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Abstract—The problem is to evaluate a polynomial in sev-
eral variables and its gradient at a power series truncated to
some finite degree with multiple double precision arithmetic. To
compensate for the cost overhead of multiple double precision
and power series arithmetic, data parallel algorithms for general
purpose graphics processing units are presented. The reverse
mode of algorithmic differentiation is organized into a massively
parallel computation of many convolutions and additions of
truncated power series. Experimental results demonstrate that
teraflop performance is obtained in deca double precision with
power series truncated at degree 152. The algorithms scale well
for increasing precision and increasing degrees.

Index Terms—acceleration, convolution, CUDA, differentia-
tion, evaluation, GPU, parallel, polynomial, precision.

1. INTRODUCTION

Solving systems of many polynomial equations in several
variables is needed in various fields of science and engineer-
ing. Numerical continuation methods apply path trackers [15].
A path tracker computes approximations of the solution paths
defined by a family of polynomial systems. The paths start at
known solutions of easier systems and end at the solutions
of the given system. The evaluation and differentiation of
polynomials often dominates the computational cost.

The main motivation for this paper is to accelerate a new
robust path tracker [17], added recently to PHCpack [19],
which requires power series expansions of the solution series
of polynomial systems. As shown in [18], double precision
may no longer suffice to obtain accurate results, for larger
systems, and for longer power series, truncated at higher
degrees. The double precision can be extended with double
doubles, triple doubles, quad doubles, etc., applying multiple
double arithmetic [16]. The goal is to compensate for the com-
putational cost overhead caused by power series and multiple
double precision by the application of data parallel algorithms
on general purposed graphics processing units (GPUs).

The CUDA programming model (see [12] for an introduc-
tion) is applied. The software was developed on five different
NVIDIA graphics cards: the C2050, K20C, P100, V100 (on
Linux); and the GeForce 2080 (on Windows).

Prior work. Data parallel algorithms for polynomial evalua-
tion and differentiation [9] were first presented by G. Yoffe
and the author in [21], using double double and quad double
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arithmetic of [4] on the host and of [13] on the device. Adding
accelerated linear algebra [22] led to an accelerated Newton’s
method [23], and to accelerated path trackers [24], [25].
Related work. The authors of [6], [7] describe a GPU imple-
mentation of a path tracker, with an application to kinematic
synthesis. Instead of an adaptive step size control, paths for
which the desired accuracy is not achieved are recomputed
with a smaller step size. The source code for the computations
of [6], [7] can be found in the appendix of [5].

Accelerating the multiplication of polynomials is reported
in [1] and [2], [3], [14]. Those algorithms are applied with
exact, modular arithmetic, to polynomials with huge degrees.
A GPU-accelerated application of adjoint algorithmic differ-
entiation is implemented in [8] for the gradient computation
of cost functions given by computer programs.

In [10], several software packages for high precision arith-
metic on GPUs are considered. For the problem of matrix-
vector multiplication, the double double arithmetic of CAM-
PARY [11] performs best. In quad double precision, the
performance of the implementation with CAMPARY comes
close to the multiple precision proposed by [10].
Contributions. This paper extends the ideas of [21] to power
series and to more levels of multiple double precision, with the
code generated by the CAMPARY software [11]. In addition
to double, double double, and quad double precision, the
algorithms in this paper run also in triple, penta, octo, and
deca double precision, extending double precision respectively
three, five, eight, and ten times.

In [12], convolutions and scans are explained as parallel
patterns. This paper presents novel data staging algorithms. In
one addition of two power series consecutive threads in the
block add consecutive coefficients of the series. In one multi-
plication of two power series, the number of steps equals the
degree d at which the series are truncated. The computations
in the data parallel algorithms are defined by two sequences of
jobs. The first sequence computes all multiplications, for all
monomials, while the second sequence encodes the additions
of all evaluated monomials. The theoretical speedup of the
novel parallel algorithms is a multiple of d.

In deca double precision, on power series truncated at
degree 152, teraflop performance is reached on the P100
and the V100. Experimental results show the scalability for
increasing degrees and increasing precisions.



II. CONVOLUTIONS

Consider the product z of two power series « and y, both
truncated to the same degree d, so the input consists of two
sequences of d + 1 coefficients. The output are the d + 1
coefficients of the product z. In a data parallel algorithm with
d + 1 threads, thread k£ will compute the k-th coefficient zj,
of z, defined by the formula

k
2k :inyk—iv k:0717"'7d7 (1)
=0

where x; is the i-th coefficient of = and y;_, is the (k —4)-th
coefficient of y. In the direct application of the formula in (1),
every thread performs a different number of computations,
which results in thread divergence.

The remedy for this thread divergence is to insert zero
numbers before the second vector when threads load the num-
bers into the shared memory of the block. In the statements
below, X, Y, and Z represent the shared memory locations,
respectively for the coefficients of z, y, and z. The Y has
space for at least 2d-+2 numbers. In the data parallel algorithm
with zero insertion, thread k executes the following statements,
expressed in pseudo code:

1. Xk =Tk

2. Yk =0

3. Yd+k =Yk

4. Zy, = XoYatr

5. for ¢ from 1 to d do Zy, := Z + X;Yair—i
6. Z = Zk

The d—+1 threads execute the same statement on different data.
In the statements above, the £ = 0,1,...,d of formula (1) is
implicit. As the data parallel version eliminates the outside
loop on £k, it is expected to run about d times faster than the
sequential application of formula (1).

The zero insertion justifies the auxiliary vector Y, but why
are X and Z needed? The coefficients x, y, and z reside in
the global memory of the device. Access to global memory is
slower than access to shared memory. Observe that all threads
need access to . Retrieving xy once from global memory
and then d + 1 times from shared memory is expected to be
faster than d+ 1 times retrieving ¢ from global memory. The
same argument applies to the assignments to Zj. Every thread
assigns once to Zj, and then updates Z; as many as d times.
Only at the end is the value of Zj, in shared memory assigned
to the value of zj, in global memory. Another benefit of using
vectors in shared memory occurs when one needs to update
the same series x or y with the product. Replacing z by « or
y in (1) requires an auxiliary vector.

All coefficients are stored in consecutive memory locations,
promoting efficient memory access. For arrays of doubles,
threads with consecutive indices access the corresponding
consecutive memory locations. For complex numbers and
multiple double numbers, the same efficient memory access
is obtained by storing real and imaginary parts of complex
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numbers in separate arrays and by storing all parts of multiple
double numbers in separate arrays.

The other basic operation is the addition of two power
series. In the data parallel version, one block of threads adds
two power series. If the block has exactly has exactly as many
threads as the number of coefficients of the power series, then
thread k adds the k-th coefficient of the two series.

The next two sections elaborate the scheduling of convolu-
tion jobs.

III. MONOMIAL EVALUATION AND DIFFERENTIATION

Consider a monomial a x{xs - - - x,, in the n variables x1,
To, ..., Tn, Where a is a nonzero power series, truncated to
degree d. We want to evaluate and differentiate this monomial
at a sequence of n power series z = (21, 29, . . ., 2, ). All series
in z are also truncated to degree d.

For monomials with positive powers, e.g.: 2313, observe
that the value of 223 is not only a factor of the monomial
value, but is also a factor in all values of the derivatives.
Therefore, we write 233 as a x1x9, where a = z3x3. This
common factor is then evaluated separately and the coefficient
of the monomial is updated with the common factor.

The statements below assume that n is larger than 2. Each
* represents a convolution of two power series. The n forward
products are stored in the n-dimensional array f. The (n —
2)-dimensional array b collects the backward products. Other
partial derivatives can then be found in the (n—2)-dimensional
array c of cross products.

L fii=axz

. for j from 2 to n do fj := fj_1 x 2

b1 = Zp K Zp—1

. for j from 2 to n —2 do b; :=b;_1 *x 2,
bn_2 = bn_g *xa

. for j from 1 to n — 3 do ¢j := fj xbp_3—;
. Cp—2 1= f'n72 * Zn

N LA LN~

The amount of % operations equals the total amount of
auxiliary storage, plus one (as b,_o gets assigned twice):
3n — 3. In the example below for n = 5, if one expands
the left and right operands of x into their values, one can
verify that bs, ¢1, c2, c3, and f; contain the values of all five
partial derivatives. The organization in three columns shows
the parallelism. Statements on the same line in (2) can be
executed in parallel.

fii=axzy by i=z5kzy

f2 = f1 * 29 bg = b1*23

fa:=faxzz byi=baxzo c1:= frxby 2
f4::f3*2’4 b3 I:bg*a Co ::fg*bl

fs = faxzs c3 = fy*x zs

For n 5, three blocks of threads may evaluate and
differentiate one monomial in five steps. For n > 5, observe
that ¢; needs z,z,_o - - - z3, or the value of b,_3. While this
observation seems to limit the amount of parallelism, the cross
products need not be computed one after the other.



ap + a1r1r3%6 +
fit=a*xz
f1,2 = f1,1 * 23

fi3:= fr2*x2

bl,l = Zg k* 23
b1’1 = b171 * a1

C11 = f1,1 * 26

A2T1T2T5T6
fgﬂl =ag k2
f2,2 = f2,1 * 22
fa3:= fa2x2s5
f274 = f2,3 * 26
bQ,l = Zg k25
b272 = b271 * 29
b2_’2 = b2,2 * a2
C21 = f2,1 *b2,1
C22 1= f2,2 * 26

Jr

A3T2T3T4
f3,1 =as x 22
f3,2 = f3,1 * 23
f33:= f32%x2

b371 =24 K% 23
b3’1 = bgﬁl * a3

C3,1 ‘= f3,1 * 24

Fig. 1. All statements to compute the forward, backward, and cross products to evaluate a polynomial and its gradient.

Proposition IIL.1. The j-th cross product c; can be computed
after max(j,n — 3 — j) steps.

Proof. For n = 3, the only cross product is ¢; := fj * z3, and
¢1 can be computed after f; has been computed in the first
step. After one step, c; can be computed for n = 3.

For n > 3, consider ¢,,_o := f,,_2*z,. The computation of
Cn—2 has to wait for the computation of f,,_o, which requires
n — 2 steps. For j <n —2, ¢; :== f; xb,_3_; and ¢; can be
computed after f; and b,_3_; have been computed, which
each take respectively j and n — 3 — j steps. Thus, after
max(j,n — 3 — j) steps, ¢; can be computed. O

Corollary IIL.2. Given sufficiently many blocks of threads,
monomial evaluation and differentiation takes n steps for n
variables.

As the number of convolutions to evaluate and differentiate
one monomial in n variables equals 3n — 3, Corollary II1.2
implies that 3d is the upper bound on the speedup, where d
is the truncation degree of the power series.

IV. POLYNOMIAL EVALUATION AND DIFFERENTIATION

We consider a polynomial p of N monomials in n variables
with nonzero coefficients as power series, all truncated to the
same degree d. The coefficient of the k-th monomial is denoted
as ay, and ny, variables appear in the monomial, for £ ranging
from 1 to N. The variables in the k-th monomial are defined
by the tuple of indices (iy,iz,...,0,,) With 1 < i3 < iy <
s <y, < n. We want to evaluate and differentiate

N

JTn) =0+ D Gk Ti iy T,
k=1

3)

p(x1, 22, ...

at a sequence of n power series z = (z1, 29, . . ., 2, ). All series
in z are also truncated to degree d. The constant term ag is
not included in the count N.

In the data parallel evaluation and differentiation, every
monomial has three separate arrays of forward, backward, and
cross products, denoted respectively by f, b, and c. In the
example in Fig. 1, the first index of f, b, and ¢ corresponds
to the monomial index.
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The 21 convolutions in Fig. 1 are arranged in (4). Statements
on the same line can be computed simultaneously.

fi1 bin fa1 ban fa1 b3
fizg iy g fo2 baa c2a1 faz2 b3 c3p
(€]
f1,3 f2,3 52,2 C2,2 f3,3
fo.4

If 9 thread blocks are available, all 21 convolutions can be
computed in 4 steps. The value of p at z is ap + fi3 +
foa + f33, and its six partial derivatives are as follows
b1+ b1, c21 4031, €11+ c31, f3.2, €22, and f1 2+ fo3.
If 7 threads blocks are available, all values can be computed
in two steps. Two steps are needed for the value of p. The
first step computes f1 3 := ag + fi,3 and f33 := fo4 + f33
simultaneously. The second step then does f3 3 := f3 3+ fi.3,
so the value of p is in f3 3.

Obviously, as convolutions for different monomials can be
computed in parallel, the result in Corollary III.2 extends
directly to polynomials.

Corollary IV.1. Consider a polynomial p in n variables,
with N monomials. Let m be the number of variables in
that monomial of p that has the largest number of variables.
Given sufficiently many blocks of threads, the evaluation and
differentiation of p takes m + [ logy(N) | steps.

To interpret Corollary IV.1, assume every monomial
has m variables. Then the total number of convolutions
equals N(3m — 3) and the number of additions equals N.
As in the case of one monomial, the speedup factor of 3d is
present. For polynomials with many monomials, for N > m,
the upper bound on the speedup is dN/log, (V).

V. ACCELERATED EVALUATION AND DIFFERENTIATION

The accelerated polynomial evaluation and differentiation
algorithm proceeds in two stages. The first stage computes
all convolutions. The second stage adds up the evaluated and
differentiated monomials.

As the number of threads in each block matches the number
of coefficients in each truncated power series, within each
block the natural order of the data follows the coefficient
vectors of the power series. In preparation for the launching
of the kernels the staging of the data must be defined.



Z4 25 Z6

fi1 fi2 f1,3 fao1 fo2 f2,3 foa f3,1 fa,2 f3,3 b1, ban bao b3 ci1 c21 c22 €31
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Fig. 2. The data array used to compute the forward, backward, and cross products to evaluate a polynomial and its gradient of the example in Fig. 1. Every
box represents d 4+ 1 doubles for the coefficients of a series truncated at degree d. The arrows point at the start position of the input series and at the space

for the forward, backward, cross products for every monomial.

Extracting the data structures of (3), the input of the
algorithm consists of the following:

1) N, the number of monomials;

2) n, the number of variables;

3) d, the degree at which all series are truncated,;

4) ay, truncated series as the coefficient of the k-th mono-
mial, k =1,2,..., N;

5) (i1,%2,...,1p, ), indices of the variables in the k-th
monomial, where 1 < 41 < iy < -+ < i, < n, for
k=1,2,...,N;

6) z = (z1,22,...,2n), n power series truncated to de-
gree d.

The output of the first stage are N tuples (fx,bk,ck), for
kE = 1,2,...,N, where fj; are the forward products,
j = 1,2,...,ng, by, are the backward products, j =
1,2,...,max(1,n — 2), ¢, are the cross products, j =

1,2,...,n% — 2. The max(1,n; — 2) in the upper bound for
b ; is for the special case n; = 2, to store z;, * as.

The output of the first stage is the input of the second stage.
The second stage adds for each monomial k£, the last forward
product fy ,, to obtain p(z). The values of the derivatives of
the %k-th monomial are in fj ,, 1, bk n, —2, and cy ;.

The data parallel algorithm to compute all convolutions is
defined by the data layout. The total count of numbers involved
in all convolution and addition jobs is

<m

+ max(1,ny — 2) + max(0, ny — 2))) .

N

1+ N+n+y
k=1

e—(d+1)<
&)

The first factor (d+1) in (5) counts the number of coefficients
in all series truncated to degree d. The five terms in the second
factor in (5) count respectively the constant coefficient ag, the
N coefficients ay, the n input series in z, the nj forward,
the max(1, ny — 2) backward, and the max (0, ny — 2) cross
products.

Fig. 2 illustrates the layout of the data vector for the
polynomial in Fig.1.

The data are in an array A of e doubles. The order of the
numbers in A follows the count as in (5): the coefficients ay,
ag, and series z are followed by the numbers in the forward,
backward, and cross products. Each job is then characterized
by a triplet of indices in this A. The first two indices point
respectively at the start of the first and the second input. The
third index in the triplet defines the start of the output. For
example, the triplet for the convolution fi 1 := a; % 2; for the
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polynomial in Fig.1 is (d+1,4d + 4, 10d + 10), for degree d,
as the coefficients for a; start after the first d + 1 coefficients
for ag, 2 starts after the the first four series, and f;; after
the ten series that define the coefficients of the polynomials
and the input.

For complex numbers, the data are in two arrays, one for
the real parts and the other for the imaginary parts. For m-
fold double numbers, there are m data arrays, all following
the same layout as for A, described above.

Jobs are placed in layers, following the lines of (4) for
the example polynomial. Jobs to compute fj ; and by ; are
at layer j. Following Proposition IIL.1, the layer of ¢y ; is
max(j,nr — 3 — j) + 1. All jobs in the same layer can be
executed at the same time. A kernel is launched with as many
blocks as the number of jobs in one layer. One convolution
job is executed by one block of threads. In addition to the data
array A, the kernel is launched with the triple of coordinates
which define each job. Each block of threads extracts the triplet
according to its block number.

The coordinates for each convolution job in the first stage
of the algorithm depend only on the structure of the mono-
mials and are computed only once. The same holds for the
coordinates of the addition jobs in the second stage of the
algorithm. Each addition job updates one series with another,
so one pair of indices defines one addition job. For example,
for the polynomial in Fig. 1, the first update fq 3 := ao+ fi1,3
has coordinates (0,12d + 12), as ao comes first and fi 3 is
positioned after 12 series in A, see Fig. 2.

For a convolution job j, let t = (¢1(j),t2(4), t3(j)) denote
the triplet where ¢1(j) and ¢2(7) respectively are the locations
in the data array A of the first and second input, and where
t3(j) is the location in A of the output. Given A and t, we
can then symbolically summarize the code for the kernel to
compute all convolution jobs at the same layer as

1) B:=blockIdx.x

2) (i1,d2,13) := (t1(B), t2(B), t3(B))

3) A[Zg : i3+d+1] = A[’Ll : 21+d+1} *A[ig : i2+d+1]
where the block index B corresponds to the index j of the
convolution job, and [i : i+d+ 1] denotes the range of the
coefficients in A. Likewise, for an addition job j, let t =
(t1(4),t2(4)) be the pair of input and update locations in the
data array A. Given A and t, the kernel to execute all addition
jobs at the same layer is then summarized as

1) B:=DblockIdx.x

2) (i1, i2) := (t1(B), t2(B))
3) Alig:io+d+1] := Alig : io+d+1] 4+ Aliy : i1 +d+1]



The data staging algorithm to define the convolution jobs
runs through the steps to compute all forward f, ¢, backward
by ¢, and cross products c, ¢, for k ranging from 1 to N. The

k-th monomial has ny, variables, with indices (i1, 2, ..., ).
k-1 E—1
o :an, B :ozN+1+ZmaX(1,ng—2), (6)
=1 =1
k—1
and v = Bys1+ Y max(0,n, — 2) (7
=1

mark the positions respectively of fi 1, by 1, and ¢ 1 in the
data array A. For an example, see the arrows in Fig. 2. Let .Jp
denote a set of convolutions jobs at level ¢. Jobs in J, can be
executed after £ — 1 steps. The simplified pseudo code below
assumes all n, > 2.
For k from 1 to N do
1) to execute fi 1 := ap * 2;,:
tl : k(d+1)
to =14+ N+iy —1)(d+1)
ts:=(14+ N +n+a)(d+1)
J1=J1U {(tl,tg,tg)}
2) for ¢ from 2 to nj do
to execute fi ¢ = fr -1 % Zi,:
ti1 =1+ N+n+ap+£—2)(d+1)
to =1+ N +i;—1)(d+1)
ts =14+ N+n+o,+L—1)(d+1)
Jg = Je @] {(tl,tg,tg)}
3) to execute by 1 i= Zp, * Zn,—1!
t1 =14+ N+n,—1)(d+1)
to == (14+ N +ng, —2)(d+1)
ts == (1+ N +n+ B)(d+1)
J1=J1U {(tl,tg,tg)}
4) for ¢ from 2 to ni — 2 do
to execute by ¢ 1= by g—1 * Zn,—¢:
ti1:=Q+N+n+p0p+L¢—2)(d+1)
to:=(1+ N +np—£)(d+1)
ts: =1+ N+n+p0p+L¢—1)(d+1)
J[ = Jz U {(tl,tg,tg)}
5) to execute by, —2 := bk pn,—2 * ai:
t1: =1+ N+n+pBr+n—3)(d+1)
ts:=(1+N+n+pp+np—3)(d+1)
Jnp—2 = Jnp—2 U{(t1,t2,13)}
6) for ¢ from 1 to ni — 3 do
to execute ¢y ¢ := fi0 * bpnp—3-¢

th:=(14+N+n+oa,+£—-1)(d+1)
to:=14+N+n+p8+n,—3—L0—1)(d+1)
ts:= (14N +n—+7,+£—1)(d+1)

L :=max({,n, —3— 1Y)

JL = JL U {(tl,tg,tg)}

7) to compute Ci ny,—2 = [kng—2 % Zny:
t1: =0+ N+n+a,+n,—3)(d+1)
to:=(14+ N +n, —1)(d+1)
ts =1+ N—+n-+y +n,—3)(d+1)
Jnp—2 1= Jnp—2 U{(t1,t2,t3)}
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Sets are natural data structures in the mathematical description
of the data staging algorithm, as the jobs in one .J, can be
executed in any order. In the implementation, the jobs in the
same layer are stored in three integer arrays. The block index
B is then used to get the coordinates of the convolution job
performed by block B.

The pairs of indices for the addition jobs are defined in a
recursive manner, following the order of the tree summation
algorithm. To compute the value of the polynomial, add the
forward product fy, ,,, of the k-th monomial. For stride L and
level ¢, apply the following:

to execute fin, = e + fo—Lone ot

ti:=1+N+n+ap_r+npr—1

to:=1+N+n+a,+ng—1

Jo = JpU{(t1,t2)}
recursively, starting at L = |N/2] and level ¢ = log,(N)
(assuming N = 2%), dividing L by two in each step, until
L =1. For k = L in the formula fj, , = fin, +fo—Lone_1»
replace fr_r.n, , by ao. The same recursive formula is
applied to sum the first backward products and all cross
products to obtain the gradient.

VI. COMPUTATIONAL RESULTS
A. Equipment and Test Polynomials

Table I summarizes the characteristics of each GPU, with
the focus on the core counts and the processor speeds, because
the problem is compute bound. The first four GPUs in Table I
are housed in a Linux workstation, running CentOS. The fifth
GPU resides in a Windows laptop.

TABLE 1
THE COLUMNS LIST THE CUDA CAPABILITY, THE NUMBER OF
MULTIPROCESSORS, THE NUMBER OF CORES PER MULTIPROCESSOR, THE
TOTAL NUMBER OF CORES, AND THE GPU CLOCK RATE. FOR EVERY
GPU, 1TS HOST CPU IS LISTED WITH ITS CLOCK RATE.

NVIDIA GPU CUDA | #MP | #cores/MP | #cores | GHz
Tesla C2050 2.0 14 32 448 1.15
Kepler K20C 3.5 13 192 2496 0.71
Pascal P100 6.0 56 64 3584 1.33

Volta V100 7.0 80 64 5120 1.91
GeForce RTX 2080 7.5 46 64 2944 1.10
NVIDIA GPU host CPU GHz
Tesla C2050 Intel X5690 347
Kepler K20C Intel ES-2670 2.60
Pascal P100 Intel ES-2699 2.20

Volta V100 Intel W2123 3.60
GeForce RTX 2080 Intel i9-9880H 2.30

The software was developed on the five GPUs listed in
Table I, compiled with nvcc -03 on the device, with the
code for the host compiled by gcc —03 on the linux com-
puters, and the community edition of Microsoft Visual Studio
on the Windows laptop. While running the same software on
all five GPUs is obviously convenient, more advanced features
of newer devices are not utilized. The main importance for the
evaluation of our software is that the unfair comparison with
the CPU is avoided. Taking into the account the double peak
performance of the P100 and the V100 (4.7 TFLOPS and 7.9



TFLOPS respectively), we may expect the V100 to be about
1.68 times faster than the P100.

The first test polynomial p; is a function of 16 variables.
Its evaluation adds to the constant term all 1,820 monomials
that are the products of exactly four variables. The evaluation
requires 16,380 convolutions and 9,084 additions. As each
monomial has no more than four variables, the 16,380 convo-
lutions are performed in four kernel launches of respectively
3,640, 5,460, 5,460, and 1,820 blocks. The execution of the
9,084 additions requires 11 kernel launches of respectively
4,542, 2,279, 1,140, 562, 281, 140, 78, 39, 20, 2, and 1
blocks. The second test polynomial ps is constructed to require
many more convolutions than additions, respectively 24,192
versus 8,192. To evaluate the third polynomial p3, as many
convolutions as additions are required: 24,256.

Table II lists the characteristics of the test polynomials.
Compared to p;, pe has fewer monomials but each mono-
mial has many more variables; whereas p3 has many more
monomials, but each monomial has only two variables.

TABLE II
FOR EACH POLYNOMIAL, n IS THE TOTAL NUMBER OF VARIABLES, m IS
THE NUMBER OF VARIABLES PER MONOMIAL, AND N IS THE NUMBER OF
MONOMIALS (NOT COUNTING THE CONSTANT TERM). THE LAST TWO
COLUMNS LIST THE NUMBER OF CONVOLUTION AND ADDITION JOBS.

| n m N #env #add
p1 16 4 1,820 | 16,380 9,084
P2 128 64 128 | 24,192 8,192
p3 128 2 8,128 | 24,256 24,256

To examine the scalability of our problem, experiments are
run for increasing degrees of truncation and for increasing
levels of precision. Does the shape of the test polynomials
influence the execution times?

B. Performance

For each run, four times are reported. The elapsed
times of the kernel launches are measured by
cudaEventElapsedTime and expressed in milliseconds.
The first two times are the sums of all elapsed times spent by
all kernels, respectively for all convolutions and all additions.
The third time is the sum of the first two times. Each kernel
launch involves the memory transfer of the index vectors that
define the coordinates of the jobs in the data arrays. The
fourth reported time is the wall clock time which includes
also this memory transfer. Not included in the times are the
transfers of the input data arrays from the host to the device
and of the output data arrays from the device to the host.

Table III summarizes execution times to evaluate the first
test polynomial p; at a power series truncated to degree 152
in deca double precision. This degree is the largest one block
of threads can manage because of the limitation of the size of
shared memory, which is the same all five devices.

The ratio 12964/640 ~ 20.26 is the speedup of the most
recent V100 over the oldest C2050. Compare the ratio of the
wall clock times for P100 over V100 in Table III: 1066/640 ~
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TABLE III
EVALUATING p; FOR DEGREE d = 152 IN DECA DOUBLE PRECISION. THE
LAST LINE IS THE WALL CLOCK TIME FOR ALL CONVOLUTION AND
ADDITION KERNELS. ALL UNITS ARE MILLISECONDS.

|| C2050 | K20C | PI00 | VI00 |RTX 2080
convolution || 12947.26 | 11290.22 | 1060.03 | 634.29 | 10002.32
addition 10.72 1113 137 | 077 5.01
sum || 12957.98 | 11301.35 | 1061.40 | 635.05 | 10007.34

wall clock || 12964.00 | 11309.00 | 1066.00 | 640.00 | 10024.00

1.67 with the ratios of theoretical double peak performance of
the V100 of the P100: 7.9/4.7 ~ 1.68.

In about one second, the P100 performed 16,380 convo-
lutions and 9,084 additions (see Table II) to evaluate and
differentiate p;, at series truncated at degree d = 152 in
deca double precision. Following the counts in [20], one
addition in deca double precision requires 139 additions and
258 subtractions of doubles, while one deca double multi-
plication requires 952 additions, 1743 subtractions, and 394
multiplications of doubles. One convolution with zero insertion
on series truncated at degree d requires (d--1)? multiplications
and d(d+ 1) additions. One addition of two series truncated at
degree d requires d + 1 additions. So we have 16, 380(d + 1)?
multiplications and 16, 380d(d + 1) + 9, 084(d + 1) additions
in deca double precision. One multiplication and one addition
in deca double precision require respectively 3089 and 397
double operations. Then the 16,380(d + 1)? evaluates to
1,184,444,368,380 and 16,380d(d + 1) 4+ 9,084(d + 1) to
151,782,283,404 double float operations. In total, in 1.066
seconds the P100 performed 1,336,226,651,784 double float
operations, reaching a performance of about 1.25 TFLOPS.

Another observation from Table III is the tiny amount
of time spent by the addition kernels, when compared to
the convolution kernels, for V100: 0.77 versus 634.29. The
convolution is quadratic in the degree d, whereas the addition
is linear in d. As every block has d + 1 threads, the addition
finishes in one single step, whereas there are still d steps in
the parallel convolution algorithm.

Table IV lists the execution times for po and p3 on P100
and V100, to verify if the shape of the test polynomial would
influence the conclusions on p;.

TABLE IV
EVALUATING p2 AND p3 FOR DEGREE d = 152 IN DECA DOUBLE
PRECISION. THE LAST LINE IS THE WALL CLOCK TIME FOR ALL
CONVOLUTION AND ADDITION KERNELS. ALL UNITS ARE MILLISECONDS.

l p2 H p3
| PIO0 ]

VIOO [[ PI00 [ VIOO

convolution 1700.49 | 1115.03 1566.58 | 926.53
addition 1.24 0.67 3.43 1.92
sum 1701.72 | 1115.71 1570.01 | 928.45

wall clock H 1729.00 \ 1142.00 H 1583.00 \ 941.00

The ratios of the wall clock times on P100 over the
V100 for ps and p3 are respectively 1729/1142 ~ 1.51 and
1583/941 ~ 1.68.



For p,, the factor 1.51 is not as high as expected. One
probable cause is that the number of convolutions jobs in the
first 31 layers equals 256. This number equals the number
of blocks in one kernel launch. The number of streaming
multiprocessors of the P100 and V100 respectively equal 56
and 80. The number of 256 blocks in one launch does not
occupy the V100 as much as the P100.

C. Scalability

The plots in this section visualize data in Tables V and VI,
which contain times on the three test polynomials, on the
V100. These raw data sets are in the appendix.

As the times spent by all addition kernels is less than
one millisecond for p;, Fig. 3 shows the relative cost of the
multiple doubles versus doubles. The cost starts to increase
once the degrees become larger than the warp size. For all
precisions, the cost at degree 127 is less than twice the cost
at degree 63.

milliseconds spent by all addition kernels

Fig. 3. Times spent by all addition kernels when evaluating p1 and its gradient
at power series truncated at increasing degrees 0, 8, 15, 31, 63, 95, 127, and
152, for seven precisions: double (1d), 2d, 3d, 4d, 5d, 8d, and 10d, at power
series truncated to degree 191.

Fig. 4 shows the sum of the times spent by all addition ker-
nels, for the three test polynomials, for power series truncated
at degree 152, for all seven precisions. Although ps3 has 8,128
monomials and p, has only 128, the increase in addition times
for p3 is at most three times as much as for p,. The addition
for p3 happens with 12 kernel launches, while the addition for
po has 7 kernel launches.

The percentage of time spent by all kernels over the wall
clock time is visualized in Fig. 5. For double precision, the
wall clock time dominates (the percentage of the time spent
by all kernels is less than 10%), although the time is also
less than a tenth of a millisecond. This percentage climbs
for higher precisions. In triple precision, the time spent on
all kernels dominates the wall clock time. For octo and deca
double precision, this percentage is more than 95%.

As the precision increases, the problem becomes more and
more compute bound. For degree 191, in Table V, for p;, the
wall clock times in double, double double, quad double, and
octo double are respectively 6, 14, 95, and 449 seconds. The
cost overhead factor of double double over double is typically
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Fig. 4. Times spent by all addition kernels when evaluating p1, p2, p3 and
their gradients at power series truncated at degrees 152, for seven precisions:
double (1d), 2d, 3d, 4d, 5d, 8d, and 10d.
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Fig. 5. Percentage of the time spent by all kernels over the wall clock time
when evaluating p1, p2, p3 and their gradients at power series truncated at
degrees 152, for seven precisions: double (1d), 2d, 3d, 4d, 5d, 8d, and 10d.

a factor of about five, whereas here we observe 14/6 = 2.33.
The other observed cost overhead factors are 95/12 ~ 6.79
and 449/95 = 4.72. In Fig. 6, the evolution of the logarithmic
wall clock time is plotted.

=
o
L

2-log of wall clock time in milliseconds

Fig. 6. The 2-logarithm of the wall clock times to evaluate and differentiate
p1, p2, p3 in double (1d), double double (2d), quad double (4d), and octo
double (8d) precision, for power series truncated at degree 191.

If the number of coefficients in a truncated series doubles
from 32 to 64, and from 64 to 128, then one would expect
the observed wall clock times to quadruple, as the cost of the
convolutions is O(d?) for the truncation degree d. As shown in



Fig. 7, the wall clock times doubles, as the difference between
the bars in the 2-log times is about one.

2-log of wall clock time in milliseconds

4d

5d 10d

Fig. 7. The 2-logarithm of the wall clock times to evaluate and differentiate
p1 in quad double (4d), penta double (5d), octo double (8d), and deca double
(10d) precision, for power series truncated at degrees 31, 63, and 127.

VII. CONCLUSIONS

The evaluation and differentiation of a polynomial in n
variables at power series truncated at some finite degree d
requires a number of convolution jobs proportional to the
number of variables per monomial and the number N of
monomials. The convolution jobs are arranged in layers of
jobs that can be executed simultaneously. A scan performs
the N addition jobs in [ log, (V) ] steps. For polynomials
where /N dominates the number of variables per monomial,
The theoretical speedup is bounded by dN/log,(N).

Data staging algorithms define the coordinates for the
convolution and the addition jobs. Speedup factors comparing
the V100 and P100 are close to the ratio of their theoretical
peak performance. Experimental results show that teraflop
performance is obtained. The accelerated algorithms scale well
for increasing degrees and precisions. GPUs are well suited to
compensate for the overhead of power series arithmetic and
multiple double precision.
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APPENDIX

Tables V and VI contain times on the three test polynomials,
on the V100. Table VII illustrates the fluctuation of the wall
clock times.



TABLE V
TIMES IN MILLISECONDS TO EVALUATE AND DIFFERENTIATE p1, p2, AND p3, FOR INCREASING DEGREE d,
FOR DOUBLE, DOUBLE DOUBLE, TRIPLE DOUBLE, AND QUAD DOUBLE PRECISION.

evaluating and differentiating p1
precision | d | o 8 15 31 63 95 127 152 159 191

double | convolution 0.08 0.07 0.07 0.07 0.11 0.17 0.28 0.39 0.40 0.56
addition 0.10 0.10 0.09 0.09 0.08 0.08 0.09 0.10 0.10 0.11

sum 0.18 0.17 0.16 0.16 0.19 0.26 0.37 0.50 0.50 0.67

wall clock 9.00 9.00 8.00 9.00 7.00 6.00 6.00 6.00 0.67 6.00

double double | convolution 0.06 0.11 0.17 0.31 0.98 2.39 3.58 7.20 7.48 9.23
addition 0.07 0.07 0.06 0.07 0.09 0.11 0.13 0.15 0.16 0.18

sum 0.13 0.18 0.23 0.38 1.06 2.50 3.71 7.36 7.63 9.41

wall clock 5.00 5.00 5.00 5.00 6.00 7.00 9.00 12.00 12.00 14.00

triple double | convolution 0.10 0.57 1.00 2.00 580 13.82  19.88 38.70 40.53 52.03
addition 0.08 0.08 0.08 0.09 0.12 0.15 0.19 0.24 0.22 0.26

sum 0.18 0.65 1.08 2.09 592 1397  20.07 38.94 40.76 52.29

wall clock 5.00 5.00 6.00 7.00 11.00 19.00 25.00 44.00 46.00 57.00

quad double | convolution 0.15 1.24 2.19 439 11.01 2399 3540 65.76 68.51 90.40
addition 0.10 0.10 0.10 0.12 0.15 0.20 0.24 0.30 0.29 0.33

sum 0.25 1.34 2.29 451 11.16 2419  35.64 66.06 68.80 90.73

wall clock

[ 5.00 6.00 7.00 9.00 16.00 29.00 40.00 71.00 73.00 95.00

evaluating and differentiating po
precision d H 0 8 15 31 63 95 127 152 159 191

double | convolution 0.41 0.41 0.42 0.43 0.50 0.63 0.80 1.01 1.04 1.32
addition 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.08 0.08 0.08

sum 0.45 0.45 0.48 0.48 0.55 0.69 0.87 1.09 1.12 1.41

wall clock || 26.00 26.00 25.00 27.00 25.00 26.00 26.00 27.00 27.00 27.00

double double | convolution 0.42 0.55 0.69 1.01 2.42 4.87 6.84 12.35 12.89 16.19
addition 0.05 0.05 0.05 0.05 0.07 0.09 0.11 0.14 0.13 0.15

sum 0.47 0.60 0.74 1.07 2.49 4.96 6.95 12.48 13.02 16.35

wall clock || 25.00 25.00 26.00 27.00 29.00 31.00 33.00 38.00 39.00 43.00

triple double | convolution 0.53 1.53 2.44 450 1171 2459 3453 75.74 78.59 94.57
addition 0.06 0.06 0.06 0.07 0.09 0.13 0.16 0.21 0.20 0.22

sum 0.58 1.59 2.51 458 11.80 2472 34.69 75.95 78.78 94.79

wall clock || 27.00 28.00 29.00 31.00 37.00 50.00 61.00 102.00 105.00 120.00

quad double | convolution 0.57 2.61 4.37 857 2129 4417 61.66 11898 125.11 157.94
addition 0.07 0.08 0.08 0.09 0.12 0.17 0.20 0.25 0.25 0.29

sum 0.65 2.68 4.45 8.66 2141 4434 61.87 11923 12537 15823

wall clock || 26.00 29.00 31.00 35.00 48.00 70.00 87.00 145.00 151.00  184.00

evaluating and differentiating p3
precision d | o0 8 15 31 63 95 127 152 159 191

double | convolution 0.05 0.05 0.05 0.06 0.12 0.22 0.37 0.53 0.55 0.78
addition 0.11 0.11 0.11 0.11 0.12 0.16 0.19 0.21 0.21 0.25

sum 0.16 0.15 0.15 0.17 0.24 0.37 0.55 0.74 0.77 1.03

wall clock 1200 13.00 12.00 12.00 13.00 13.00 13.00 13.00 14.00 14.00

double double | convolution 0.05 0.13 0.22 0.42 1.36 3.43 5.20 10.47 10.93 13.52
addition 0.12 0.11 0.11 0.13 0.18 0.25 0.33 0.44 0.37 0.44

sum 0.17 0.24 0.34 0.54 1.54 3.69 5.52 10.91 11.30 13.96

wall clock || 13.00 13.00 13.00 13.00 14.00 17.00 18.00 25.00 24.00 27.00

triple double | convolution 0.11 0.81 1.42 2.86 826 20.06 29.10 56.76 59.25 76.49
addition 0.14 0.14 0.15 0.18 0.25 0.37 0.46 0.56 0.54 0.64

sum 0.25 0.95 1.57 3.04 8.52 2043 29.56 57.32 59.79 77.13

wall clock 13.00 1400 14.00 16.00 21.00 33.00 43.00 71.00 73.00 90.00

quad double | convolution 0.19 1.75 3.11 622 1592 3481 51.57 9591 100.03  129.76
addition 0.17 0.19 0.19 0.24 0.33 0.46 0.61 0.73 0.71 0.84

sum 0.36 1.94 3.30 6.45 1625 3527 52.18 96.64 100.75 130.61

‘ wall clock 13.00 14.00 16.00 19.00 29.00 49.00 65.00 109.00 114.00  144.00
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TABLE VI
TIMES IN MILLISECONDS TO EVALUATE AND DIFFERENTIATE p1, p2, AND p3, FOR INCREASING DEGREE d,
FOR PENTA, OCTO, AND DECA DOUBLE PRECISION.

evaluating and differentiating p1

precision | d | o0 8 15 31 63 95 127 152 159 191
penta double | convolution 0.25 223 3.98 7.94 20.59 42.87 57.19 11457  111.68  143.70
addition 0.11 0.11 0.11 0.13 0.18 0.24 0.30 0.39 0.36 0.42

sum 0.37 2.34 4.09 8.07 20.77 43.11 57.49 11496  112.04  144.12
wall clock 5.00 7.00 8.00 13.00 25.00 48.00 62.00 123.00  117.00  150.00

octo double | convolution 0.82 892 1597 32.26 7724 150.64  182.09 359.68  377.88 44290
addition 0.30 0.33 0.29 0.31 0.35 0.40 0.50 0.61 0.59 0.67
sum 1.12 9.25 16.27 32.57 7759 151.04  182.58 360.29  378.48 44357

| wallclock [[ 800 17.00 21.00 37.00 82.00 156.00  188.00 365.00 384.00 449.00

deca double | convolution 1.30 15.74  26.57 52.31 130.04 257.59 312.16 635.42

addition 0.36 0.42 0.38 0.40 0.44 0.50 0.62 0.75

sum 1.66 16.16 26.95 52771 13048 258.09 312.78 636.17

[ wallclock [[ 7.00 30.00 35.00 58.00 135.00 263.00 317.00 641.00

evaluating and differentiating po
precision || d | o 8 15 31 63 95 127 152 159 191

penta double | convolution 0.84 5.30 9.22 18.31 39.36 80.19  112.57 205.65 214.06 273.53
addition 0.09 0.09 0.10 0.11 0.15 0.20 0.25 0.34 0.31 0.36

sum 0.93 5.40 9.32 18.42 39.51 80.40 112.83 205.99 21436  273.89
wall clock || 26.00 31.00 34.00 44.00 65.00 105.00 138.00 231.00  239.00  299.00

octo double | convolution 176 16.56  29.58 59.66  139.71  253.36  328.69 639.72 67251  789.62
addition 0.23 0.24 0.25 0.26 0.30 0.35 0.42 0.51 0.51 0.58
sum 1.99  16.80 29.82 59.92  140.01  253.71 329.11 640.23  673.02  790.20

wall clock || 27.00 42.00 55.00 85.00 165.00 279.00  355.00 666.00 699.00 817.00

deca double | convolution 2.64 2879 4858 94.48  238.82 442.12  559.61 1115.03
addition 0.29 0.31 0.32 0.34 0.38 0.45 0.54 0.67
sum 293  29.09 48.89 9482 239.20 44257 560.15 1115.71

wall clock H 29.00  55.00 75.00 120.00 265.00 468.00 586.00  1142.00

evaluating and differentiating p3

precision | d | o0 8 15 31 63 95 127 152 159 191
penta double | convolution 0.35 3.24 5.76 11.56 29.23 62.60 83.30 157.02  163.71  210.28
addition 0.24 0.26 0.29 0.41 0.57 0.57 0.74 0.91 0.88 1.04

sum 0.59 3.50 6.02 11.84 29.63 84.04 84.04 15793 16459 21131
wall clock 15.00 17.00  18.00 24.00 43.00 76.00 97.00 171.00  178.00  224.00

octo double | convolution 1.19  13.11  23.49 4732 107.64  221.87  265.69 528.19  553.59  647.95
addition 0.62 0.70 0.70 0.75 0.84 0.98 1.22 1.48 1.42 1.69
sum 1.80 13.80 24.18 48.07 108.48  222.84  266.31 529.67  555.01  649.64

[ wall clock [[ 14.00 27.00  37.00 61.00 121.00 236.00 280.00 542.00 573.00 663.00
deca double | convolution 1.90 23.12  39.12 75.81 181.99  380.19  455.78 926.53
addition 0.80 0.88 0.89 0.94 1.04 1.19 1.47 1.92

sum 270 24.00 40.01 76.76  183.04  381.38  457.25 928.45
16.00  37.00  52.00 90.00  197.00  394.00  470.00 941.00

[ wall clock

TABLE VII
WALL CLOCK TIMES IN MILLISECONDS TO EVALUATE AND DIFFERENTIATE p3 IN DECA DOUBLE PRECISION, FOR DEGREE 152, WITH FREQUENCIES FOR
TEN RUNS, ONCE WITH THE FIXED SEED ONE, AND ONCE WITH DIFFERENT SEEDS FOR THE RANDOM NUMBERS.

wall clock times \ 941 942 943 944 945 946

fixed seed one [ 0 0 3 5 2
different seeds | 4 1 3 1 0 1
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