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A B S T R A C T

Wildfires are one of the costliest and deadliest natural disasters in the US, causing damage to millions of
hectares of forest resources and threatening the lives of people and animals. Of particular importance are risks
to firefighters and operational forces, which highlights the need for leveraging technology to minimize danger
to people and property. FLAME (Fire Luminosity Airborne-based Machine learning Evaluation) offers a dataset of
aerial images of fires along with methods for fire detection and segmentation which can help firefighters and
researchers to develop optimal fire management strategies.

This paper provides a fire image dataset collected by drones during a prescribed burning piled detritus in an
Arizona pine forest. The dataset includes video recordings and thermal heatmaps captured by infrared cameras.
The captured videos and images are annotated, and labeled frame-wise to help researchers easily apply their
fire detection and modeling algorithms. The paper also highlights solutions to two machine learning problems:
(1) Binary classification of video frames based on the presence [and absence] of fire flames. An Artificial
Neural Network (ANN) method is developed that achieved a 76% classification accuracy. (2) Fire detection
using segmentation methods to precisely determine fire borders. A deep learning method is designed based on
the U-Net up-sampling and down-sampling approach to extract a fire mask from the video frames. Our FLAME
method approached a precision of 92%, and recall of 84%. Future research will expand the technique for free
burning broadcast fire using thermal images.
Specifications table

Subject Artificial Intelligence
Specific subject area An aerial imagery dataset for pile fire detection based on image classification and fire segmentation using deep

learning
Type of data Table

Video
Image
Figure

How data were acquired Full HD and 4K camera: Zenmuse X4S camera, Phantom 3 Camera
Thermal Camera: FLIR Vue Pro R
Drones: DJI Matrice 200, DJI Phantom 3 Professional

Data format Raw: .MP4, .MOV
Analysed: .JPEG, .PNG
For more information please visit these two repositories:
https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
https://github.com/AlirezaShamsoshoara/Fire-Detection-UAV-Aerial-Image-Classification-Segmentation-
UnmannedAerialVehicle
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(continued)

Subject Artificial Intelligence
Parameters for data collection The resolution for the FLIR came

The resolution for the Zenmuse
The resolution for the Phantom
The resolution for the Fire_NoFir

Description of data collection Data was collected using aerial d
Flagstaff (Arizona) Fire Departm
ponderosa pine forest on Observ
the temperature of 43F (6C) and

Data source location Flagstaff, Arizona, USA,
Ponderosa pine forest on Observ

Data accessibility Repository name: THE FLAME D
(UAVS)
Data identification number: 10.2
Direct URL to data: https://ieee-
detection-using-drones-uavs
Direct URL to GitHub repository
Image-Classification-Segmentatio

Related research article Shamsoshoara, A., Khaledi, M., A
sharing in uav networks using m
IEEE Annual Consumer Communic
10.1109/CCNC.2019.8651796
Shamsoshoara, A., Khaledi, M., A
A solution for dynamic spectrum
16th annual IEEE international co
10.1109/SAHCN.2019.8824917
Shamsoshoara, A., Afghah, F., R
An autonomous spectrum manag
operations.
IEEE Access,
10.1109/ACCESS.2020.2982932

Related project(s) Most of the related projects are
https://www.cefns.nau.edu/~fa

Value of the data

• Based on the reports from National Interagency Fire Center (NIFC)
in the USA, total number of 51,296 fires burned more than
6,359,641 acres of lands yearly on average from 2010 to 2019
accounting for more than $6 billion in damages.

• This dataset motivates researchers to seek novel solutions for
early fire detection and management. In particular, recent ad-
vances in aerial monitoring systems can provide first responders
and operational forces with more accurate data on fire behaviour
for enhanced fire management.

• Recent advances in artificial intelligence (AI) and machine learn-
ing have made image-based modeling and analysis (e.g., classifi-
cation, real time prediction, and image segmentation) even more
successful in different applications.

. Introduction: Scope, significance, and problem definition

Wildfires have caused severe damage to forests, wildlife habitats,
arms, residential areas, and ecosystems during the past few years.
ased on the reports from National Interagency Fire Center (NIFC) in
he USA, total number of 51,296 fires burned more than 6,359,641
cres of lands yearly on average from 2010 to 2019 accounting for
ore than $6 billion in damages [1,2]. These alarming facts motivate

esearchers to seek novel solutions for early fire detection and manage-
ent. In particular, recent advances in aerial monitoring systems can
rovide first responders and operational forces with more accurate data
n fire behavior for enhanced fire management.
2

640 x 512.
ra is 1280 x 720.
ra is 3480 x 2160.
ssification is 254 x 254.
s (UAVs). The test was conducted with fire managers from the
ho carried out a burn of piled slash on city-owned lands in a
Mesa. The prescribed fire took place on January 16th, 2020 with

ly cloudy conditions and no wind.

Mesa
ET: AERIAL IMAGERY PILE BURN DETECTION USING DRONES

/qad6-r683
ort.org/open-access/flame-dataset-aerial-imagery-pile-burn-

s://github.com/AlirezaShamsoshoara/Fire-Detection-UAV-Aerial-
mannedAerialVehicle
h, F., Razi, A. and Ashdown, J., Distributed cooperative spectrum
gent reinforcement learning.
s & Networking Conference (CCNC), IEEE.

h, F., Razi, A., Ashdown, J. and Turck, K.,
agement in mission-critical UAV networks,
ce on sensing, communication, and networking (SECON), IEEE.

., Mousavi, S., Ashdown, J. and Turk, K.,
t scheme for unmanned aerial vehicle networks in disaster relief

ioned in the website below:

Traditional approaches to detecting and monitoring fires include
stationing personnel in lookout towers or using helicopters or fixed-
wing aircraft to surveil fires with visual and infrared imaging. Recent
research has suggested Internet of Things (IoT) innovations based
on wireless sensor networks [3–5], but such networks would require
further investment and testing before providing practical information.
At broader scales, satellite imagery is widely used for assessing fires
globally [6,7], but typically at relatively coarse resolution and with the
availability of repeat images constrained by satellite orbital patterns.

Considering the challenges and issues of these methods, using Un-
manned Aerial Vehicles (UAVs) for fire monitoring is gaining more
traction in recent years. UAVs offer new features and convenience
including fast deployment, high maneuverability, wider and adjustable
viewpoints, and less human intervention [8–11]. Recent studies inves-
tigated the use of UAVs in disaster relief scenarios and operations such
as wildfires and floods, particularly as a temporary solution when ter-
restrial networks fail due to damaged infrastructures, communication
problems, or spectrum scarcity [12–14].

Recent advances in artificial intelligence (AI) and machine learning
have made image-based modeling and analysis (e.g., classification, real
time prediction, and image segmentation) even more successful in
different applications. Also, with the advent of nanotechnology semi-
conductors, a new generation of Tensor Processing Units (TPUs) and
Graphical Processing Units (GPUs) can provide an extraordinary com-
putation capability for data-driven methods [15]. Moreover, modern
drones and UAVs can be equipped with tiny edge TPU/GPU plat-
forms to perform on-board processing on the fly to facilitate early fire
detection before a catastrophic event happens [16,17].

http://dx.doi.org/10.21227/qad6-r683
https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
https://github.com/AlirezaShamsoshoara/Fire-Detection-UAV-Aerial-Image-Classification-Segmentation-UnmannedAerialVehicle
https://github.com/AlirezaShamsoshoara/Fire-Detection-UAV-Aerial-Image-Classification-Segmentation-UnmannedAerialVehicle
https://doi.org/10.1109/CCNC.2019.8651796
https://doi.org/10.1109/SAHCN.2019.8824917
https://doi.org/10.1109/ACCESS.2020.2982932
https://www.cefns.nau.edu/~fa334/
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Most supervised learning methods rely on large training datasets to
train a reasonably accurate model. Studies such as [18] used a fire
dataset from public sources to perform fire detection based on pre-
trained ANN architectures such as MobileNet and AlexNet. However,
that dataset was based on terrestrial images of the fire. To the best
of our knowledge, there exists no aerial imaging dataset for fire anal-
ysis, something in urgent need to develop fire modeling and analysis
tools for aerial monitoring systems. Note that aerial imagery exhibits
different properties such as low resolutions, and top-view perspective,
substantially different than images taken by ground cameras.

In this paper, we introduce a new dataset as a collection of fire
videos and images taken by drones during a prescribed burning slash
piles in Northern Arizona. The images were taken by multiple drones
with different points of view, different zoom, and camera types in-
cluding regular and thermal cameras. Pile burns can be very helpful
to study spot fires and early-stage fires. Pile burns are typically used
by forest management for cleaning up forest residues (‘‘slash’’) such
as branches and foliage from forest thinning and restoration projects.
Forest treatments are a key management strategy for reducing fuels and
the burning of slash piles is often the most economically efficient and
safe means of removing slash. Piles must be monitored by fire managers
for a few days after ignition to avoid spread outside the intended
burn area. Using automated aerial monitoring systems can substantially
reduce the forest management workload. Moreover, recently Google
proposed Federated Deep Learning (FDL) as decentralized and dis-
tributed learning approaches for wireless devices that have limited
resources such as battery and wireless communication capability [19].
In FDL, wireless devices such as UAVs utilize their local information
and data to train their own model and then they share the model
parameters such as weights with the federated aggregation center.
Later, the FDL aggregation center receives all model parameters from
the nodes (e.g., drones) and starts merging them and distributes a
unique model to all UAVs again to converge faster. FDL methods make
it possible to keep the local data private and secure; also it is suitable
for low bandwidth and wireless applications with limited amounts of
batteries. Also, it only shares models’ parameters instead of sharing all
images and videos with the FDL center which results in a low latency
outcome. Current FLAME dataset is collected using different drones.
Hence, it is possible to consider the FDL applications in this dataset as
well for the future challenges and open problems [20].

We propose two sample problems to evaluate the use of dataset for
real-world fire management problems. The contributions of this paper
include i) proposing the first of its kind aerial imaging dataset for
pile burn monitoring which includes both normal and thermal palettes
as well as FLAME (Fire Luminosity Airborne-based Machine learning
Evaluation), ii) a DL-based algorithm for frame-based fire classification
which can be used for early fire detection, and (iii) a DL-based image
segmentation method for pixel-wise fire masking for fire expansion
modeling. The rest of the paper is structured as follows. Section 2
presents the FLAME dataset along with the related information regard-
ing the hardware and data. Section 3 discusses the methodology based
on the two defined challenges, namely fire classification and fire seg-
mentation. The experiments and results are illustrated in Section 4 over
a variety of metrics. Conclusions and discussion points are provided in
Section 6.

2. FLAME dataset: Hardware and applicable data

This section details the hardware used to collect information, the
data modalities, and types of the captured information.

Prescribed burning of slash piles is a common occurrence primarily
during the winter months in high-elevation forests of the Southwest.
Prescribed fires provide excellent opportunities for researchers to col-
lect and update imagery data. The current study shows the results of
the first test, and from which is available to continually update the
dataset by adding more test results. The test was conducted with fire
3

managers from the Flagstaff (Arizona) Fire Department who carried
out a burn of piled slash on city-owned lands in a ponderosa pine
forest on Observatory Mesa. The prescribed fire took place on January
16th, 2020 with the temperature of 43◦F (∼ 6◦C) and partly cloudy
conditions and no wind.

2.1. Hardware

This study utilizes different drones and cameras to create a dataset
of fire aerial images. Table 1 describes the technical specification of the
utilized drones and cameras.

2.2. Applicable data for the defined problem

This section presents the details of the captured images, videos. The
captured videos are converted to frames based on the recorded Frames
Per Second (FPS). Four types of video including the normal spectrum,
fusion, white-hot, and green-hot palettes are available in the FLAME
dataset [25].

The normal spectrum palette was recorded using both Zenmuse
X4S and the phantom 3 camera. Other thermal and IR outputs were
collected using the Forward Looking Infrared (FLIR) vue Pro R camera.
Several video clips which include both fire and no fire footage are
available. The FLIR camera has a 1280 × 720 resolution with 29 frame
per seconds (FPS). Another 6 min of video is available for one pile burn
from the start of the burning at 1280 × 720 resolution and 29 FPS.
The H.264 codec was used for all the recordings. More details about
these videos are available in Table 2 along with the dataset link. Fig. 1
demonstrates some representative frames from both fire and no-fire
videos. The full videos are available in the FLAME dataset repository.

The FLAME dataset also includes thermal videos such as Fusion,
WhiteHot, and GreenHot palettes. All videos were captured with the
resolution of 640 × 512 and with 30 FPS. Multiple videos of fire and
no-fire types with different lengths are available. Fig. 2 shows some
randomly selected frames for these thermal videos. More details about
the FLAME dataset are available in Table 2. Also, a sample video of this
dataset is available on YouTube [26]. Sections 3.1 and 3.2 demonstrate
some of the videos conversions into frames to address research chal-
lenges such as fire classification and fire segmentation. Researchers can
use applications of their choice to extract the frames from the videos
based on the required FPS. The FLAME dataset including all images,
videos, and data are available on IEEE-Dataport [25].

3. Goals: Suggested experiments and methodology

This section presents two example applications that can be de-
fined based on the collected FLAME dataset along with Deep Learning
solutions for these problems. The first problem is the fire versus no-
fire classification using a deep neural network (DNN) approach. The
second problem deals with fire segmentation, which can be used for
fire detection by masking the identified fire regions on video frames
classified as fire-containing in the first problem.

3.1. Fire vs no-fire classification

The image classification problem is one of the challenging tasks in
the image processing domain. In the past, traditional image processing
techniques utilized RGB channel comparison to detect different objects
such as fire in frames or videos [27–29]. These traditional methods are
not free of errors and are not fully reliable [30]. For instance, RGB value
comparison methods that usually consider a threshold value to detect
fire may detect sunset and sunrise as a false positive outcome. However,
training a DNN to perform this image classification task helps to learn
elements not germane to the fire. Also, some studies such as [31,32]
perform pixel-based classification and segmentation based on the HSV

(Hue, Saturation, Value) format. In the present study, a supervised
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Table 1
Technical specification of hardware and tools.

Phantom 3 Professional, DJI, 1280 gram, diagonal size=350 mm,
Max speed=16 m/s(∼57 kph), max flight time is 23 min,
Flight time is reduced to 18 mins due to additional weight [21].

Matrice 200, DJI, 3.80 kg, size:71 6 mm × 220 mm × 236 mm,
payload up to 2 kg, 16 m/s (∼61 kph), batteries: (TB50) and TB55
Max flight time: 38 min, operation range of 7 km [22].

Zenmuse X4S, DJI, gimbal: Matrice 200, weight: 253 gram,
Field Of View (FOV): 84◦, resolution: Full HD to Cinematic 4K
sensor: CMOS 20MPixels [23].

Vue Pro R, FLIR, IR camera, control: Bluetooth and
Pulse Width Modulation (PWM) signal, FOV: 45◦, resolution: 640 × 512
Lens: 6.8 mm thermal, no gimbal [24].

Phantom 3 camera, DJI, sensor: 1/2.3" CMOS 12.4MPixels
FOV: 94◦, (FPSs): 24 to 60, resolution: HD, FHD, UHD [21].
Fig. 1. Frame samples of the normal spectrum palette.
Fig. 2. Frame samples of thermal images including Fusion, WhiteHot, and GreenHot palettes from top row to the bottom row.
machine learning method is used to classify the captured frames from
camera. For mixed images when fire and non-fire parts coexist, the
frame will be considered as the fire-labeled frame and when there is
no fire in the frame, it will considered as non-fire-labaled. Instead of
the green or fusion heat map, the normal range spectrum of images for
the classification was selected using the Zenmuse X4S and the camera
from DJI Phantom 3. The binary classification model which was used in
4

this study is the Xception network [33] proposed by Google-Keras1. The
Xception model is a deep Convolutional Neural Network (DCNN). The
structure of the DCNN is shown in Fig. 3. Replacing the standard Incep-
tion modules of the Inception architecture with depth-wise separable
convolutions resulted in the Xception network [33–35].

1 https://keras.io/examples/vision/image_classification_from_scratch/

https://keras.io/examples/vision/image_classification_from_scratch/
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Table 2
Dataset information (Link) [25].

Type Camera Palette Duration Resolution FPS Size Application Usage Labeled

1 Video Zenmuse Normal(.MP4) 966 s 1280 × 720 29 1.2 GB Classification – N
2 Video Zenmuse Normal(.MP4) 399 s 1280 × 720 29 503 MB – – N
3 Video FLIR WhiteHot(.MOV) 89 s 640 × 512 30 45 MB – – N
4 Video FLIR GreenHot(.MOV) 305 s 640 × 512 30 153 MB – – N
5 Video FLIR Fusion(.MOV) 25 mins 640 × 512 30 2.83 GB – – N
6 Video Phantom Normal(.MOV) 17 mins 3840 × 2160 30 32 GB – – N
7 Frame Zenmuse Normal(.JPEG) 39,375 frames 254 × 254 – 1.3 GB Classification Train/Val Y
8 Frame Phantom Normal(.JPEG) 8617 frames 254 × 254 – 301 MB Classification Test Y
9 Frame Phantom Normal(.JPEG) 2003 frames 3480 × 2160 – 5.3 GB Segmentation Train/Val/Test Y(Fire)
10 Mask – Binary(.PNG) 2003 frames 3480 × 2160 – 23.4 MB Segmentation Train/Val/Test Y(Fire)
Fig. 3. Small version of the Xception network for the fire classification.
5

Fig. 3 is the concise version of the Xception model. The Xception
model has three main blocks: (1) the input layer, (2) the hidden
layers, and (3) the output layer. The size of the input layer depends
on the image size and the number of channels which in our case
is (254 × 254 × 3). Then the value of RGBs in different channels
are scaled to a float number between 0 and 1.0. The hidden layers
rely on depth-wise separable convolutions and shortcut between the
convolution blocks (ResNet [36]). The entry flow of the hidden layers is
a pair of 2-Dimensional (2D) convolutional blocks with a size of 8 and a
stride of 2 × 2. Each block follows a batch normalization and a Rectified
Linear Unit (ReLU) activation function [37]. The batch normalization
is used to speed up the training process and bring more randomness by
decreasing the importance of initial weights and regularize the model.
Next, the model follows two separable 2D convolutional blocks. The
last block of the hidden layer is a separable 2D convolutional layer
with a size of 8 followed by another batch normalization and the ReLU
function. Since the fire-detection is a binary classification task (Fire/No
Fire), the activation function for the output layer is a Sigmoid function.
The equation for the Sigmoid function is shown in (1),

𝑃 (label=Fire) = 𝜎(label=Fire|𝜁 (𝜃)) = 1
1 + 𝑒−𝜁 (𝜃)

, (1)

where 𝜁 (𝜃) is the value of the output layer which is extracted based on
the input frames and the RGB values of each pixel and all the weights
across the hidden network. 𝜃 is the weight for the last layer of the
network. The output value of the Sigmoid function is the probability
of fire detection based on the imported frames into the network. To
train the Xception network and find the weights of all neurons, a
value loss function is targeted to increase the accuracy of the networks
and find the optimal values for the weights. As the problem in this
section is a binary classification, the considered loss function is a binary
cross-entropy defined as

(𝑦, 𝑦̂) = (2)

− 1
𝑁

𝑁
∑

𝑖=1
𝑦𝑖 ∗ log(𝑝(𝑦̂𝑖)) + (1 − 𝑦𝑖) ∗ log(1 − 𝑝(𝑦̂𝑖)),

where 𝑁 is the number of total samples in each batch used to update
the loss function for each epoch. 𝑦 is the ground truth label for the
frames of types fire (𝑦 = 1) and no/fire (𝑦 = 0) based on the
training data. 𝑝(𝑦̂) is the predicted probability of a frame belonging
to the fire class. Next, the Adam optimizer is used to minimize the
loss function and find the optimal weights during the learning process.
After training the network with the training dataset, the evaluation is
performed using a test dataset in Section 4. The implemented code for
this learning model is available on GitHub [38]. To work with the code
of this section, items 7 and 8 from Table 2 are used for the training
and test sets. A detailed explanation about the repository is given on
GitHub. The code used in this section works with Tensorflow 2.3.0 and
Keras 2.4.0. To train the model, the user can change the Mode of the
program to ‘‘Training’’ in the config.py file. The user can change all
variables and parameters such as batch size and number of epochs in
the config.py file. After the training phase, the user can change the
Mode to ‘‘Classification’’ to evaluate the performance on the test set.

https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
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3.2. Fire segmentation

This section considers the problem of image segmentation for frames
labeled as ‘‘fire’’ by the fire classification algorithm presented in Sec-
tion 3.1. Studying the fire segmentation problem is useful for scenarios
like detecting small fires [39]. Also, fire segmentation helps fire man-
agers localize different discrete places of active burning for the purpose
of fire monitoring. The goal is to propose an algorithm to find the
pile burn segments in each frame and generate relevant masks. These
segmentation problems were handled differently in the past using
image processing and RGB threshold values to segment different data
batches which exhibits relatively high error rates [30,40,41]. The goal
is to develop an image semantic segmentation to perform a pixel-wise
classification for each frame at the pixel level to define a fire mask
for the generated output. To accomplish this task, a DCNN model is
implemented to predict the label of each pixel based on the imported
data. This segmentation problem can be recast as a binary pixel-wise
classification problem, where each pixel can take two labels: ‘‘fire’’
and ‘‘non-fire’’ (background). To accomplish the image segmentation
task, the fire test dataset from Section 3.1 is considered as a training
dataset. To train a DCNN model, a Ground Truth Mask dataset is
required. Different tools and applications such as Labelbox [42], Django
Labeller [43], LabelImg [44], MATLAB Image Labeler [45], GNU Image
Manipulation Program (GIMP) [46], etc are available to perform dif-
ferent types of the manual image segmentation such as pixel labeling,
annotation (rectangles, lines, and cuboid) on the Regions Of Interest
(ROI) to provide training data for the utilized deep learning model.
The MATLAB (TM) Image Labeler is used on 2003 frames to generate
the Ground Truth Masks. This subcategory of the FLAME dataset of
masks and images is presented in Table 2. The implemented image
segmentation model is adopted from the U-Net convolutional network
developed for biomedical image segmentation [47]. U-Net is an end-
to-end technique between the raw images and the segmented masks.
A few changes are made to this network to accommodate the FLAME
dataset and adapt it to the nature of this problem. The ReLU activation
function is changed to Exponential Linear Unit (ELU) of each two-
dimensional convolutional layer to obtain more accurate results [48].
The ELU function has a negative outcome smaller than a constant 𝛼
for the negative input values and it exhibits a smoother behavior than
the ReLU function. The structure of the customized U-Net is shown
in Fig. 4. The backbone of the U-Net consists of a sequence of up-
convolutions and concatenation with high-resolution features from the
contracting path.

The size of the input layer is 512 × 512 × 3 designed to match the
size of the inputs images and three RGB channels. For computational
convenience, the RGB values (between 0 and 255) are scaled down
by 255 to yield float values between 0 and 1. Next, it follows the
first contracting block including a two-dimensional fully convolutional
layers with the ELU activation function, a dropout layer, another same
fully convolutional layer, and a two-dimensional max pooling layer.
This structure is repeated another three times to shape the left side
of the U shape. Next, there are two two-dimensional fully connected
layers with a dropout layer in between, the same structure of the
left side is repeated for the right side of the U shape to have a
symmetric structure for the up-convolution path in each block. Also,
there exists a concatenation between the current block and the peer
block from the contracting path. Since the pixel-wise segmentation is a
binary classification problem, the last layer has the Sigmoid activation
function.

The DCNN utilizes a dropout method to avoid the overfitting issue in
the FLAME dataset analysis and realize a more efficient regularization
noting the small number of ground truth data samples. The utilized
loss function is the binary cross entropy similar to (2). The Adam
optimizer is used to find the optimal value of weights for the neurons.
The evaluation of the FLAME-trained model with the ground truth data
is described in Section 4.2. The implemented code for this section is
6

Fig. 4. Customized version of the U-Net for the fire segmentation.

available on GitHub [38]. The detailed explanation for the repository
and the code is available on GitHub. This section uses items 9 and
10 from Table 2 to access the fire images and their ground truth
data masks. The user can change the Mode to ‘‘Segmentation’’ in the
config.py file to run the fire segmentation code. The user can change
all variables such as batch size, number of epochs, number of classes
and channels, and training and test sets ratio in the config.py file.

4. Results: Metrics and guidance on reporting results

In this section, we present the results of the two different problems
of fire classification and fire segmentation. First, we provide the details
of the parameters used in our experiments. Next, we discuss the results
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Fig. 5. Accuracy and loss values for the training and validation sets.
of each algorithm. All simulations for the training, validation, and
testing phases, are performed using a AMD Ryzen 9 3900X with NVidia
RTX 2080 Ti on an Ubuntu system.

4.1. Fire vs no-fire classification

In the training section, the total number of the frames is 39,375
which includes 25,018 frames of type ‘‘fire’’ and 14,357 frames of
type ‘‘non-fire’’. The training dataset is further split to 80% training
and 20% validation sets. All frames are shuffled before feeding into
the network. Also, augmentation methods such as horizontal flipping
and random rotation are used to create new frames and address the
issue of bias for unbalanced number of samples in the two ‘‘fire’’ and
‘‘non-fire’’ classes. The training phase ran over 40 epochs and the
learning rate for the Adam optimizer is set to 0.001 which remains
fixed during the training phase. Also, the batch size of 32 is used to
fit the model in the training phase. To evaluate the accuracy and loss
on the test dataset, 8617 frames including 5137 fire-labeled frames
and 3480 No-fire-labeled frames are fed into the pre-trained networks.
Table 3 reports loss and accuracy on training, validation, and test sets.
It is noteworthy to mention that all frames for the training phase are
collected using the Matrice 200 drone using Zenmuse X4S camera and
all frames for the test set are collected using the Phantom drone and
its default mounted camera. Therefore, no overlap exists between the
training and test samples. This fact confirms that our method is not
biased to the imaging equipment properties, and the actual accuracy
would be even higher when using the same imaging conditions for the
training and test phase. The achieved accuracy of the ‘‘Fire vs No-Fire’’
classification is 76.23%.

Fig. 5 demonstrates the loss and accuracy for the training phase for
both the training and validation sets. Also, Fig. 6 presents the confusion
matrix for this binary fire classification task for all predictions. The
vertical axis shows the true label of frames and the horizontal axis
expresses the predicted label. The confusion matrix considers two
classes which is plotted for the test dataset. Since, the ratio of fire and
No-fire frames was imbalanced at the training phase, the rate of the
false positive (classifying a true no-fire as fire) is higher than the false
negative rate (classifying a true fire as no-fire).
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Fig. 6. Confusion matrix for the true and predicted labels.

Table 3
Accuracy and loss for evaluation of the fire classification.

Dataset Performance

Loss Accuracy(%)

Test set 0.7414 76.23
Validation set 0.1506 94.31
Training set 0.0857 96.79

4.2. Fire segmentation

The purpose of fire segmentation is to accurately localize and ex-
tract the fire regions from the background. Therefore, the video frames
within the test set which are labeled as ‘‘fire’’ by the fire classification
stage in section (Section 3.1) are used here for training, validation, and
test. The total number of frames is 5137 and 2003 masks generated
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Fig. 7. Performance of the fire segmentation on six frames of the test set.
using the MATLAB (TM) Image Labeler tool for the ground truth data.
The ground truth masks and data are generated based on the human
subject matter expert (SME) eye efficiency to mark the fire pixels using
manual polygon shape in MATLAB (TM) Image Labeler. The split ratio
between the training and validation data is 85% and 15%. The frames
and ground truth data were shuffled accordingly before importing into
the training model. The maximum number of epochs is 30; however,
an early stop callback was considered when the performance does
not substantially change. The batch size for the training is 16. Fig. 7
demonstrates six samples of the test set along with the expected ground
truth masks and the generated masks from the trained network. The
first row is the input frame to the model, the second row is the
ground truth (gTruth) which is the expected mask, and the last row
is the generated mask by the trained model. Also, Table 4 shows the
performance evaluation of this model. In this table, precision, recall,
and Area Under Curve (AUC), F1-score, sensitivity, specificity, and
Mean Intersection-Over-Union (Mean IOU) are reported.

4.3. Federated learning: Fire segmentation on drone’s computer

This section uses the structure of Section 3.2 and the U-Net model
is utilized for the Fire Segmentation challenge. To test the capability of
the drone’s computer regarding the machine learning approach, an AI
mini-computer, NVidia Jetson Nano [17], is used to train a model for
the Fire segmentation approach on the FLAME dataset.

Jetson Nano is available in two versions: (1) 4GB RAM developer
kit, and (2) 2GB RAM developer kit. In this Implementation, the 4GB
version is used with the technical specifications of a 128-core Maxwell
GPU, a Quad-core ARM A57 @ 1.43 GHz CPU, 4GB LPDDR4 RAM, and
a 32GB microSD storage. To test Jetson Nano for the federated learning,
items (9) and (10) from Table 2 are used for the fire segmentation.
We assumed that each drone is equipped with Jetson Nano. Tensor-
flow Lite (TF-Lite) and the default Tensorflow are the two versions
of this framework. TF-Lite is designed and integrated for inference
on devices and models with limited computation capability. The full
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explanation of how to install Tensorflow on NVidia Jetson Nano is
available online [49].

Since Jetson Nano has limited RAM, we assumed that each drone
has access to a portion of the FLAME dataset. Only 500 fire images
and masks are considered for the training and validation phase on the
drone. As we aimed at learning a model on a smaller subset of the
FLAME dataset and inferring that model, the default Tensorflow version
is used here. For this purpose, only 500 images and masks were used for
the training and validation of the fire segmentation approach. Also, the
image and mask dimension for each input is reduced to 128 × 128 × 3
rather than 512 × 512 × 3. To save more memory on the RAM, all
peripherals were turned off and only WiFi was working at that time
for the Secure Shell (SSH) connection. The designed and trained model
was sent using the SSH File Transfer Protocol (SFTP) to another desktop
computer as an aggregation federated server. An external wireless
network interface card was used and the Jetson Nano booted using a
cellphone power-bank. The setup of this node is demonstrated in Fig. 8.

Compared to the desktop training and validation phases in Sec-
tion 4.2, the IOU was reduced because of the smaller number of training
images and masks. The reported fire segmentation accuracy is 99%
which is similar to the previous section. However, the IOU metric which
is important in image segmentation problems is reduced to 49.75%.
Also, the training phase was longer due to limitations on GPU cores.
For the future, researchers may consider two or more local federated
nodes to increase the performance for the global trained model via the
aggregated federated server.

5. Open challenges regarding the dataset

This study proposed two different challenges regarding the dataset.
We encourage other researchers to consider this available FLAME
dataset and improve the accuracy of the fire classification problem
which might include providing more ground truth data as a labeled
mask for the fire segmentation. Also, three other thermal images such
as GreenHot, WhiteHot, and the fusion are also available for further
investigation regarding the fire segmentation and classification. Other
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Table 4
Performance evaluation of the customized U-Net on the fire dataset for the fire segmentation.

Dataset Performance evaluation

Precision(%) Recall(%) AUC(%) F1-Score(%) Sensitivity(%) Specificity(%) IOU(%)

Image Segmentation 91.99 83.88 99.85 87.75 83.12 99.96 78.17
Fig. 8. NVidia Jetson Nano with the wireless card and power-bank battery.

considerations include the type of fire elements including the different
structures of the fire (white hot core, exterior, etc.). These elements can
be segmented as different parts of the fire to have better understanding
of the fire behavior. Another challenge or problem could be investigat-
ing different fire detection models on these thermal images to see which
type of the data has better accuracy for the model. Perhaps, another
important research direction would be developing integrative imagery-
based fire spread models by incorporating other environmental factors
such as the terrain model, and the vegetation fuel profile of the region.
Extracting such factors from the images and videos and comparing
with alternative sources can advance the image-based fire modeling
algorithms. Other open challenges and future directions regarding the
FLAME dataset include but not limited to (1) transfer learning, (2)
context-based fire detection using a model and then zero-shot learning,
(3) fire content analysis, (4) temporal analysis, (5) surrogate airborne
perspective analysis, (6) metric design, (7) performance standards, (8)
user displays, (9) federated and distributed learning using multiple
drones, (10) edge node efficiency, and (11) occlusion robustness.

6. Conclusion

This paper provided the FLAME (Fire Luminosity Airborne-based
Machine learning Evaluation) dataset for pile burns in Northern Ari-
zona forest. Two drones were used to collect aerial frames and videos in
four different palettes of normal, Fusion, WhiteHot, and GreenHot using
normal and thermal cameras. The frames were used in two different
applications, in the first challenge, a convolutional neural network
was used as a deep learning binary fire classification to label data.
In the second approach, a machine learning approach was proposed
to extract fire masks from fire labeled data as an image segmenta-
tion technique. These exemplary applications show the utility of the
FLAME dataset in developing computer tools for fire management and
control. Also, FLAME dataset can be used as a benchmark dataset for
9

testing generic image processing algorithms. We provide numerical
result for the performance of the proposed two algorithms developed
for image classification and detection. We believe that developing more
advanced models by the research community can further improve the
reported results. Another potential use for this dataset is developing
fire classification and detection algorithms by a collective analysis of
different imaging modalities including regular and thermal images.
Also, researchers can utilize fire segmentation methods to define related
networking and monitoring problems, such as optimal task scheduling
for a fleet of drones to optimally cover the pile burns in a certain region
at shortest time possible.
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