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a b s t r a c t 

Background: A language is constructed of a finite/infinite set of sentences composing of words. Similar 

to natural languages, the Electrocardiogram (ECG) signal, the most common noninvasive tool to study 

the functionality of the heart and diagnose several abnormal arrhythmias, is made up of sequences of 

three or four distinct waves, including the P-wave, QRS complex, T-wave, and U-wave. An ECG signal may 

contain several different varieties of each wave (e.g., the QRS complex can have various appearances). For 

this reason, the ECG signal is a sequence of heartbeats similar to sentences in natural languages) and 

each heartbeat is composed of a set of waves (similar to words in a sentence) of different morphologies. 

Methods: Analogous to natural language processing (NLP), which is used to help computers understand 

and interpret the human’s natural language, it is possible to develop methods inspired by NLP to aid 

computers to gain a deeper understanding of Electrocardiogram signals. In this work, our goal is to pro- 

pose a novel ECG analysis technique, ECG language processing (ELP) , focusing on empowering computers 

to understand ECG signals in a way physicians do. 

Results: We evaluated the proposed approach on two tasks, including the classification of heartbeats and 

the detection of atrial fibrillation in the ECG signals. Overall, our technique resulted in better performance 

or comparable performance with smaller neural networks compared to other deep neural networks and 

existing algorithms. 

Conclusion: Experimental results on three databases (i.e., PhysioNet’s MIT-BIH, MIT-BIH AFIB, and Phys- 

ioNet Challenge 2017 AFIB Dataset databases) reveal that the proposed approach as a general idea can be 

applied to a variety of biomedical applications and can achieve remarkable performance. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

ECG is the most common signal used by physicians and cardiol- 

gists to monitor the functionality of the heart. Manual analysis of 

CG signals by a human is a very challenging and time-consuming 

ask due to dealing with long ECG recordings and the existence of 
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omplex patterns associated with a different heart arrhythmia in 

he ECG signal. Therefore, to deal with the issues related to the 

anual analysis of ECG signals, several studies focus on develop- 

ng automatic ECG analysis techniques to perform this task with 

igh accuracy and in a real-time manner. Machine learning algo- 

ithms are commonly used to detect arrhythmia in the ECG signals 

1–4] . Typically, these methods consider four main steps in their 

orkflows: (1) Pre-processing signal that includes re-sampling the 

ignals, noise removal (using band-pass filters, etc.), signal normal- 

zation/standardization, etc., (2) Heartbeat segmentation that in- 

olves detection of the R-peak (i.e., the QRS complex) using some 

lgorithms such as Pan and Tompkins’s algorithm [5] , open-source 

qrs package provided by PhysioNet community [6] , etc., (3) Fea- 

ure extraction that includes transforming raw signal to features 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. A segmented ECG signal in which red circles show R-peaks, and green, blue and black lines show P-, QRS- and T- waves respectively. 
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P

m

S

est suited to the specific task (i.e., classification, prediction, re- 

ression, etc.). and (4) Learning that considers classical machine 

earning techniques such as multilayer perceptron (MLP) and de- 

ision trees for analyzing ECG signals [4] . 

Even though conventional machine learning algorithms with 

he handcrafted features have achieved acceptable performance 

or ECG analysis, deep neural network methods with the power 

f automated extraction of features and representation learning 

ave proven to get human-level performance in analyzing biomed- 

cal signals [7–9] . However, deep learning techniques need a large 

mount of data and are composed of many parameters to be 

earned. Besides, most of the suggested methods and workflows for 

nalyzing ECG signals are tailored to the specific task and are not 

eneralizable to other biomedical problems. 

In this study, we open a new research avenue for ECG signal 

nalysis by introducing a novel framework called ECG language pro- 

essing (ELP) that processes the ECG signal in a way a text docu- 

ent is treated in natural language processing (NLP) framework. 

he proposed framework is applicable to various biomedical ap- 

lications and also can improve the performance of the shallow 

achine learning algorithms. A language is constructed of a fi- 

ite/infinite set of sentences composing of words. Similar to nat- 

ral languages, an ECG signal is made up of sequences of three or 

our distinct waves, including the P-wave, QRS complex, T-wave, 

nd U-wave [10,11] (refer to Fig. 1 ). Each normal ECG includes dif- 

erent varieties of each wave. For instance, the QRS complex can 

ave various shapes, as shown in Fig. 2 . Hence, an ECG signal is a

equence of heartbeats (like sentences in natural languages) and 

ach heartbeat is composed of a set of waves (like words in a 

entence) of different morphologies. Analogous to NLP, which is 

tilized to help computers/machines to understand and interpret 

he human’s natural language, our proposed NLP-inspired ECG lan- 

uage processing can aid the computers to gain a deeper under- 

tanding of Electrocardiogram signals. 
Fig. 2. The QRS complex morphology; adopted from [12] . 
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The rest of this work is structured as follows. Section 2 explains 

he proposed ELP method. Section 3 introduces potential applica- 

ions of the ELP method. Section 4 describes the datasets to assess 

he suggested method and gives a performance comparison of the 

roposed approach against the existing algorithms in the literature, 

ollowing by a discussion. Finally, Section 5 concludes the study. 

. Methodology 

In this section, we describe main components of ECG Language 

rocessing. Fig. 3 shows the ELP pipeline. The ELP includes two 

ain steps as follows: 

tep 1: Creating a Wave Vocabulary 

• Peak Detection: it includes finding the R-peaks of given ECG 

signal or detecting the QRS complexes. The commonly used 

algorithms for such purpose are the Pan Tompkins algorithm 

[5,13] and Shannon’s energy-based R-peak detector [14] . Herein, 

we applied an algorithm that uses the agreement of a few 

algorithms such as the Pan-Tompkins algorithm [5] and gqrs 

package suggested by [6] to find R-peaks. The red circles in 

Fig. 1 depict the R-peaks of a sample ECG signal. 
• Beat and Wave Segmentation: it involves dividing continual 

ECG signal into a sequence of heartbeats, and divide the heart- 

beats into separate units called waves. After detecting R-peaks, 

the presence of other building waves (i.e., P, QRS and T waves) 

in the ECG signal can be extracted using adaptive searching 

windows. To do heartbeat segmentation, one can identify a seg- 

ment as a fixed number of samples before the R-peak location 

to the fixed number of samples after the R-peak location or 

from the start of a P-wave to the offset of the next T-wave. 

Fig. 1 illustrates a segmented ECG signal specified R-peaks, P, 

QRS, and T waves. 
• Creating a Vocabulary: it includes building a vocabulary of 

the waves based on the extracted waves from the ECG sig- 

nals. We can cluster all the waves, then consider the mean of 

each cluster as an entry of the vocabulary. This can be done 

by feeding all waves into off-the-shelf clustering algorithms 

such as K-means, spectral clustering, or agglomerative cluster- 

ing algorithms [15–17] . After doing wave clustering, the mean 

of each cluster can represent a distinct wave of the vocabulary. 

In our experiments, we applied a K-means clustering method 

to group the waves. Fig. 4 visualizes the extracted waves of an 

ECG signal dataset and extracted clusters (20 clusters) using t- 

Distributed Stochastic Neighbor Embedding (t-SNE) technique 

[18] . Fig. 6 shows a wave clustering results on the dataset of 

the 2017 PhysioNet/CinC Challenge [19] . Each row of the figure 

presents 10 sample waves of a specific extracted cluster. 

tep 2: Training and Deploying 

• Wave Assignment the beat and wave segmentation process 

produces a sequence of waves for each ECG signal. Then, the 

cluster of each wave of the sequence is identified using the 

output of the previous step (i.e., the step 2 of the pipeline). In 
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Fig. 3. ECG language processing (ELP) Pipeline. 

Fig. 4. Visualizations of thousands of extracted waves along with their 20 clusters on the 2017 PhysioNet/CinC Challenge database. The K-means clustering algorithm, K = 20 

as the number of clusters, is used to cluster the extracted waves from the ECG signals and t-SNE technique is used to show how waves are presented in a high-dimensional 

space. 

3

b

B

other words, it assigns a unique integer value (the cluster num- 

ber) to each wave of the sequence. In this way, each ECG sig- 

nal is integer-encoded so that each integer represents a specific 

wave (or cluster) in the vocabulary. 
• Wave Embedding or Wave Vectorization it takes the integer- 

encoded vocabulary and builds the embedding vector (i.e., a 

vector of a specified length) for each wave of the vocabulary. 

The main reason behind word embedding is that it allows us to 

apply advanced machine learning like artificial neural networks 

on the integer-encoded ECG signals for a specific task. Inspired 

by natural language processing, we can use several approaches 

such as Count Vectorizer, in which a sequence of waves is con- 

verted into a fixed-length vector with the size of the vocabu- 

lary. The value in each position in the vector would be a count 

of each wave in the encoded signal or Word2Vec approach that 

uses neural network techniques to represent waves in a vector 

space. The latter approach is more efficient so that it recognizes 

context, relation, and similarity between waves [20] . 
• Training and Deploying it involves using machine learning and 

deep learning techniques to train models on the output of the 
3 
wave embedding step for any learning tasks including classifi- 

cation, prediction, etc. To give a better understanding of ELP ap- 

plications, we outline some main ECG language processing ex- 

amples in the following section. 

. ECG Language processing examples 

ECG Language Processing (ELP) can be used in a variety of 

iomedical applications where the collected data are ECG signals. 

elow are the most common applications of ELP: 

• Heartbeat classification/detection it involves assigning a spe- 

cific label to heartbeats of a given ECG signal. 
• Arrhythmia prediction it includes predicting the onset of life- 

threatening arrhythmia such as Atrial Fibrillation (AFib) in pa- 

tients based on their current and past states. 
• Automatic heartbeat annotation it involves automatic annota- 

tion of the heartbeats in a sequence of heartbeats (i.e., an ECG 

signal). This problem is also called automatic sequence labeling 

[21,22] . 
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Table 1 

Details of number of each classification type in the PhysioNet Challenge AFIB 

dataset; Normal sinus rhythm (N), atrial fibrillation (AFIB), alternative rhythm (O), 

noisy ( ∼). 

Dataset N AFIB O ∼ Total 

PhysioNet Challenge AFIB 5154 771 2,557 46 8,528 

Table 2 

Groups of heartbeats presented in the MIT-BIH database based on AAMI. 

Category Class 

N • Normal beat (N) 

• Left and right bundle branch block beats (L,R) 

• Atrial escape beat (e) 

• Nodal (junctional) escape beat (j) 

S • Atrial premature beat (A) 

• Aberrated atrial premature beat (a) 

• Nodal (junctional) premature beat (J) 

• Supraventricular premature beat (S) 

V • Premature ventricular contraction (V) 

• Ventricular escape beat (E) 

F • Fusion of ventricular and normal beat (F) 

Q • Paced beat (/) 

• Fusion of paced and normal beat (f) 

• Unclassifiable beat (U) 

Table 3 

Details of number of each heartbeat group in the MIT-BIH database. 

Dataset N S V F Q Total 

MIT-BIH Arrhythmia 90,462 2777 7,223 802 8,027 109,291 
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• Summarize a long ECG signal ECG signals are typically 8 hours 

(or more) long (e.g., in sleep stage detection task). Thus, inter- 

preting such a long ECG signal by cardiologists and physicians 

is a very time-consuming and prone to error task. One way to 

tackle this problem is the ECG signal summarization and only 

extracting the most related regions of the ECG signal which 

contribute to a specific event. This can be done by using at- 

tention mechanisms [23,24] . 
• Translate ECG to other physiological signals it involves esti- 

mating other physiological signals such as Arterial Blood Pres- 

sure (ABP) and photoplethysmography (PPG) from ECG signals. 

The main application of such translations is imputation, in 

which the missing values (may be caused by the device inad- 

vertent detachment) of the signals can be estimated. 

. Experiments 

In this section, we evaluate our proposed ECG analysis approach 

i.e., ECG Language Processing) using two different clinical tasks, 

ncluding atrial fibrillation detection and automatic heartbeat clas- 

ification. We show performing the ELP pipeline to process ECG 

ignals results in better performance compared to the existing 

ethods. 

.1. Data description 

The MIT-BIH AFIB [25] and the 2017 PhysioNet/CinC Challenge 

atasets [19] were utilized to build models to perform the detec- 

ion of atrial fibrillation, and the PhysioNet MIT-BIH Arrhythmia 

atabase [26] was used to build an automatic heartbeat annotation 

odel. 

MIT-BIH AFIB Database includes 23 long-term ECG recordings 

f subjects with generally AFIB arrhythmia. Each subject of the 

atabase contains 2 ten-hours long ECG recordings (i.e., ECG1 and 

CG2). The ECG signals were sampled at 250 Hz with 12-bit res- 

lution over a range of ±10 millivolts. Herein, we split each ECG 

ignal into data segments of 5 seconds and annotated each one 

ith respect to a threshold parameter, p. We considered the label- 

ng method used by [27,28] . Indeed, a data segment is considered 

s AFIB if the percentage of labeled AFIB heartbeats of the data 

egment is � p, otherwise, it is labeled as a non-AFIB arrhythmia. 

imilar to the literature, the parameter p was set to 50% . Over- 

ll, 167,422 5-s data segments from the ECG1 recordings of the 

atabase were extracted. The number of AFIB and non-AFIB sam- 

les were 66 , 939 and 100 , 483 , respectively. To cope with the class

mbalance problem existing in the extracted data segments, we se- 

ected the same number of segments for both AFIB and non-AFIB 

lasses randomly; 66, 939 data segments for each class. 

PhysioNet Challenge AFIB Database was applied for the Phy- 

ioNet Challenge 2017 in which the purpose was to propose al- 

orithms to classify a single-short-ECG lead recording (with dura- 

ion 30-60s) as normal sinus rhythm (N), atrial fibrillation (AFIB), 

n alternative rhythm (O), or too noisy ( ∼). The training dataset 

ontains 8528 single-lead ECG signals and the testing dataset in- 

ludes 3658 ECG signals. Because the testing dataset was not ac- 

essible, we utilized the training dataset for building and evaluat- 

ng the model. The ECG signals were collected by AliveCor devices 

t a sample rate of 300Hz and passed through a bandpass filter. 

able 1 shows the statistics of each classification type in the Phys- 

oNet Challenge AFIB database (i.e., the training dataset). 

PhysioNet MIT-BIH Database contains the ECG recordings of 48 

ifferent subjects. The signals were recorded at the sampling rate 

f 360 Hz, and each record includes two ECG leads; ECG lead II and

ead V1. In this study, to be consistent with the previous works in 

he literature, the ECG lead II is used to build the heartbeat an- 

otator. The dataset is recommended by the American association 
4 
f medical instrumentation (AAMI) [29] and is composed of the 

ve essential arrhythmia groups. Table 2 presents the categories 

f heartbeats that existed in the database, and Table 3 shows the 

tatistics of the numbers of each heartbeat group in the MIT-BIH 

atabase. 

.2. Experimental setup 

We built three different neural networks for each clinical task 

nd compared them to the state-of-the-art algorithms. Below is list 

f the models we used to build the detective models. 

• Convolutional neural network (CNN) we use three consecu- 

tive 1D convolutional layers in which each layer is composed 

of 128 filters with a kernel size of 5 × 1 , a stride 1 and a Rec-

tified Linear Unit (ReLU) activation function. All convolutional 

layers are followed by max-pooling layers with pooling regions 

of size 5 × 1 with stride sizes of 5. The output of the last con-

volutional layer is passed through a dropout layer followed by 

a fully-connected layer with a size of 64 followed by a soft- 

max layer to perform the classification task. Fig. 5 a presents 

the architecture of the CNN model. Because the length of input 

signals in the MIT-BIH AFIB and PhysioNet MIT-BIH databases 

were too short, we use two consecutive 1D convolutional lay- 

ers for both datasets with small pooling regions of sizes 3 × 1 

with a stride 3 and 2 × 1 with a stride 2, respectfully. 
• Recurrent neural network (RNN) we utilize 2-layer bi- 

directional long short term memory (LSTM) with 128 neurons 

followed by a dropout layer and a fully-connected layer of 64 

neurons. Again, to do classification, a softmax layer is used on 

top of the last dense layer. Fig. 5 b visualizes the architecture of 

the RNN model. 
• RNN-Attention we added an attention layer on top of an RNN 

model analogous to the one mentioned above to put more 

emphasis on the important waves of the input signal(s) that 

have the most contribution in detecting the arrhythmia. Fig. 5 c 
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Fig. 5. Architectures of the used networks in the experiments. 
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Table 4 

Comparison of performance of the proposed approach against other existing algo- 

rithms on the MIT-BIH arrhythmia database. 

Work Approach Accuracy (%) 

ELP CNN 97.00 

ELP RNN 96.96 

ELP RNN-Attention 97.00 

Kachuee et al. [2] Deep residual CNN 93.4 

Acharya et al. [1] Augmentation + CNN 93.47 

Li et al. [31] DWT + random forest 94.61 

Martis et al. [32] DWT + SVM 93.8 

DWT: Discrete wavelet transform; SVM: Support vector machine 
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depicts the architecture of the RNN-Attention model. The at- 

tention layer assigns a probability value to each feature vector 

extracted from the input by the RNN. In the probability vec- 

tor, each value is the importance of the corresponding feature 

vector. Then, an expected value (i.e., it is a linear weighted vec- 

tor) of the input feature vectors is computed according to the 

weights provided by the attention layer. Finally, the weighted 

vector is fed into a softmax layer to perform the classification 

task. 

We followed the aforementioned steps of the ELP pipeline in 

ection 2 in which we converted each input signal to an integer 

ncoded vector and computed its corresponding embedding vec- 

or using a shallow neural network. Then, we used the embed- 

ing vectors as input for the mentioned models (i.e., CNN, RNN, 

nd RNN-Attention) for building the detective models. 

Implementation details We trained all models with a maxi- 

um number of 25 epochs and a batch size of 64 samples. The 

dam optimizer was applied to minimize the loss with a learning 

ate α = 0 . 001 . To mitigate the effect of the overfitting problem,

n L 2 regularization approach with a coefficient β = 1 e − 5 and a 

ropout technique with a probability of retaining input units of 0.8 

ere used. We implemented the models using Python program- 

ing language and Google Tensorflow deep learning library on a 

achine equipped with 32 GB memory, 8 CPUs (Intel(R) Xeon(R) 

PU @ 3.60 GHz), and Ubuntu 18.04 operating system. 

.3. Results and discussion 

We report the performance of all built models using all 

atabases and show that following the ELP steps lead to better 

erformance compared to the existing algorithms. We evaluate the 
5 
odels in terms of the overall accuracy, precision (positive predic- 

ive value (PPV)), recall (sensitivity), specificity, and F1-score. We 

lso computed macro-averaging of F1-score (MF1), which is the 

um of per-class F1-score over the number of classes. 

We used ten-fold cross-validation to assess the performance of 

ur technique for the heartbeat classification task using the MIT- 

IH arrhythmia dataset. Table 4 presents the detection scores on 

he MIT-BIH arrhythmia database. We see that ELP work with CNN, 

NN, and RNN-Attention approaches outperform all other methods 

eported in the table. The RNN-Attention model performs as good 

s the CNN model indicating the attention mechanism helps in 

etting better performance. Furthermore, Table 5 reports a confu- 

ion matrix of classified heartbeats and performance of each class 

chieved by the ELP while we use the CNN approach to build the 

lassifier. According to Table 5 , the smallest sensitivity values are 

btained for the categories F and S. The reason is the class imbal- 

nce problem existed in the database where the group F has only 

02 heartbeats and the group S has 2777 heartbeats. An imbal- 
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Fig. 6. Visualization of extracted waves and their corresponding clusters; the K-means clustering algorithm has been used to cluster waves of the dataset of the 2017 

PhysioNet/CinC Challenge. The numbers above waves indicate their cluster number. 
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nced dataset can negatively affect the performance of a machine 

earning algorithm. Typically, generating synthetic data or tweak- 

ng loss functions are used to mitigate this problem [30] . 

We employed five-fold cross-validation to assess the perfor- 

ance of the proposed technique for the atrial fibrillation classi- 
6 
cation problem using the 2017 PhysioNet/CinC Challenge dataset. 

able 6 shows a performance comparison of the 3 models (i.e., 

NN, RNN, and RNN-Attention) following our proposed method 

n detecting atrial fibrillation against the state-of-the-art algo- 

ithms. From the table, we can observe that the ELP work with 
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Table 5 

Confusion matrix and per-class performance (%) achieved by the proposed method 

across all ten-folds using the CNN model and based on the MIT-BIH arrhythmia 

database. 

Predicted Per-class Performance (%) 

N S V F Q acc ppv sen spec 

Actual N 89,774 203 357 37 91 97.35 97.60 99.24 88.30 

S 757 1945 56 1 18 98.99 87.89 70.04 99.75 

V 632 51 6449 44 47 98.77 91.88 89.28 99.94 

F 175 3 95 527 2 99.67 86.39 65.71 99.92 

Q 639 11 62 1 7314 99.20 97.89 91.12 99.84 

acc: accuracy; ppv: positive predictive value; sen: sensitivity; spec: specificity 

Table 6 

Comparison of performance of the proposed approach against other algorithms for 

the atrial fibrillation (AFIB) classification problem on the 2017 PhysioNet/CinC Chal- 

lenge dataset. 

Work Approach Per-class Performance (F1%) Overall Performance 

N A O ∼ MF1 Accuracy 

ELP CNN 82.26 63.47 56.69 55.18 64.40 72.62 

ELP RNN 79.88 56.06 44.32 43.31 55.89 67.66 

ELP RNN-Attention 83.98 64.57 55.84 52.58 64.24 74.22 

Andreotti 

et al. [36] 

Deep residual 

CNN 

82.6 46.6 60.0 60.2 62.4 - 

MF1: Macro-averaging of F1-score 

Table 7 

Confusion matrix and per-class performance achieved by the proposed method 

across all five-folds for the atrial fibrillation (AFIB) classification task on the 2017 

PhysioNet/CinC Challenge database. 

Predicted Per-class Performance (%) 

N A O ∼ acc ppv sen spec 

Actual N 4221 53 738 63 78.65 81.83 83.17 71.98 

A 70 463 207 18 93.75 66.05 61.08 96.93 

O 839 172 1348 53 75.83 57.51 55.89 83.70 

∼ 57 13 51 157 97.01 53.95 56.47 98.37 

acc: accuracy; ppv: positive predictive value; sen: sensitivity; spec: specificity 
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Table 8 

Comparison of performance of the proposed approach against other state-of-the-art 

algorithms for the AFIB detection task on the MIT-BIH AFIB database with the ECG 

segment of size 5-s. 

Work Approach Best Performance (%) 

accuracy ppv sensitivity specificity 

ELP CNN 98.17 97.78 98.57 97.76 

ELP RNN 97.93 97.63 98.24 97.61 

ELP RNN-Attention 97.96 97.87 98.08 97.84 

Xia et al. [27] SWT + CNN 98.63 - 98.79 97.87 

Asgari et al. [28] SWT + SVM - - 97.00 97.10 

Jiang et al. [37] RR interval 

irregularity + 

P-wave absence 

- - 98.20 97.50 

ppv: positive predictive value; SWT: stationary wavelet transform 
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he CNN approach outperforms other methods listed in Table 6 , 

btaining an MF1 score of 64.40%. As it is shown in the table, 

he RNN-attention achieves better performance compared to the 

NN, showing the attention mechanism leads to performance im- 

rovement. Applying the attention approach to the RNN (or other 

eep learning models) not only improves the model performance 

ut also it provides interpretability into the model [24,33–35] . 

able 7 presents a confusion matrix and per-class performance 
Fig. 7. Accuracy and loss curves of the RNN-Attention model on the 201

7 
f the atrial fibrillation classification task on the PhysioNet chal- 

enge AFIB dataset. Herein, we reported the model’s results with 

he best performance (i.e., the CNN model). Even though the num- 

er of samples for class O (2,557) is larger than the number of 

amples for class A (771), the model performs better for class A. 

his may be because the class Other rhythms (O) contains a variety 

f rhythms with different morphologies that make it hard for the 

etwork to learn the associated patterns with the class O. 

To show the model learning performance, we have also re- 

orted the learning curves. Fig 7 a (left) shows the loss curves on 

he training and testing data. From Fig 7 a (left), we can see that 

he loss curve of the testing data is almost constant at the final 

pochs meaning that the more epochs would not help get better 

erformance. In addition, as we mentioned earlier, the presence of 

he class Other rhythms (O) in the database requires the network to 

earn the different patterns associated with the class O. Therefore, 

e think this is the reason that the training loss is not decreasing 

moothly. 

Fig 7 b (right) depicts the accuracy curves in the training and 

esting phases. Again, we can see from the plot that the model 

ould not result in better performance with increasing the num- 

er of epochs. 

To evaluate the performance of our method for another AFIB 

lassification task, we utilized a ten-fold cross-validation procedure 

n the MIT-BIH AFIB dataset, where we extracted 5-s data seg- 

ents. Table 8 reports the detection scores on the AFIB detection 

ask. We see that the proposed work with the CNN model achieves 

 good performance, but slightly low performance compared to the 

ia et al. [27] work. 
7 PhysioNet/CinC Challenge dataset (averaged over the five-folds). 
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From all experiments for three databases, we can see that our 

ethod can result in better performance or comparable perfor- 

ance with smaller neural networks compared to other deep neu- 

al networks and existing algorithms. Therefore, this makes the 

roposed method implementable on devices with limited hard- 

are such as wearable devices. It is worth mentioning that in the 

rst step of the ELP pipeline (Step 1: Creating aWaveVocabulary), 

e extracted the waves in the ECG signals based on the extracted 

-peaks and employing adaptive searching windows (using fixed- 

ength windows for all waves, i.e., P, QRS, and T-waves). In other 

ords, the output of the search method was a 1-dimensional vec- 

or representing the beginning and end positions of the waves. 

hen, we used a K-means clustering algorithm to cluster waves 

fixed-length sizes) to build the vocabulary (one can apply other 

lustering methods to improve the performance) and to estimate 

he optimal number of clusters we used a graphical tool named el- 

ow method [38] . Similar to many clustering techniques, the num- 

er of clusters might have a considerable impact on the perfor- 

ance of the algorithm. For each problem (and its dataset), we 

onducted clustering using the each dataset independently. We be- 

ieve, applying better segmentation algorithms or more sophisti- 

ated clustering methods can yield higher detection scores. 

. Conclusion 

In this study, we proposed a new technique to analyze ECG sig- 

als named ECG language processing (ELP). The proposed approach 

s composed of two main steps: 1) Creating a Wave Vocabulary, 

uilding a vocabulary of waves based on the extracted waves from 

he ECG signals, and 2) Training and Deploying, developing pre- 

ictive and detective models using the extracted vocabulary and 

achine learning algorithms for different clinical tasks. The exper- 

ment results on two different tasks, including the heartbeat classi- 

cation and atrial fibrillation tasks with three databases, show that 

ur method results in state-of-the-art performance. Future work 

ncludes, but not limited to, improving the segmentation and cre- 

ting the vocabulary steps to improve the performance of the de- 

ection process and applying the ELP method for other biomedical 

pplications such as the prediction of arrhythmia (see Section 3 for 

ore examples). 
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