
Computers in Biology and Medicine 127 (2020) 104057

Available online 15 October 2020
0010-4825/© 2020 Elsevier Ltd. All rights reserved.

HAN-ECG: An interpretable atrial fibrillation detection model using 
hierarchical attention networks☆ 

Sajad Mousavi a,*, Fatemeh Afghah a, U. Rajendra Acharya b,c,d 

a School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA 
b School of Engineering, Ngee Ann Polytechnic, Singapore 
c School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, 599494, Singapore 
d Department Bioinformatics and Medical Engineering, Asia University, Taiwan   

A R T I C L E  I N F O   

Keywords: 
Atrial fibrillation detection 
Heart arrhythmia 
Interpretability 
Attention mechanism 
Bidirectional recurrent neural networks 

A B S T R A C T   

Atrial fibrillation (AF) is one of the most prevalent cardiac arrhythmias that affects the lives of many people 
around the world and is associated with a five-fold increased risk of stroke and mortality. Like other problems in 
the healthcare domain, artificial intelligence (AI)-based models have been used to detect AF from patients’ ECG 
signals. The cardiologist level performance in detecting this arrhythmia is often achieved by deep learning-based 
methods, however, they suffer from the lack of interpretability. In other words, these approaches are unable to 
explain the reasons behind their decisions. The lack of interpretability is a common challenge toward a wide 
application of machine learning (ML)-based approaches in the healthcare which limits the trust of clinicians in 
such methods. To address this challenge, we propose HAN-ECG, an interpretable bidirectional-recurrent-neural- 
network-based approach for the AF detection task. The HAN-ECG employs three attention mechanism levels to 
provide a multi-resolution analysis of the patterns in ECG leading to AF. The detected patterns by this hierar-
chical attention model facilitate the interpretation of the neural network decision process in identifying the 
patterns in the signal which contributed the most to the final detection. Experimental results on two AF databases 
demonstrate that our proposed model performs better than the existing algorithms. Visualization of these 
attention layers illustrates that our proposed model decides upon the important waves and heartbeats which are 
clinically meaningful in the detection task (e.g., absence of P-waves, and irregular R-R intervals for the AF 
detection task).   

1. Introduction 

Atrial fibrillation (AF) is a common cardiac arrhythmia that can lead 
to various heart-related complications such as stroke, heart failure, and 
atrial thrombosis [6]. Electrocardiography is a test that measures the 
electrical activity of the heart over a specific period. The test output is an 
electrocardiogram (ECG) signal that is a plot of voltage against time. A 
common non-invasive diagnosis way for the AF detection is the process 
of the recorded electrocardiogram (ECG) signal visually by a cardiolo-
gist or medical practitioner. However, this is a time-consuming process 
and subject to human error. 

Therefore, dozens of computer-aided methods have been developed 
for automatic detection of atrial fibrillation and other heart arrhythmias. 

The existing ML-based methods include handcrafted feature-based and 
automatic-extracted feature-based approaches in their solutions [1,2,8, 
13,14,21,31,34,34,35]. Among them, the methods that extract features 
automatically have gained more attention because they could learn the 
ECG signal representations efficiently and achieve state-of-the-art 
results. 

Deep learning models with the capability of the automatic feature 
extracting provide significant performance in the AF detection task 
noting their ability to detect complex patterns in the ECG signals [26, 
33]. Nevertheless, they work as black boxes that make it hard to un-
derstand the reasons behind their decisions. Interpretability and trans-
parency are key required factors in AI-based decision making in 
healthcare to enable and encourage physicians who are held 
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accountable for medical decisions to trust the recommendations of these 
algorithms. One way to make deep learning models interpretable is to 
incorporate an attention mechanism in the model that learns the rela-
tionship between the input data samples and the given task [16]. 

In this study, to provide an interpretable method with high perfor-
mance for automatic detection of atrial fibrillation, we propose a deep 
learning model powered by hierarchical attention networks. The pro-
posed method is composed of three parts in which each part contains a 
stacked bidirectional recurrent neural networks (BiRNN) followed by an 
attention model. The first part learns a wave level representation of the 
ECG signal, the second part learns a heartbeat level representation of the 
ECG signal and the third part learns a window-based (i.e., contains 
multiple heartbeats) level representation of the ECG signal. All learned 
representations at each level are interpretable and are able to show 
which parts of the input signal are the reasons to trigger an AF event. 

The hierarchical attention model was first proposed in Ref. [32] in 
the content of document classification task, as a novel hierarchical 
attention architecture that matches the hierarchical nature of a docu-
ment, meaning words make sentences and sentences make the docu-
ment. Since in the ECG analysis application, we deal with a similar 
notion of hierarchical input where the ECG signal includes multiple 
levels of resolution (waves, beats, and windows), the proposed hierar-
chical attention model can mirror the physicians’ decision-making 
process. For instance, in order to detect AF, they, first, look for some 
important windows (a sequence of continuous heartbeats), next, they 
look at the important heartbeats of the windows and then focus on the 
heartbeat waves. 

The main contributions of this study are summarized as follows:  

• We propose an end-to-end hierarchical attention model that achieves 
the state-of-the-art performance with the capability of the 
interpretability.  
• The proposed model provides multi-level resolution interpretability 

(i.e., window by window (multiple heartbeats), heartbeat by heart-
beat, and wave by wave levels).  
• We empirically demonstrate that the important parts of the ECG 

signal for the model in triggering the AF are clinically meaningful.  
• The proposed approach can be used to recognize new potential 

patterns leading to trigger heart arrhythmias. 

The rest of this paper is organized as follows. Section 2 gives a review 
of the related work. Section 3 provides a detailed description of the 
proposed approach. Section 4 presents the experimental setup, the used 
databases to evaluate the proposed model, and compares the perfor-
mance of the proposed model to the existing methods following by the 
interpretability analysis. Section 5 discuss the results and describes the 
limitations of the proposed method. Finally, Section 6 concludes the 
paper. 

2. Related work 

Heart arrhythmia classification and prediction tasks are very 
important research problems in machine learning for the healthcare 
area. Recent advances of deep learning algorithms have impacted on 
achieving great performance in the machine learning-oriented health-
care problems. Deep convolutional neural networks have been used to 
improve the performance of ECG heartbeat classification task [1,11,12, 
33]. Recurrent neural networks (RNNs) and sequence to sequence 
models were employed to perform automatic heartbeat annotations [7, 
17,27]. Deep learning models have also been utilized to detect false 
arrhythmia alarms. In the paper by Lehman et al. [15], authors applied a 
supervised denoising autoencoder (SDAE) to ECG signals to classify 
ventricular tachycardia alarms. In the paper by Mousavi et al. [19], 
authors used an attention-based convolutional and recurrent neural 
networks to suppress false arrhythmia alarms in the ICU. 

Atrial fibrillation (AF) is one of the most common types of 

arrhythmias in patients with heart diseases and challenging arrhythmias 
to detect. The research papers [5,8,31] aimed to use deep convolutional 
neural networks for the atrial fibrillation arrhythmia detection task and 
achieved good arrhythmia detection performance. In the paper by 
Shashikumar et al. [29], authors applied an attention mechanism to 
detect the atrial fibrillation arrhythmia. Authors employed a deep 
recurrent neural network on 30-s ECG windows’ inputs, and also fed 
some time series covariates to the network. These covariates are 
hand-crafted features and include the standard deviation and sample 
entropy of the beat-to-beat interval time series. Although they have used 
an attention mechanism in the architecture of their model, their pro-
posed method was not an interpretable detective model. The single-level 
attention applied to fixed-length 30s ECG windows, which contains 
several heartbeats only improves the detective performance. Our pre-
vious work named ECGNET [18] is an interpretable atrial fibrillation 
detective model, which uses a deep visual attention mechanism to 
automatically extract features and focus on different parts of the 
heartbeats of the input ECG signal. The ECGNET has suggested an 
interpretable AF detection with a single-level attention using the 
wavelet power spectrum as input, however, this study proposes a hier-
archical attention network having raw ECG signals as input. 

Unlike the aforementioned AF detective models, the proposed model 
provides a high resolution interpretable predictive model (i.e., window 
(i.e., multiple heartbeats) by window, beat by beat, and wave by wave 
levels) using the hierarchical bidirectional recurrent neural networks 
and attention networks. The proposed model improved the detection 
performance and explained the reasons behind model decisions 
simultaneously. 

3. Methodology 

In this section, we first describe the pre-processing steps needed to 
prepare the data to be fed into the proposed model. Then, we explain the 
main components of the proposed method in detail. 

3.1. Pre-processing 

The input of the proposed method is a sequence of ECG heartbeats in 
which each heartbeat contains a sequence of building waves (P-wave, 
QRS complex, T-wave, etc.). To prepare this structure of ECG signals, we 
perform a few pre-processing steps on them as follows:  

1. Removing the baseline wander and power-line interference noises in 
the ECG signal. To this end, the ECG signal was passed through a 
band-pass Butterworth filter with a filter order of 10 and passband 
frequency ranges of 0.5–50 Hz.  

2. Transforming the given ECG signal to have a zero mean and a unit 
standard deviation (i.e., standardization).  

3. Detecting the R-peaks of given ECG signal or the QRS complexes 
using an algorithm that considers the consensus of multiple algo-
rithms including the Pan-Tompkins algorithm [20] and gqrs package 
provided by Ref. [22].  

4. Dividing the continuous ECG signal into a sequence of heartbeats and 
split the heartbeats into distinct units named waves. The waves in the 
ECG signal are extracted with respect to the detected R-peaks and 
using adaptive searching windows (with fixed length windows). 
Indeed, the output of the search algorithm is a one-dimensional 
vector in which each element corresponds to start/end locations of 
the waves (i.e., P, QRS, and T-waves). Also, a heartbeat is defined 
from the onset of the current P-wave to the offset of consecutive T- 
wave. Fig. 1 depicts a segmented ECG signal annotated with the R- 
peaks, P, QRS and T-waves. 

After doing the above pre-processing steps, each ECG signal becomes 
a sequence of B heartbeats in which each heartbeat, Beati contains Ti 
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waves, where waveit represents the tth (t ∈ [1,Ti]wave in the ith (i ∈ [1,B]) 
heartbeat, Beati. It is worth mentioning that we have resized all waves to 
have fixed-length vectors (herein, 75 samples). For example, for a given 
ECG signal, i, we have an array with a size of (Bi, Ti, 75) where Bi is the 
number of heartbeats, Ti is the number of waves, and 75 is the number of 
samples for each wave. 

3.2. Model 

The goal of the proposed method is to detect atrial fibrillation 
arrhythmia in an explainable way. Fig. 2 presents the network archi-
tecture of the proposed method. A sequence of waves of an ECG signal is 
fed into a stacked bidirectional recurrent neural networks (BiRNN) fol-
lowed by an attention model. The stacked BiRNNs are used to extract a 
vector representation for each input wave and the attention model is 
used to focus on those waves that are the best representatives of a 
heartbeat. Next, the vector representations of the waves are integrated 
to represent a heartbeat vector. Then, the heartbeat vectors of the pre-
vious step are introduced to other stacked BiRNNs followed by another 
attention model. Similarly, the attention model puts more emphasis on 
important heartbeats and produces heartbeat context vectors. After that, 
a sequence of windows in which each window contains multiple 
heartbeat context vectors is computed and the same procedure is applied 
to the windows, and a summarized vector that includes all information 
of the ECG signal is extracted. Finally, the summarized vector can be 
used for the atrial fibrillation detection task. Overall, the model archi-
tecture is composed of three main parts: a wave encoder along with a 
wave attention, a beat encoder along with beat attention, and a window 
encoder along with window attention. In the following sections, we 
explain each part of the proposed model in detail. 

3.2.1. Bidirectional recurrent neural networks 
Bidirectional recurrent neural network (BiRNN) is more efficient 

than the RNN while the length of the sequence is very large [28]. The 
reason is that standard RNNs are unidirectional so they are restricted to 
only use the previous input state. However, the BiRNN can process data 
in both forward and backward directions. Therefore, the current state 
has access to previous and next input information simultaneously. To 
improve the detection performance, the BiRNNs were employed in the 
model for encoding the sequences of wave and beat vectors. 

The BiRNN consists of forward and backward networks. The forward 
network takes in a sequence of waves/beats in a regular order, from t =

1 to t = Ti, as input and computes forward hidden state, ht
→

and the 
backward network takes in wave/beat sequence in a reverse order, from 

t = Ti to t = 1, as input and calculates backward hidden state, ht
←

. Then, 
the output of the BiRNN is considered as a weighted sum over the 

concatenation of the forward hidden state, ht
→

, and the backward one, ht
←

. 
The BiRNN can be defined mathematically as follows: 

ht
→
= tanh

(

W→xt + V→ h
→

t−1 + b
→

)

(1)  

ht
←
= tanh

(

W←xt + V← h
←

t+1 + b
←

)

(2)  

yt =
(

U
[

ht
→
; ht
←]
+ by

)
, (3)  

where (ht
→

, b
→

) are the hidden state and the bias of the froward network, 

and (ht
←

, b
←

) are the hidden state and the bias of the backward one. Be-
sides, xt and yt are the input and the output of the BiRNN, respectively. 

3.2.2. Wave encoder and wave attention 
A sequence of waves, waveit t ∈ [1,Ti], for ith heartbeat, is fed into a 

bidirectional recurrent neural network (BiRNN) to encode the wave 
sequence. The forward network of the BiRNN gets the heartbeat, i in a 
normal time order of waves from wavei1 to waveiT and the backward 
network gets the heartbeat, i in a reverse time order of waves from 
waveiT to wavei1. Then, the BiRNN outputs, hit representing a low 
dimensional latent vector representation of the heartbeat, i. 

Similar to the words of a sentence in which necessarily all words are 
not important to give the meaning of the sentence [32], herein all waves 
of a heartbeat do not have the same weights in representing the heart-
beat. Therefore, an attention mechanism can extract the relevant waves 
of the heartbeat that contribute more to the meaning of the heartbeat. 
The attention mechanism is a shallow neural network that takes the 
BiRNN output, hit as input and computes a probability vector, αit cor-
responding to the importance of each wave vector. Then, it calculates a 
wave context vector, bi which is a weighted sum over hit with the weight 
vector αit (as shown in Fig. 3). Indeed, 

αit = softmax(Vwtanh(Wwhit + bw) (4)  

bi =
∑

t
αithit, (5)  

where (Ww, bw,Vw) are the parameters to be learned and softmax(.) is a 
function that squeezes its input, which is a vector of real numbers, in 
values between 0 and 1. 

3.2.3. Beat encoder and beat attention 
Similar to the wave encoder part, the BiRNN of the beat encoder part 

takes a sequence of wave context vectors, bi (i∈ [1,B]) as input and 
produces vectors, hi (i∈ [1,B]) which are latent representations of the 

Fig. 1. Illustration of an ECG signal; The red circles indicate R peaks; green, blue and black curves illustrate P, QRS and T-waves, respectively.  
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Fig. 2. Architecture of hierarchical attention network (HAN) for Atrial Fibrillation Detection.  
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input heartbeats. To emphasize the more important heartbeats in trig-
gering the arrhythmia, another attention mechanism is used on the 
heartbeat level. Therefore, 

αi = softmax(Vbtanh(Wbhi + bb)) (6)  

r = αi∘hi, (7)  

where (Wb, bb,Vb) are the parameters to be learned, αi is the attention 
weight vector of the heartbeats, and r (r1, r2,…, rB) is the heartbeat 
context vectors which is an element-wise product of the hidden states, hi 
and the importance of each heartbeat, αi. 

3.2.4. Window encoder and window attention 
In addition to the wave and heartbeat level encoding modules, we 

also consider a window level encoding module in which a window 
contains multiple heartbeats. The heartbeat context vectors, (r1, r2,…,

rB) are converted to a sequence of windows, wj (j= 1,2,…,m) by sliding 
a predefined-fixed-length window with a predefined-fixed hop size in 
the heartbeats over the heartbeat context vectors (as shown in Fig. 2). 
For example, if we consider a window with n = 3 heartbeats and the hop 
size be 1, the extracted sequence of windows becomes 
(w1 = [r1; r2; r3], w2 = [r2; r3; r4], … , wm = [rB−2; rB−1; rB]) where ; is a 
simple concatenation operation. 

Analogous to the previous steps, a BiRNN is used to encode the 
windows, wj (j= 1, 2,…,m) and again an attention mechanism is 
employed to measure the importance of the windows. Specifically, 

γj = softmax
(
Vvtanh

(
Wvej + bv

))
(8)  

s =
∑

j
γjej, (9)  

where (Wv, bv,Vv) are the parameters to be learned, γj is the attention 
weight vector of the windows, ej (j= 1,2,…,m) are the hidden states of 
the BiRNN, and s is the window context vector that encompasses the 
whole information of the windows, containing multiple heartbeats, of 
the input ECG signal. 

3.2.5. Detection 
We concatenate the window context vector, s, and the last hidden 

state, em, to obtain combined information of both vectors and then feed 
it into a shallow network followed by a softmax layer to produce a 
probability vector, p in which each element determines the probability 
of the input signal belonging to each class of interest (AF or non-AF). 
Specifically, 

S = tanh(Wc[s; em]) (10)  

p = softmax(WsS+ bs), (11)  

where (Wc,Ws, bs) are the parameters to be learned. 
Finally, we use a cross-entropy loss to calculate the training loss as 

follows: 

L= −y⋅logp, (12)  

where ( ⋅) is the vector dot product operator and y is the ground truth 
vector. 

3.2.6. Interpretation 
Typically artificial intelligence (AI)-based models that both give 

good performance and are interpretable, are preferable to apply to real 
medical practice. Therefore, having machine learning models that 
explain the reasons behind their decisions are very important in medical 
applications. The proposed method has three levels of the attention 
mechanism, the first level (i.e., the wave level) produces the wave 
weights, αit (t = 1, 2,…,Ti) representing the importance of the waves in a 
heartbeat, the second level (i.e., the heartbeat level) computes the 
heartbeat weights, αi (i = 1, 2,…,B) showing the amount of the influence 
of each heartbeat on the occurrence of an arrhythmia, and third level (i. 
e., the window level) produces the window weights, γj (j = 1,2,…,m) 
demonstrating the importance of the combinations of the heartbeats. In 
Section 4.3, we provide visualized examples of some ECG signals with 
the AF and non-AF arrhythmias where the focused portions of the signals 
determined by the proposed attention mechanism are highlighted. 

4. Experiments 

In this section, we describe the two atrial fibrillation datasets used 
for the quantitative and qualitative analyses of the proposed method. 
Then, we compare its performance against the existing algorithms for 
the atrial fibrillation detection task and show how explainable the 
proposed model is in detecting atrial fibrillation arrhythmia. 

4.1. Data description 

To evaluate the proposed method, we used two datasets including 
the MIT-BIH AFIB database [24] and the PhysioNet Computing in Car-
diology Challenge 2017 dataset [25]. 

4.1.1. MIT-BIH AFIB dataset 
This dataset contains 23 long-term ECG recordings of human subjects 

with mostly atrial fibrillation arrhythmia. Each patient of the MIT-BIH 
AFIB includes two 10-h long ECG recordings (ECG1 and ECG2). The 
ECG signals are sampled at 250 Hz with a 12-bit resolution over a range 
of ±10 millivolts. In this study, we divided each ECG signal into 5-s 
segments and labeled each based on a threshold parameter, p. To 
perform the segment labeling, we followed the approach reported in 
Ref. [2,31]. A 5-s segment is labeled as AF if the percentage of annotated 
AF beats of the segment is greater than or equal to p, otherwise, it is 
determined as a non-AF arrhythmia. We chose p = 50% to be consistent 
with the previous research work. In our experiments, we used the ECG1 
recordings (to be consistent with the existing methods) and extracted a 
total of 167,422 5-s data segments in which the number of AF segments 
was 66, 939 and the number of non-AF segments was 100, 483. As it is 
clear, the data segments are imbalanced. To deal with this problem and 
be able to compare our proposed model to the other existing algorithms, 
we randomly drew the same number of samples for both AF and non-AF 
classes (considered 66, 939 samples for each class). However, we tested 
the proposed method on the original imbalanced dataset as well. 

4.1.2. PhysioNet challenge AFIB dataset 
The goal of the challenge is to build the models to classify a single 

short ECG lead recording (30–60s in length) to normal sinus rhythm, 
atrial fibrillation (AF), an alternative rhythm, or too noisy classes. The 
training set includes 8528 single-lead ECG recordings and the test set 
contains 3658 ECG recordings. The test set has not been publicly 
available yet, therefore we use the training set for both test and training 

Fig. 3. Schematic diagram of the attention mechanism.  
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phases. The ECG recordings were recorded by AliveCor devices, sampled 
as 300 Hz, and filtered by a bandpass filter. In this study, we considered 
only two classes including the normal sinus rhythm (N) and atrial 
fibrillation (AF) and discarded the remaining groups. Also, unlike the 
MIT-BIH AFDB, the ECG signals were not split into 5-s segments, indeed, 
the whole signal (i.e., 30–60s length) was considered. 

4.2. Experimental setup 

The proposed approach is based on hierarchical attention networks 
and has employed three levels of attention. To show the performance of 
this proposed model, in our experiments, we consider the model without 
the attention mechanism (denoted as RNN containing just the BiRNNs), 
one- (denoted as HAN-ECG1), two-(denoted as HAN-ECG2) and three- 
levels (denoted as HAN-ECG3) of the attention mechanism. 

We applied a 10-fold cross-validation approach to evaluate the 
model. Indeed, we split the dataset into 10 folds. At each round of the 
cross-validation, 9 folds were used for training the model and the 
remaining fold (1 fold) was used for evaluating the model. In the end, we 
combined all the evaluation results. 

The models were trained with a maximum of 25 epochs and mini- 
batches of size 64. The Adam optimizer was used to minimize the loss, 
L with a learning rate of α = 0.001. We also used a L2 regularization 
with a coefficient β = 1e−5 and a drop-out technique with a probability 
of dropping of 0.5 to reduce the effect of the overfitting problem during 
the training. The number of layers for the BiRNNs ware set to 2. The 
window and the hop sizes for the last attention layer were set to (2,2) 
and (5,5) for the MIT-BIH AFIB and AFDB17 databases, respectively. We 
utilized Python programming language and Google Tensorflow deep 
learning library to implement the proposed model. We ran the 10-fold 
cross-validation on a machine with 8 CPUs (Intel(R) Xeon(R) CPU @ 
3.60 GHz), 32 GB memory and Ubuntu 18.04. In all experiments, the 
best performance was reported. 

4.3. Results 

4.3.1. Quantitative analysis 
Table 1 shows the performance of the proposed method with 

different numbers of employed attention mechanisms against the state- 

of-the-art algorithms on the MIT-BIH AFIB database with the ECG 
segment of size 5-s. It can be seen from the table that the proposed 
method with one, two, and three hierarchies achieved quite better 
performance against other methods listed in the table. In Table 1, we can 
observe that the accuracy of the proposed method with two levels of 
attention is slightly higher than the one with three levels. The reason 
might be that the ECG segment of size 5-s (as input) has approximately 6 
heartbeats in which almost all heartbeats contains the AF arrhythmia. 
Therefore, the heartbeats windowing at level three makes no significant 
improvement in the model performance. 

The row number 5 (i.e., the method named HAN-ECG2f) in Table 1 
shows the evaluation results of the proposed method while the input 
ECG signals are split into fixed-size portions (here 180 samples for each 
portion as a heartbeat) and the portions are divided into fixed-size parts 
(here 6 parts for each portion and each part is considered as a distinct T- 
wave). It can be seen that the RNN method can perform as good as the 
method provided by Xia et al. [31] which is a deep convolutional neural 
network with the stationary wavelet transform (SWT) coefficient time 
series as input. In addition, Fig. 4 illustrates the confusion matrices’ 
plots to describe a summary of how well the proposed model is per-
forming given all folds. 

It is worth mentioning that the last two methods, Petrenas et al. [21] 
and Zhou et al. [34], listed in Table 1, have developed their methods 
based on the Long Term Atrial Fibrillation database (LTAFDB) [23] and 
evaluated them using AFDB. However, our method and other methods in 
Table 1 have used the AFDB for both developing and evaluating the 
models. 

The reported results by our proposed method and other listed 
methods in Table 1 (except the last two methods in the table) are based 
on balancing the dataset before training the models, in which the same 
number of non-AF data samples as the AF data samples are selected 
randomly. In addition, the selection of the 5-s data segments is from all 
combined data segments extracted from all individuals. Therefore, the 
training and evaluation sets can include data segments from the same 
subjects which is a data leakage problem. To have a more realistic 
evaluation mechanism, we considered another scenario in which the test 
and training data segments came from different individuals, and left the 
dataset imbalanced. Table 2 presents the performance of the proposed 
AF detectors with the new evaluation scenario on the MIT-BIH AFIB 
database. Since we could not find any research paper that followed the 
aforementioned scenario, we just reported our results without any 
comparison in Table 2. From Table 2, we can again note that the models 
with more attention layers yield higher accuracy and better 
performance. 

Table 3 shows the experimental results on the PhysioNet Computing 
in Cardiology Challenge 2017 dataset. The overall performance of the 
proposed models with more than one attention layer (i.e., HAN-ECG2 
and HAN-ECG2) is better than other methods, demonstrating the hier-
archical attention networks work better for the AF detection task. Since, 
in this experiment, we considered a two-class problem (AF and normal 
classes), there was not any work in the literature to report a comparison. 

4.3.2. Qualitative analysis 
Understanding the cause of the model decision is very important in 

healthcare applications. In order to validate that the decisions made by 
our model are interpretable, we demonstrate through visualizing the 
hierarchical attention layers that the proposed method is considering 
clinically important heartbeats and waves in detecting the AF 
arrhythmia. Figs. 5 and 6 illustrate a few ECG signals containing the AF 
and non-AF categories. The top plots of the figures show the original 
ECG signals and the bottom plots present the informative heartbeats and 
waves in the detection of a class of interest (AF and non-AF). In the 
figures, the red segments denote the heartbeat weights and darker ones 
show more important heartbeats on the network’s decision, and the blue 
strips and the yellow circles denote the locations of the important waves 
of the heartbeats in which the darker blue ones show more influence on 

Table 1 
Comparison of performance of the proposed model against other algorithms on 
the MIT-BIH AFIB database with the ECG segment of size 5-s.  

Method Database Best Performance (%) 

Sensitivity  Specificity  Accuracy  AUC  

HAN-ECG3 AFDB 99.08 98.54 98.81 99.86 
HAN-ECG2 AFDB 98.88 98.78 98.83 99.85 
HAN-ECG1 AFDB 98.87 98.62 98.74 99.84 
RNN AFDB 98.72 98.44 98.58 99.80 
HAN-ECG2f AFDB 98.68 98.36 98.52 99.79 
Xia et al. (2018) [31] AFDB 98.79 97.87 98.63 −

Asgari et al. (2015) 
[2] 

AFDB 97.00 97.10 − −

Lee et al. (2013) [14] AFDB 98.20 97.70 − −

Jiang et al. (2012) 
[10] 

AFDB 98.20 97.50 − −

Huang et al. (2011) 
[9] 

AFDB 96.10 98.10 − −

Babaeizadeh et al. 
(2009) [3] 

AFDB 92.00 95.50 − −

Dash et al. (2009) 
[4] 

AFDB 94.40 95.10 − −

Tateno et al. (2001) 
[30] 

AFDB 94.40 97.20 − −

Petrenas et al. 
(2015) [21] 

AFDB 97.1 98.3 − −

Zhou et al. (2014) 
[34] 

AFDB 96.89 98.25 97.62 −
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the detection process. 
There are two essential visual features in the patient ECG signals of 

that the practitioners use to identify the atrial fibrillation: (i) the absence 

of P-waves that occasionally are replaced by a series of small waves 
called fibrillation waves, and (ii) the irregular R-R intervals in which the 
heartbeat intervals are not rhythmic. Fig. 5 visualizes the important 
regions of the ECG signal while it contains AF arrhythmia. From the 
figure, we can see the importance of the heartbeats (i.e., through the 
intensity of the red segments), and that the proposed method pays 
attention to the irregularity of R-R intervals and emphasizes on the 
absence of P-waves which are the clinical features in recognizing the 
atrial fibrillation. 

In addition, the proposed hierarchical attention mechanism con-
siders the normal heartbeat rhythms for the detection of the non-AF class 
as shown in Fig. 6. In order to label an ECG signal as the AF, from Fig. 6 
we can again observe that the model is interested in the parts of the ECG 
signal in which the P-waves are absent (replaced with a series of low- 
amplitude oscillations). Since all the heartbeats of the 5-s data seg-
ments in Fig. 6 and are either the normal heartbeats or the atrial 
fibrillation heartbeats, the importance of all the heartbeats approxi-
mately is the same (i.e., the same intensity for the red segments). 
Generally, in all aforementioned figures, our proposed model considers 
the clinically meaningful waves and their corresponding heartbeats in 
its decision-making process. 

5. Discussion 

One of the main challenges of building AF detection methods is that 
the number of AF samples is limited compared to the normal samples. 
Therefore, it results in performance degradation of machine learning 

Fig. 4. Confusion matrices achieved by all the proposed method variants on the MIT-BIH AFIB database.  

Table 2 
Performance of the proposed model for the AF classification task on the MIT-BIH 
AFIB database while the database is not balanced and the data segments for the 
training and test phases come from different ECG recordings.  

Method Database Best Performance (%) 

Sensitivity  Specificity  Accuracy  AUC  

HAN-ECG3 AFDB 90.53 79.54 82.41 89.46 
HAN-ECG2 AFDB 89.86 77.49 81.58 88.65 
HAN-ECG1 AFDB 89.47 75.15 79.96 85.94 
RNN AFDB 89.20 74.38 79.55 85.88  

Table 3 
Performance of the proposed model for the AF classification task on the Physi-
oNet Computing in Cardiology Challenge 2017 dataset (AFDB17).  

Method Database Best Performance (%) 

Sensitivity  Specificity  Accuracy  AUC  

HAN-ECG3 AFDB17 86.02 98.62 96.98 98.46 
HAN-ECG2 AFDB17 86.15 98.50 96.90 98.41 
HAN-ECG1 AFDB17 84.30 98.48 96.64 98.44 
RNN AFDB17 80.52 97.40 95.18 97.18  
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(ML)-based AF detection methods dealing with imbalanced datasets. 
Although such ML-based methods (i.e., deep learning methods) can 
benefit from good artificially generated AF samples by generative 
adversarial networks (GANs) [36], our main goal is to show the potential 
of hierarchical attention mechanisms to provide an interpretable 
arrhythmia detection method. In other words, our proposed method can 
interpret the reason behind the algorithm decisions. 

Our AF detector with the power of interpretability can help physi-
cians verify the performance of the algorithm, trust the results, find new 
patterns, etc. 

Our proposed model have a few limitations including, first, the 
model performance is dependent on the pre-processing step where we 
extract R-peaks and split the ECG signals into small waves (P-, QRS- and 
T waves). For example, from Table 1, it is clear that the proposed 
method using the fixed-size heartbeats and the waves as input results in 
the lowest performance among all the proposed method variants. Hence, 
we can conclude that the pre-processing step in our methodology, as 
shown in Section 3.1, is necessary to obtain better performance. Second, 

regarding Table 1, we used just one dataset (i.e., AFDB) to build and test 
the model. Although it would be more realistic if the model development 
and evaluation were done using different databases, we employed AFDB 
for the two phases to be consistent with other existing methods in 
literature (i.e., Table 1). 

In addition, a future research direction is to apply the proposed 
method to other ECG leads and other arrhythmias to extract new pat-
terns that might be reasonable clinical features in the detection of an 
arrhythmia. 

6. Conclusions 

In this study, we proposed a hierarchical attention mechanism to 
accomplish the detection of atrial fibrillation using a single-lead ECG 
signal. The attention mechanisms allow us to interpret the detection 
results with the high resolution. The experiment results on two different 
databases reveal that our method achieves state-of-the-art performance 
and outperforms the existing algorithms. Furthermore, via 

Fig. 5. Hierarchical attention visualization of a subject with the AF arrhythmia from the PhysioNet Computing in Cardiology Challenge 2017 dataset. The red 
segments depict the heartbeat weights and darker ones present more important heartbeats on the network’s decision, and the blue strips and the yellow circles depict 
the locations of the important waves of the heartbeats in which the darker blue ones show more influence on the detection process. 

Fig. 6. Hierarchical attention visualization of two subjects from the MIT-BIH AFIB database. The first row shows the original ECGs and the second row shows the 
highlighted portions with attention. The blue/yellow parts depict the wave level attention and the red parts show the beat level attention. The darker blue ones show 
more influence on the detection process. 
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visualizations, we demonstrated that the pointed artifacts of signals by 
the model were clinically meaningful. 
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