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The electrocardiogram (ECG) signal is the most widely used non-invasive tool for the investigation of cardio-
vascular diseases. Automatic delineation of ECG fiducial points, in particular the R-peak, serves as the basis for
ECG processing and analysis. This study proposes a new method of ECG signal analysis by introducing a new class
of graphical models based on optimal changepoint detection models, named the graph-constrained changepoint
detection (GCCD) model. The GCCD model treats fiducial points delineation in the non-stationary ECG signal as a
changepoint detection problem. The proposed model exploits the sparsity of changepoints to detect abrupt
changes within the ECG signal; thereby, the R-peak detection task can be relaxed from any preprocessing step. In
this novel approach, prior biological knowledge about the expected sequence of changes is incorporated into the
model using the constraint graph, which can be defined manually or automatically. First, we define the
constraint graph manually; then, we present a graph learning algorithm that can search for an optimal graph in a
greedy scheme. Finally, we compare the manually defined graphs and learned graphs in terms of graph structure
and detection accuracy. We evaluate the performance of the algorithm using the MIT-BIH Arrhythmia Database.
The proposed model achieves an overall sensitivity of 99.64%, positive predictivity of 99.71%, and detection
error rate of 0.19 for the manually defined constraint graph and overall sensitivity of 99.76%, positive pre-
dictivity of 99.68%, and detection error rate of 0.55 for the automatic learning constraint graph.

1. Introduction Various approaches have been proposed in the literature for detect-

ing R-peaks in an ECG signal [1]. Typically, these methods consist of two

The electrocardiogram (ECG) is a quasi-periodic biomedical signal
that provides information about cardiac muscle electrical activities. One
cardiac cycle in a typical ECG signal is delineated by arrangements of P,
the QRS complex, T waves, and PQ and ST segments. Correct R-peak
detection is the first and most critical step in almost all ECG analysis
methods. The R-peak is the highest and only positive peak within the
QRS complex, reflecting the ventricular depolarization of the heart’s
electrical activity. Precise detection of the R-peak location plays a crit-
ical role in obtaining the morphology of the QRS complex and revealing
the location of other ECG fiducial points. Furthermore, R-peak locali-
zation serves as the basis for automated determination of the heart rate,
which is a significant criterion for heart arrhythmia diagnoses such as
premature atrial contraction, tachycardia, and bradycardia. Many other
diseases can also be diagnosed in a non-invasive way using R-peak
detection due to the relationship between heart rate variability and
several physiological systems (e.g., vasomotor, respiratory, central
nervous, and thermoregulatory).

* Corresponding author.

main steps: pre-processing and detection. In the pre-processing step, the
algorithm attempts to eliminate the noise and artifacts and to highlight
the relevant sections of the ECG [2,3]. In the second step, various
methods are used to locate R-peaks based on the result of the
pre-processing step, and then other waves are detected by defining a set
of heuristic rules [4]. However, these approaches suffer from some
critical drawbacks that limit their performance in practical applications.
First, in real-time data processing and ambulatory care settings, where
the collected data are highly noisy, preprocessing-based algorithms are
less effective. Second, these algorithms can fail to detect R-peaks in some
determinant morphological patterns resulting from certain
life-threatening heart arrhythmias due to the time-varying morphology
of the QRS complex. Incorrect detection of R-peaks can affect the correct
identification of subsequent waves.

The R-peak detection step can be generally accomplished either by
implementing a threshold-based technique or by employing an inde-
pendent threshold technique. The amplitude of the peak and time
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duration between two consecutive R peaks (i.e., the RR interval) are
typically used to determine a suitable threshold [5]. A constant
threshold is only efficient for detecting R-peaks within records with
normal morphological patterns. Therefore, recent studies have
employed adaptive thresholds, for which there is no need to determine
the threshold experimentally. In Refs. [6,7], the Hilbert transform with
an adaptive thresholding technique was utilized to detect R-peaks. Some
threshold-based techniques with other criteria have also been used to
specify the threshold. In Ref. [4], an adaptive threshold concerning the
geometric angle between two consecutive samples of the ECG signal was
defined. The performance of the threshold-based technique is highly
dependent on the selection of initial parameters; hence, it can lead to a
significantly higher number of false beats. Therefore, independent
threshold techniques are more desirable than the threshold-based
technique.

Most of the state-of-the-art methods for R-peak detection are based
on wavelet transform [8-10], simple mathematical operations [6,11,
12], hidden Markov models, and machine learning. Wavelet transform is
a suitable approach for considering the non-stationary behavior of the
ECG signal. However, considering the various shapes of the QRS com-
plex, it is difficult to select the optimal mother wavelet or find the
required threshold in the detection step of the wavelet transform.
Additionally, discrete wavelet transform fails to provide reliable results
in a short-recording duration. Mathematical operation-based algorithms
have a low computational cost, which is more appropriate for real-time
applications and large dataset analysis. However, achieving high per-
formance when the signal-to-noise ratio is high remains challenging for
these algorithms. Hidden Markov models are also widely used in ECG
segmentation because they are powerful tools for considering the tem-
poral dependency among the waveforms [13-15]. The majority of the
studies on machine learning-based methods have utilized sparse signal
processing to represent an approximation of the nonlinear ECG signal
using sparsity constraints [16-21]. Some studies have also applied deep
learning techniques to detect the ECG waveforms considering its high
performance in various classification tasks [22,23]. However, the caveat
with deep learning-based approaches is that they need large-scale
datasets for the training phase and often suffer from the imbalanced
class problem [24,25].

In this paper, we propose a new class of graphical models based on
optimal changepoint detection models, named the graph-constrained
changepoint detection (GCCD) model, to locate R-peaks in the ECG
signal. A changepoint detection model identifies abrupt changes in data
when a property of the time series changes. In the non-stationary ECG
signal, ECG waves can also be considered as abrupt up or down changes
over time during the heart cycle. We exploit the model introduced by
Hocking et al. [26,27], in which a graph-based optimal changepoint
detection model was used for detecting abrupt changes in the genomics
data. In their work, they propose a new class of functional pruning al-
gorithms with log-linear time complexity in the amount of data, which is
capable of handling the large datasets that are common to ECG analysis.

Only a few studies in the literature have applied changepoint
detection models for cardiac analysis. Gold et al. [28] adopted a
changepoint detection method based on Bayesian inference to extract
the onset of the QRS complex over a small time window containing just
one QRS complex. In Ref. [29], a changepoint detection approach based
on the Haar wavelet and Kolmogorov-Smirnov statistic was applied to
find normal and abnormal ECG segments within the assembled ECG
samples from different ECG datasets. Sinn et al. [30] analyzed heart rate
changes in ECG recordings by detecting abrupt changes in the ordinal
pattern distributions, which are used to represent the order structure of a
time series. Some studies have also applied changepoint detection
models to investigate sleep problems by analyzing heart rate variability
in the ECG signal during sleep [31,32].

To the best of our knowledge, this is the first study in which
changepoint detection models have been proposed to detect ECG fidu-
cial points in long records of ECG signals. In this novel framework, prior
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biological knowledge about the expected sequence of changes can be
specified in a constraint graph. Then, functional pruning dynamic pro-
gramming algorithms can compute the globally optimal model (mean,
changes, and hidden states) in fast log-linear time. We furthermore
propose a new algorithm for learning the graph structure using labeled
ECG data. Therefore, the main contributions of this study are:

e A new class of graphical models based on optimal changepoint
detection models to detect R-peak positions in the ECG signal. The
proposed method does not require any noise removal preprocessing
step as it uses the sparsity of changepoints to detect abrupt changes.

e A new algorithm to learn the graph structure and parameters using
labeled ECG data. Thus, the model’s performance is no longer
dependent on an expert to encode prior knowledge into the
constraint graph.

e Comparison of the learned graphs with the manually constructed
graphs in terms of graph structure and detection accuracy. Results
demonstrate that there can exist different optimum graph structures
for one subject, and the proposed graph learning algorithm can find
global optima depending on the initial graph structure.

The rest of the paper is organized as follows. In the next section, we
describe the proposed model for R-peak detection in the ECG signal. We
explain the GCCD model in Section II-A and the constraint graph in
Section II-B. Section II-B also defines the manual graph and the proposed
graph learning algorithm. Section III provides a description of the
dataset used in this study and a discussion of the results as well as a
comparison between the performance of the manually defined graphs
and learned graphs. Finally, Section IV summarizes this research work
and its contributions.

2. Methodology

The proposed method treats ECG wave detection as a changepoint
detection problem for a non-stationary ECG signal. It extracts the R-
peaks in the raw ECG signal by representing the periodic non-stationary
ECG signal as a piecewise locally stationary time series with constant
mean values (i.e., each piece is the mean of one segment of datapoints).
The model takes a raw ECG signal and a constraint graph as inputs and
computes the onset/offset and the mean of desired segments (i.e., hid-
den states). Then, the center of each state is associated with the location
of a peak. The constraint graph allows the incorporation of prior
knowledge into the model and regularizes the model. Fig. 1 illustrates an
overview of the proposed algorithm in the detection of R-peak positions
in the ECG signal. It is worth re-emphasizing that the model takes the
raw ECG signal as the input, without applying any preprocessing step, as
it leverages the sparsity of changepoints to denoise the signal and to
detect abrupt changes.

The constraint graph, which encodes the expected sequence of
changes in the ECG signal, can be defined manually by an expert or
automatically from the data. In the following sections, we describe the
details of various parts of the proposed model.
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Fig. 1. An overview of the GCCD model. The GCCD model takes a constraint
graph and a raw ECG signal as inputs and then detects segments corresponding
to the nodes of the constraint graph at the output.
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and R, representing an alternative segment and the R-peak segment, respec-
tively, in a cycle. (b-g:) Some of the applied graph editing candidates related to
the edge (V;, V;) with an up change.

2.1. Graph-constrained changepoint detection model

ECG fiducial points detection can be defined as the problem of
finding abrupt changes over one cardiac cycle caused by changes in
statistical characteristics. From this point of view, a proper changepoint
detection algorithm can be employed to detect ECG waves in a fast and
effective way. We applied the optimal changepoint detection model
introduced in Ref. [26] to localize R-peak positions in the ECG signal. In
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Fig. 3. Demonstration of R-peak detection using the proposed model on Record
230 of the MIT-BIH-AR dataset. (Top:) The proposed model represents Record
230 as piece-wise locally stationary segments (blue lines). Extracted R-peak
positions are marked with a red “R.” (Bottom:) The graph structure for the
proposed model. The constraint graph has a vertex for each state including state
“R” for the R-wave. Below each edge e we show the penalty 4., which is either a
constant 4 > 0 or 0; above we show the constants &, in the constraint function
8e(mi,mis 1) = 8(m; —mj1) +y <0 , where 6 =1 for a non-decreasing change
(shown with 1), § = —1 for a non-increasing change (shown with |), and y > 0
is the minimum magnitude of change.

this model, prior biological knowledge about the expected sequence of
changes is incorporated into the model as a graph constraint. Then, a
dynamic programming algorithm using functional pruning computes the
globally optimal model (mean, changes, and hidden states) in fast
log-linear O(N log N) time.

We assumed a directed graph G = (V,E) as the constraint graph,
where the vertex set V € {1,...,|V|} represents the hidden states/seg-
ments (not necessarily a waveform), and the edge set E € {1, ..., |E|}
represents the expected changes between the states/segments. Each
edge e € E incorporates the following associated prior knowledge about
the expected sequences of changes:

e The source v, € V and target v, € V are vertices/states for a

changepoint e from v, to V,.

A non-negative penalty constant 1, € R, is the cost of changepoint e.

e A constraint function g, : R x R—R defines the possible mean values
before and after each changepoint e. If m; is the mean before the
changepoint and m;;; is the mean after the changepoint, then the
constraint is g.(m;, mi;1) < 0. These functions can be used to
constrain the direction (up or down) and/or the magnitude of the
change (greater/less than a certain amount).

Mathematically, given the input signal Y = {yi1,...,y,} and the
directed graph G = (V, E), the problem of finding changepoints c,
segment means m, and hidden states s can be solved using the following
optimization problem:

minmize RiL, £(my 7)) + 205 Ae, (1)

c€{0,1,...|E[}N-1
subjectto nochange:c; =0 = m; = m;;1&S; = Si4q (2)
change: ¢; # 0 = go,(my,mysy) < 0& (5, 5041) = W) (3)

The changepoints c; can be assigned to any of the pre-defined edges
(ci € {1, ..., [E|}). Consequently, c; = 0 indicates no change with zero
cost, lo = 0. Function (1) consists of a data-fitting term # and a model
complexity term A, [33,34]. ¢ represents the negative log-likelihood of
each datapoint, and 4, is a non-negative penalty on each changepoint. In
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Fig. 4. Demonstration of constraint graph optimiza-

A tion using the proposed graph learning algorithm for
Record 107 of the MIT-BIH-AR dataset. (a—e, top:)
Extracted R-peak positions given the learned
constraint graph in each learning iteration. The red
and orange coverage bands show the used labels in
the training procedure, including training and vali-
\t: dation sets. The blue lines represent separate states at
P s the model output over the raw ECG signal (gray
points). (a—e, bottom:) The learned constraint graph
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other words, A regularizes the number of predicted changepoints/seg-
ments by the model so that a larger A reduces the number of change-
points by estimating a more sparse changepoint vector. The constraint
function g, also encodes the expected up/down change and the least
amplitude gap between the mean of two states. When there is no change
¢; = 0, Constraint (2) forces the model to stay in the current state s; =
si+1 with no change in mean m; =m;,;. However, when there is a change
¢; # 0, Constraint (3) imposes a change in the mean implied by the
constraint function g (m;,mi11) < 0 as well as a change in the state (s;,

Siy1) = (yw VQ). An open-source implementation of the Generalized

Functional Prunining Optimal Partitioning (GFPOP) algorithm is avail-
able in C++ code inside an R package named GFPOP on GitHub [35].

2.2. Constraint graph

The constraint graph G = (V,E) in the optimization problem of
Equation (1) encodes prior biological knowledge about the expected
sequences of changes within one cardiac cycle. It can be designed

A=16+10* UA~15*104L3/1~16*104U/1 25+ 107

2=25x10*

®

manually by an expert or be learned from the data by the model. The two
following subsections detail both the manual and learning-based
designs.

1) Manual Graph Definition: To manually define the constraint graph G,
we took into account the possible morphological categories for the
ECG waves (i.e., P, QRS, and T waves) and the overall morphological
properties of the signal in each record. An expected hidden state/
segment in the signal is characterized as a node in the constraint
graph, and the required conditions for transition between states are
encoded in the edges. The required conditions are determined based
on the expected minimum amplitude difference of two successive
states and the polarity of each transition (i.e., up/down).

The caveat with the manual definition of the constraint graph is that
it can be inefficient for ECG signal analysis considering the various
morphological patterns for each waveform. Furthermore, the model’s
performance depends on the expert knowledge encoded into the
constraint graph. In the next subsection, we explain the proposed graph



A. Fotoohinasab et al.

Iteration 1
400
s
E 200
Py
3 Labels
El Training
5
E o W validation
o
o
o
-200
328500 329000 329500 330000
(a)
Iteration 3
400
s
E 200
°
3 Labels
El Training
T
E o W validation
o
o
o
-200
328500 329000 329500 330000
(©)
Iteration 5
400
s
£ 200
°
g Labels
3 Training
s
E o M validation
9
o
w
-200
328500 329000 329500 330000

19=50 5 1.g=50 ) o100 @
2=5+10°\2/) 2=5+10° \_/ 2=5+-107

tg-o
7=5+10°
(e
Iteration 7
400
s
E 200
o
E Labels
S Training
E o M validation
Q
[+
b
-200
328500 329000 329500 330000
Time
tosso 2\ ta=so N bgmso ) dgeso

5+ 100 \2Sa=5-10° Bt s\ 25100

Iteration 2
¢
400 +
s
E 200
Py
] Labels
ES Training
E o W validation
<
)
o
o
200
328500 329000 329500 330000
Time
f,g=100
2=10°
(b)
Iteration 4
400
s
E 200 Labels
g Training
2 M validation
3
5 0 Error Type
2 OFN
b
-200
328500 329000 329500 330000
b\ hosso Lg=100 @
AJT=5:10\2)2=5+100\"J 2=5+10°

400
s
E 200
Py
] Labels
ES Training
E o M validation
9
o
w
-200
328500 329000 329500 330000
oo\ to=so N bgsso N dooso

R 2
2=5+10° \3/1:5*103 N1 =25+10° \_/ 2=25+10°

400
s
E 200
o
] Labels
ES Training
E o M validation
<
)
o
w
200

328500 329000 329500 330000

Time

tosso 7\ tg=so N boso 7} hoso

=5

T10m\AJ7=5-10° B\ s 10

t-0
A=5+105

(h)

Computers in Biology and Medicine 130 (2021) 104208

Fig. 5. Detection of R-peak positions for Record 219
of the MIT-BIH-AR dataset using the proposed graph
learning algorithm. (a-h, top:) Extracted R-peaks
given the constraint graph structure learned in each
iteration. The orange and red coverage bands present
training and validation labels, respectively. The blue
line demonstrates locally stationary segments at the
model output, and the gray points also show the raw
ECG signal at the model input. (a-h, bottom:) The
constraint graph learned in each iteration. The red
part of the constraint graph represents the selected
graph editing candidate in each iteration.
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Fig. 7. Training progress for (a) Record 107 and (b) Record 219 of the MIT-
BIH-AR dataset.

learning algorithm for learning the constraint graph using the R-peak
labels provided by the gold standard.

2) Constraint Graph Learning: To automate the R-peak detection task, we
modified the previous model by learning the constraint graph from
the data (see the dashed part in Fig. 1). In this new framework, the
proposed model takes the raw signal and an initial graph structure as
inputs and yields the desired outputs, including the onset/offset and
the mean of segments specified in the nodes of the learned constraint
graph. Here, the model architecture is comprised of two stages:
training and detection. The training step tries to heuristically find an
optimum graph structure by which the label errors in the training set
are minimized (the block named “Graph Learning Algorithm” in
Fig. 1). The detection step then extracts the R-peaks in the raw ECG

0.5-
— Simple Initial Graph
- Complex Initial Graph
0.47
[
50.37
t
(1)
g
© 0.2-
-
0.14
0.0¢
1 2 3 4 5 6 7 8 9 10
Iteration

Fig. 8. Comparison of the training progress initialized with two simple and
complex initial graph structures for Record 106 of the MIT-BIH-AR dataset.

record constrained to the graph learned in the previous step (the
block named “Changepoint Detection Model” in Fig. 1).

The novelty of this new structure lies in the training step, which is
comparable to the previous model in Section II-B.1. The main idea of the
training step is to automatically discover the desired topology of the
constraint graph G and the information about the edges from the data.
As described in Section II-A, each edge contains the following infor-
mation: (1) the expected up/down change in the segment means, (2) the
least amplitude gap between the means of two states, and (3) a non-
negative penalty imposed by the edge transition. Suppose that the
initial graph for each record is denoted as Gy = (Vo,Eo), where Vj and E,
are the corresponding graph node and edge sets, respectively. Each node
in the Vj set represents initial hidden states in the model. Each edge in
the E set represents a transition between two consecutive hidden states
(i.e., a changepoint e from the source v, to the target ¥, in section II-A)
and also contains initial values for parameters of ty, gy, and 19, which are
the initial type, the initial gap between two states, and the initial pen-
alty, respectively. Fig. 2a shows the simple initial graph used for the
optimization process. It should be noted that the initial edge information
was chosen based on the overall results obtained from the manual
definition of the constraint graph.

A sketch of the proposed graph learning algorithm is summarised as
Algorithm 1. The greedy graph search algorithm starts with the initial
graph Gy and iteratively optimizes the graph structure and edge pa-
rameters to find a graph that maximizes the accuracy regarding the
provided labels. At the tth iteration, the function
Find_Graph_Candidates() finds the graph candidate set G{ using the
editing candidates for each edge of the output graph from the previous
iteration G;_;. In this study, the algorithm considers 11 editing candi-
dates per edge to optimize the graph topology and the three edge
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Fig. 9. Comparison of the trained models for Record 106 of the MIT-BIH-AR
dataset inititalized with (a) a simple graph structure and (b) a complex
graph structure.

parameters. For example, in the iteration ¢, if the parent graph (i.e., G;_1)
has two edges, the graph candidate set G{ will have no more than 22
members |Gﬂ < 22. These editing candidates include three types of
adding a node, two types of deleting a node, one type of adding two
nodes, changing the type of the abrupt change, and increasing or
decreasing the penalty and gap corresponding to an edge. We believe all
morphological patterns of the ECG waves can be constructed using these
editing candidates. Fig. 2 illustrates the graph editing candidates related
to the edge (V;, V;) with an up change.

2.3. Computational complexity

As can be seen in Algorithm 1, the time complexity of the GCCD
algorithm is theoretically proportional to the number of graph candi-
dates at each iteration (Line 9) and the number of required iterations to
achieve an optimum graph with minimum label errors (Line 4). There
are three main aspects that characterize the time complexity of the
algorithm:

e Given a record with n data samples and a graph candidate G with v
vertices and E edges, the time complexity to detect R-peaks (Lines
10-14) is S = O(En?) in the worst case (pathological simulated data)
and S = O(Enlogn) in the average case (typical in real data). Also
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Fig. 10. Comparison of the constraint graph structures (a) defined manually
and (b) learned using the proposed graph learning algorithm for Record 100 of
the MIT-BIH-AR dataset.

note that since we consider only graphs with a single circular path,
E = O(V), and the time complexity is further reduced to O(Vnlogn)
(for average case/non-pathological data).

Considering C graph edit candidates in the iteration t, the time

complexity to compute all the models G € {0,1,...,|G{|=C} is
O(SC) (where S is the time complexity of solving for optimal model
parameters given a single graph). It should be noted that the number
of graph candidates in the iteration t depends on G,_;, which is the
graph from the previous iteration (Line 9). The time complexity to
compute the label error given L labels is O(CL), which can be effec-
tively ignored from the overall time complexity as this task is fast.
Finally, iterating over T iterations to obtain the graph with the
minimum label error (Line 4) causes the overall time complexity of
the algorithm to be O(SCT), where S is the time to solve for a single
graph, and C is the number of edit candidates considered in each
iteration.
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Algorithm 1. Greedy Graph Learning

Algorithm 1 Greedy Graph Learning

Input: data, labels, initial graph structure Gg
1:t+0
Best_Cost + inf
By « label_error(Gy)
while Et < Best_Cost do
Best_Cost + E,
t+—t+1

G{ +Find_Graph_Candidates(Gi—1),
Based on Figure 2

8: Et — BesAt,Cost
o: for each G in GY do

A O

10: E « label_error(G)
11: if £ < E, then

12: G+ G

13: E,« F

14: end if

15: end for

16: end while
Output: constraint graph G;

3. Experimental studies
3.1. Dataset

We applied the well-known MIT-BIH Arrhythmia (MIT-BIH-AR)
database to evaluate the GCCD model. This database contains 48 ECG
recordings taken from 47 subjects. Each record’s duration is 30 min, and
each recording is sampled at 360 Hz with a resolution of 200 samples
over a 10 mV range [36,37]. Each recording consists of two ambulatory
ECG channels from the modified lead II (MLII) and one of the leads V1,
V2, V4, or V5. In this study, all 48 records with one MLII or V5 lead were
used to evaluate the algorithm. The database has been annotated with
both RR intervals and heartbeat class information by two or more expert
cardiologists independently.

3.2. Results and discussion

This section presents a comprehensive discussion of the results ob-
tained by the proposed model and a detailed comparison between the
manually defined graphs and the learned graphs. We also provide some
suggestions for the future development of the GCCD model.

Fig. 3 illustrates an example of the model’s performance with a
manually defined constraint graph in the R-peak detection task for a
window of Record 230 of the MIT-BIH-AR dataset. However, as
mentioned in Section II-B.1, the performance of the model using
manually defined graphs depends on an expert with prior knowledge.
Furthermore, manual annotation by an expert is time consuming and
expensive. To address this issue, we proposed a new graph learning al-
gorithm that searches for a locally optimal constraint graph using a
greedy scheme on the labeled ECG data. Regarding the various
morphological patterns for the ECG signal, the proposed graph learning
algorithm can relax the model from the manual definition of the
constraint graph for each record.

We adopted the intra-patient paradigm to train the constraint graph
to address the intra-patient variation in ECG morphologies. Thus, the
training and testing sets were generated by randomly splitting the intra-
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Fig. 11. The model’s performance for Record 230 of the MIT-BIH-AR dataset.
(a) The training progress, (b) extracted R-peaks for a window of this record,
and (c) the constraint graph structure.

Table 1
Comparison of the performance of several R-peak detection methods using the
MIT-BIH-AR database.

Method Sen PPR DER
(%) (%) (%)
Park et al. [8] 99.93 99.91 0.163
Farashi [39] 99.75 99.85 0.40
Sharma and Sunkaria [3] 99.50 99.56 0.93
Castells-Rufas and Carrabina [2] 99.43 99.67 0.88
GCCD Model with Manual Definition of the 99.76 99.68 0.55

Constraint Graph
GCCD Model with Learning of the Constraint 99.64 99.71 0.19
Graph

samples for each record with an approximate ratio of 3 : 1. We used a k-
fold cross-validation approach to evaluate the model performance with a
k size of 5. More specifically, we divided the intra-sample data intok = 5
folds so that each trial used four folds to train the model and one fold for
validation.

Figs. 4 and 5 show representative examples of the R-peak detection
task performed by the model integrated with the graph learning algo-
rithm for two records from the MIT-BIH-AR database. These figures
illustrate how the proposed graph learning algorithm iteratively edits
the graph structure to yield a model with maximum accuracy in
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detecting R-peaks. We initialized the constraint graphs using the graph
structure in Fig. 2a with the initial values of go = 100 and 4o = 5x 10°
for Record 107 and gy = 100 and Ao = 10° for Record 219. It should be
noted that the initial edge information was assigned based on the overall
results derived from the manually defined graphs in all experiments.
However, graph candidates 2f and 2g can adjust the parameters g and A
for the optimum values. For these two examples, we chose the initial
edge information so that all the training steps could be completely dis-
played. Label errors are omitted from Fig. 5a—c to reduce clutter in the
figures. The red part of the graph structure in each iteration presents the
chosen editing candidate in the current iteration over the graph in the
previous iteration. More interestingly, Fig. 5 demonstrates the model’s
capability to detect R-peaks in the presence of a baseline wandering
artifact, which is a typical artifact in the ECG signal. Baseline wandering
can change the shape of the QRS complex and thereby causes incorrect
detection of the R-peak. The performance of the Pan and Tompkins [11]
algorithm, algorithms derived from the ECG signal slope [38], and
methods based on wavelet transform are highly dependent on the
removal of this artifact. Fig. 6 shows the test result for this record over
two different time windows of data. Fig. 7 illustrates the training
progress for these two records, where the Y-axis shows the sum of false
negative and false positive error rates. Indeed, the training progress
curve reflects the number of label errors produced by the model in each
iteration given the provided labels for the training and validation sets. It
is worth mentioning that the proposed graph learning algorithm avoids
possible overfitting issues as it tries to extract the morphology of the
ECG signal that contains multiple various morphological patterns.

The proposed graph learning algorithm employs a greedy search
scheme to select the best performing graph in terms of detection accu-
racy (see Section 1I-B.2). Therefore, the performance of the algorithm
depends heavily on the initial graph structure and will likely lead to
local optima. Fig. 8 compares the training progress for Record 106 of the
MIT-BIH-AR database initialized with the two simple (see Fig. 2a) and
complex graph structures (i.e., a graph with eight nodes representing the
morphology of a normal ECG signal). Fig. 9 also presents a comparison
of the final selected graphs and their performances for a window of this
record. As these figures show, the model initialized with the complex
graph structure can achieve higher accuracy (i.e., a lower number of
label errors) in a lower number of iterations than the model initialized
with the simple graph structure.

The investigation of the experimental results shows that the greedy
graph search algorithm can achieve optimal performance for the model
trained with the manually defined graphs, although its performance is
affected by the initial graph. We noticed that for most of the records
from the MIT-BIH-AR database, the learned graphs could reach the
performance of the manually defined graphs but with different graph
structures. This means that the GCCD model can obtain global optima
using various initialization structures, which will likely lead to different
final graph structures. Fig. 10 compares the constraint graph structures
defined manually vs. those learned automatically using the initial graph
structure in Fig. 2a for Record 100 of the MIT-BIH-AR dataset. As shown
in this figure, the manually defined graph and the learned graph both
achieved the optimal performance but with different graph structures.
We also noticed that for some records from the MIT-BIH-AR database,
the graph learning algorithm chose the same structure as the manually
defined graph structure. Fig. 11 shows the model performance using the
graph learning algorithm for Record 232 from the MIT-BIH-AR dataset,
for which the manually defined constraint graph and the learned graph
had the same structures.

Different metrics were adopted to evaluate the performance of the
proposed model with both the manual and learning-based graph de-
signs. These metrics included sensitivity (Sen), positive predictivity rate
(PPR), and detection error rate (DER), which are calculated by:

Sen(%) =

— T 100
TP+ FN Q)
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TP
PPR(%) = ——— % 100 5
(%) =7p+ 7P ®)
FN + FP
DER(%) = - 70
(%) =Tp iy < 100 ©®

where TP is true positives, FP is false positives, FN is false negatives, and
TN is true negatives. Table.1 presents the performance of the proposed
model regarding both the manually defined and learning graphs against
other state-of-the-art methods for R-peak detection (QRS complex). As
shown in the table, the proposed algorithm achieved Sen = %99.76, PPR
= %99.68, and DER = 0.55 for the manual definition of the constraint
graph and Sen = %99.64, PPR = %99.71, and DER = 0.19 for the
learning constraint graph using the MIT-BIH-AR database. Note that the
model constrained to the manually defined graphs outperformed the
model combined with the graph learning algorithm because in the latter,
the model’s performance was largely dependent on the initial graph
structure.

ECG recordings in the MIT-BIH-AR database were chosen to chal-
lenge the R-peak detection task because they represent a wide variety of
QRS morphologies with real-world variability. Our proposed model
yielded outstanding results when detecting R-peaks in these tricky re-
cords. Records 103, 104, 105, 108, 111, 112, 116, 200, 201, 203, 205,
208, 210, 217, 219, 222, and 228 are comprised of abrupt changes in
ECG morphology, and they are severely affected by noise and artifacts.
Fig. 5 shows the capability of the model to detect R-peaks in the presence
of baseline wandering noise. We re-emphasize that these comparable
results were obtained without applying any preprocessing operations, as
opposed to other methods in the literature. Records 108, 113,117, 201,
202, 203, 213, 219, 222, 223, 231, and 232 contain many peaks with
unusual amplitudes. Small-amplitude R-peaks or high-amplitude P- and
T-peaks embedded in high-amplitude QRS complexes can lead to high
FN and FP errors in the R-peak detection task. As a representative
example, Fig. 4 illustrates the efficiency of the GCCD model in R-peak
detection for Record 117, which contains many beats with high-
amplitude T-peaks.

The experimental results obtained using the proposed model justify
changepoint detection models as a potential approach to extract ECG
fiducial points. In this study, we demonstrated the capability of the
GCCD model in locating R-peaks within various morphological patterns
of ECG. The proposed greedy graph search algorithm can potentially
detect ECG waves other than the R wave (i.e., P, Q, S, and T waves) by
considering corresponding prior knowledge of the graph editing candi-
dates. We noticed that in Records 114, 200, 203, 207, and 210, the Sen
and PPR values were less than 99%. These records contain multiple
different morphological patterns, including negative QRS complexes,
and Records 200 and 203 have several QRS complexes with ventricular
arrhythmias. The constraint graph for these records involves learning a
graph with more than one optimum graph path. Learning a multi-path
constraint graph is also required to detect all ECG waves due to the
various morphological patterns of each wave incorporated into the
graph. The other point that should be considered here is that the GCCD
model estimates the ECG signal using a Gaussian function. A modified
model with a multi-Gaussian fitting method can drastically improve the
ECG-related changepoint detection task.

Future work should focus on developing the proposed model with a
multi-Gaussian fitting and a multi-path graph learning algorithm.
Incorporating these modifications into the proposed model could pro-
vide a promising platform for evolving new graph-based tools to detect
and classify heart arrhythmias. A multi-path graph learning algorithm
could reveal the morphology of the ECG signal (time duration, ampli-
tude, and direction of each wave) in each cardiac cycle. Subsequently,
new graph-based features could be extracted from the constraint graph
path for an ECG cycle to classify heartbeats.
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4. Conclusion

The accurate delineation of R-peaks in the ECG signal plays a crucial
role in most automated ECG analysis tools. This paper proposed a novel
graphical model based on changepoint detection techniques for detect-
ing R-peaks within a non-stationary ECG signal. The proposed model
was highly successful at detecting R-peaks in noisy ECG data without
applying any preprocessing steps. To our knowledge, this is the first time
that a changepoint detection model has been applied for ECG fiducial
points detection. In this new framework, prior biological knowledge
about the expected sequences of changes was incorporated into the
model using a graph. We defined the constraint graph manually and
automatically using a proposed greedy graph search algorithm. Using
the proposed graph learning algorithm, the initial graph structure can
develop into a structure containing edge parameters with maximum
detection accuracy for a record. The experimental results provided in
this paper demonstrate that the GCCD model can be a promising
approach for detecting ECG waves and developing new graph-based
tools for further ECG analysis. The proposed graphical model
approach can be advanced by learning a multi-path constraint graph and
fitting a multi-Gaussian curve model to the ECG signal, which should be
considered in future studies.
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