
Computers in Biology and Medicine 130 (2021) 104208

Available online 6 January 2021
0010-4825/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A greedy graph search algorithm based on changepoint analysis for 
automatic QRS complex detection 

Atiyeh Fotoohinasab *, Toby Hocking, Fatemeh Afghah 
School of Informatics, Computing and Cyber Systems at Northern Arizona University, United States   

A R T I C L E  I N F O   

Index Terms: 
ECG segmentation 
R-peak detection 
Changepoint detection 
Graph learning 

A B S T R A C T   

The electrocardiogram (ECG) signal is the most widely used non-invasive tool for the investigation of cardio
vascular diseases. Automatic delineation of ECG fiducial points, in particular the R-peak, serves as the basis for 
ECG processing and analysis. This study proposes a new method of ECG signal analysis by introducing a new class 
of graphical models based on optimal changepoint detection models, named the graph-constrained changepoint 
detection (GCCD) model. The GCCD model treats fiducial points delineation in the non-stationary ECG signal as a 
changepoint detection problem. The proposed model exploits the sparsity of changepoints to detect abrupt 
changes within the ECG signal; thereby, the R-peak detection task can be relaxed from any preprocessing step. In 
this novel approach, prior biological knowledge about the expected sequence of changes is incorporated into the 
model using the constraint graph, which can be defined manually or automatically. First, we define the 
constraint graph manually; then, we present a graph learning algorithm that can search for an optimal graph in a 
greedy scheme. Finally, we compare the manually defined graphs and learned graphs in terms of graph structure 
and detection accuracy. We evaluate the performance of the algorithm using the MIT-BIH Arrhythmia Database. 
The proposed model achieves an overall sensitivity of 99.64%, positive predictivity of 99.71%, and detection 
error rate of 0.19 for the manually defined constraint graph and overall sensitivity of 99.76%, positive pre
dictivity of 99.68%, and detection error rate of 0.55 for the automatic learning constraint graph.   

1. Introduction 

The electrocardiogram (ECG) is a quasi-periodic biomedical signal 
that provides information about cardiac muscle electrical activities. One 
cardiac cycle in a typical ECG signal is delineated by arrangements of P, 
the QRS complex, T waves, and PQ and ST segments. Correct R-peak 
detection is the first and most critical step in almost all ECG analysis 
methods. The R-peak is the highest and only positive peak within the 
QRS complex, reflecting the ventricular depolarization of the heart’s 
electrical activity. Precise detection of the R-peak location plays a crit
ical role in obtaining the morphology of the QRS complex and revealing 
the location of other ECG fiducial points. Furthermore, R-peak locali
zation serves as the basis for automated determination of the heart rate, 
which is a significant criterion for heart arrhythmia diagnoses such as 
premature atrial contraction, tachycardia, and bradycardia. Many other 
diseases can also be diagnosed in a non-invasive way using R-peak 
detection due to the relationship between heart rate variability and 
several physiological systems (e.g., vasomotor, respiratory, central 
nervous, and thermoregulatory). 

Various approaches have been proposed in the literature for detect
ing R-peaks in an ECG signal [1]. Typically, these methods consist of two 
main steps: pre-processing and detection. In the pre-processing step, the 
algorithm attempts to eliminate the noise and artifacts and to highlight 
the relevant sections of the ECG [2,3]. In the second step, various 
methods are used to locate R-peaks based on the result of the 
pre-processing step, and then other waves are detected by defining a set 
of heuristic rules [4]. However, these approaches suffer from some 
critical drawbacks that limit their performance in practical applications. 
First, in real-time data processing and ambulatory care settings, where 
the collected data are highly noisy, preprocessing-based algorithms are 
less effective. Second, these algorithms can fail to detect R-peaks in some 
determinant morphological patterns resulting from certain 
life-threatening heart arrhythmias due to the time-varying morphology 
of the QRS complex. Incorrect detection of R-peaks can affect the correct 
identification of subsequent waves. 

The R-peak detection step can be generally accomplished either by 
implementing a threshold-based technique or by employing an inde
pendent threshold technique. The amplitude of the peak and time 
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duration between two consecutive R peaks (i.e., the RR interval) are 
typically used to determine a suitable threshold [5]. A constant 
threshold is only efficient for detecting R-peaks within records with 
normal morphological patterns. Therefore, recent studies have 
employed adaptive thresholds, for which there is no need to determine 
the threshold experimentally. In Refs. [6,7], the Hilbert transform with 
an adaptive thresholding technique was utilized to detect R-peaks. Some 
threshold-based techniques with other criteria have also been used to 
specify the threshold. In Ref. [4], an adaptive threshold concerning the 
geometric angle between two consecutive samples of the ECG signal was 
defined. The performance of the threshold-based technique is highly 
dependent on the selection of initial parameters; hence, it can lead to a 
significantly higher number of false beats. Therefore, independent 
threshold techniques are more desirable than the threshold-based 
technique. 

Most of the state-of-the-art methods for R-peak detection are based 
on wavelet transform [8–10], simple mathematical operations [6,11, 
12], hidden Markov models, and machine learning. Wavelet transform is 
a suitable approach for considering the non-stationary behavior of the 
ECG signal. However, considering the various shapes of the QRS com
plex, it is difficult to select the optimal mother wavelet or find the 
required threshold in the detection step of the wavelet transform. 
Additionally, discrete wavelet transform fails to provide reliable results 
in a short-recording duration. Mathematical operation-based algorithms 
have a low computational cost, which is more appropriate for real-time 
applications and large dataset analysis. However, achieving high per
formance when the signal-to-noise ratio is high remains challenging for 
these algorithms. Hidden Markov models are also widely used in ECG 
segmentation because they are powerful tools for considering the tem
poral dependency among the waveforms [13–15]. The majority of the 
studies on machine learning-based methods have utilized sparse signal 
processing to represent an approximation of the nonlinear ECG signal 
using sparsity constraints [16–21]. Some studies have also applied deep 
learning techniques to detect the ECG waveforms considering its high 
performance in various classification tasks [22,23]. However, the caveat 
with deep learning-based approaches is that they need large-scale 
datasets for the training phase and often suffer from the imbalanced 
class problem [24,25]. 

In this paper, we propose a new class of graphical models based on 
optimal changepoint detection models, named the graph-constrained 
changepoint detection (GCCD) model, to locate R-peaks in the ECG 
signal. A changepoint detection model identifies abrupt changes in data 
when a property of the time series changes. In the non-stationary ECG 
signal, ECG waves can also be considered as abrupt up or down changes 
over time during the heart cycle. We exploit the model introduced by 
Hocking et al. [26,27], in which a graph-based optimal changepoint 
detection model was used for detecting abrupt changes in the genomics 
data. In their work, they propose a new class of functional pruning al
gorithms with log-linear time complexity in the amount of data, which is 
capable of handling the large datasets that are common to ECG analysis. 

Only a few studies in the literature have applied changepoint 
detection models for cardiac analysis. Gold et al. [28] adopted a 
changepoint detection method based on Bayesian inference to extract 
the onset of the QRS complex over a small time window containing just 
one QRS complex. In Ref. [29], a changepoint detection approach based 
on the Haar wavelet and Kolmogorov-Smirnov statistic was applied to 
find normal and abnormal ECG segments within the assembled ECG 
samples from different ECG datasets. Sinn et al. [30] analyzed heart rate 
changes in ECG recordings by detecting abrupt changes in the ordinal 
pattern distributions, which are used to represent the order structure of a 
time series. Some studies have also applied changepoint detection 
models to investigate sleep problems by analyzing heart rate variability 
in the ECG signal during sleep [31,32]. 

To the best of our knowledge, this is the first study in which 
changepoint detection models have been proposed to detect ECG fidu
cial points in long records of ECG signals. In this novel framework, prior 

biological knowledge about the expected sequence of changes can be 
specified in a constraint graph. Then, functional pruning dynamic pro
gramming algorithms can compute the globally optimal model (mean, 
changes, and hidden states) in fast log-linear time. We furthermore 
propose a new algorithm for learning the graph structure using labeled 
ECG data. Therefore, the main contributions of this study are:  

• A new class of graphical models based on optimal changepoint 
detection models to detect R-peak positions in the ECG signal. The 
proposed method does not require any noise removal preprocessing 
step as it uses the sparsity of changepoints to detect abrupt changes.  

• A new algorithm to learn the graph structure and parameters using 
labeled ECG data. Thus, the model’s performance is no longer 
dependent on an expert to encode prior knowledge into the 
constraint graph.  

• Comparison of the learned graphs with the manually constructed 
graphs in terms of graph structure and detection accuracy. Results 
demonstrate that there can exist different optimum graph structures 
for one subject, and the proposed graph learning algorithm can find 
global optima depending on the initial graph structure. 

The rest of the paper is organized as follows. In the next section, we 
describe the proposed model for R-peak detection in the ECG signal. We 
explain the GCCD model in Section II-A and the constraint graph in 
Section II-B. Section II-B also defines the manual graph and the proposed 
graph learning algorithm. Section III provides a description of the 
dataset used in this study and a discussion of the results as well as a 
comparison between the performance of the manually defined graphs 
and learned graphs. Finally, Section IV summarizes this research work 
and its contributions. 

2. Methodology 

The proposed method treats ECG wave detection as a changepoint 
detection problem for a non-stationary ECG signal. It extracts the R- 
peaks in the raw ECG signal by representing the periodic non-stationary 
ECG signal as a piecewise locally stationary time series with constant 
mean values (i.e., each piece is the mean of one segment of datapoints). 
The model takes a raw ECG signal and a constraint graph as inputs and 
computes the onset/offset and the mean of desired segments (i.e., hid
den states). Then, the center of each state is associated with the location 
of a peak. The constraint graph allows the incorporation of prior 
knowledge into the model and regularizes the model. Fig. 1 illustrates an 
overview of the proposed algorithm in the detection of R-peak positions 
in the ECG signal. It is worth re-emphasizing that the model takes the 
raw ECG signal as the input, without applying any preprocessing step, as 
it leverages the sparsity of changepoints to denoise the signal and to 
detect abrupt changes. 

The constraint graph, which encodes the expected sequence of 
changes in the ECG signal, can be defined manually by an expert or 
automatically from the data. In the following sections, we describe the 
details of various parts of the proposed model. 

Fig. 1. An overview of the GCCD model. The GCCD model takes a constraint 
graph and a raw ECG signal as inputs and then detects segments corresponding 
to the nodes of the constraint graph at the output. 
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2.1. Graph-constrained changepoint detection model 

ECG fiducial points detection can be defined as the problem of 
finding abrupt changes over one cardiac cycle caused by changes in 
statistical characteristics. From this point of view, a proper changepoint 
detection algorithm can be employed to detect ECG waves in a fast and 
effective way. We applied the optimal changepoint detection model 
introduced in Ref. [26] to localize R-peak positions in the ECG signal. In 

this model, prior biological knowledge about the expected sequence of 
changes is incorporated into the model as a graph constraint. Then, a 
dynamic programming algorithm using functional pruning computes the 
globally optimal model (mean, changes, and hidden states) in fast 
log-linear O(N log N) time. 

We assumed a directed graph G = (V,E) as the constraint graph, 
where the vertex set V ∈ {1,…, |V|} represents the hidden states/seg
ments (not necessarily a waveform), and the edge set E ∈ {1,…, |E|}

represents the expected changes between the states/segments. Each 
edge e ∈ E incorporates the following associated prior knowledge about 
the expected sequences of changes:  

• The source ve ∈ V and target ve ∈ V are vertices/states for a 
changepoint e from ve to ve.  

• A non-negative penalty constant λe ∈ R+ is the cost of changepoint e.  
• A constraint function ge : R × R→R defines the possible mean values 

before and after each changepoint e. If mi is the mean before the 
changepoint and mi+1 is the mean after the changepoint, then the 
constraint is ge(mi, mi+1) ≤ 0. These functions can be used to 
constrain the direction (up or down) and/or the magnitude of the 
change (greater/less than a certain amount). 

Mathematically, given the input signal Y = {y1,…, yn} and the 
directed graph G = (V, E), the problem of finding changepoints c, 
segment means m, and hidden states s can be solved using the following 
optimization problem:

The changepoints ci can be assigned to any of the pre-defined edges 
(ci ∈ {1, …, |E|}). Consequently, ci = 0 indicates no change with zero 
cost, λ0 = 0. Function (1) consists of a data-fitting term ℓ and a model 
complexity term λci [33,34]. ℓ represents the negative log-likelihood of 
each datapoint, and λci is a non-negative penalty on each changepoint. In 

Fig. 2. (a:) The initial constraint graph structure with two nodes labeled as A 
and R, representing an alternative segment and the R-peak segment, respec
tively, in a cycle. (b–g:) Some of the applied graph editing candidates related to 
the edge (Vi,Vj) with an up change. 

Fig. 3. Demonstration of R-peak detection using the proposed model on Record 
230 of the MIT-BIH-AR dataset. (Top:) The proposed model represents Record 
230 as piece-wise locally stationary segments (blue lines). Extracted R-peak 
positions are marked with a red “R.” (Bottom:) The graph structure for the 
proposed model. The constraint graph has a vertex for each state including state 
“R” for the R-wave. Below each edge e we show the penalty λe, which is either a 
constant λ > 0 or 0; above we show the constants δ, γ in the constraint function 
ge(mi,mi+1) = δ(mi −mi+1) + γ ≤ 0 , where δ = 1 for a non-decreasing change 
(shown with ↑), δ = −1 for a non-increasing change (shown with ↓), and γ ≥ 0 
is the minimum magnitude of change. 
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other words, λ regularizes the number of predicted changepoints/seg
ments by the model so that a larger λ reduces the number of change
points by estimating a more sparse changepoint vector. The constraint 
function ge also encodes the expected up/down change and the least 
amplitude gap between the mean of two states. When there is no change 
ci = 0, Constraint (2) forces the model to stay in the current state si =

si+1 with no change in mean mi = mi+1. However, when there is a change 
ci ∕= 0, Constraint (3) imposes a change in the mean implied by the 
constraint function gci (mi,mi+1) ≤ 0 as well as a change in the state (si,

si+1) =

(

vci
, vci

)

. An open-source implementation of the Generalized 

Functional Prunining Optimal Partitioning (GFPOP) algorithm is avail
able in C++ code inside an R package named GFPOP on GitHub [35]. 

2.2. Constraint graph 

The constraint graph G = (V, E) in the optimization problem of 
Equation (1) encodes prior biological knowledge about the expected 
sequences of changes within one cardiac cycle. It can be designed 

manually by an expert or be learned from the data by the model. The two 
following subsections detail both the manual and learning-based 
designs.  

1) Manual Graph Definition: To manually define the constraint graph G, 
we took into account the possible morphological categories for the 
ECG waves (i.e., P, QRS, and T waves) and the overall morphological 
properties of the signal in each record. An expected hidden state/ 
segment in the signal is characterized as a node in the constraint 
graph, and the required conditions for transition between states are 
encoded in the edges. The required conditions are determined based 
on the expected minimum amplitude difference of two successive 
states and the polarity of each transition (i.e., up/down). 

The caveat with the manual definition of the constraint graph is that 
it can be inefficient for ECG signal analysis considering the various 
morphological patterns for each waveform. Furthermore, the model’s 
performance depends on the expert knowledge encoded into the 
constraint graph. In the next subsection, we explain the proposed graph 

Fig. 4. Demonstration of constraint graph optimiza
tion using the proposed graph learning algorithm for 
Record 107 of the MIT-BIH-AR dataset. (a–e, top:) 
Extracted R-peak positions given the learned 
constraint graph in each learning iteration. The red 
and orange coverage bands show the used labels in 
the training procedure, including training and vali
dation sets. The blue lines represent separate states at 
the model output over the raw ECG signal (gray 
points). (a–e, bottom:) The learned constraint graph 
in each learning iteration. For each edge, λ is the 
penalty, g is the gap (the minimum magnitude of 
change), and the up/down arrow shows the type of 
change. The part of the graph that is modified from 
the previous iteration is shown in red. (f:) Testing 
results for the final learned constraint graph using a 
new window of data. The pink coverage bands show 
the labels in the testing set.   
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Fig. 5. Detection of R-peak positions for Record 219 
of the MIT-BIH-AR dataset using the proposed graph 
learning algorithm. (a–h, top:) Extracted R-peaks 
given the constraint graph structure learned in each 
iteration. The orange and red coverage bands present 
training and validation labels, respectively. The blue 
line demonstrates locally stationary segments at the 
model output, and the gray points also show the raw 
ECG signal at the model input. (a–h, bottom:) The 
constraint graph learned in each iteration. The red 
part of the constraint graph represents the selected 
graph editing candidate in each iteration.   
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learning algorithm for learning the constraint graph using the R-peak 
labels provided by the gold standard.  

2) Constraint Graph Learning: To automate the R-peak detection task, we 
modified the previous model by learning the constraint graph from 
the data (see the dashed part in Fig. 1). In this new framework, the 
proposed model takes the raw signal and an initial graph structure as 
inputs and yields the desired outputs, including the onset/offset and 
the mean of segments specified in the nodes of the learned constraint 
graph. Here, the model architecture is comprised of two stages: 
training and detection. The training step tries to heuristically find an 
optimum graph structure by which the label errors in the training set 
are minimized (the block named “Graph Learning Algorithm” in 
Fig. 1). The detection step then extracts the R-peaks in the raw ECG 

record constrained to the graph learned in the previous step (the 
block named “Changepoint Detection Model” in Fig. 1). 

The novelty of this new structure lies in the training step, which is 
comparable to the previous model in Section II-B.1. The main idea of the 
training step is to automatically discover the desired topology of the 
constraint graph G and the information about the edges from the data. 
As described in Section II-A, each edge contains the following infor
mation: (1) the expected up/down change in the segment means, (2) the 
least amplitude gap between the means of two states, and (3) a non- 
negative penalty imposed by the edge transition. Suppose that the 
initial graph for each record is denoted as G0 = (V0,E0), where V0 and E0 
are the corresponding graph node and edge sets, respectively. Each node 
in the V0 set represents initial hidden states in the model. Each edge in 
the E0 set represents a transition between two consecutive hidden states 
(i.e., a changepoint e from the source ve to the target ve in section II-A) 
and also contains initial values for parameters of t0, g0, and λ0, which are 
the initial type, the initial gap between two states, and the initial pen
alty, respectively. Fig. 2a shows the simple initial graph used for the 
optimization process. It should be noted that the initial edge information 
was chosen based on the overall results obtained from the manual 
definition of the constraint graph. 

A sketch of the proposed graph learning algorithm is summarised as 
Algorithm 1. The greedy graph search algorithm starts with the initial 
graph G0 and iteratively optimizes the graph structure and edge pa
rameters to find a graph that maximizes the accuracy regarding the 
provided labels. At the t-th iteration, the function 
Find Graph Candidates() finds the graph candidate set Gc

t using the 
editing candidates for each edge of the output graph from the previous 
iteration Gt−1. In this study, the algorithm considers 11 editing candi
dates per edge to optimize the graph topology and the three edge 

Fig. 6. Test result for Record 219 for two different windows of time. The pink coverage bands represent the labels in the testing set, and the blue lines demonstrate 
model output. 

Fig. 7. Training progress for (a) Record 107 and (b) Record 219 of the MIT- 
BIH-AR dataset. 

Fig. 8. Comparison of the training progress initialized with two simple and 
complex initial graph structures for Record 106 of the MIT-BIH-AR dataset. 
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parameters. For example, in the iteration t, if the parent graph (i.e., Gt−1) 
has two edges, the graph candidate set Gc

t will have no more than 22 
members 

⃒
⃒Gc

t
⃒
⃒ ≤ 22. These editing candidates include three types of 

adding a node, two types of deleting a node, one type of adding two 
nodes, changing the type of the abrupt change, and increasing or 
decreasing the penalty and gap corresponding to an edge. We believe all 
morphological patterns of the ECG waves can be constructed using these 
editing candidates. Fig. 2 illustrates the graph editing candidates related 
to the edge (Vi,Vj) with an up change. 

2.3. Computational complexity 

As can be seen in Algorithm 1, the time complexity of the GCCD 
algorithm is theoretically proportional to the number of graph candi
dates at each iteration (Line 9) and the number of required iterations to 
achieve an optimum graph with minimum label errors (Line 4). There 
are three main aspects that characterize the time complexity of the 
algorithm:  

• Given a record with n data samples and a graph candidate Ĝ with V 
vertices and E edges, the time complexity to detect R-peaks (Lines 
10–14) is S = O(En2) in the worst case (pathological simulated data) 
and S = O(Enlogn) in the average case (typical in real data). Also 

note that since we consider only graphs with a single circular path, 
E = O(V), and the time complexity is further reduced to O(Vnlogn)

(for average case/non-pathological data).  
• Considering C graph edit candidates in the iteration t, the time 

complexity to compute all the models Ĝ ∈ {0,1,…,
⃒
⃒Gc

t
⃒
⃒= C} is 

O(SC) (where S is the time complexity of solving for optimal model 
parameters given a single graph). It should be noted that the number 
of graph candidates in the iteration t depends on Gt−1, which is the 
graph from the previous iteration (Line 9). The time complexity to 
compute the label error given L labels is O(CL), which can be effec
tively ignored from the overall time complexity as this task is fast.  

• Finally, iterating over T iterations to obtain the graph with the 
minimum label error (Line 4) causes the overall time complexity of 
the algorithm to be O(SCT), where S is the time to solve for a single 
graph, and C is the number of edit candidates considered in each 
iteration. 

Fig. 9. Comparison of the trained models for Record 106 of the MIT-BIH-AR 
dataset inititalized with (a) a simple graph structure and (b) a complex 
graph structure. 

Fig. 10. Comparison of the constraint graph structures (a) defined manually 
and (b) learned using the proposed graph learning algorithm for Record 100 of 
the MIT-BIH-AR dataset. 
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Algorithm 1. Greedy Graph Learning

3. Experimental studies 

3.1. Dataset 

We applied the well-known MIT-BIH Arrhythmia (MIT-BIH-AR) 
database to evaluate the GCCD model. This database contains 48 ECG 
recordings taken from 47 subjects. Each record’s duration is 30 min, and 
each recording is sampled at 360 Hz with a resolution of 200 samples 
over a 10 mV range [36,37]. Each recording consists of two ambulatory 
ECG channels from the modified lead II (MLII) and one of the leads V1, 
V2, V4, or V5. In this study, all 48 records with one MLII or V5 lead were 
used to evaluate the algorithm. The database has been annotated with 
both RR intervals and heartbeat class information by two or more expert 
cardiologists independently. 

3.2. Results and discussion 

This section presents a comprehensive discussion of the results ob
tained by the proposed model and a detailed comparison between the 
manually defined graphs and the learned graphs. We also provide some 
suggestions for the future development of the GCCD model. 

Fig. 3 illustrates an example of the model’s performance with a 
manually defined constraint graph in the R-peak detection task for a 
window of Record 230 of the MIT-BIH-AR dataset. However, as 
mentioned in Section II-B.1, the performance of the model using 
manually defined graphs depends on an expert with prior knowledge. 
Furthermore, manual annotation by an expert is time consuming and 
expensive. To address this issue, we proposed a new graph learning al
gorithm that searches for a locally optimal constraint graph using a 
greedy scheme on the labeled ECG data. Regarding the various 
morphological patterns for the ECG signal, the proposed graph learning 
algorithm can relax the model from the manual definition of the 
constraint graph for each record. 

We adopted the intra-patient paradigm to train the constraint graph 
to address the intra-patient variation in ECG morphologies. Thus, the 
training and testing sets were generated by randomly splitting the intra- 

samples for each record with an approximate ratio of 3 : 1. We used a k- 
fold cross-validation approach to evaluate the model performance with a 
k size of 5. More specifically, we divided the intra-sample data into k = 5 
folds so that each trial used four folds to train the model and one fold for 
validation. 

Figs. 4 and 5 show representative examples of the R-peak detection 
task performed by the model integrated with the graph learning algo
rithm for two records from the MIT-BIH-AR database. These figures 
illustrate how the proposed graph learning algorithm iteratively edits 
the graph structure to yield a model with maximum accuracy in 

Fig. 11. The model’s performance for Record 230 of the MIT-BIH-AR dataset. 
(a) The training progress, (b) extracted R-peaks for a window of this record, 
and (c) the constraint graph structure. 

Table 1 
Comparison of the performance of several R-peak detection methods using the 
MIT-BIH-AR database.  

Method Sen 
(%) 

PPR 
(%) 

DER 
(%) 

Park et al. [8] 99.93 99.91 0.163 
Farashi [39] 99.75 99.85 0.40 
Sharma and Sunkaria [3] 99.50 99.56 0.93 
Castells-Rufas and Carrabina [2] 99.43 99.67 0.88 
GCCD Model with Manual Definition of the 

Constraint Graph 
99.76 99.68 0.55 

GCCD Model with Learning of the Constraint 
Graph 

99.64 99.71 0.19  
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detecting R-peaks. We initialized the constraint graphs using the graph 
structure in Fig. 2a with the initial values of g0 = 100 and λ0 = 5× 105 

for Record 107 and g0 = 100 and λ0 = 105 for Record 219. It should be 
noted that the initial edge information was assigned based on the overall 
results derived from the manually defined graphs in all experiments. 
However, graph candidates 2f and 2g can adjust the parameters g and λ 
for the optimum values. For these two examples, we chose the initial 
edge information so that all the training steps could be completely dis
played. Label errors are omitted from Fig. 5a–c to reduce clutter in the 
figures. The red part of the graph structure in each iteration presents the 
chosen editing candidate in the current iteration over the graph in the 
previous iteration. More interestingly, Fig. 5 demonstrates the model’s 
capability to detect R-peaks in the presence of a baseline wandering 
artifact, which is a typical artifact in the ECG signal. Baseline wandering 
can change the shape of the QRS complex and thereby causes incorrect 
detection of the R-peak. The performance of the Pan and Tompkins [11] 
algorithm, algorithms derived from the ECG signal slope [38], and 
methods based on wavelet transform are highly dependent on the 
removal of this artifact. Fig. 6 shows the test result for this record over 
two different time windows of data. Fig. 7 illustrates the training 
progress for these two records, where the Y-axis shows the sum of false 
negative and false positive error rates. Indeed, the training progress 
curve reflects the number of label errors produced by the model in each 
iteration given the provided labels for the training and validation sets. It 
is worth mentioning that the proposed graph learning algorithm avoids 
possible overfitting issues as it tries to extract the morphology of the 
ECG signal that contains multiple various morphological patterns. 

The proposed graph learning algorithm employs a greedy search 
scheme to select the best performing graph in terms of detection accu
racy (see Section II-B.2). Therefore, the performance of the algorithm 
depends heavily on the initial graph structure and will likely lead to 
local optima. Fig. 8 compares the training progress for Record 106 of the 
MIT-BIH-AR database initialized with the two simple (see Fig. 2a) and 
complex graph structures (i.e., a graph with eight nodes representing the 
morphology of a normal ECG signal). Fig. 9 also presents a comparison 
of the final selected graphs and their performances for a window of this 
record. As these figures show, the model initialized with the complex 
graph structure can achieve higher accuracy (i.e., a lower number of 
label errors) in a lower number of iterations than the model initialized 
with the simple graph structure. 

The investigation of the experimental results shows that the greedy 
graph search algorithm can achieve optimal performance for the model 
trained with the manually defined graphs, although its performance is 
affected by the initial graph. We noticed that for most of the records 
from the MIT-BIH-AR database, the learned graphs could reach the 
performance of the manually defined graphs but with different graph 
structures. This means that the GCCD model can obtain global optima 
using various initialization structures, which will likely lead to different 
final graph structures. Fig. 10 compares the constraint graph structures 
defined manually vs. those learned automatically using the initial graph 
structure in Fig. 2a for Record 100 of the MIT-BIH-AR dataset. As shown 
in this figure, the manually defined graph and the learned graph both 
achieved the optimal performance but with different graph structures. 
We also noticed that for some records from the MIT-BIH-AR database, 
the graph learning algorithm chose the same structure as the manually 
defined graph structure. Fig. 11 shows the model performance using the 
graph learning algorithm for Record 232 from the MIT-BIH-AR dataset, 
for which the manually defined constraint graph and the learned graph 
had the same structures. 

Different metrics were adopted to evaluate the performance of the 
proposed model with both the manual and learning-based graph de
signs. These metrics included sensitivity (Sen), positive predictivity rate 
(PPR), and detection error rate (DER), which are calculated by: 

Sen(%) =
TP

TP + FN
× 100 (4)  

PPR(%) =
TP

TP + FP
× 100 (5)  

DER(%) =
FN + FP
TP + FN

× 100 (6)  

where TP is true positives, FP is false positives, FN is false negatives, and 
TN is true negatives. Table.1 presents the performance of the proposed 
model regarding both the manually defined and learning graphs against 
other state-of-the-art methods for R-peak detection (QRS complex). As 
shown in the table, the proposed algorithm achieved Sen = %99.76, PPR 
= %99.68, and DER = 0.55 for the manual definition of the constraint 
graph and Sen = %99.64, PPR = %99.71, and DER = 0.19 for the 
learning constraint graph using the MIT-BIH-AR database. Note that the 
model constrained to the manually defined graphs outperformed the 
model combined with the graph learning algorithm because in the latter, 
the model’s performance was largely dependent on the initial graph 
structure. 

ECG recordings in the MIT-BIH-AR database were chosen to chal
lenge the R-peak detection task because they represent a wide variety of 
QRS morphologies with real-world variability. Our proposed model 
yielded outstanding results when detecting R-peaks in these tricky re
cords. Records 103, 104, 105, 108, 111, 112, 116, 200, 201, 203, 205, 
208, 210, 217, 219, 222, and 228 are comprised of abrupt changes in 
ECG morphology, and they are severely affected by noise and artifacts. 
Fig. 5 shows the capability of the model to detect R-peaks in the presence 
of baseline wandering noise. We re-emphasize that these comparable 
results were obtained without applying any preprocessing operations, as 
opposed to other methods in the literature. Records 108, 113, 117, 201, 
202, 203, 213, 219, 222, 223, 231, and 232 contain many peaks with 
unusual amplitudes. Small-amplitude R-peaks or high-amplitude P- and 
T-peaks embedded in high-amplitude QRS complexes can lead to high 
FN and FP errors in the R-peak detection task. As a representative 
example, Fig. 4 illustrates the efficiency of the GCCD model in R-peak 
detection for Record 117, which contains many beats with high- 
amplitude T-peaks. 

The experimental results obtained using the proposed model justify 
changepoint detection models as a potential approach to extract ECG 
fiducial points. In this study, we demonstrated the capability of the 
GCCD model in locating R-peaks within various morphological patterns 
of ECG. The proposed greedy graph search algorithm can potentially 
detect ECG waves other than the R wave (i.e., P, Q, S, and T waves) by 
considering corresponding prior knowledge of the graph editing candi
dates. We noticed that in Records 114, 200, 203, 207, and 210, the Sen 
and PPR values were less than 99%. These records contain multiple 
different morphological patterns, including negative QRS complexes, 
and Records 200 and 203 have several QRS complexes with ventricular 
arrhythmias. The constraint graph for these records involves learning a 
graph with more than one optimum graph path. Learning a multi-path 
constraint graph is also required to detect all ECG waves due to the 
various morphological patterns of each wave incorporated into the 
graph. The other point that should be considered here is that the GCCD 
model estimates the ECG signal using a Gaussian function. A modified 
model with a multi-Gaussian fitting method can drastically improve the 
ECG-related changepoint detection task. 

Future work should focus on developing the proposed model with a 
multi-Gaussian fitting and a multi-path graph learning algorithm. 
Incorporating these modifications into the proposed model could pro
vide a promising platform for evolving new graph-based tools to detect 
and classify heart arrhythmias. A multi-path graph learning algorithm 
could reveal the morphology of the ECG signal (time duration, ampli
tude, and direction of each wave) in each cardiac cycle. Subsequently, 
new graph-based features could be extracted from the constraint graph 
path for an ECG cycle to classify heartbeats. 
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4. Conclusion 

The accurate delineation of R-peaks in the ECG signal plays a crucial 
role in most automated ECG analysis tools. This paper proposed a novel 
graphical model based on changepoint detection techniques for detect
ing R-peaks within a non-stationary ECG signal. The proposed model 
was highly successful at detecting R-peaks in noisy ECG data without 
applying any preprocessing steps. To our knowledge, this is the first time 
that a changepoint detection model has been applied for ECG fiducial 
points detection. In this new framework, prior biological knowledge 
about the expected sequences of changes was incorporated into the 
model using a graph. We defined the constraint graph manually and 
automatically using a proposed greedy graph search algorithm. Using 
the proposed graph learning algorithm, the initial graph structure can 
develop into a structure containing edge parameters with maximum 
detection accuracy for a record. The experimental results provided in 
this paper demonstrate that the GCCD model can be a promising 
approach for detecting ECG waves and developing new graph-based 
tools for further ECG analysis. The proposed graphical model 
approach can be advanced by learning a multi-path constraint graph and 
fitting a multi-Gaussian curve model to the ECG signal, which should be 
considered in future studies. 
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