Parallel Software to Offset the Cost of Higher Precision”

Jan Verschelde
janv@uic.edu
Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago
Chicago, USA

ABSTRACT

Hardware double precision is often insufficient to solve large scien-
tific problems accurately. Computing in higher precision defined
by software causes significant computational overhead. The appli-
cation of parallel algorithms compensates for this overhead. New-
ton’s method to develop power series expansions of algebraic space
curves is the use case for this application.

1 PROBLEM STATEMENT AND OVERVIEW

While parallel computers are fast and can solve large problems,
the propagation of roundoff errors increases as problems grow
larger and the hardware supports only double precision. If we
can afford the same time as on a sequential run, then we ask for
quality up: by how much can we improve the quality of the results
with a parallel run? To us, quality means accuracy. The goal is to
compensate for the overhead of multiple double arithmetic with
parallel computations.

The focus of this paper is on recently developed code for new
algorithms described in [3], [12, 13], added to PHCpack [14]. PHC-
pack is a free and open source package to apply Polynomial Homo-
topy Continuation to solve systems of many polynomials in several
variables. Continuation methods are classic algorithms in applied
mathematics, see e.g. [9]. Ada is the main language in which the
algorithms in PHCpack have been developed during the past thirty
years. Strong typing and standardization make that the same code
runs on different platforms (Linux, Windows, Mac OS X) and that
the same code continues to run, even after decades, without the
need to update for upgrades of the language. Ada tasking provides
an effective high level tool to develop algorithms for parallel shared
memory computers; see [2] or [8] for introductions.

Using QDIib [6] and the software CAMPARY [7], we extend
the range of precision offered by hardware doubles [10], as a step
towards rigorous verification. In our numerical study of algebraic
curves [15], we apply algorithmic differentiation [5], numerical
linear algebra [4], and rational approximation techniques [1].

The first three sections in this paper motivate the need for higher
precision and describe the computational cost overhead. This over-
head then motivates the application of multitasking. All compu-
tational experiments for this paper were done on a CentOS Linux
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workstation with 256 GB RAM and two 22-core 2.2 GHz Intel Xeon
E5-2699 processors.

2 MULTIPLE DOUBLE NUMBERS

A double double is an unevaluated sum of two hardware doubles.
With the application of basic arithmetical operations in IEEE double
format, we obtain more accurate results, up to twice the accuracy of
the hardware double precision. In [11], double double arithmetic is
described in the context of error-free transformations; see also [10,
Chapter 14]. Double double and quad double arithmetic is provided
by QDIlib [6]. Code generators for general multiple double and
multiple float arithmetical operations are available in the software
CAMPARY [7].

As an illustration of multiple double arithmetic, consider the
computation of the 2-norm of a vectors of dimension 64 of complex
numbers generated as cos(6) + sin(8) V-1, for random angles 0.
The 2-norm equals 8. Observe the second double of the multiple
double 2-norm.

double double : 8.00000000000000E+00 - 6.47112461314111E-32

triple double : 8.00000000000000E+00 + 1.78941597340672E-48
quad double : 8.00000000000000E+00 + 3.20475411419393E-65

penta double : 8.00000000000000E+00 + 2.24021706293649E-81
octo double : 8.00000000000000E+00 - 9.72609915198313E-129
deca double : 8.00000000000000E+00 + 3.05130075600701E-161

The format of the result above is for this experiment preferable over
the decimal expansion which may appear as 7.999...9. The Ada
code for multiple double precision is available in the free and open
source software PHCpack [14], under version control at github.

Table 1 shows the cost of the basic operations in multiple double
precision, expressed in the number of hardware double arithmetical
operations. A tenfold increase in precision from double to deca
double leads to a more than thousandfold increase in the count of
the arithmetical operations.

The operation counts in Table 1 then motivate the need for par-
allel computations as follows. What takes a millisecond to compute
in double precision will take several seconds in deca double preci-
sion. A program that finishes in a second in double precision will
take more than an hour in deca double precision. A computation
in double precision that takes a hour will in deca double precision
take more than a month to finish.

3 POLYNOMIALS AS POWER SERIES

Writing a polynomial backwards (starting at the constant term and
then listing the monomials in the increasing degree order), leads to
the interpretation of a polynomial as the sum of the leading terms
in a power series. Unlike polynomials, every power series with
a leading nonzero constant term has an inverse. One can divide
power series by another and calculate with power series similar as
to number arithmetic [15]. In this section, we consider Newton’s
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double double triple double quad double
+ - x + - = + - * /
add 8 12 13 22 35 54
mul 5 9 9 83 84 42 99 164 73
div 33 18 16 3 113 214 63 4 266 510 112 5
penta double octo double deca double
+ - x + - ®= + - * /
add 44 78 95 174 139 258
mul | 162 283 109 529 954 259 952 1743 3%
div | 474 898 175 6 | 1599 3070 448 9 | 2899 5598 700 11

Table 1: Number of double operations for addition (add), multiplication (mul), division (div), required for a 2-fold, 3-fold, 4-

fold, 5-fold, 8-fold, and 10-fold increase in precision.

method where the arithmetic happens with truncated power series
instead of with ordinary numbers.

One common parameter representation for points on the circle
with radius one is (cos(t), sin(t)), for t € [0, 2[. With truncated
power series arithmetic we can approximate this representation.
Consider a system of two polynomials in three variables:

t—1/6t3 +1/120t> — 1/5040t" —y =0
ey -1=0.

The first polynomial represents the equation y = t—1/6t3+1/120°—
1/5040t7. The right hand side of this equation contains the first
four leading terms of the Taylor expansion of sin(t).

Given the leading terms of sin(t), running Newton’s method,
with 8 as the truncation degree of the power series, starting at
x =1,y =0, and t = 0, the leading terms of cos(t) will appear as
the solution series for x. Indeed, the numerical output contains

2.48015873015868E-05*t"8 - 1.38888888888889E-03%t"6

+ 4.16666666666667E-02%t"4 - 5.00000000000000E-01*t*2 + 1.
The second polynomial has floating-point coefficients which ap-
proximate the Taylor series of the cos(?), in particular x = 1 —
1/2t% +1/24t* —1/720° + 1/40320t3. Although many programmers
will experience the temptation to display 5.00000000000000E-01
as 1/2, the 7 in the number 4.16666666666667E-02 gives an indi-
cation about the size of the roundoff error. This information would
be lost if one would display the result by the nearest rational num-
ber 1/24.

Looking at polynomials as truncated power series has the benefit
that the solver can handle larger classes of nonlinear systems, as
the first equation of the above polynomial system can be viewed as
an approximation for sin(t) —y = 0. With truncated power series as
coefficients, the solutions of systems where the number of variables
is one more than the number of equations are also power series.
Although the convergence radius of power series can be limited,
power series serve as input to compute highly accurate rational
approximations for functions [1].

Even as the above calculation was performed in double precision,
Newton’s method did not run on vectors of numbers, but on vectors
of truncated power series, represented as power series with vector
coefficients. Working with truncated power series causes an extra
cost overhead and provides an additional motivation for parallel
computations. In particular, the multiplication of two power series
truncated to degree d requires (d + 2)(d + 1)/2 multiplications
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and (d + 1)d/2 additions. For a modest degree d = 8, the formulas
in the previous sentence evaluate to 45 and 36. For d = 32 the
corresponding numbers are 561 and 528. These numbers predict
the cost overhead factors in working with truncated power series
arithmetic.

Working with power series of increasing degrees of truncation
leads to more roundoff and requires therefore arithmetic in higher
precision, as will be made explicit in the next section.

4 NEWTON’S METHOD ON POWER SERIES

In this section we make our problem statement more precise. In
particular, running a lower triangular block Toeplitz solver results
in a loss of accuracy.

One step of Newton’s method requires evaluation and differen-
tiation of the system, followed by the solution of a linear system.
Consider f(x) = 0 as a system of polynomials in several variables,
with coefficients as truncated power series in the variable ¢, where
f=U1for s fN)sx=(x1,x2,...,%p), and N > n. For N > n, the
linear systems are solved in the least squares sense, either with QR
or SVD; for N = n, an LU factorization can be applied; see [4] for
an introduction to matrix factorizations.

Then we compute x(t) a power series solution to f(x) = 0,
starting at a point x(0) = z, x(t) = z + x1t + x2t? + ---. With
linearization [3], instead of vectors and matrices of power series,
we consider power series with vectors and matrices as coefficients.
A matrix is denoted with a capitalized letter, e.g.: A; vectors are
denoted in bold, e.g.: x, b. To compute the update Ax to the solution
in Newton’s method, a linear system is solved. With truncated
power series arithmetic, this linear system is written in short as
A(t)Ax(t) = b(t). The given coeflicients in this equation A and
b, where A is a vector of matrices A = (Ao, A1,...,Ag) andbisa
vector of power series.

In linearized format, for truncation degree d, A(t)Ax(t) = b(t)
represents

(Ao +A1t+A2t2 + .- -+Adtd)(AXO +AX1t+AX2t2 + -
-~+Axdt2) =by +b1t+b2t2+-~~+bdtd.

The Ay is the matrix of all partial derivatives of the polynomials in f
at the leading constant coefficient of the power series expansion
of the solution vector. Methods of algorithmic differentiation [5]
lead to an efficient calculation of A(t). In particular, computing all
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Figure 1: Schematic of a job queue with a counter guarded by a binary semaphore.

n partial derivatives of a function f in n variables requires about 3
(and not n) times the cost to evaluate f.

Expanding the multiplication and rearranging the terms accord-
ing to the powers of t leads to a lower triangular block system:

Ay Axq bo
Aq Ay Axq by
Aj Aq Ay Axz — b,
Ag Ag-1 Ad-2 Ao Axgq by

Forward substitution is applied as follows. First solve AgAxy = bo.
Once Axg is known, The second equation A;Axg + AoAx; = by
then becomes AgAx; = by — A1Axq. After the computation of Axy,
the third equation AzAxo + A1Ax; + AgAxy = by turns into the
equation AgAxy = by — AaAxp — A1Axy, etc.

The exploitation of the block structure reduces the computation
of d linear systems with the same N-by-n coefficient matrix Ag.
Suppose that in each step up to two decimal places of accuracy
would be lost, then the accuracy loss of the last Ax; could be as
large as 2d. Even with a modest degree of 8, in double precision,
this would imply that all 16 decimal places of accuracy are lost. A
loss of 16 decimal places of accuracy in double double precision still
leads to sufficiently accurate results. This argument is expressed
formally in [13].

5 APPLICATION OF MULTITASKING

In multiple double arithmetic, programs become compute bound,
which is beneficial on computers with faster processor speed than
memory speed. On a parallel shared memory computer, multiple
threads run within one process. In the type of multitasking applied
in this paper, each task is mapped to one kernel thread. Typically the
total number of tasks in each parallel run should then not exceed
(twice) the number of available cores on the processor.

Current processors run at the speed of a couple of GHz and have
thus a theoretical peak performance of one billion floating-point
operations per second. One billion is 10° or 1,000x 1, 000% 1, 000. The
first two thousands in this billion represent roughly the overhead
caused by multiple double and power series arithmetic, with the
last thousand the original computational cost in double precision.
This rough estimate explains that one job will typically take several
seconds and is relatively much larger than the cost of launching
several threads.

All data is allocated and defined before the threads are launched.
Figure 1 illustrates the design of a job queue with 8 jobs and 4
finished jobs, as the counter counts the number of finished jobs.
The arrows in the picture point to the read only input data and the
work space for each job. While the input may point to shared data,
each job has distinct, non overlapping memory locations for the
work space needed for each job. When a task needs to work on the
next job, it requests entry to the binary semaphore that guards the
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counter for the next job. Once entry is granted, the tasks increments
the value of the counter and releases the lock. The time spent inside
a critical section is thus minimal.

The organization of all computational work into a job queue
determines the granularity of the parallelism. In the application of
running Newton’s method, medium grained parallelism is applied.
For the evaluation and differentiation of a system of polynomials,
one job is concerned with one polynomial. For the solving of the
block triangular linear system, one job is the update of one right
hand side vector after the computation of one update vector. The
solution of the linear system can happen only after all polynomials
in the system are evaluated and differentiated. The synchronization
between those two stages is performed by terminating all tasks and
launching a new set of tasks for the next stage. Details are described
in [13].

The main executable in PHCpack is phc. The user can specify the
number of tasks at the command line, e.g., call the solver with eight
tasks as phc -b -t8. If no number follows the -t, then the number
of tasks equals the number of available kernel threads. Below is the
outputof time phc -band time phc -b2 -t, respectively in double
and double double precision, on the cyclic 7-roots benchmark, using
88 threads.

real om10.310s real om1.661s
user om10.188s user 1m12.226s
sys omo.008s Sys om0 .083s

The numbers after real are the elapsed wall clock time. With mul-
titasking, the speedup in double double over double precision is
10.310/1.661 ~ 6.2. We have speedup and quality up.

6 A NUMERICAL EXPERIMENT

At the end of [13], we reported an instance where quad double
precision was insufficient for Newton’s method to converge and
compute the coefficients of the series past degree 15.

Details for the experiment can be found in [13], a short summary
follows. The series development start at a generic point on a 7-
dimensional surface of cyclic 128-roots, defined by a polynomial
system of 128 polynomials in 128 variables, augmented with seven
linear equations. To every equation in the system, a parameter ¢ is
added. At t = 0, the generic point on the 7-dimensional surface is
then the leading coefficient vector of the power series expansion of
the solution curve in ¢.

For this problem, the inverse of the condition number of the
matrix Ay is estimated at 4.6E — 6, which implies that up to six
decimal places of accuracy may be lost in the computation of the
next term of the power series. The accuracy of the power series is
measured by ||Ax/||, the modulus of the update to the last coefficient
in the power series. The tolerance on ||Ax|| for all runs is set to
1.0E—32. Newton’s method stops when ||Ax]|| < 1.0E—32 or when
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precision output H degree 8 ‘ degree 16 ‘ degree 24 ‘ degree 32
quad [|Ax]| 2.2E-30 1.6E+3
#iterations 8 8
seconds 56 168
penta 1Ax] 1.1E—-47 | 1.1E-14 | 4.1E+19
#iterations 5 8 12
seconds 46 231 722
octo 1Ax] 1.4E—69 | 9.5E—63 | 3.8E—30 | 3.4E+3
#iterations 5 6 12 16
seconds 128 472 1,934 4,400
deca 1Ax]] 14E—69 | 2.4E-95 | 1.2E—62 | 1.1E-29
#iterations 5 6 7 16
seconds 222 807 1,952 7,579

Table 2: Newton’s method for the power series expansion of a generic point on a surface of cyclic 128-roots, for degrees 8, 16,
24, and 32, for quad, penta, octo, and deca double precision. The seconds record the wall clock time with 88 threads.

the number of steps has exceeded the maximum number of itera-
tions. The maximum number of iterations with Newton’s method
is as many as as 8, 8, 12, and 16, for the respective degrees 8, 16, 24,
and 32 of the power series.

Table 2 summarizes the data of the numerical experiment with
phc -u -t. Once ||Ax|| is too large for one degree, computations
for the next degree are not done.

For degree 8, the computations with penta doubles finish in
10 seconds sooner than the computations with quad doubles, be-
cause 5 iterations suffice. For degree 16, the results in deca double
precision are much more accurate than in octo double precision,
with the same number of iterations. Adding up all seconds in Ta-
ble 2 gives 18,717 seconds, or 5 hours, 11 minutes, and 57 seconds.
Without parallel software, this experiment would have taken more
than 100 hours, more than 4 days. The multiplication factor of 20
is derived from the efficiency study in the next section. Obviously,
parallel software saves time when running numerical experiments.

7 COMPUTATIONAL RESULTS

The runs are done on a CentOS Linux workstation with 256 GB
RAM and two 22-core 2.2 GHz Intel Xeon E5-2699 processors. If
one is mainly interested in the fastest throughput, then with hy-
perthreading, runs could be done with 88 threads. However, the
effect of hyperthreading is not equivalent to doubling the number
of cores. In the practical evaluation of the parallel implementation,
the runs therefore stop at 40 worker threads.

Random polynomial systems are generated, 64 polynomials with
64 monomials per polynomial. Power series are truncated to degrees
8,16, and 32. Efficiencies are reported for 2, 4, 8, 16, 32, and 40 worker
threads. Efficiency is speedup divided by the number of worker
threads.

The plots in Figure 2 show efficiencies for degrees 8 and 16 of
the truncated power series. The efficiencies decrease from close to
100% (a near perfect speedup for 2 threads) to below 60% when 40
worker threads are used. As efficiency equals speedup divided by
the number of worker threads, the speedup corresponding to 60%
efficiency for 40 worker threads equals 0.6 X 40 = 24.
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The plots in Figure 3 compare the efficiencies for degrees 16
and 32. For truncation degree 32, we observe that 60% efficiency is
reached already at triple double precision. More extensive numerical
experiments would increase the number of polynomials and the
number of monomials per polynomial to investigate the notion
of isoefficiency. In particular, by how much should the size of the
problem increase to obtain the same efficiency as the number of
threads increases?

The computational results of this section (the 60% efficiency or
the 24 speedup) justify the multiplication factor of 20 used in the
last paragraph of section 6.

8 CONCLUSIONS

This paper presents a use case of multiple double precision in the
application of Newton’s method to develop power series expan-
sions for solution curves of polynomial systems. The experiments
described in this paper are performed by recent additions to the
free and open source software PHCpack, available via github.

PHCpack contains an Ada version of the code in QDIib [6], for
double double and quad double precision, and of code generated by
the software CAMPARY [7], for triple, penta, octo, and deca double
precision. The cost overhead factors of multiple double precision
are multiplied with the cost overhead factors of truncated power
series arithmetic. This cost overhead justifies the application of
multitasking to write parallel software. Using all kernel threads on
a 44-core computer, numerical experiments that took about 5 hours
are estimated to take more than four days without multitasking.

The efficiency of the current implementation is limited by the
medium grained parallelism and may not scale well on shared
memory computers with over one hundred cores. In refining the
granularity of the current implementation, the Ada 202X parallel
features look promising.
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