
Accelerated Polynomial Evaluation and Differentiation
at Power Series in Multiple Double Precision

Jan Verschelde*

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

851 S. Morgan St. (m/c 249), Chicago, IL 60607-7045
Email: janv@uic.edu

Abstract—The problem is to evaluate a polynomial in sev-
eral variables and its gradient at a power series truncated to
some finite degree with multiple double precision arithmetic. To
compensate for the cost overhead of multiple double precision
and power series arithmetic, data parallel algorithms for general
purpose graphics processing units are presented. The reverse
mode of algorithmic differentiation is organized into a massively
parallel computation of many convolutions and additions of
truncated power series. Experimental results demonstrate that
teraflop performance is obtained in deca double precision with
power series truncated at degree 152. The algorithms scale well
for increasing precision and increasing degrees.

Index Terms—acceleration, convolution, CUDA, differentia-
tion, evaluation, GPU, parallel, polynomial, precision.

I. INTRODUCTION

Solving systems of many polynomial equations in several

variables is needed in various fields of science and engineer-

ing. Numerical continuation methods apply path trackers [15].

A path tracker computes approximations of the solution paths

defined by a family of polynomial systems. The paths start at

known solutions of easier systems and end at the solutions

of the given system. The evaluation and differentiation of

polynomials often dominates the computational cost.

The main motivation for this paper is to accelerate a new

robust path tracker [17], added recently to PHCpack [19],

which requires power series expansions of the solution series

of polynomial systems. As shown in [18], double precision

may no longer suffice to obtain accurate results, for larger

systems, and for longer power series, truncated at higher

degrees. The double precision can be extended with double

doubles, triple doubles, quad doubles, etc., applying multiple

double arithmetic [16]. The goal is to compensate for the com-

putational cost overhead caused by power series and multiple

double precision by the application of data parallel algorithms

on general purposed graphics processing units (GPUs).

The CUDA programming model (see [12] for an introduc-

tion) is applied. The software was developed on five different

NVIDIA graphics cards: the C2050, K20C, P100, V100 (on

Linux); and the GeForce 2080 (on Windows).

Prior work. Data parallel algorithms for polynomial evalua-

tion and differentiation [9] were first presented by G. Yoffe

and the author in [21], using double double and quad double

*Supported by the National Science Foundation under grant DMS 1854513.

arithmetic of [4] on the host and of [13] on the device. Adding

accelerated linear algebra [22] led to an accelerated Newton’s

method [23], and to accelerated path trackers [24], [25].
Related work. The authors of [6], [7] describe a GPU imple-

mentation of a path tracker, with an application to kinematic

synthesis. Instead of an adaptive step size control, paths for

which the desired accuracy is not achieved are recomputed

with a smaller step size. The source code for the computations

of [6], [7] can be found in the appendix of [5].
Accelerating the multiplication of polynomials is reported

in [1] and [2], [3], [14]. Those algorithms are applied with

exact, modular arithmetic, to polynomials with huge degrees.

A GPU-accelerated application of adjoint algorithmic differ-

entiation is implemented in [8] for the gradient computation

of cost functions given by computer programs.
In [10], several software packages for high precision arith-

metic on GPUs are considered. For the problem of matrix-

vector multiplication, the double double arithmetic of CAM-

PARY [11] performs best. In quad double precision, the

performance of the implementation with CAMPARY comes

close to the multiple precision proposed by [10].
Contributions. This paper extends the ideas of [21] to power

series and to more levels of multiple double precision, with the

code generated by the CAMPARY software [11]. In addition

to double, double double, and quad double precision, the

algorithms in this paper run also in triple, penta, octo, and

deca double precision, extending double precision respectively

three, five, eight, and ten times.
In [12], convolutions and scans are explained as parallel

patterns. This paper presents novel data staging algorithms. In

one addition of two power series consecutive threads in the

block add consecutive coefficients of the series. In one multi-

plication of two power series, the number of steps equals the

degree d at which the series are truncated. The computations

in the data parallel algorithms are defined by two sequences of

jobs. The first sequence computes all multiplications, for all

monomials, while the second sequence encodes the additions

of all evaluated monomials. The theoretical speedup of the

novel parallel algorithms is a multiple of d.
In deca double precision, on power series truncated at

degree 152, teraflop performance is reached on the P100

and the V100. Experimental results show the scalability for

increasing degrees and increasing precisions.

740

2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-3577-2/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPSW52791.2021.00111

II. CONVOLUTIONS

Consider the product z of two power series x and y, both

truncated to the same degree d, so the input consists of two

sequences of d + 1 coefficients. The output are the d + 1
coefficients of the product z. In a data parallel algorithm with

d + 1 threads, thread k will compute the k-th coefficient zk
of z, defined by the formula

zk =
k∑

i=0

xiyk−i, k = 0, 1, . . . , d, (1)

where xi is the i-th coefficient of x and yk−i is the (k− i)-th
coefficient of y. In the direct application of the formula in (1),

every thread performs a different number of computations,

which results in thread divergence.

The remedy for this thread divergence is to insert zero

numbers before the second vector when threads load the num-

bers into the shared memory of the block. In the statements

below, X , Y , and Z represent the shared memory locations,

respectively for the coefficients of x, y, and z. The Y has

space for at least 2d+2 numbers. In the data parallel algorithm

with zero insertion, thread k executes the following statements,

expressed in pseudo code:

1. Xk := xk

2. Yk := 0
3. Yd+k := yk
4. Zk := X0Yd+k

5. for i from 1 to d do Zk := Zk +XiYd+k−i

6. zk := Zk

The d+1 threads execute the same statement on different data.

In the statements above, the k = 0, 1, . . . , d of formula (1) is

implicit. As the data parallel version eliminates the outside

loop on k, it is expected to run about d times faster than the

sequential application of formula (1).

The zero insertion justifies the auxiliary vector Y , but why

are X and Z needed? The coefficients x, y, and z reside in

the global memory of the device. Access to global memory is

slower than access to shared memory. Observe that all threads

need access to x0. Retrieving x0 once from global memory

and then d + 1 times from shared memory is expected to be

faster than d+1 times retrieving x0 from global memory. The

same argument applies to the assignments to Zk. Every thread

assigns once to Zk and then updates Zk as many as d times.

Only at the end is the value of Zk in shared memory assigned

to the value of zk in global memory. Another benefit of using

vectors in shared memory occurs when one needs to update

the same series x or y with the product. Replacing z by x or

y in (1) requires an auxiliary vector.

All coefficients are stored in consecutive memory locations,

promoting efficient memory access. For arrays of doubles,

threads with consecutive indices access the corresponding

consecutive memory locations. For complex numbers and

multiple double numbers, the same efficient memory access

is obtained by storing real and imaginary parts of complex

numbers in separate arrays and by storing all parts of multiple

double numbers in separate arrays.

The other basic operation is the addition of two power

series. In the data parallel version, one block of threads adds

two power series. If the block has exactly has exactly as many

threads as the number of coefficients of the power series, then

thread k adds the k-th coefficient of the two series.

The next two sections elaborate the scheduling of convolu-

tion jobs.

III. MONOMIAL EVALUATION AND DIFFERENTIATION

Consider a monomial a x1x2 · · ·xn, in the n variables x1,

x2, . . ., xn, where a is a nonzero power series, truncated to

degree d. We want to evaluate and differentiate this monomial

at a sequence of n power series z = (z1, z2, . . . , zn). All series

in z are also truncated to degree d.

For monomials with positive powers, e.g.: x3
1x

5
2, observe

that the value of x2
1x

4
2 is not only a factor of the monomial

value, but is also a factor in all values of the derivatives.

Therefore, we write x3
1x

5
2 as a x1x2, where a = x2

1x
4
2. This

common factor is then evaluated separately and the coefficient

of the monomial is updated with the common factor.

The statements below assume that n is larger than 2. Each

� represents a convolution of two power series. The n forward

products are stored in the n-dimensional array f . The (n −
2)-dimensional array b collects the backward products. Other

partial derivatives can then be found in the (n−2)-dimensional

array c of cross products.

1. f1 := a � z1
2. for j from 2 to n do fj := fj−1 � zi
3. b1 := zn � zn−1

4. for j from 2 to n− 2 do bj := bj−1 � zn−j

5. bn−2 := bn−2 � a
6. for j from 1 to n− 3 do cj := fj � bn−3−j

7. cn−2 := fn−2 � zn

The amount of � operations equals the total amount of

auxiliary storage, plus one (as bn−2 gets assigned twice):

3n − 3. In the example below for n = 5, if one expands

the left and right operands of � into their values, one can

verify that b3, c1, c2, c3, and f4 contain the values of all five

partial derivatives. The organization in three columns shows

the parallelism. Statements on the same line in (2) can be

executed in parallel.

f1 := a � z1 b1 := z5 � z4
f2 := f1 � z2 b2 := b1 � z3
f3 := f2 � z3 b3 := b2 � z2 c1 := f1 � b2
f4 := f3 � z4 b3 := b3 � a c2 := f2 � b1
f5 := f4 � z5 c3 := f3 � z5

(2)

For n = 5, three blocks of threads may evaluate and

differentiate one monomial in five steps. For n > 5, observe

that c1 needs znzn−2 · · · z3, or the value of bn−3. While this

observation seems to limit the amount of parallelism, the cross

products need not be computed one after the other.

741

p = a0 + a1x1x3x6 + a2x1x2x5x6 + a3x2x3x4

f1,1 := a1 � z1 f2,1 := a2 � z1 f3,1 := a3 � z2
f1,2 := f1,1 � z3 f2,2 := f2,1 � z2 f3,2 := f3,1 � z3
f1,3 := f1,2 � z6 f2,3 := f2,2 � z5 f3,3 := f3,2 � z4

f2,4 := f2,3 � z6
b1,1 := z6 � z3 b2,1 := z6 � z5 b3,1 := z4 � z3
b1,1 := b1,1 � a1 b2,2 := b2,1 � z2 b3,1 := b3,1 � a3

b2,2 := b2,2 � a2
c1,1 := f1,1 � z6 c2,1 := f2,1 � b2,1 c3,1 := f3,1 � z4

c2,2 := f2,2 � z6

Fig. 1. All statements to compute the forward, backward, and cross products to evaluate a polynomial and its gradient.

Proposition III.1. The j-th cross product cj can be computed
after max(j, n− 3− j) steps.

Proof. For n = 3, the only cross product is c1 := f1 � z3, and

c1 can be computed after f1 has been computed in the first

step. After one step, c1 can be computed for n = 3.

For n > 3, consider cn−2 := fn−2 �zn. The computation of

cn−2 has to wait for the computation of fn−2, which requires

n− 2 steps. For j < n− 2, cj := fj � bn−3−j and cj can be

computed after fj and bn−3−j have been computed, which

each take respectively j and n − 3 − j steps. Thus, after

max(j, n− 3− j) steps, cj can be computed.

Corollary III.2. Given sufficiently many blocks of threads,
monomial evaluation and differentiation takes n steps for n
variables.

As the number of convolutions to evaluate and differentiate

one monomial in n variables equals 3n − 3, Corollary III.2

implies that 3d is the upper bound on the speedup, where d
is the truncation degree of the power series.

IV. POLYNOMIAL EVALUATION AND DIFFERENTIATION

We consider a polynomial p of N monomials in n variables

with nonzero coefficients as power series, all truncated to the

same degree d. The coefficient of the k-th monomial is denoted

as ak and nk variables appear in the monomial, for k ranging

from 1 to N . The variables in the k-th monomial are defined

by the tuple of indices (i1, i2, . . . , ink
) with 1 ≤ i1 < i2 <

· · · < ink
≤ n. We want to evaluate and differentiate

p(x1, x2, . . . , xn) = a0 +
N∑

k=1

ak xi1xi2 · · ·xink
, (3)

at a sequence of n power series z = (z1, z2, . . . , zn). All series

in z are also truncated to degree d. The constant term a0 is

not included in the count N .

In the data parallel evaluation and differentiation, every

monomial has three separate arrays of forward, backward, and

cross products, denoted respectively by f , b, and c. In the

example in Fig. 1, the first index of f , b, and c corresponds

to the monomial index.

The 21 convolutions in Fig. 1 are arranged in (4). Statements

on the same line can be computed simultaneously.

f1,1 b1,1 f2,1 b2,1 f3,1 b3,1
f1,2 b1,1 c1,1 f2,2 b2,2 c2,1 f3,2 b3,1 c3,2
f1,3 f2,3 b2,2 c2,2 f3,3

f2,4

(4)

If 9 thread blocks are available, all 21 convolutions can be

computed in 4 steps. The value of p at z is a0 + f1,3 +
f2,4 + f3,3, and its six partial derivatives are as follows

b1,1 + b2,1, c2,1 + b3,1, c1,1 + c3,1, f3,2, c2,2, and f1,2 + f2,3.

If 7 threads blocks are available, all values can be computed

in two steps. Two steps are needed for the value of p. The

first step computes f1,3 := a0 + f1,3 and f3,3 := f2,4 + f3,3
simultaneously. The second step then does f3,3 := f3,3+f1,3,

so the value of p is in f3,3.

Obviously, as convolutions for different monomials can be

computed in parallel, the result in Corollary III.2 extends

directly to polynomials.

Corollary IV.1. Consider a polynomial p in n variables,
with N monomials. Let m be the number of variables in
that monomial of p that has the largest number of variables.
Given sufficiently many blocks of threads, the evaluation and
differentiation of p takes m+ � log2(N) � steps.

To interpret Corollary IV.1, assume every monomial

has m variables. Then the total number of convolutions

equals N(3m − 3) and the number of additions equals N .

As in the case of one monomial, the speedup factor of 3d is

present. For polynomials with many monomials, for N � m,

the upper bound on the speedup is dN/ log2(N).

V. ACCELERATED EVALUATION AND DIFFERENTIATION

The accelerated polynomial evaluation and differentiation

algorithm proceeds in two stages. The first stage computes

all convolutions. The second stage adds up the evaluated and

differentiated monomials.

As the number of threads in each block matches the number

of coefficients in each truncated power series, within each

block the natural order of the data follows the coefficient

vectors of the power series. In preparation for the launching

of the kernels the staging of the data must be defined.

742

A

a0 a1 a2 a3 z1 z2 z3 z4 z5 z6 f1,1 f1,2 f1,3 f2,1 f2,2 f2,3 f2,4 f3,1 f3,2 f3,3 b1,1 b2,1 b2,2 b3,1 c1,1 c2,1 c2,2 c3,1

� � � � � � � � � �

Fig. 2. The data array used to compute the forward, backward, and cross products to evaluate a polynomial and its gradient of the example in Fig. 1. Every
box represents d+ 1 doubles for the coefficients of a series truncated at degree d. The arrows point at the start position of the input series and at the space
for the forward, backward, cross products for every monomial.

Extracting the data structures of (3), the input of the

algorithm consists of the following:

1) N , the number of monomials;

2) n, the number of variables;

3) d, the degree at which all series are truncated;

4) ak, truncated series as the coefficient of the k-th mono-

mial, k = 1, 2, . . . , N ;

5) (i1, i2, . . . , ink
), indices of the variables in the k-th

monomial, where 1 ≤ i1 < i2 < · · · < ink
≤ n, for

k = 1, 2, . . . , N ;

6) z = (z1, z2, . . . , zn), n power series truncated to de-

gree d.

The output of the first stage are N tuples (fk, bk, ck), for

k = 1, 2, . . . , N , where fk,j are the forward products,

j = 1, 2, . . . , nk, bk,j are the backward products, j =
1, 2, . . . ,max(1, nk − 2), ck,j are the cross products, j =
1, 2, . . . , nk − 2. The max(1, nk − 2) in the upper bound for

bk,j is for the special case nk = 2, to store zi2 � a2.

The output of the first stage is the input of the second stage.

The second stage adds for each monomial k, the last forward

product fk,nk
to obtain p(z). The values of the derivatives of

the k-th monomial are in fk,nk−1, bk,nk−2, and ck,j .

The data parallel algorithm to compute all convolutions is

defined by the data layout. The total count of numbers involved

in all convolution and addition jobs is

e = (d+ 1)

(
1 +N + n+

N∑
k=1

(
nk

+max(1, nk − 2) + max(0, nk − 2)

))
.

(5)

The first factor (d+1) in (5) counts the number of coefficients

in all series truncated to degree d. The five terms in the second

factor in (5) count respectively the constant coefficient a0, the

N coefficients ak, the n input series in z, the nk forward,

the max(1, nk − 2) backward, and the max(0, nk − 2) cross

products.

Fig. 2 illustrates the layout of the data vector for the

polynomial in Fig.1.

The data are in an array A of e doubles. The order of the

numbers in A follows the count as in (5): the coefficients a0,

ak, and series z are followed by the numbers in the forward,

backward, and cross products. Each job is then characterized

by a triplet of indices in this A. The first two indices point

respectively at the start of the first and the second input. The

third index in the triplet defines the start of the output. For

example, the triplet for the convolution f1,1 := a1 � z1 for the

polynomial in Fig.1 is (d+1, 4d+4, 10d+10), for degree d,

as the coefficients for a1 start after the first d+1 coefficients

for a0, z1 starts after the the first four series, and f1,1 after

the ten series that define the coefficients of the polynomials

and the input.

For complex numbers, the data are in two arrays, one for

the real parts and the other for the imaginary parts. For m-

fold double numbers, there are m data arrays, all following

the same layout as for A, described above.

Jobs are placed in layers, following the lines of (4) for

the example polynomial. Jobs to compute fk,j and bk,j are

at layer j. Following Proposition III.1, the layer of ck,j is

max(j, nk − 3 − j) + 1. All jobs in the same layer can be

executed at the same time. A kernel is launched with as many

blocks as the number of jobs in one layer. One convolution

job is executed by one block of threads. In addition to the data

array A, the kernel is launched with the triple of coordinates

which define each job. Each block of threads extracts the triplet

according to its block number.

The coordinates for each convolution job in the first stage

of the algorithm depend only on the structure of the mono-

mials and are computed only once. The same holds for the

coordinates of the addition jobs in the second stage of the

algorithm. Each addition job updates one series with another,

so one pair of indices defines one addition job. For example,

for the polynomial in Fig. 1, the first update f1,3 := a0 + f1,3
has coordinates (0, 12d + 12), as a0 comes first and f1,3 is

positioned after 12 series in A, see Fig. 2.

For a convolution job j, let t = (t1(j), t2(j), t3(j)) denote

the triplet where t1(j) and t2(j) respectively are the locations

in the data array A of the first and second input, and where

t3(j) is the location in A of the output. Given A and t, we

can then symbolically summarize the code for the kernel to

compute all convolution jobs at the same layer as

1) B := blockIdx.x
2) (i1, i2, i3) := (t1(B), t2(B), t3(B))
3) A[i3 : i3+d+1] := A[i1 : i1+d+1] � A[i2 : i2+d+1]

where the block index B corresponds to the index j of the

convolution job, and [i : i+d+1] denotes the range of the

coefficients in A. Likewise, for an addition job j, let t =
(t1(j), t2(j)) be the pair of input and update locations in the

data array A. Given A and t, the kernel to execute all addition

jobs at the same layer is then summarized as

1) B := blockIdx.x
2) (i1, i2) := (t1(B), t2(B))
3) A[i2 : i2+d+1] := A[i2 : i2+d+1] +A[i1 : i1+d+1]

743

The data staging algorithm to define the convolution jobs

runs through the steps to compute all forward fk,�, backward

bk,�, and cross products ck,�, for k ranging from 1 to N . The

k-th monomial has nk variables, with indices (i1, i2, . . . , ink
).

αk =

k−1∑
�=1

n�, βk = αN+1 +

k−1∑
�=1

max(1, n� − 2), (6)

and γk = βN+1 +

k−1∑
�=1

max(0, n� − 2) (7)

mark the positions respectively of fk,1, bk,1, and ck,1 in the

data array A. For an example, see the arrows in Fig. 2. Let J�
denote a set of convolutions jobs at level �. Jobs in J� can be

executed after �− 1 steps. The simplified pseudo code below

assumes all nk > 2.

For k from 1 to N do

1) to execute fk,1 := ak � zi1 :

t1 := k(d+1)
t2 := (1 +N + i1 − 1)(d+1)
t3 := (1 +N + n+ αk)(d+1)
J1 := J1 ∪ {(t1, t2, t3)}

2) for � from 2 to nk do

to execute fk,� := fk,�−1 � zi� :

t1 := (1 +N + n+ αk + �− 2)(d+1)
t2 := (1 +N + i� − 1)(d+1)
t3 := (1 +N + n+ αk + �− 1)(d+1)
J� := J� ∪ {(t1, t2, t3)}

3) to execute bk,1 := znk
� znk−1:

t1 := (1 +N + nk − 1)(d+1)
t2 := (1 +N + nk − 2)(d+1)
t3 := (1 +N + n+ βk)(d+1)
J1 := J1 ∪ {(t1, t2, t3)}

4) for � from 2 to nk − 2 do

to execute bk,� := bk,�−1 � znk−�:

t1 := (1 +N + n+ βk + �− 2)(d+1)
t2 := (1 +N + nk − �)(d+1)
t3 := (1 +N + n+ βk + �− 1)(d+1)
J� := J� ∪ {(t1, t2, t3)}

5) to execute bk,nk−2 := bk,nk−2 � ak:

t1 := (1 +N + n+ βk + nk − 3)(d+1)
t2 := k(d+1)
t3 := (1 +N + n+ βk + nk − 3)(d+1)
Jnk−2 := Jnk−2 ∪ {(t1, t2, t3)}

6) for � from 1 to nk − 3 do

to execute ck,� := fk,� � bk,nk−3−�

t1 := (1 +N + n+ α� + �− 1)(d+1)
t2 := (1 +N + n+ βk + nk − 3− �− 1)(d+1)
t3 := (1 +N + n+ γk + �− 1)(d+1)
L := max(�, nk − 3− �)
JL := JL ∪ {(t1, t2, t3)}

7) to compute ck,nk−2 := fk,nk−2 � znk
:

t1 := (1 +N + n+ αk + nk − 3)(d+1)
t2 := (1 +N + nk − 1)(d+1)
t3 := (1 +N + n+ γk + nk − 3)(d+1)
Jnk−2 := Jnk−2 ∪ {(t1, t2, t3)}

Sets are natural data structures in the mathematical description

of the data staging algorithm, as the jobs in one J� can be

executed in any order. In the implementation, the jobs in the

same layer are stored in three integer arrays. The block index

B is then used to get the coordinates of the convolution job

performed by block B.

The pairs of indices for the addition jobs are defined in a

recursive manner, following the order of the tree summation

algorithm. To compute the value of the polynomial, add the

forward product fk,nk
of the k-th monomial. For stride L and

level �, apply the following:

to execute fk,nk
:= fk,nk

+ fk−L,nk−L
:

t1 := 1 +N + n+ αk−L + nk−L − 1
t2 := 1 +N + n+ αk + nk − 1
J� := J� ∪ {(t1, t2)}

recursively, starting at L = �N/2� and level � = log2(N)
(assuming N = 2�), dividing L by two in each step, until

L = 1. For k = L in the formula fk,nk
:= fk,nk

+fk−L,nk−L
,

replace fk−L,nk−L
by a0. The same recursive formula is

applied to sum the first backward products and all cross

products to obtain the gradient.

VI. COMPUTATIONAL RESULTS

A. Equipment and Test Polynomials

Table I summarizes the characteristics of each GPU, with

the focus on the core counts and the processor speeds, because

the problem is compute bound. The first four GPUs in Table I

are housed in a Linux workstation, running CentOS. The fifth

GPU resides in a Windows laptop.

TABLE I
THE COLUMNS LIST THE CUDA CAPABILITY, THE NUMBER OF

MULTIPROCESSORS, THE NUMBER OF CORES PER MULTIPROCESSOR, THE

TOTAL NUMBER OF CORES, AND THE GPU CLOCK RATE. FOR EVERY

GPU, ITS HOST CPU IS LISTED WITH ITS CLOCK RATE.

NVIDIA GPU CUDA #MP #cores/MP #cores GHz
Tesla C2050 2.0 14 32 448 1.15

Kepler K20C 3.5 13 192 2496 0.71
Pascal P100 6.0 56 64 3584 1.33
Volta V100 7.0 80 64 5120 1.91

GeForce RTX 2080 7.5 46 64 2944 1.10

NVIDIA GPU host CPU GHz
Tesla C2050 Intel X5690 3.47

Kepler K20C Intel E5-2670 2.60
Pascal P100 Intel E5-2699 2.20
Volta V100 Intel W2123 3.60

GeForce RTX 2080 Intel i9-9880H 2.30

The software was developed on the five GPUs listed in

Table I, compiled with nvcc -O3 on the device, with the

code for the host compiled by gcc -O3 on the linux com-

puters, and the community edition of Microsoft Visual Studio

on the Windows laptop. While running the same software on

all five GPUs is obviously convenient, more advanced features

of newer devices are not utilized. The main importance for the

evaluation of our software is that the unfair comparison with

the CPU is avoided. Taking into the account the double peak

performance of the P100 and the V100 (4.7 TFLOPS and 7.9

744

TFLOPS respectively), we may expect the V100 to be about

1.68 times faster than the P100.

The first test polynomial p1 is a function of 16 variables.

Its evaluation adds to the constant term all 1,820 monomials

that are the products of exactly four variables. The evaluation

requires 16,380 convolutions and 9,084 additions. As each

monomial has no more than four variables, the 16,380 convo-

lutions are performed in four kernel launches of respectively

3,640, 5,460, 5,460, and 1,820 blocks. The execution of the

9,084 additions requires 11 kernel launches of respectively

4,542, 2,279, 1,140, 562, 281, 140, 78, 39, 20, 2, and 1

blocks. The second test polynomial p2 is constructed to require

many more convolutions than additions, respectively 24,192

versus 8,192. To evaluate the third polynomial p3, as many

convolutions as additions are required: 24,256.

Table II lists the characteristics of the test polynomials.

Compared to p1, p2 has fewer monomials but each mono-

mial has many more variables; whereas p3 has many more

monomials, but each monomial has only two variables.

TABLE II
FOR EACH POLYNOMIAL, n IS THE TOTAL NUMBER OF VARIABLES, m IS

THE NUMBER OF VARIABLES PER MONOMIAL, AND N IS THE NUMBER OF

MONOMIALS (NOT COUNTING THE CONSTANT TERM). THE LAST TWO

COLUMNS LIST THE NUMBER OF CONVOLUTION AND ADDITION JOBS.

n m N #cnv #add
p1 16 4 1,820 16,380 9,084
p2 128 64 128 24,192 8,192
p3 128 2 8,128 24,256 24,256

To examine the scalability of our problem, experiments are

run for increasing degrees of truncation and for increasing

levels of precision. Does the shape of the test polynomials

influence the execution times?

B. Performance

For each run, four times are reported. The elapsed

times of the kernel launches are measured by

cudaEventElapsedTime and expressed in milliseconds.

The first two times are the sums of all elapsed times spent by

all kernels, respectively for all convolutions and all additions.

The third time is the sum of the first two times. Each kernel

launch involves the memory transfer of the index vectors that

define the coordinates of the jobs in the data arrays. The

fourth reported time is the wall clock time which includes

also this memory transfer. Not included in the times are the

transfers of the input data arrays from the host to the device

and of the output data arrays from the device to the host.

Table III summarizes execution times to evaluate the first

test polynomial p1 at a power series truncated to degree 152

in deca double precision. This degree is the largest one block

of threads can manage because of the limitation of the size of

shared memory, which is the same all five devices.

The ratio 12964/640 ≈ 20.26 is the speedup of the most

recent V100 over the oldest C2050. Compare the ratio of the

wall clock times for P100 over V100 in Table III: 1066/640 ≈

TABLE III
EVALUATING p1 FOR DEGREE d = 152 IN DECA DOUBLE PRECISION. THE

LAST LINE IS THE WALL CLOCK TIME FOR ALL CONVOLUTION AND

ADDITION KERNELS. ALL UNITS ARE MILLISECONDS.

C2050 K20C P100 V100 RTX 2080

convolution 12947.26 11290.22 1060.03 634.29 10002.32
addition 10.72 11.13 1.37 0.77 5.01

sum 12957.98 11301.35 1061.40 635.05 10007.34

wall clock 12964.00 11309.00 1066.00 640.00 10024.00

1.67 with the ratios of theoretical double peak performance of

the V100 of the P100: 7.9/4.7 ≈ 1.68.

In about one second, the P100 performed 16,380 convo-

lutions and 9,084 additions (see Table II) to evaluate and

differentiate p1, at series truncated at degree d = 152 in

deca double precision. Following the counts in [20], one

addition in deca double precision requires 139 additions and

258 subtractions of doubles, while one deca double multi-

plication requires 952 additions, 1743 subtractions, and 394

multiplications of doubles. One convolution with zero insertion

on series truncated at degree d requires (d+1)2 multiplications

and d(d+1) additions. One addition of two series truncated at

degree d requires d+1 additions. So we have 16, 380(d+1)2

multiplications and 16, 380d(d+ 1) + 9, 084(d+ 1) additions

in deca double precision. One multiplication and one addition

in deca double precision require respectively 3089 and 397

double operations. Then the 16, 380(d + 1)2 evaluates to

1,184,444,368,380 and 16, 380d(d + 1) + 9, 084(d + 1) to

151,782,283,404 double float operations. In total, in 1.066

seconds the P100 performed 1,336,226,651,784 double float

operations, reaching a performance of about 1.25 TFLOPS.

Another observation from Table III is the tiny amount

of time spent by the addition kernels, when compared to

the convolution kernels, for V100: 0.77 versus 634.29. The

convolution is quadratic in the degree d, whereas the addition

is linear in d. As every block has d+ 1 threads, the addition

finishes in one single step, whereas there are still d steps in

the parallel convolution algorithm.

Table IV lists the execution times for p2 and p3 on P100

and V100, to verify if the shape of the test polynomial would

influence the conclusions on p1.

TABLE IV
EVALUATING p2 AND p3 FOR DEGREE d = 152 IN DECA DOUBLE

PRECISION. THE LAST LINE IS THE WALL CLOCK TIME FOR ALL

CONVOLUTION AND ADDITION KERNELS. ALL UNITS ARE MILLISECONDS.

p2 p3
P100 V100 P100 V100

convolution 1700.49 1115.03 1566.58 926.53
addition 1.24 0.67 3.43 1.92

sum 1701.72 1115.71 1570.01 928.45

wall clock 1729.00 1142.00 1583.00 941.00

The ratios of the wall clock times on P100 over the

V100 for p2 and p3 are respectively 1729/1142 ≈ 1.51 and

1583/941 ≈ 1.68.

745

For p2, the factor 1.51 is not as high as expected. One

probable cause is that the number of convolutions jobs in the

first 31 layers equals 256. This number equals the number

of blocks in one kernel launch. The number of streaming

multiprocessors of the P100 and V100 respectively equal 56

and 80. The number of 256 blocks in one launch does not

occupy the V100 as much as the P100.

C. Scalability

The plots in this section visualize data in Tables V and VI,

which contain times on the three test polynomials, on the

V100. These raw data sets are in the appendix.

As the times spent by all addition kernels is less than

one millisecond for p1, Fig. 3 shows the relative cost of the

multiple doubles versus doubles. The cost starts to increase

once the degrees become larger than the warp size. For all

precisions, the cost at degree 127 is less than twice the cost

at degree 63.

Fig. 3. Times spent by all addition kernels when evaluating p1 and its gradient
at power series truncated at increasing degrees 0, 8, 15, 31, 63, 95, 127, and
152, for seven precisions: double (1d), 2d, 3d, 4d, 5d, 8d, and 10d, at power
series truncated to degree 191.

Fig. 4 shows the sum of the times spent by all addition ker-

nels, for the three test polynomials, for power series truncated

at degree 152, for all seven precisions. Although p3 has 8,128

monomials and p2 has only 128, the increase in addition times

for p3 is at most three times as much as for p2. The addition

for p3 happens with 12 kernel launches, while the addition for

p2 has 7 kernel launches.

The percentage of time spent by all kernels over the wall

clock time is visualized in Fig. 5. For double precision, the

wall clock time dominates (the percentage of the time spent

by all kernels is less than 10%), although the time is also

less than a tenth of a millisecond. This percentage climbs

for higher precisions. In triple precision, the time spent on

all kernels dominates the wall clock time. For octo and deca

double precision, this percentage is more than 95%.

As the precision increases, the problem becomes more and

more compute bound. For degree 191, in Table V, for p1, the

wall clock times in double, double double, quad double, and

octo double are respectively 6, 14, 95, and 449 seconds. The

cost overhead factor of double double over double is typically

Fig. 4. Times spent by all addition kernels when evaluating p1, p2, p3 and
their gradients at power series truncated at degrees 152, for seven precisions:
double (1d), 2d, 3d, 4d, 5d, 8d, and 10d.

Fig. 5. Percentage of the time spent by all kernels over the wall clock time
when evaluating p1, p2, p3 and their gradients at power series truncated at
degrees 152, for seven precisions: double (1d), 2d, 3d, 4d, 5d, 8d, and 10d.

a factor of about five, whereas here we observe 14/6 ≈ 2.33.

The other observed cost overhead factors are 95/12 ≈ 6.79
and 449/95 ≈ 4.72. In Fig. 6, the evolution of the logarithmic

wall clock time is plotted.

Fig. 6. The 2-logarithm of the wall clock times to evaluate and differentiate
p1, p2, p3 in double (1d), double double (2d), quad double (4d), and octo
double (8d) precision, for power series truncated at degree 191.

If the number of coefficients in a truncated series doubles

from 32 to 64, and from 64 to 128, then one would expect

the observed wall clock times to quadruple, as the cost of the

convolutions is O(d2) for the truncation degree d. As shown in

746

Fig. 7, the wall clock times doubles, as the difference between

the bars in the 2-log times is about one.

Fig. 7. The 2-logarithm of the wall clock times to evaluate and differentiate
p1 in quad double (4d), penta double (5d), octo double (8d), and deca double
(10d) precision, for power series truncated at degrees 31, 63, and 127.

VII. CONCLUSIONS

The evaluation and differentiation of a polynomial in n
variables at power series truncated at some finite degree d
requires a number of convolution jobs proportional to the

number of variables per monomial and the number N of

monomials. The convolution jobs are arranged in layers of

jobs that can be executed simultaneously. A scan performs

the N addition jobs in � log2(N) � steps. For polynomials

where N dominates the number of variables per monomial,

The theoretical speedup is bounded by dN/ log2(N).

Data staging algorithms define the coordinates for the

convolution and the addition jobs. Speedup factors comparing

the V100 and P100 are close to the ratio of their theoretical

peak performance. Experimental results show that teraflop

performance is obtained. The accelerated algorithms scale well

for increasing degrees and precisions. GPUs are well suited to

compensate for the overhead of power series arithmetic and

multiple double precision.

REFERENCES

[1] P. Emeliyanenko. Efficient multiplication of polynomials on graphics
hardware. In Advanced Parallel Processing Technologies. 8th Interna-
tional Symposium, APPT 2009, Rapperswil, Switzerland, August 2009,
pages 134–149. Springer-Verlag, 2009.

[2] S. A. Haque and M. M. Maza. Plain polynomial arithmetic on GPU. In
High Performance Computing Symposium (HPCS 2012), J. of Physics:
Conference Series, 385, 2012.

[3] S. A. Haque, X. Li, F. Mansouri, M. M. Maza, W. Pan, and N. Xie.
Dense arithmetic over finite fields with the CUMODP library. In
Mathematical Software – ICMS 2014, pages 725–732. Springer-Verlag,
2014.

[4] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double
precision floating point arithmetic. In the Proceedings of the 15th IEEE
Symposium on Computer Arithmetic (Arith-15 2001), pages 155–162.
IEEE Computer Society, 2001.

[5] J. Glabe. Numerical Continuation on a GPU for Kinematic Synthesis.
PhD thesis, University of California, Irvine, 2020.

[6] J. Glabe and J.M. McCarthy. A GPU homotopy path tracker and
end game for mechanism synthesis. In the Proceedings of the 2020
USCToMM Symposium on Mechanical Systems and Robotics, pages
206–215. Springer 2020.

[7] J. Glabe and J.M. McCarthy. Numerical continuation on a graphical
processing unit for kinematic synthesis. Journal of Computing and
Information Science in Engineering 20(6), 2020.

[8] F. Gremse, A. Höfter, L. Razik, F. Kiessling, U. Naumann. GPU-
accelerated adjoint algorithmic differentiation. Computer Physics Com-
munications, 200, pages 300–311, 2016.

[9] A. Griewank and A. Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. SIAM, 2008.

[10] K. Isupov and V. Knyazkov. Multiple-precision matrix-vector multi-
plication on graphics processing units. Program Systems: Theory and
Applications 11(3): 62–84, 2020.

[11] M. Joldes, J.-M. Muller, V. Popescu, W. Tucker. CAMPARY: Cuda
Multiple Precision Arithmetic Library and Applications. In Mathe-
matical Software – ICMS 2016, the 5th International Conference on
Mathematical Software, pages 232–240, Springer-Verlag, 2016.

[12] D.B. Kirk and W.W. Hwu. Programming Massively Parallel Processors.
A Hands-on Approach. Morgan Kaufmann, Second Edition, 2013.

[13] M. Lu, B. He, and Q. Luo. Supporting extended precision on graphics
processors. In Proceedings of the Sixth International Workshop on Data
Management on New Hardware (DaMoN 2010) pages 19–26, 2010.

[14] M.M. Maza and W. Pan. Fast polynomial multiplication on a GPU.
Journal of Physics: Conference Series, 256, 2010. High Performance
Computing Symposium (HPCS2010), 5-9 June 2010, Victoria College,
University of Toronto, Canada.

[15] A. Morgan. Solving Polynomial Systems using Continuation for En-
gineering and Scientific Problems, volume 57 of Classics in Applied
Mathematics. SIAM, 2009.

[16] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V.
Lefevre, G. Melquiond, N. Revol, S. Torres. Handbook of Floating-Point
Arithmetic. Second Edition, Springer-Verlag, 2018.

[17] S. Telen, M. Van Barel, and J. Verschelde. A robust numerical path
tracking algorithm for polynomial homotopy continuation. SIAM Journal
on Scientific Computing 42(6):A3610–A3637, 2020.

[18] S. Telen, M. Van Barel, and J. Verschelde. Robust numerical tracking
of one path of a polynomial homotopy on parallel shared memory
computers. In the Proceedings of the 22nd International Workshop on
Computer Algebra in Scientific Computing (CASC 2020), pages 563–
582. Springer-Verlag, 2020.

[19] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for
polynomial systems by homotopy continuation. ACM Transactions on
Mathematical Software 25(2):251–276, 1999.

[20] J. Verschelde. Parallel software to offset the cost of higher precision.
To appear in the Proceedings of HILT 2020.

[21] J. Verschelde and G. Yoffe. Evaluating polynomials in several variables
and their derivatives on a GPU computing processor. In Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops (PDSEC 2012), pages 1391–1399. IEEE Com-
puter Society, 2012.

[22] J. Verschelde and G. Yoffe. Orthogonalization on a general purpose
graphics processing unit with double double and quad double arithmetic.
In Proceedings of the 2013 IEEE 27th International Parallel and
Distributed Processing Symposium Workshops (PDSEC 2013), pages
1373–1380. IEEE Computer Society, 2013.

[23] J. Verschelde and X. Yu. GPU acceleration of Newton’s method for
large systems of polynomial equations in double double and quad double
arithmetic. In Proceedings of the 16th IEEE International Conference
on High Performance Computing and Communication (HPCC 2014),
pages 161–164. IEEE Computer Society, 2014.

[24] J. Verschelde and X. Yu. Accelerating polynomial homotopy continua-
tion on a graphics processing unit with double double and quad double
arithmetic. In Proceedings of the 7th International Workshop on Parallel
Symbolic Computation (PASCO 2015), pages 109–118. ACM, 2015.

[25] J. Verschelde and X. Yu. Tracking many solution paths of a polynomial
homotopy on a graphics processing unit in double double and quad
double arithmetic. In Proceedings of the 17th IEEE International Con-
ference on High Performance Computing and Communication (HPCC
2015), pages 371–376. IEEE Computer Society, 2015.

APPENDIX

Tables V and VI contain times on the three test polynomials,

on the V100. Table VII illustrates the fluctuation of the wall

clock times.

747

TABLE V
TIMES IN MILLISECONDS TO EVALUATE AND DIFFERENTIATE p1 , p2 , AND p3 , FOR INCREASING DEGREE d,

FOR DOUBLE, DOUBLE DOUBLE, TRIPLE DOUBLE, AND QUAD DOUBLE PRECISION.

evaluating and differentiating p1
precision d 0 8 15 31 63 95 127 152 159 191

double convolution 0.08 0.07 0.07 0.07 0.11 0.17 0.28 0.39 0.40 0.56
addition 0.10 0.10 0.09 0.09 0.08 0.08 0.09 0.10 0.10 0.11

sum 0.18 0.17 0.16 0.16 0.19 0.26 0.37 0.50 0.50 0.67

wall clock 9.00 9.00 8.00 9.00 7.00 6.00 6.00 6.00 0.67 6.00

double double convolution 0.06 0.11 0.17 0.31 0.98 2.39 3.58 7.20 7.48 9.23
addition 0.07 0.07 0.06 0.07 0.09 0.11 0.13 0.15 0.16 0.18

sum 0.13 0.18 0.23 0.38 1.06 2.50 3.71 7.36 7.63 9.41

wall clock 5.00 5.00 5.00 5.00 6.00 7.00 9.00 12.00 12.00 14.00

triple double convolution 0.10 0.57 1.00 2.00 5.80 13.82 19.88 38.70 40.53 52.03
addition 0.08 0.08 0.08 0.09 0.12 0.15 0.19 0.24 0.22 0.26

sum 0.18 0.65 1.08 2.09 5.92 13.97 20.07 38.94 40.76 52.29

wall clock 5.00 5.00 6.00 7.00 11.00 19.00 25.00 44.00 46.00 57.00

quad double convolution 0.15 1.24 2.19 4.39 11.01 23.99 35.40 65.76 68.51 90.40
addition 0.10 0.10 0.10 0.12 0.15 0.20 0.24 0.30 0.29 0.33

sum 0.25 1.34 2.29 4.51 11.16 24.19 35.64 66.06 68.80 90.73

wall clock 5.00 6.00 7.00 9.00 16.00 29.00 40.00 71.00 73.00 95.00

evaluating and differentiating p2
precision d 0 8 15 31 63 95 127 152 159 191

double convolution 0.41 0.41 0.42 0.43 0.50 0.63 0.80 1.01 1.04 1.32
addition 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.08 0.08 0.08

sum 0.45 0.45 0.48 0.48 0.55 0.69 0.87 1.09 1.12 1.41

wall clock 26.00 26.00 25.00 27.00 25.00 26.00 26.00 27.00 27.00 27.00

double double convolution 0.42 0.55 0.69 1.01 2.42 4.87 6.84 12.35 12.89 16.19
addition 0.05 0.05 0.05 0.05 0.07 0.09 0.11 0.14 0.13 0.15

sum 0.47 0.60 0.74 1.07 2.49 4.96 6.95 12.48 13.02 16.35

wall clock 25.00 25.00 26.00 27.00 29.00 31.00 33.00 38.00 39.00 43.00

triple double convolution 0.53 1.53 2.44 4.50 11.71 24.59 34.53 75.74 78.59 94.57
addition 0.06 0.06 0.06 0.07 0.09 0.13 0.16 0.21 0.20 0.22

sum 0.58 1.59 2.51 4.58 11.80 24.72 34.69 75.95 78.78 94.79

wall clock 27.00 28.00 29.00 31.00 37.00 50.00 61.00 102.00 105.00 120.00

quad double convolution 0.57 2.61 4.37 8.57 21.29 44.17 61.66 118.98 125.11 157.94
addition 0.07 0.08 0.08 0.09 0.12 0.17 0.20 0.25 0.25 0.29

sum 0.65 2.68 4.45 8.66 21.41 44.34 61.87 119.23 125.37 158.23

wall clock 26.00 29.00 31.00 35.00 48.00 70.00 87.00 145.00 151.00 184.00

evaluating and differentiating p3
precision d 0 8 15 31 63 95 127 152 159 191

double convolution 0.05 0.05 0.05 0.06 0.12 0.22 0.37 0.53 0.55 0.78
addition 0.11 0.11 0.11 0.11 0.12 0.16 0.19 0.21 0.21 0.25

sum 0.16 0.15 0.15 0.17 0.24 0.37 0.55 0.74 0.77 1.03

wall clock 12.00 13.00 12.00 12.00 13.00 13.00 13.00 13.00 14.00 14.00

double double convolution 0.05 0.13 0.22 0.42 1.36 3.43 5.20 10.47 10.93 13.52
addition 0.12 0.11 0.11 0.13 0.18 0.25 0.33 0.44 0.37 0.44

sum 0.17 0.24 0.34 0.54 1.54 3.69 5.52 10.91 11.30 13.96

wall clock 13.00 13.00 13.00 13.00 14.00 17.00 18.00 25.00 24.00 27.00

triple double convolution 0.11 0.81 1.42 2.86 8.26 20.06 29.10 56.76 59.25 76.49
addition 0.14 0.14 0.15 0.18 0.25 0.37 0.46 0.56 0.54 0.64

sum 0.25 0.95 1.57 3.04 8.52 20.43 29.56 57.32 59.79 77.13

wall clock 13.00 14.00 14.00 16.00 21.00 33.00 43.00 71.00 73.00 90.00

quad double convolution 0.19 1.75 3.11 6.22 15.92 34.81 51.57 95.91 100.03 129.76
addition 0.17 0.19 0.19 0.24 0.33 0.46 0.61 0.73 0.71 0.84

sum 0.36 1.94 3.30 6.45 16.25 35.27 52.18 96.64 100.75 130.61

wall clock 13.00 14.00 16.00 19.00 29.00 49.00 65.00 109.00 114.00 144.00

748

TABLE VI
TIMES IN MILLISECONDS TO EVALUATE AND DIFFERENTIATE p1 , p2 , AND p3 , FOR INCREASING DEGREE d,

FOR PENTA, OCTO, AND DECA DOUBLE PRECISION.

evaluating and differentiating p1
precision d 0 8 15 31 63 95 127 152 159 191

penta double convolution 0.25 2.23 3.98 7.94 20.59 42.87 57.19 114.57 111.68 143.70
addition 0.11 0.11 0.11 0.13 0.18 0.24 0.30 0.39 0.36 0.42

sum 0.37 2.34 4.09 8.07 20.77 43.11 57.49 114.96 112.04 144.12

wall clock 5.00 7.00 8.00 13.00 25.00 48.00 62.00 123.00 117.00 150.00

octo double convolution 0.82 8.92 15.97 32.26 77.24 150.64 182.09 359.68 377.88 442.90
addition 0.30 0.33 0.29 0.31 0.35 0.40 0.50 0.61 0.59 0.67

sum 1.12 9.25 16.27 32.57 77.59 151.04 182.58 360.29 378.48 443.57

wall clock 8.00 17.00 21.00 37.00 82.00 156.00 188.00 365.00 384.00 449.00

deca double convolution 1.30 15.74 26.57 52.31 130.04 257.59 312.16 635.42
addition 0.36 0.42 0.38 0.40 0.44 0.50 0.62 0.75

sum 1.66 16.16 26.95 52.71 130.48 258.09 312.78 636.17

wall clock 7.00 30.00 35.00 58.00 135.00 263.00 317.00 641.00

evaluating and differentiating p2
precision d 0 8 15 31 63 95 127 152 159 191

penta double convolution 0.84 5.30 9.22 18.31 39.36 80.19 112.57 205.65 214.06 273.53
addition 0.09 0.09 0.10 0.11 0.15 0.20 0.25 0.34 0.31 0.36

sum 0.93 5.40 9.32 18.42 39.51 80.40 112.83 205.99 214.36 273.89

wall clock 26.00 31.00 34.00 44.00 65.00 105.00 138.00 231.00 239.00 299.00

octo double convolution 1.76 16.56 29.58 59.66 139.71 253.36 328.69 639.72 672.51 789.62
addition 0.23 0.24 0.25 0.26 0.30 0.35 0.42 0.51 0.51 0.58

sum 1.99 16.80 29.82 59.92 140.01 253.71 329.11 640.23 673.02 790.20

wall clock 27.00 42.00 55.00 85.00 165.00 279.00 355.00 666.00 699.00 817.00

deca double convolution 2.64 28.79 48.58 94.48 238.82 442.12 559.61 1115.03
addition 0.29 0.31 0.32 0.34 0.38 0.45 0.54 0.67

sum 2.93 29.09 48.89 94.82 239.20 442.57 560.15 1115.71

wall clock 29.00 55.00 75.00 120.00 265.00 468.00 586.00 1142.00

evaluating and differentiating p3
precision d 0 8 15 31 63 95 127 152 159 191

penta double convolution 0.35 3.24 5.76 11.56 29.23 62.60 83.30 157.02 163.71 210.28
addition 0.24 0.26 0.29 0.41 0.57 0.57 0.74 0.91 0.88 1.04

sum 0.59 3.50 6.02 11.84 29.63 84.04 84.04 157.93 164.59 211.31

wall clock 15.00 17.00 18.00 24.00 43.00 76.00 97.00 171.00 178.00 224.00

octo double convolution 1.19 13.11 23.49 47.32 107.64 221.87 265.69 528.19 553.59 647.95
addition 0.62 0.70 0.70 0.75 0.84 0.98 1.22 1.48 1.42 1.69

sum 1.80 13.80 24.18 48.07 108.48 222.84 266.31 529.67 555.01 649.64

wall clock 14.00 27.00 37.00 61.00 121.00 236.00 280.00 542.00 573.00 663.00

deca double convolution 1.90 23.12 39.12 75.81 181.99 380.19 455.78 926.53
addition 0.80 0.88 0.89 0.94 1.04 1.19 1.47 1.92

sum 2.70 24.00 40.01 76.76 183.04 381.38 457.25 928.45

wall clock 16.00 37.00 52.00 90.00 197.00 394.00 470.00 941.00

TABLE VII
WALL CLOCK TIMES IN MILLISECONDS TO EVALUATE AND DIFFERENTIATE p3 IN DECA DOUBLE PRECISION, FOR DEGREE 152, WITH FREQUENCIES FOR

TEN RUNS, ONCE WITH THE FIXED SEED ONE, AND ONCE WITH DIFFERENT SEEDS FOR THE RANDOM NUMBERS.

wall clock times 941 942 943 944 945 946

fixed seed one 0 0 3 5 2 0
different seeds 4 1 3 1 0 1

749

