix-vector product P (α)(F−1) · P (Y) cut out φ(Y) ∩ XαF
from φ(Y).

Remark 1.4. This method is even more efficient for the intersections of several
Schubert varieties, as we only need to compute P (Y) once. �
Remark 1.5. When this improvement was first implemented in our software, it re-
sulted in speedups of several to 60-fold. For instance, for α = [3, 4, 7, 8], computing
the problem (α, α, α, α) with six solutions went from 20 minutes to 20 seconds.
It is implemented in symbolic software used to study Galois groups in Schubert
calculus [21]. �
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1.4. Numerical homotopy continuation. A numerical homotopy continuation
algorithm computes solutions to a system of polynomial equations by following
known solutions to a different set of equations along a deformation (homotopy)
between the two systems using predictor-corrector methods.

Suppose that we want to compute the solutions to a system

(5) f1(x1, . . . , xm) = f2(x1, . . . , xm) = · · · = fM (x1, . . . , xm) = 0

of polynomial equations. A homotopy for (5) is a one-parameter family of equations
H(x; t) = 0 whose solutions at t = 0 are known and whose solutions at t = 1 include
those of (5). Furthermore, restricting t to the interval [0, 1] defines paths in Cm

that connect the solutions of (5) from t = 1 to known solutions at t = 0.
For such a homotopy, standard predictor-corrector methods are used to numeri-

cally trace the known solutions at t = 0 to obtain solutions to (5) at t = 1 (see [23]
for more details). The homotopy is optimal when every solution at t = 0 is con-
nected to a unique solution to (5) at t = 1 along a path.

This procedure may be iterated, connecting one homotopy to another to solve (5)
from known solutions to another system in two or more steps. The Pieri homo-
topy is such an optimal homotopy that used up to k(n−k)−2 steps to solve special
Schubert problems [11]. The Littlewood-Richardson homotopy (Algorithm 2 in Sec-
tion 3.3) is also an optimal homotopy which solves more general Schubert problems
on Grassmannians.

2. The geometric Littlewood-Richardson rule

The Littlewood-Richardson homotopy algorithm is based on the geometric
Littlewood-Richardson rule [30]. It consists of a sequence of degenerations which
successively transform an intersection XαF ∩ XβM of Schubert varieties when F
and M are general into a union of Schubert varieties XγF where ‖γ‖ = ‖α‖+ ‖β‖.

These degenerations are encoded in the combinatorial checkerboard game, de-
scribed in Section 2 of [30]. Subsection 2.18 of loc. cit. explains how these are
combined into a checkerboard tournament that encodes the process of resolving a
given Schubert problem. This checkerboard tournament forms the combinatorial
backbone of the Littlewood-Richardson homotopy.

The intermediate components of the degenerations of intersections XαF ∩XβM
are called checkerboard varieties; these are defined in Subsection 2.1, where we
also describe Stiefel coordinates for them. Subsection 2.2 describes the checker-
board game and explains how to combine several of them to get a checkerboard
tournament.

2.1. Checkerboard varieties. We summarize salient features of [30, Sec. 2].
Given brackets α and β, the geometric Littlewood-Richardson rule is a sequence of(
n
2

)
+1 families of subvarieties of Gr(k, n) parameterized by pairs of flags (F,M) in

particular relative positions. The most general family is parameterized by pairs of
flags in general position with the fiber over (F,M) being the intersection of Schu-
bert varieties XαF ∩XβM . In the least general family M = F and the fiber over
(F, F ) is a union of Schubert varieties XγF where ‖γ‖ = ‖α‖+ ‖β‖. In each inter-
mediate family, the pair of flags (F,M) has a fixed non-general relative position and
each fiber is a union of certain checkerboard varieties. These families fit together
pairwise into

(
n
2

)
families, transforming the intersection XαF ∩XβM into a union

of Schubert varieties.
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NUMERICAL SCHUBERT CALCULUS 1413

These
(
n
2

)
+1 families have the same base for any two brackets—each consists of

all pairs (F,M) of flags having a fixed relative position encoded by a permutation
π, where

dim(Mi ∩ Fj) = #{� ≤ j | π(�) ≤ i} .

We encode the relative position between F and M in a permutation array , which
is an n × n array of boxes with one black checker • in each row and column. We
will refer to a permutation array by the corresponding permutation π, defined by
the positions of the black checkers. For example, the permutation 356421 (given in
one-line notation) corresponds to the following permutation array.

(6)

An ordered basis m1, . . . ,mn for Cn and a permutation array π define flags F
and M as follows. Identifying the checker in row i with mi, the i-plane Mi is
the span of the checkers in the first i rows and the j-plane Fj is the span of the
checkers in the first j columns. For example, for the permutation array (6), we
have M3 = 〈m1,m2,m3〉, while F3 = 〈m3,m5,m6〉.

A checkerboard on a permutation array π is a placement •• of k red (gray)
checkers in π such that the red checkers are in distinct rows and columns, and any
subset of j red checkers has at least j black checkers to its northwest (↖). Suppose
that •• is a checkerboard on a permutation array π and (F,M) is a pair of flags
having relative position π given by an ordered basis m1, . . . ,mn as above. For each
subset S of red checkers, let S(F,M) be the subspace of Cn spanned by the black
checkers northwest of S.

Definition 2.1. The checkerboard variety Y••(F,M) ⊂ Gr(k, n) consists of all
k-planes H such that dimH ∩ S(F,M) ≥ #S, for all subsets S of red checkers.

For the checkerboard •• below, the checkerboard variety Y••(F,M) is

Y••(F,M) := {H ∈ Gr(2, 6) | dimH ∩ 〈m3,m5〉 ≥ 1 ,
dimH ∩ 〈m2,m3,m4〉 ≥ 1 , and
H ⊂ 〈m2,m3,m4,m5〉} .

In [30], the checkerboard variety Y••(F,M) is called a closed two-flag Schubert
variety. In Lemma 2.6 loc. cit., an open subset of Y••(F,M) is described as a subset
of a tower of projective bundles. This is equivalent to the following definition of
Stiefel coordinates for a checkerboard variety.

Definition 2.2. Order the red checkers from top to bottom. The checkerboard
variety Y••(F,M) has Stiefel coordinates given by a set Y•• = (yi,j) of reduced
echelon matrices as follows. The entry yi,j is 0 when the black checker in row i is
not northwest of the jth red checker, or if it is northwest and shares its square with
a different red checker; the entry yi,j is a 1 if the jth red checker is in row i, and
otherwise yi,j is an indeterminate.
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The set φ(MY••) is dense in the checkerboard variety Y••(F,M). A k-plane
H ∈ φ(MY••) has a basis h1, . . . ,hk where the vector

hj =

n∑
i=1

yi,jmi ,

corresponds to column j of MY••.
By Lemma 2.4 below, if there is a red checker northwest of red checker j, then

it lies in the square of some (say the ith) black checker. We may use the column
of this northwest red checker to reduce the column of the jth red checker in Y••
so that the entry yi,j vanishes. Thus this entry must be zero for Y•• to consist of
echelon matrices.

Example 2.3. Figure 1 shows a checkerboard •• and its Stiefel coordinates Y••

R

r

A

B
C

D

E
F

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,1 · · · · · ·
y2,1 · y2,3 · · · ·
1 · y3,3 y3,4 · · ·
· · y4,3 y4,4 · y4,6 ·
· y5,2 y5,3 y5,4 y5,5 y5,6 y5,7
· 1 0 0 0 0 0
· · 1 y9,4 y7,5 y7,6 y7,7
· · · y8,4 y8,5 y8,6 y8,7
· · · 1 · y9,6 ·
· · · · y10,5 y10,6 y10,7
· · · · y11,5 y11,6 y11,7
· · · · 1 0 0
· · · · · 1 y13,7
· · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1. Stiefel coordinates corresponding to a checkerboard.

when n = 14 and k = 7, with permutation array π = (6, 7, 8, 9, 11, 12, 13, 14, 10, 5, 4,
3, 2, 1). The entries 0 are forced by the requirement that the matrix be reduced
echelon. The entries · are also 0 and they indicate that the black checker is not
northwest of the corresponding red checker. The letters A, . . . , F, r, and R and the
arrows will be explained later. �
2.2. The checkerboard game. The steps in the geometric Littlewood-Richardson
rule, the deformations and degenerations ofXαF∩XβM , and of subsequent checker-
board varieties, are all encoded in the combinatorial checkerboard game. We discuss
its salient features, following [30, §§2.9–2.19].

The checkerboard game is a movement of black checkers that encodes the special-
ization of a pair (F,M) of general flags to the pair (F, F ) in special position. The
movement of the black checkers is a bubble sort beginning with the permutation
ω0, where ω0(i) = n+1−i, so that the black checkers will lie on the anti-diagonal.
In the game, the black checkers remain in their respective columns, changing only
rows. The first move interchanges the rows of the lowest (leftmost) two checkers.

For subsequent moves, note that the black checkers of a permutation π in mid-
sort will be in one of four regions, illustrated in Figure 2: (A) the upper right
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NUMERICAL SCHUBERT CALCULUS 1415

portion of the anti-diagonal, (B) along a diagonal starting in the first column at
the row below (A), (E) along a diagonal starting one column and two rows after
(B), or there will be a solitary checker (D) in the column between (A) and (E) and
in the row between (B) and (E). If there is no column between the checkers in (A)
and those along a diagonal, then consider that diagonal as (E), that (B) is empty,
and the solitary checker (D) is the last checker in (A). We call the solitary checker
(D) the descending checker and the top checker in (E) the ascending checker . When
n = 4, there are 7 =

(
4
2

)
+1 permutation arrays in the bubble sort.

(7)

The subsequent permutation array is obtained by interchanging the rows of the
descending and ascending checkers. Call the row of the descending checker the
critical row and the diagonal (E) the critical diagonal . See Figure 2.

critical row (D)

critical diagonal (E) �

(A)

(B)

Figure 2. Critical row and critical diagonal.

The checkerboard game also constructs a tree with checkerboards as nodes. This
tree is a ranked poset with

(
n
2

)
+1 ranks corresponding to the underlying permuta-

tion arrays. Its root encodes the intersection XαF ∩XβM as a checkerboard for the
permutation array ω0, placing red checkers in positions (βk+1−i, αi) for i = 1, . . . , k.
When n = 6 and k = 3 with α = [2, 4, 6] and β = [3, 4, 6], we have the following
checkerboard •• and Stiefel coordinates Y•• for XαF ∩XβM :

⎡
⎢⎢⎢⎢⎢⎢⎣

· · y13
· · y23
· y32 1
· 1 ·

y51 · ·
1 · ·

⎤
⎥⎥⎥⎥⎥⎥⎦
.

If for some i, βk+1−i +αi < n, then XαF ∩XβM = ∅ and there is no checkerboard
game.

Each node in this tree has one or two children according to which of nine cases
it is in. These cases are determined by two questions, each of which has three
answers.

Where is the top red checker in the critical diagonal (E)?

(0) In the square of the ascending black checker.
(1) Elsewhere in the critical diagonal.
(2) There is no red checker in the critical diagonal.
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1416 A. LEYKIN ET AL.

Where is the red checker in the critical row (D)?

(0) In the square of the descending black checker.
(1) Elsewhere in the critical row.
(2) There is no red checker in the critical row.

Table 1 shows the movement of the checkers in these nine cases. The rows
correspond to the first question and the columns to the second question. Only the
relevant part of each checkerboard is shown.

Table 1. Movement of red checkers.

0 1 2

0

1 or

2

In case (1, 1) there are two possibilities, referred to as stay or swap, for in one
the red checkers remain in place, while in the other they swap columns. The swap
occurs only if there are no other red checkers in the rectangle between the two,
called blockers . Figure 3 shows a blocker.

red checker in critical row�

top red checker elsewhere in
critical diagonal

�
blocker�

Figure 3. A blocker.

A red checker is in region A, B, or E if both its row and column contain black
checkers in the corresponding region. Checkers in regions C, D, or F lie in the
row of some black checker that is in region B, is descending, or is in region E,
respectively, and they lie in a column of a black checker in A. It is helpful to refer
to Figure 1.

Lemma 2.4. In a checkerboard ••, each red checker strictly to the left of the column
of the descending checker lies in the square of some black checker in region B or
E. The other red checkers are arranged southwest to northeast in regions F , D, C,
and A. In particular, if one red checker is northwest of another, then the first lies
in the square of a black checker in region B or E.
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NUMERICAL SCHUBERT CALCULUS 1417

Proof. This is true in the initial position in the permutation array ω0, and each
move of Table 1 preserves this configuration. �

For a permutation π, let Pπ be the space of pairs of flags (F,M) in relative
position π. If π follows σ in the bubble sort, then in the space of pairs of flags, Pπ

lies in the closure of Pσ and is dense in a component of Pσ � Pσ so that Pπ is a
boundary divisor of Pσ.

Suppose that ••′ is a checkerboard with permutation array σ and child checker-
board •• with permutation array π (or •• and ••′′ are its two children in case
(1, 1) with no blockers). Let Y be the family over Pπ ∪ Pσ ⊂ Pσ whose fiber over
(F,M) ∈ Pσ is the checkerboard variety Y••′(F,M) and over (F,M) ∈ Pπ is the
checkerboard variety Y••(F,M) (or Y••(F,M) ∪ Y••′′(F,M) in case (1,1)). Then
Theorem 2.13 of [30] states that Y is the closure in (Pπ ∪ Pσ) × Gr(k, n) of its
restriction to Pσ.

At the conclusion of the checkerboard game, all checkers lie along the main
diagonal. For such a checkerboard, the corresponding checkerboard variety is the
Schubert variety XγF , where the red checkers lie in positions (γ1, γ1), . . . , (γk, γk).

Figure 4 shows the checkerboard game in the first nontrivial case when n = 4,
k = 2 and α = β = [2, 4]. It deforms X[2,4]F ∩X[2,4]M into X[1,4]F ∪X[2,3]F . The

stage 0 stage 1 stage 2 stage 3 stage 4 stage 5 stage 6

�22 �
���

swap

11

�
���

stay

�22

�02

�02

�22

�22

�00

�22

�20

Figure 4. Resolving the intersection X[2,4]F ∩X[2,4]M .

arrows are labeled by the position of the move in Table 1. The geometry does not
change in the first step, as the 2-plane H continues to meet both M2 = 〈m1,m2〉
and F2 = 〈m3,m4〉 in a 1-dimensional subspace. In the second stage, H con-
tinues to meet both M2 and F2, but these now meet in 〈m2〉. There are two
possibilities for H as we are in case (1, 1) of Table 1. Either m2 ∈ H (swap) or
H ⊂ 〈F2,M2〉 = 〈m1,m2,m4〉 (stay). In subsequent moves the vectors m1, . . . ,m4

rearrange themselves. Three dimensional pictures in [28, Figure 4] illustrate Fig-
ure 4.1

A checkerboard game may have identical nodes. Since the children of a node
depend only on the checkerboard of that node (and not on the previous history), we
may identify identical nodes, obtaining a ranked checkerboard poset whose maximal
elements (leaves) are indexed by a subset of those brackets γ with ‖γ‖ = ‖α‖+‖β‖.

Suppose that we have a Schubert problem, (β1, β2, . . . , βs). The checkerboard
poset for β1, β2 has leaves indexed by brackets α with ‖α‖ = ‖β1‖+‖β2‖. For each
such α, we form the checkerboard poset for α, β3 and attach it to the leaf labeled α.
Identifying identical nodes in this new poset gives a poset whose leaves are indexed

1Animations at http://www.math.tamu.edu/~sottile/research/stories/vakil/4lines/1.

html

Licensed to Univ of Illinois at Chicago. Prepared on Sun Mar 21 21:20:21 EDT 2021 for download from IP 128.248.156.45.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.math.tamu.edu/~{}sottile/research/stories/vakil/4lines/1.html
http://www.math.tamu.edu/~{}sottile/research/stories/vakil/4lines/1.html


1418 A. LEYKIN ET AL.

by brackets γ with ‖γ‖ = ‖β1‖ + ‖β2‖ + ‖β3‖. Repeating this process forms
the checkerboard tournament , which is a poset having s−2 levels of checkerboard
posets whose leaves are labeled by brackets δ with ‖δ‖ + ‖βs‖ = k(n−k). We
prune this poset, leaving only the single leaf labeled by the sequence (βs)∨ :=
(n+1−βs

k, . . . , n+1−βs
1). The number of solutions to the original Schubert problem

is the number of saturated chains in this poset from the root to the unique leaf, by
Corollary 2.17 and the discussion in Subsection 2.18 of [30].

3. The Littlewood-Richardson homotopy

We first explain the Littlewood-Richardson homotopy conceptually. Given a
Schubert problem (β1, . . . , βs) and flags F, F 2, . . . , F s, suppose that we know all
the points of

(8) XγF ∩ Xβ3F 3 ∩ · · · ∩ XβsF s

for γ any index with ‖γ‖ = ‖β1‖ + ‖β2‖. We use this to find all solutions to the
instance of the Schubert problem

(9) Xβ1F ∩ Xβ2F 2 ∩ Xβ3F 3 ∩ · · · ∩ XβsF s .

Formulating membership in Xβ3F 3 ∩ · · · ∩XβsF s as a system of polynomial equa-
tions, we use the geometric Littlewood-Richardson rule for Xβ1F ∩Xβ2F 2 to con-
tinue the points of (8) for all γ back to solutions to the instance (9) of the original
Schubert problem.

Similarly, if for some �, all solutions to instances of Schubert problems of the
form

(10) XγF ∩ Xβ�F � ∩ · · · ∩ XβsF s

are known for all γ with ‖γ‖ + ‖β�‖ + · · · + ‖βs‖ = k(n−k), then we may find all
solutions to Schubert problems of the form

(11) XαF ∩ Xβ�−1F �−1 ∩ Xβ�F � ∩ · · · ∩ XβsF s ,

for all α with ‖α‖+ ‖β�−1‖+ ‖β�‖+ · · ·+ ‖βs‖ = k(n−k). Thus starting with the
(known) solution (3) to X(βs)∨F ∩ XβsF s, after s−2 iterations of this procedure
we obtain all solutions to the original Schubert problem.

In passing from the Schubert problem (10) coming from a leaf of the checker-
board game for the pair (α, β�−1) to the problem corresponding to its root (11), we
encounter intermediate Schubert problems corresponding to nodes •• of the checker-
board game. An instance of the intermediate Schubert problem corresponding to
the node •• is an intersection

(12) Y••(F,M) ∩ Xβ�F � ∩ · · · ∩ XβsF s .

Our algorithm requires 1-parameter families of flags to use in each step of the
homotopy. We also need to specify how the equations are generated, and how the
solutions obtained from one checkerboard game are passed to the next one in the
tournament.

In Subsection 3.1 we describe the families of flags underlying each checkerboard
game. In Subsection 3.2 we describe the coordinate homotopies, one for each pair
of subsequent nodes in a checkerboard game. In Subsection 3.3 we explain how
these fit together in the Littlewood-Richardson homotopy.
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3.1. Families of flags. The Littlewood-Richardson homotopy uses the degen-
erations of the geometric Littlewood-Richardson rule along a sequence of one-
parameter families of flags that form a skeleton of the families Pσ of Section 2.2.
This begins with

(
n
2

)
+1 pairs (F,M) of flags in position π, one pair for each per-

mutation π in the bubble sort. We also select
(
n
2

)
explicit one-parameter families

of pairs (F ′(t),M ′(t)) that connect these flags. The explicit choices we make here
are those made in our software. The flags F and F ′(t) are fixed to be the stan-
dard coordinate flag, so we only need to specify the flags M and M ′(t) for each
permutation and family. These have the following property. If M ′ corresponds to
the permutation σ and M to the next permutation π in the bubble sort, then the
family M ′(t) connecting them satisfies

(13) M ′(0) = M and M ′(1) = M ′ ,

and for all t 
= 0, the pair (F,M ′(t)) has position σ.
The subspace Fi of F is spanned by the ith column of the identity matrix. At a

permutation π, the flag M is given by an ordered basis m1, . . . ,mn so that Mi is
spanned by m1, . . . ,mi while Fi is spanned by mπ(1), . . . ,mπ(i), but m1, . . . ,mn

is not necessarily a permutation of the columns of the identity matrix. This is
illustrated in the second row of Figure 5.

At the leaves of a checkerboard game, M = F . We describe the other flags
recursively. Suppose that the flag M corresponds to a permutation π in the bubble
sort with σ the previous permutation, and let r be the critical row in the sort from
σ to π. Then the flag M ′ corresponding to σ is given by the basis m′

1, . . . ,m
′
n,

where

(14) m′
i = mi for i 
= r, r+1, m′

r = mr −mr+1, and m′
r+1 = mr.

For t 
= 0, the family M ′(t) is given by the basis m′
1(t), . . . ,m

′
n(t), where

m′
i(t) = mi = m′

i i 
= r, r+1 ,

m′
r(t) = mr − tmr+1 = tm′

r + (1− t)m′
r+1 , and(15)

m′
r+1(t) = mr = m′

r+1 .

For t 
= 0, we have 〈m′
r(t),m

′
r+1(t)〉 = 〈mr,mr+1〉. As limt→0 M

′(t) = M , we set
M(0) := M . The flag M at the root corresponds to the triangular matrix (mi,j),
where

mi,j =

{
0 if n < j + i

(−1)i otherwise.

Figure 5 shows the permutations, arrays, matrices M , and families M ′(t) when
n = 4.

3.2. Stiefel coordinates and homotopy for checkerboard moves. Suppose
that the permutation σ is followed by π in the bubble sort. Fix, as in Subsection 3.1,
the flags F , M , M ′, and M ′(t). Let ••′ be a checkerboard with permutation array σ
and suppose that •• is a child checkerboard of ••′ with permutation array π. Then
by Theorem 2.3 of [30] the family of checkerboard varieties Y••′(F,M ′(t)) for t 
= 0
extends to a family Y••,••′(t) over C with Y••(F,M) a component of the special
fiber at t = 0. (If •• is the unique child checkerboard of ••′, then Y••(F,M) is the
special fiber, otherwise there is a second component Y••′′(F,M) corresponding to
the other child ••′′.)
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1420 A. LEYKIN ET AL.

1234 1243 1342 2341 2431 3421 4321

M
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 1
0 0 −1 0

1 0 0 0
0 1 1 0
0 −1 0 1
0 1 0 0

1 1 0 0
−1 0 1 0
1 0 0 1

−1 0 0 0

1 1 0 0
−1 0 1 1
1 0 −1 0

−1 0 0 0

1 1 1 0
−1 −1 0 1
1 1 0 0

−1 0 0 0

1 1 1 1
−1 −1 −1 0
1 1 0 0

−1 0 0 0

M ′(t)
1 0 0 0
0 1 0 0
0 0 1 1
0 0 −t 0

1 0 0 0
0 1 1 0
0 −t 0 1
0 t 0 0

1 1 0 0
−t 0 1 0
t 0 0 1

−t 0 0 0

1 1 0 0
−1 0 1 1
1 0 t 0

−1 0 0 0

1 1 1 0
−1 −t 0 1
1 t 0 0

−1 0 0 0

1 1 1 1
−1 −1 −t 0
1 1 0 0

−1 0 0 0

Figure 5. Permutation arrays, matrices M , and families of ma-
trices M(t).

The key construction in the Littlewood-Richardson homotopy is a set of Stiefel
coordinates Y••(t) for this family, in the following sense.

(i) Y••(0) are Stiefel coordinates for Y••(F,M) in that φ(MY••(0)) is dense in
the checkerboard variety Y••(F,M) = Y••(F,M(0)).

(ii) For t 
= 0, we have that φ(MY••(t)) is dense in Y••′(F,M(t)).

Thus Y••(t) gives Stiefel coordinates for the family Y••′(F,M(t)), parameterizing
an open subset that meets the component Y••(F,M) of the special fiber. These
coordinates Y••(t) will be defined below and their properties verified.

Remark 3.1. If ••′ has another child ••′′, then Y••′′(t) also gives Stiefel coordinates
for Y••′(F,M(t)) and φ(MY••′′(t)) meets the component Y••′′(F,M) of the special
fiber. �

These Stiefel coordinates Y••(t) are used to generate a homotopy corresponding
to the edge ••–••′ in the checkerboard tournament. We describe this homotopy.

Algorithm 1 (Checkerboard Homotopy Algorithm)

Let (γ, β�−1, β�, · · · , βs) be a Schubert problem and suppose that ••–••′ is an
edge in the checkerboard game for (γ, β�−1) with ••′ the parent of ••.

Input: A solution y∗ to the instance of the intermediate problem

Y••(F,M) ∩ Xβ�F � ∩ · · · ∩ XβsF s

represented as a matrix (y∗i,j) ∈ Y•• such that y∗ = φ(M(y∗i,j)).
Output: The solution y′ to the instance of the intermediate problem

(16) Y••′(F,M ′) ∩ Xβ�F � ∩ · · · ∩ XβsF s

connected to y∗ by the family Y••,••′(t) for t ∈ [0, 1], which is represented by a
matrix (y′i,j) ∈ Y••′ with y′ = φ(M ′(y′i,j)).

1: Generate the coordinates Y••(t) for Y••,••′(t).
2: The homotopy H(y; t) is given by the equations of Theorem 1.3 for membership

in the Schubert varieties Xβ�F �, . . . , XβsF s evaluated on the Stiefel coordinates
MY••(t).
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NUMERICAL SCHUBERT CALCULUS 1421

3: Use numerical continuation to follow the homotopy H(y; t) from the the start
solution (y∗i,j) at t = 0 to a solution (y∗i,j(1)) at t = 1.

4: Solve the equation

(17) M ′(ỹi,j) = M(y∗i,j(1))

for the matrix (ỹi,j).
5: Put the solution (ỹi,j) in echelon form to get a point (y′i,j) ∈ Y••′ .

Proof of correctness. The coordinates Y••(t) satisfy the properties (i) and (ii) above
and thus MY•• gives Stiefel coordinates for the family Y••,••′(t). It follows that
this homotopy computes a point y′ in the target intermediate problem (16).

The arguments in Cases I–III below show that the echelon form of a solution
to (17) lies in the Stiefel coordinates Y••′ , which completes the proof. �
Remark 3.2. In passing from π to σ, the black checkers in rows r and r+1 switch
rows,

π : . . .
. . .

becomes σ : . . .
. . .

.

If M is the flag for π and M ′ the flag for σ, then by (14), m′
r+1 = mr and

m′
r = mr −mr+1. Thus the basis element corresponding to the left moving black

checker is unchanged, while that corresponding to the right moving black checker
is changed, but their span is unchanged. It follows that if there is no red checker
in the critical row r, then the geometric condition on the k-plane is unchanged in
the move. �

As there are ten different checkerboard moves in Table 1, there are potentially
ten different families of Stiefel coordinates Y•• for the family Y••,••′(t). Analyzing
their geometry reveals there are only three geometrically distinct cases for the
construction of Y••(t). We indicate these cases by their positions in the 3× 3 array
of Table 1,

I :
x
x
x

, II : stay
x x

, and III :
x x
x swap ,

and refer to them by the numerals I, II, and III in the sequel.

Case I. There is no red checker in the critical row, so the geometric condition on
the k-plane does not change, as noted in Remark 3.2. We need only to explain how
to transform the coordinates Y•• of a given k-plane into the coordinates Y••′ so

(18) M ′Y••′ = MY•• .

(cf. (17).) Write y′i,j and yi,j for the entry in row i and column j of Y••′ and Y••
respectively, and let r be the critical row. If we set

(19) y′i,j := yi,j i 
= r, r+1 , y′r,j := −yr+1,j , and y′r+1,j := yr,j + yr+1,j ,

then (18) is satisfied as

yr,jmr + yr+1,jmr+1 = yr,jm
′
r+1 + yr+1,j(m

′
r+1 −m′

r)

= −yr+1,jm
′
r + (yr,j + yr+1,j)m

′
r+1

= y′r,jm
′
r + y′r+1,jm

′
r+1 .

In practice, our software solves the equation (18) for the entries of Y••′ .
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If there is a red checker in row r+1 of ••′, then its column will not be in echelon
form in Y••′ : If its column index is j, then the last two non-zero entries are in
rows r and r+1, and they are y′r,j = −1 and y′r+1,j = 1 + yr,j . In this case, we
divide that column by y′r+1,j to put Y••′ into (reduced) echelon form, as we do in
our software.

Case II. As there is a checker in the critical row, by Remark 3.2, the geometric
condition on the k-plane changes and the Stiefel coordinates Y••(t) will involve t.
We describe them and then prove they have the properties claimed. We will write
j ∈ A,B to indicate that the jth red checker of •• is in region A or in region B, and
the same for the other regions or rows of the checkerboard as defined in Figure 1.

Let (yi,j) = Y•• be the Stiefel coordinates from Definition 2.2. Define Y••(t) =
(yi,j(t)), by setting yi,j(t) := yi,j if i 
= r+1. When i = r+1, set yr+1,j(t) :=
yr+1,j = 0 if j ∈ E, and otherwise set

(20) yr+1,j(t) := yr+1,j − tyr,j .

Observe that if j ∈ A,B, or C, then its row is above r so that yr+1,j = yr,j =
yr+1,j(t) = 0. Note that yr+1,j(t) is non-zero when j ∈ F or when j lies in row r,
for when j lies in row r, yr,j = 1 and yr+1,j = 0.

Lemma 3.3. For any t 
= 0, φ(MY••(t)) is dense in the checkerboard variety
Y••′(F,M ′(t)) and φ(MY••(0)) is dense in Y••(F,M

′(0)).

Proof. When t = 0, this holds as Y••(0) = Y••, MY•• gives Stiefel coordinates for
Y••(F,M), and M ′(0) = M . For t 
= 0, we will show that if we solve the equation
M ′(t)Y••′(t) = MY••(t) for the n × k matrix Y••′(t), then Y••′(t) for t 
= 0 is a
curve in Y••′ whose entries are functions of yi,j and t.

Let h1(t), . . . ,hk(t) be the column vectors of MY••(t), which span the k-plane
φ(MY••(t)). If j ∈ E, then

hj(t) =
∑

i �=r,r+1

yi,jmi + yr,jmr + 0 ·mr+1 ,

as yr+1,j = 0. If j 
∈ E, then by (20),

hj(t) =
∑

i �=r,r+1

yi,jmi + yr,jmr + (yr+1,j − tyr,j)mr+1 .

Let us express hi(t) in the basis m′
1(t), . . . ,m

′
n(t). If i 
= r, r+1, then by (15),

m′
i(t) = mi, and we have m′

r(t) = mr − tmr+1 and m′
r+1(t) = mr, so that when

t 
= 0, we have

mr+1 = 1
t (m

′
r+1(t) − m′

r(t)) .

If j ∈ E, we have

hj(t) =
∑

i �=r,r+1

yi,jm
′
i(t) + yr,jm

′
r+1(t) .

If j 
∈ E, then

hj(t) =
∑

i �=r,r+1

yi,jm
′
i(t) + (yr,j − 1

t yr+1,j)m
′
r(t) + 1

t yr+1,jm
′
r+1(t) .

Define the Stiefel coordinates Y••′(t) = (y′i,j(t)) for t 
= 0 by

y′i,j(t) = yi,j for i 
= r, r+1 ,
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NUMERICAL SCHUBERT CALCULUS 1423

and if j ∈ E, then

y′r,j(t) = 0 = yr+1,j and y′r+1,j(t) = yr,j ,

and if j 
∈ E, then

y′r,j(t) = yr,j − 1
t yr+1,j and y′r+1,j(t) = 1

t yr+1,j .

A consequence of these definitions is that for t
=0, the column vectors ofM ′(t)Y••′(t)
are equal to h1(t), . . . ,hk(t). That is,

M ′(t)Y••′(t) = MY••(t) .

Note that the entry y′i,j(t) is 0, 1, or an affine polynomial in the yp,q and 1
t if and

only if the corresponding entry in the Stiefel coordinates Y••′ of Definition 2.2 is 0,
1, or an indeterminate, respectively. This proves the lemma. �

Case III. This case is the most subtle. Let •• be a child of ••′ with the checkerboard
move in Case III in which two red checkers move columns. Let (yi,j) be the entries
in Y••, as given in Definition 2.2. Let s be the index of the red checker in the
critical row r, and s+1 the index of the other moving red checker, which is in row
R ≥ r+1.

Figure 6 gives an example of •• and Y••, which is a child of the checkerboard
••′ of Figure 1 with coordinates Y••′ , where the move connecting them is the swap
move in the center of Table 1. Comparing these two figures will help to explain our
arguments. In Figure 6, we have s = 4, the red checker s is to the left in row r = 9,
and the red checker s+1 is to the right in row R = 12. These two are in different
columns in Figure 1.

We define Y••(t) = (yi,j(t)). The entry yi,j(t) will depend on the position of the
red checker j. Recall that the black checkers are in regions A, B, E, or in row r.

(1) If j 
= s, set yi,j(t) := yi,j .

R

r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,1 · · · · · ·
y2,1 · y2,3 · · · ·
1 · y3,3 · y3,5 · ·
· · y4,3 · y4,5 y4,6 ·
· y5,2 y5,3 y5,4 y5,5 y5,6 y5,7
· 1 0 0 0 0 0
· · 1 y7,4 y7,5 y7,6 y7,7
· · · y8,4 y8,5 y8,6 y8,7
· · · 1 0 0 0
· · · · y10,5 y10,6 ·
· · · · y11,5 y11,6 y11,7
· · · · 1 y12,6 y12,7
· · · · · 1 y13,7
· · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 6. Stiefel coordinates corresponding to a checkerboard.
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1424 A. LEYKIN ET AL.

(2) When j = s, set yr,s(t) := yr+1,s+1 and yr+1,s(t) := −tyr+1,s+1, and

ya,s(t) := −tya,s+1 for a ∈ A,
yb,s(t) := yr+1,s+1 · yb,s for b ∈ B,

and if e ∈ E � {r+1}, then ye,s(t) = 0 = ye,s, as s is in row r < e. The
terms −tya,s+1 for a ∈ A occur only if the red checker s in the critical row
in ••′ is not in the square of the descending checker.

Observe that MY•• is equal to MY••(t), except in column s, and that if hs and
hs(t) are the vectors of column s in MY•• and in MY••(t) respectively, then

(21) hs(t) = yr+1,s+1hs − t
(
yr+1,s+1mr+1 +

∑
a∈A

ya,s+1ma

)
,

where the term inside the parentheses is a sum of components of the column vector
hs+1.

Lemma 3.4. For any t 
= 0, φ(MY••(t)) is dense in the checkerboard variety
Y••′(F,M ′(t)) and φ(MY••(0)) is dense in Y••(F,M

′(0)).

Proof. Note that Y••(0) = Y••, except in their sth columns. These columns are
proportional, as yi,s(0) = yr+1,s+1 · yi,s, for all i. This proves the statement for
t = 0.

For t 
= 0, we show that φ(MY••(t)) is dense in the checkerboard variety
Y••′(F,M ′(t)) by describing Stiefel coordinates Y••′(t) = (y′i,j(t)) with φ(MY••(t))
= φ(M ′(t)Y••′(t)) that have the following properties:

The transformation Y••(t) → Y••′(t) is invertible, and the entry
y′i,j(t) of Y••′(t) is 1, 0, or a function of the yp,q and t if and only(22)
if the entry in the Stiefel coordinates Y••′ of Definition 2.2 is 1, 0,
or an indeterminate, respectively.

Let h1(t), . . . ,hk(t) be the k column vectors of MY••(t). We use these to define
the entries y′i,j(t) of Y••′(t), which depend upon the position of the red checker j
in ••′. Recall from Figure 1 that red checkers in ••′ lie in one of the regions A–F .

If the red checker j is in a row above r, so that j ∈ A, B, or C, then

(23) hj(t) =
∑

i∈A,B

yi,jmi =
∑

i∈A,B

yi,jm
′
i(t) .

If j = s, then we have

(24) hs(t) =
∑
a∈A

−tya,s+1ma + yr+1,s+1

(∑
b∈B

yb,smb + mr − tmr+1

)
.

If j = s+1, so that the red checker is in row R,

(25) hs+1(t) =
∑
a∈A

ya,s+1ma +
∑
b∈B

yb,s+1mb +
∑

e∈E�{R}
ye,s+1me + mR .

When R = r+1, the last sum is empty, and the last term is mr+1. Also, we always
have yr,s+1 = 0 as the red checker s lies in the square of black checker r, which is
northwest of red checker s+1.
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NUMERICAL SCHUBERT CALCULUS 1425

For all other red checkers j, either j ∈ F or j ∈ E � {R}, and hj(t) =∑n
i=1 yi,jmi. Note that yr,j = 0 as red checker s lies in the square of black checker

r, and both are northwest of red checker j. For j ∈ E � {R}, we have yr+1,j = 0
as black checker r+1 is east of red checker j.

To define y′i,j(t), recall that m
′
r(t) = mr − tmr+1, m

′
r+1(t) = mr, and m′

i(t) =
mi for i 
= r, r+1. If j ∈ A, B, or C, then by (23), we may define y′i,j(t) = yi,j , for
then

(26) hj(t) =

n∑
i=1

y′i,j(t)m
′
i(t) .

As checkers above row r do not move, the entries y′i,j(t) for these j have the prop-
erties (22).

For j = s, we rewrite (24) in terms of m′
i(t) to get

hs(t) =
∑
a∈A

−tya,s+1m
′
a(t) + yr+1,s+1

(∑
b∈B

yb,sm
′
b(t) + m′

r(t)
)
.

Define y′r,s(t) = 1, y′b,s(t) = yb,s for b ∈ B, y′a,s(t) = −t · ya,s+1/yr+1,s+1 for a ∈ A,

and y′i,s(t) = 0 for i ∈ E. With these definitions, we have

(27) hs(t) = yr+1,s+1 ·
( n∑
i=1

y′i,s(t)m
′
i(t)

)
,

so that (26) holds (up to the factor yr+1,s+1) for j = s. Also, (22) holds as in ••′
red checker s lies in the same column as red checker s+1 in ••, and thus below the
same black checkers in A as red checker s+1.

For j = s+1, replace hs+1(t) by h′
s+1(t) := hs+1(t) +

1
ths(t). Note that both

hs(t),hs+1(t) and hs(t),h
′
s+1(t) have the same span. By (24) and (25), this cancels

the sums involving A and the terms involving mr+1. Its form is slightly different
in the two cases R > r+1 and R = r+1. When R > r+1, h′

s+1(t) becomes

∑
b∈B

( 1t yr+1,s+1 ·yb,s+yb,s+1)mb + 1
t yr+1,s+1mr +

∑
e∈E�{r+1,R}

ye,s+1me + mR .

When R = r+1, we have yr+1,s+1 = 1 and h′
s+1(t) is

∑
b∈B

( 1t yb,s + yb,s+1)mb + 1
tmr .

Let y′r+1,s+1(t) be the coefficient of mr = m′
r+1(t) in these expressions and for i 
=

r+1, let y′i,s+1(t) be the coefficient of mi = m′
i(t). As m′

r(t) does not appear, (26)
holds for j = s+1, and these functions y′i,s+1(t) satisfy the properties (22).

We illustrate these definitions of hs(t),hs+1(t), and h′
s(t) for the checkerboard

•• of Figure 6. Below are the columns s and s+1 of the Stiefel coordinates Y••(t),
which correspond to the vectors hs(t) and hs+1(t), and a column corresponding to
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1426 A. LEYKIN ET AL.

the h′
s+1(t).

(28)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
· · ·

−ty3,5 y3,5 ·
−ty4,5 y4,5 ·
y10,5y5,4 y5,5 y5,5 +

1
t y10,5y5,4

· · ·
y10,5y7,4 y7,5 y7,5 +

1
t y10,5y7,4

y10,5y8,4 y8,5 y8,5 +
1
t y10,5y8,4

y10,5 · 1
t y10,5

−ty10,5 y10,5 ·
· y11,5 y11,5
· 1 1
· · ·
· · ·

hs(t) hs+1(t) h′
s+1(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the remaining cases, j ∈ E�{R} and j ∈ F , the rows of the 0 entries in those
columns of Y•• and Y••′ are different. For example, in Y•• the entries in row R are
indeterminates, while they are 0 in Y••′ . This is because the red checker s+1 in
row R is not in the square of the black checker in ••, but it is in that square in ••′.
This is observed in Figure 6, where the entry y12,6 
= 0, but it is zero in Figure 1.
To obtain this zero entry in Y••′(t), we use h′

s+1(t) to reduce hj(t).
If j ∈ E � {R}, note that yr,j = 0 = y′r,j . Indeed, in ••, the red checker s lies

in the square of black checker r, while in ••′, the black checker r is northeast of
the red checker j. Also, yr+1,j = 0, as the black checker r+1 is northeast of the
red checker j in ••. Set h′

j(t) := hj(t)− yR,jh
′
s+1(t). When R = r+1, yR,j = 0 so

h′
j(t) = hj(t), and otherwise

h′
j(t) =

∑
i∈B,E�{R}

(yi,j − yR,j · y′i,s+1(t))m
′
i(t) − yR,j · y′r+1,s+1(t)m

′
r+1(t) .

Let y′i,j(t) be the coefficient of m′
i(t) in this expression. Since red checker j is

in a row ρ below red checker s+1, y′ρ,s+1(t) = 0 so y′ρ,j(t) = 1. Also note that

y′r+1,j(t) = −yR,j · y′r+1,s+1(t) and y′R,j(t) = 0, by construction.

If j ∈ F , then the differences between Y•• and Y••′ are that yr,j = y′R,j = 0 and

both yR,j and y′r,j are indeterminates. We observe this in column six in Figures 1
and 6. Suppose that R > r+1. Then

hj(t) =
∑

i∈A,B,E�{r+1,R}
yi,jmi + yr+1,jmr+1 + yR,jmR .

Set h′
j(t) := hj(t)− yR,jh

′
s+1(t), which is

∑
a∈A

ya,jma+
∑

i∈B,E�{r+1,R}
(yi,j−yR,j ·y′i,s+1(t))mi− 1

t yR,jyr+1,s+1mr+yr+1,jmr+1.

Licensed to Univ of Illinois at Chicago. Prepared on Sun Mar 21 21:20:21 EDT 2021 for download from IP 128.248.156.45.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NUMERICAL SCHUBERT CALCULUS 1427

To rewrite this in terms of m′
i(t), by (15) mr = m′

r+1(t), mr+1 = 1
t (m

′
r+1(t) −

m′
r(t)), and otherwise mi = m′

i(t), which gives

h′
j(t) =

∑
a∈A

ya,jm
′
a(t) +

∑
i∈B,E�{r+1,R}

(yi,j − yR,j · y′i,s+1(t))m
′
i(t)

− 1
t yr+1,jm

′
r(t) + 1

t (yr+1,j − yR,jyr+1,s+1)m
′
r+1(t) .

Let y′i,j(t) be the coefficient of m′
i(t) in this expression. This expression shows

that (22) holds when R > r+1.
The argument is simpler when R = r+1, for then

hj(t) =
∑

i∈A,B,E�{r+1}
yi,jmi + yr+1,jmr+1 .

and so h′
j(t) := hj(t)− yr+1,jh

′
s+1(t) is∑

a∈A

ya,jma(t) +
∑

i∈B,E�{r+1}
(yi,j − yr+1,j · y′i,s+1(t))mi(t) .

Let y′i,j(t) be the coefficient of m′
i(t) in this expression. Then

h′
j(t) =

n∑
i=1

y′i,j(t)m
′
i(t) ,

and these functions y′i,j(t) satisfy the properties (22). �

Remark 3.5. In this proof, when t 
= 0 and for j = s+1, j ∈ F , or j ∈ E � {R},
we replaced hj(t) by h′

j(t) = hj(t)− zh′
�(t) where � < j and z is the coefficient of

m′
i(t) in hj(t) and m′

i(t) is the leading term in h′
�(t) (with coefficient 1). In all these

cases, this put the vectors h1(t), . . . ,hk(t) into reduced echelon form with respect
to the basis M ′(t). The content of the proof was that the resulting matrix Y••′(t) of
coefficients satisfies the properties (22). Our software automatically performs this
reduction to change coordinates from Y••(1) to Y••′(1) = Y••′ for the node ••′. �

Remark 3.6. The formulation in Case III can lead to numerical instability in com-
putation. From (21), hs(t) (column s in MY••(t)) is obtained by multiplying hs

(column s in MY••) by yr+1,s+1 and subtracting part of column s+1 in MY••
multiplied by t. (See also (27) and the first column of the matrix (28), where
yr+1,s+1=y10,5.) This leads to numerical instability in a computation when yr+1,s+1
is close to zero. �

3.3. Littlewood-Richardson homotopy algorithm. Using the definitions and
results of the previous subsections, including Algorithm 1, we describe the Little--
wood-Richardson Homotopy Algorithm.

Let F be the flag in C
n corresponding to the identity matrix, and let M be the

opposite flag. This corresponds to the permutation array for ω0 and the matrix
J with 1s along its anti-diagonal. These flags are at the root of each checker-
board game. Fix a Schubert problem (β1, . . . , βs) for Gr(k, n) and consider its
checkerboard tournament T . Every node in T is a checkerboard •• and has an
intermediate Schubert problem (12), for flags F �, . . . , F s which will be determined
in the algorithm. The checkerboard game of such a node lies in level �−2 of T .
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1428 A. LEYKIN ET AL.

Algorithm 2 Littlewood-Richardson Homotopy Algorithm

Input: An instance of a Schubert problem in Gr(k, n) given by two positive integers
k < n, a list of brackets (β1, . . . , βs) such that ‖β1‖ + · · · + ‖βs‖ = k(n−k),
and flags E1, . . . , Es represented by invertible n× n matrices.

Output: All solutions to the instance

(29) Xβ1E1 ∩ · · · ∩ XβsEs ,

represented in Stiefel coordinates as n× k matrices.
1: Generate random upper unitriangular n× n matrices A3, . . . , As.
2: Compute the checkerboard tournament T for β1, . . . , βs.
3: Populate each node •• of T with an empty list of solutions and with flags

(30) F � := A�J , F �+1 := A�A�+1J , . . . , F s := A�A�+1 · · ·AsJ ,

where •• lies in a checkerboard game at level �− 2 of T , and the corresponding
intermediate Schubert problem is (12). Mark the node as as ‘unresolved’.

4: Populate the leaf of the last checkerboard game with the single solution (3) to

X(βs)∨F ∩XβsAsJ

represented in Stiefel coordinates as the echelon form of the submatrix of
As consisting of its columns n+1−βs

i for i = 1, . . . , k. Mark this node as
‘resolved’.

5: while Node ••′ of T is unresolved do
6: if any child of ••′ is unresolved then
7: replace ••′ by this child and return.
8: end if
9: if all children of ••′ are resolved then

10: for each child •• of ••′ do
11: if ••′ is a leaf of a checkerboard game at level �−2 then
12: •• is the root of a game at level �−1.
13: for all solutions y = (yi,j) in node •• do
14: append A�(yi,j) to the list of solutions in ••′.
15: end for
16: else if •• is a child of ••′ in the same checkerboard game as ••′ then
17: for all solutions y of node •• do
18: Use Algorithm 1 to obtain the corresponding solution y′

19: Append y′ to the list of solutions for ••′.
20: end for
21: end if
22: end for
23: end if
24: end while
25: When all nodes of T are resolved, the solutions at its root are all solutions to

the instance

Xβ1F ∩ Xβ2J ∩ Xβ3(A3J) ∩ · · · ∩ Xβs(A3A4 · · ·AsJ) .

Replace each solution y at the root by E1y, producing all solutions
to the instance of this Schubert problem given by the flags E1 =
E1F, (E1J), (E1A3J), . . . .
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NUMERICAL SCHUBERT CALCULUS 1429

26: Create a homotopy between these flags and the user-defined flags E1, E2, . . . , Es

and follow these points E1y along that homotopy, to obtain all solutions to the
user’s instance (29).

Proof of correctness. We prove that the algorithm performs as described when the
input flags E1, . . . , Es are general. This will also prove Theorem 1.1. Every node ••′
in the checkerboard tournament corresponds to an intermediate Schubert problem

(31) Y••′(F,M ′) ∩ Xβ�F � ∩ · · · ∩ XβsF s ,

where ••′ is a node in a checkerboard game at level �−2 in T and the flags F �, . . . , F s

are as defined by (30). Let S(••′) be the set of solutions to this intermediate
Schubert problem (31). We claim that, when a node ••′ is resolved in Algorithm 2,
the set of solutions in that node (as constructed in Steps 10–22) equals S(••′),
recorded in the Stiefel coordinates Y••′ of Subsection 2.1. Establishing this claim,
as well as the arguments presented below about Steps 25 and 26, will complete the
proof of correctness of Algorithm 2.

For any checkerboard ••, the Stiefel coordinates Y•• parameterize only a dense
subset of a checkerboard variety Y••(F,M). Our arguments below ignore this dis-
tinction. To validate them, note that for each checkerboard the points of the
checkerboard variety Y••(F,M) that are not parameterized by Y•• form a proper
subset, Z. As the flags F i are general, Kleiman’s Theorem [14] asserts that there
will be no points of (31) that lie in Z. As there are only finitely many checker-
boards, the choice of general flags F i and Ei will guarantee that the algorithm
computes all solutions to (29).

We prove the claim by induction on T . The claim holds at the leaf of T , by
construction: Step 4 places the unique solution of the intermediate problem of the
leaf (explained at the end of Subsection 1.1), and marks that node as resolved.

Suppose that ••′ is a node of T that is not the leaf of any checkerboard game
in T . Then either ••′ has a unique child •• or possibly two, •• and ••′′, in that
checkerboard game. Before node ••′ is resolved, its child node(s) must be resolved.
By the induction hypothesis, Algorithm 2 has populated •• with the solutions S(••)
to its intermediate problem, and the same for ••′′ if it exists. The points S′(••′)
used by Algorithm 2 to populate the node ••′ are obtained from the solutions in
S(••) (and S(••′′)) using Algorithm 1, which follows them along the homotopy
induced by the family MY••(t) (or MY••′′(t)).

In the geometric Littlewood-Richardson rule, these families are Stiefel coordi-
nates for the family Y••,••′(t) for t ∈ C with fiber Y••′(F,M ′) over t = 1 and fiber
Y••(F,M) (or Y••(F,M)∪ Y••′′(F,M)) over t = 0. This implies that S′(••′) is the
set of solutions to the intermediate problem at the node ••′.

We prove the claim when ••′ is a leaf of a checkerboard game. Such a leaf has only
one child in the tournament T , which is the root of the subsequent checkerboard
game. In this case, there is a bracket γ such that the intermediate problems at
these two nodes are

••′ XγF ∩ Xβ�F � ∩ · · · ∩ Xβs
F s(32)

•• XγF ∩ Xβ�J ∩ Xβ�+1 F̃ �+1 ∩ · · · ∩ Xβs
F̃ s ,(33)
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where the flags F �, . . . , F s are defined by (30), as are the flags F̃ �+1, . . . , F̃ s, except
that the index � of the ambient checkerboard poset changes, so that

F̃ �+1 = A�+1J , F̃ �+2 = A�+1A�+2J , . . . , F̃ s = A�+1 · · ·AsJ .

Since A�F and F give the same flag, the intersection (32) is obtained from that
of (33) through left multiplication by A�. Thus if •• is resolved and populated by
the points S(••) in the intersection (33), then Steps 13–15 of Algorithm 2 populate
node ••′ with all the points S(••′) in the intersection (32), completing the proof of
the claim.

The argument for Step 25, going from the root of T , is that the intermediate
Schubert problem passes from

Xβ1
F ∩ Xβ2

J ∩ Xβ3
F 3 ∩ · · · ∩ Xβs

F s

to

(34) Xβ1
E1 ∩ Xβ2

E1J ∩ Xβ3
E1F 3 ∩ · · · ∩ Xβs

E1F s

which is the same as passing between leafs and roots in the proof of the claim.
Finally, Step 26 is simply applying a parameter homotopy [19, 24] between the
solutions to (34) and those of the original Schubert problem

Xβ1
E1 ∩ Xβ2

E2 ∩ Xβ3
E3 ∩ · · · ∩ Xβs

Es .

This completes the proof of correctness. �

4. The performance of the implementation

The Littlewood-Richardson homotopy algorithm has two implementations: one
in the interpreted language Macaulay2 [6] using its NumericalAlgebraicGeometry
package [16], and the other is compiled code and uses the Polynomial Homo-
topy Continuation package PHCpack [32]. These implementations, as well as im-
plementations of the Pieri Homotopy algorithm [11, 12] may be called from the
NumericalSchubertCalculus package of Macaulay2. An introduction to its capa-
bilities and use is given in [17]. This software is free and open source, available
on github with the compiled version accessible to the Python programmer via
phcpy [34].

Table 2 gives a selection of the Schubert problems this software is able to solve.
These timings (in seconds) compare the performance of the two implementations
of Algorithm 2 on the same random instance of the problem. These were computed
on a Macbook Air with a dual-core Intel Core i5 1.6GHz processor. Here, the
exponents indicate repeated brackets.

The compiled implementation is both faster and more robust. Table 3 shows
some Schubert problems it can compute, and their timings in h:m:s format. These
were computed on a single processor of a server with four Six-Core AMD Opteron
(tm) 8435 processors, each with an 800MHz clock speed, and 64GB memory.
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Table 2. Timings of Schubert problems

Grassmannian Schubert Problem d Interpreted Compiled

Gr(2, 7) [5, 7]10 42 249.58 1.3652

Gr(2, 8) [5, 8]6 15 104.04 0.7135

Gr(2, 9) [6, 9]7 36 455.93 3.4541

Gr(2, 10) [7, 10]8 91 1899.54 17.3442

Gr(3, 6) [3, 5, 6]9 42 148.65 1.6758

Gr(3, 7) [4, 6, 7]10[3, 6, 7] 252 2040.51 28.5882

Gr(3, 8) [4, 6, 8]5 32 140.64 8.1716

Gr(4, 8) [3, 4, 7, 8]4 6 29.79 5.7789

Gr(4, 8) [3, 6, 7, 8]6[3, 4, 7, 8] 50 637.15 27.4836

Gr(4, 8) [4, 6, 7, 8]8[3, 4, 7, 8]2 280 3736.61 55.8480

Table 3. Timings of Schubert problems

Grassmannian Schubert Problem d Time

Gr(3, 9) [6, 8, 9]14[5, 8, 9]2 30459 59:11:50

Gr(4, 8) [4, 6, 7, 8]16 24024 34:09:46

Gr(4, 9) [5, 7, 8, 9]8[4, 6, 8, 9]4 25142 293:02:54

Gr(5, 10) [4, 6, 8, 9, 10]5[3, 6, 7, 9, 10]2 8860 216:03:54
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[8] J. D. Hauenstein, M. Safey El Din, É. Schost, and T. X. Vu, Solving determinan-
tal systems using homotopy techniques, J. Symbolic Comput. 104 (2021), 754–804, DOI
10.1016/j.jsc.2020.09.008. MR4180147

[9] N. Hein, C. J. Hillar, and F. Sottile, Lower bounds in real Schubert calculus, São Paulo J.
Math. Sci. 7 (2013), no. 1, 33–58, DOI 10.11606/issn.2316-9028.v7i1p33-58. MR3234560

[10] N. Hein and F. Sottile, A lifted square formulation for certifiable Schubert calculus. part
3, J. Symbolic Comput. 79 (2017), no. part 3, 594–608, DOI 10.1016/j.jsc.2016.07.021.

MR3563100
[11] B. Huber, F. Sottile, and B. Sturmfels, Numerical Schubert calculus: Symbolic numeric algebra

for polynomials, J. Symbolic Comput. 26 (1998), no. 6, 767–788, DOI 10.1006/jsco.1998.0239.
MR1662035

[12] B. Huber and J. Verschelde, Pieri homotopies for problems in enumerative geometry applied
to pole placement in linear systems control, SIAM J. Control Optim. 38 (2000), no. 4, 1265–
1287, DOI 10.1137/S036301299935657X. MR1760069

[13] S. W. Kim, C. J. Boo, S. Kim, and H.-C. Kim, Stable controller design of MIMO systems
in real Grassmann space, International J. of Control, Automation and Systems 10 (2012),
no. 2, 213–226, DOI 10.1007/s12555-012-0202-2.

[14] S. L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–
297. MR360616

[15] S. L. Kleiman and D. Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061–1082,
DOI 10.2307/2317421. MR323796

[16] A. Leykin, Numerical algebraic geometry, J. Softw. Algebra Geom. 3 (2011), 5–10, DOI
10.2140/jsag.2011.3.5. MR2881262

[17] A. Leykin, A. Mart́ın del Campo, F. Sottile, R. Vakil, and J. Verschelde, Software for Nu-
merical Schubert Calculus, 2021.

[18] A. Leykin and F. Sottile, Galois groups of Schubert problems via homotopy computa-
tion, Math. Comp. 78 (2009), no. 267, 1749–1765, DOI 10.1090/S0025-5718-09-02239-X.
MR2501073

[19] T. Y. Li, T. Sauer, and J. A. Yorke, The cheater’s homotopy: an efficient procedure for solving
systems of polynomial equations, SIAM J. Numer. Anal. 26 (1989), no. 5, 1241–1251, DOI

10.1137/0726069. MR1014884
[20] T. Y. Li, X. Wang, and M. Wu, Numerical Schubert calculus by the Pieri homotopy algo-

rithm, SIAM J. Numer. Anal. 40 (2002), no. 2, 578–600, DOI 10.1137/S003614290139175X.
MR1921670

[21] A. Mart́ın del Campo, F. Sottile, and R. Williams, Classification of Schubert Galois groups
in Gr(4,9), arXiv:1902.06809, 2019.

[22] A. Mart́ın del Campo and F. Sottile, Experimentation in the Schubert calculus, Schubert
calculus—Osaka 2012, Adv. Stud. Pure Math., vol. 71, Math. Soc. Japan, [Tokyo], 2016,
pp. 295–335, DOI 10.2969/aspm/07110295. MR3644828

[23] A. Morgan, Solving Polynomial Systems using Continuation for Engineering and Scientific
Problems, Classics in Applied Mathematics, vol. 57, Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 2009. Reprint of the 1987 original [ MR1049872]; Pages
304–534: computer programs section, also available as a separate file online. MR3396207

[24] A. P. Morgan and A. J. Sommese, Coefficient-parameter polynomial continuation, Appl.
Math. Comput. 29 (1989), no. 2, 123–160, DOI 10.1016/0096-3003(89)90099-4. MR977815

[25] F. Sottile, Pieri’s formula via explicit rational equivalence, Canad. J. Math. 49 (1997), no. 6,
1281–1298, DOI 10.4153/CJM-1997-063-7. MR1611668

[26] F. Sottile, Real Schubert calculus: polynomial systems and a conjecture of Shapiro and
Shapiro, Experiment. Math. 9 (2000), no. 2, 161–182. MR1780204

[27] F. Sottile, Real Solutions to Equations from Geometry, University Lecture Series, vol. 57,
American Mathematical Society, Providence, RI, 2011. MR2830310

[28] F. Sottile, R. Vakil, and J. Verschelde, Solving Schubert problems with Littlewood-Richardson

homotopies, ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and
Algebraic Computation, 2010, pp. 179–186, DOI 10.1145/1837934.1837971.

[29] F. Sottile and J. White, Double transitivity of Galois groups in Schubert calculus of Grass-
mannians, Algebr. Geom. 2 (2015), no. 4, 422–445, DOI 10.14231/AG-2015-018. MR3403235

[30] R. Vakil, A geometric Littlewood-Richardson rule, Ann. of Math. (2) 164 (2006), no. 2, 371–
421, DOI 10.4007/annals.2006.164.371. Appendix A written with A. Knutson. MR2247964

Licensed to Univ of Illinois at Chicago. Prepared on Sun Mar 21 21:20:21 EDT 2021 for download from IP 128.248.156.45.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=4180147
https://www.ams.org/mathscinet-getitem?mr=3234560
https://www.ams.org/mathscinet-getitem?mr=3563100
https://www.ams.org/mathscinet-getitem?mr=1662035
https://www.ams.org/mathscinet-getitem?mr=1760069
https://www.ams.org/mathscinet-getitem?mr=360616
https://www.ams.org/mathscinet-getitem?mr=323796
https://www.ams.org/mathscinet-getitem?mr=2881262
https://www.ams.org/mathscinet-getitem?mr=2501073
https://www.ams.org/mathscinet-getitem?mr=1014884
https://www.ams.org/mathscinet-getitem?mr=1921670
https://arxiv.org/abs/1902.06809
https://www.ams.org/mathscinet-getitem?mr=3644828
https://www.ams.org/mathscinet-getitem?mr=3396207
https://www.ams.org/mathscinet-getitem?mr=977815
https://www.ams.org/mathscinet-getitem?mr=1611668
https://www.ams.org/mathscinet-getitem?mr=1780204
https://www.ams.org/mathscinet-getitem?mr=2830310
https://www.ams.org/mathscinet-getitem?mr=3403235
https://www.ams.org/mathscinet-getitem?mr=2247964


NUMERICAL SCHUBERT CALCULUS 1433

[31] R. Vakil, Schubert induction, Ann. of Math. (2) 164 (2006), no. 2, 489–512, DOI 10.4007/an-
nals.2006.164.489. MR2247966

[32] J. Verschelde, Algorithm 795: PHCpack: A general-purpose solver for polynomial systems
by homotopy continuation, ACM Transactions on Mathematical Software 25 (1999), no. 2,
251–276.

[33] J. Verschelde, Numerical evidence for a conjecture in real algebraic geometry, Experiment.
Math. 9 (2000), no. 2, 183–196. MR1780205

[34] J. Verschelde, Moderizing PHCpack through phcpy, Proceedings of the 6th european confer-
ence on python in science (euroscipy 2013), 2014, pp. 71–76.

[35] J. Verschelde and Y. Wang, Computing feedback laws for linear systems with a parallel Pieri
homotopy, Proceedings of the 2004 international conference on parallel processing workshops,
2004, pp. 222–229.

School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, At-

lanta, Georgia 30332-0160

Email address: leykin@math.gatech.edu
URL: http://people.math.gatech.edu/~aleykin3/
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