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Abstract. We consider the problem of tracking one solution path
defined by a polynomial homotopy on a parallel shared memory com-
puter. Our robust path tracker applies Newton’s method on power series
to locate the closest singular parameter value. On top of that, it com-
putes singular values of the Hessians of the polynomials in the homotopy
to estimate the distance to the nearest different path. Together, these
estimates are used to compute an appropriate adaptive step size. For
n-dimensional problems, the cost overhead of our robust path tracker
is O(n), compared to the commonly used predictor-corrector methods.
This cost overhead can be reduced by a multithreaded program on a
parallel shared memory computer.

Keywords: Adaptive step size control · Multithreading · Newton’s
method · Parallel shared memory computer · Path tracking ·
Polynomial homotopy · Polynomial system · Power series

1 Introduction

A polynomial homotopy is a system of polynomials in several variables with one
of the variables acting as a parameter, typically denoted by t. At t = 0, we know
the values for a solution of the system, where the Jacobian matrix has full rank:
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we start at a regular solution. With series developments we extend the values of
the solution to values of t > 0.

As a demonstration of what robust in the title of this paper means, on track-
ing one million paths on the 20-dimensional benchmark system posed by Kat-
sura [14], Table 3 of [15] reports 4 curve jumpings. A curve jumping occurs when
approximations from one path jump onto another path. In the runs with the
MPI version for our code (reported in [18]) no path failures and no curve jump-
ings happened. Our path tracking algorithm applies Padé approximants in the
predictor. These rational approximations have also been applied to solve non-
linear systems arising in power systems [19,20]. In [13], Padé approximants are
used in symbolic deformation methods.

This paper describes a multithreaded version of the robust path tracking
algorithm of [18]. In [18] we demonstrated the scaling of our path tracker to
polynomial homotopies with more than one million solution paths, applying
message passing for distributed memory parallel computers. In this paper we
consider shared memory parallel computers and, starting at one single solution,
we investigate the scalability for increasing number of equations and variables,
and for an increasing number of terms in the power series developments.

As to a comparison with our MPI version used in [18], the current parallel
version is made threadsafe and more efficient. These improvements also benefit
the implementation with message passing.

In addition to speedup, we ask the quality up question: if we can afford
the running time of a sequential run in double precision, with a low degree of
truncation, how many threads do we need (in a run which takes the same time
as a sequential run) if we want to increase the working precision and the degrees
at which we truncate the power series?

Our programming model is that of a work crew, working simultaneously to
finish a number of jobs in a queue. Each job in the queue is done by one single
member of the work crew. All members of the work crew have access to all data
in the random access memory of the computer. The emphasis in this research is
on the high level development of parallel algorithms and software [16]. The code
is part of the free and open source PHCpack [21], available on github.

The parallel implementation of medium grained evaluation and differentia-
tion algorithms provide good speedups. The solution of a blocked lower triangular
linear system is most difficult to compute accurately and with good speedup. We
describe a pipelined algorithm, provide an error analysis, and propose to apply
double double and quad double arithmetic [12].

2 Overview of the Computational Tasks

We consider a homotopy H given by n polynomials f1, . . . , fn in n + 1 variables
x1, . . . , xn, t, where t is thought of as the continuation parameter. A solution path
of the homotopy is denoted by x(t). For a local power series expansion x(t) =
c0 + c1t + c2t

2 + · · · of x(t), where x(t) is assumed analytic in a neighborhood
of t = 0, the theorem of Fabry [9] allows us to determine the location of the
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parameter value nearest to t = 0 where x(t) is singular. With the singular
values of the Jacobian matrix J = (∂fi/∂xj)1≤i,j≤n and the Hessian matrices of
f1, . . . , fn, we estimate the distance to the nearest solution for t fixed to zero.
The step size Δt is the minimum of two bounds, denoted by C and R.

1. C is an estimate for the nearest different solution path at t = 0. To obtain this
estimate we compute the first and second partial derivatives at a point and
organize these derivatives in the Jacobian and Hessian matrices. The bound
is then computed from the singular values of those matrices:

C =
2σn(J)√

σ2
1,1 + σ2

2,1 + · · · + σ2
n,1

, (1)

where σn(J) is the smallest singular value of the Jacobian matrix J and σk,1

is the largest singular value of the Hessian of the k-th polynomial.
2. R is the radius of convergence of the power series developments. Applying the

theorem of Fabry, R is computed as the ratio of the moduli of two consecutive
coefficients in the series. For a series truncated at degree d:

x(t) = c0 + c1t + c2t
2 + · · · + cdt

d, z = cd−1/cd, R = |z|, (2)

where z indicates the estimate for the location of the nearest singular param-
eter value.

The computations of R and C require evaluation, differentiation, and linear
algebra operations. Once Δt is determined, the solution for the next value of the
parameter is predicted by evaluating Padé approximants constructed from the
power series developments. The last stage is the shift of the coefficients with −Δt,
so the next step starts again at t = 0.

The stages are justified in [18]. In [18], we compared with v1.6 of Bertini [4]
(both in runs in double precision and in runs in adaptive precision [3]) and v1.1
of HomotopyContinuation.jl [6]. In this paper we focus on parallel algorithms.

3 Parallel Evaluation and Differentiation

The parallel algorithms in this section are medium grained. The jobs in the eval-
uation and differentiation correspond to the polynomials in the system. While
the number of polynomials is not equal to the number of threads, the jobs are
distributed evenly among the threads.

3.1 Algorithmic Differentiation on Power Series

Consider a polynomial system f in n variables with power series (all truncated to
the same fixed degree d), as coefficients; and a vector x of n power series, trun-
cated to the same degree d. Our problem is to evaluate f at x and to compute
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all n partial derivatives. We illustrate the reverse mode of algorithmic differen-
tiation [11] with an example, on f = x1x2x3x4x5.

x1x2 = x1 � x2

x1x2x3 = x1x2 � x3

x1x2x3x4 = x1x2x3 � x4

x1x2x3x4x5 = x1x2x3x4 � x5

x5x4 = x5 � x4

x5x4x3 = x5x4 � x3

x5x4x3x2 = x5x4x3 � x2

x1x3x4x5 = x1 � x5x4x3

x1x2x4x5 = x1x2 � x5x4

x1x2x3x5 = x1x2x3 � x5

(3)
In the first column of (3), we see ∂f

∂x5
and the evaluated f on the last two rows.

The last row of the middle column gives ∂f
∂x1

and the remaining partial derivatives
are in the last column of (3).

Evaluating and differentiating a product of n variables in this manner takes
3n − 5 multiplications. For our problem, every multiplication is a convolution
of two truncated power series xi = xi,0 + xi,1t + xi,2t

2 + · · · + xi,dt
d and xj =

xj,0 + xj,1t + xj,2t
2 + · · · + xj,dt

d, up to degree d. Coefficients of xi � xj of terms
higher than d are not computed.

Any monomial is represented as the product of the variables that occur in
the monomial and the product of the monomial divided by that product. For
example, x3

1x2x
6
3 is represented as (x1x2x3) · (x2

1x
5
3) We call the second part in

this representation the common factor, as this factor is common to all partial
derivatives of the monomial. This common factor is computed via a power table
of the variables. For every variable xi, the power table stores all powers xe

i , for e
from 2 to the highest occurrence in a common factor. Once the power table
is constructed, the computation of any common factor requires at most n − 1
multiplications of two truncated power series.

As we expect the number of equations and variables to be a multiple of the
number of available threads, one job is the evaluation and differentiation of one
single polynomial. Assuming each polynomial has roughly the same number of
terms, we may apply a static job scheduling mechanism. Let n be the number of
equations (indexed from 1 to n), p the number of threads (labeled from 1 to p),
where n ≥ p. Thread i evaluates and differentiates polynomials i + kp, for k
starting at 0, as long as i + kp ≤ n.

3.2 Jacobians, Hessians at a Point, and Singular Values

If we have n equations, then the computation of C, defined in (1), requires n+1
singular value decompositions, which can all be computed independently.

For any product of n variables, after the computation of its gradient with the
reverse mode, any element of its Hessian needs only a couple of multiplications,
independent of n. We illustrate this idea with an example for n = 8. The third
row of the Hessian of x1x2x3x4x5x6x7x8, starting at the fourth column, after
the zero on the diagonal is

x1x2 � x5x6x7x8, x1x2 � x4 � x6x7x8, x1x2x4 � x5 � x7x8,
x1x2x4x5 � x6 � x8, x1x2x4x5x6 � x7.

(4)
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In the reverse mode for the gradient we already computed the forward products
x1x2, x1x2x3, x1x2x3x4, x1x2x3x4x5, x1x2x3x4x5x6, and x1x2x3x4x5x6x7. We
also computed the backward products x8x7, x8x7x6, x8x7x6x5, x8x7x6x5x4.

For a monomial xe1
1 xe2

2 · · · xen
n with higher powers ek > 1, for some indices k,

the off diagonal elements are multiplied with the common factor xe1−1
1 � xe2−1

2

� · · · � xen−1
n multiplied with eiej at the (i, j)-th position in the Hessian. The

computation of this common factor requires at most n−1 multiplications (fewer
than n−1 if there are any ek equal to one), after the computation of table which
stores the values of all powers xek

k of all values for xk, for k = 1, 2, . . . , n.
Taking only those m indices ik for which eik > 1, the common factor for all

diagonal elements is x
ei1−2
i1

x
ei2−2
i2

· · · x
eim−2
im

. The k-th element on the diagonal
then needs to be multiplied with eik(eik − 1) and the product of all squares x2

ij
,

for all j �= k for which eij > 1. The efficient computation of the sequence x2
i2

x2
i3· · · x2

im
, x2

i1
x2

i3
· · · x2

im
, x2

i1
x2

i2
· · · x2

im−1
happens along the same lines as the

computation of the gradient, requiring 3m − 5 multiplications.
In the above paragraphs, we summarized the key ideas and results of the

application for algorithmic differentiation. A detailed algorithmic description
can be found in [7].

4 Solving a Lower Triangular Block Linear System

In Newton’s method, the update Δx(t) to the power series x(t) is computed as
the solution of a linear system, with series for the coefficient entries.

Applying linearization, we solve a sequence of as many linear systems (with
complex numbers as coefficients), as the degree of the series. For each linear
system in the sequence, the right hand side is computed with the solution of
the previous system in the sequence. If in each step we lose one decimal place of
accuracy, at the end of sequence we have lost as many decimal places of accuracy
as the degree of the series.

4.1 Pipelined Solution of Matrix Series

We introduce the pipelined solution of a system of power series by example.
Consider a power series A(t), with coefficients n-by-n matrices, and a series b(t),
with coefficients n-dimensional vectors. We want to find the solution x(t) to
A(t)x(t) = b(t). For series truncated to degree 5, the equation

(
A5t

5 + A4t
4 + A3t

3 + A2t
2 + A1t + A0

) · (
x5t

5 + x4t
4 + x3t

3 (5)

+ x2t
2 + x1t + x0

)
= b5t

5 + b4t
4 + b3t

3 + b2t
2 + b1t + b0 (6)
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leads to the triangular system (derived in [5] applying linearization)

A0x0 = b0 (7)
A0x1 = b1 − A1x0 (8)
A0x2 = b2 − A2x0 − A1x1 (9)
A0x3 = b3 − A3x0 − A2x1 − A1x2 (10)
A0x4 = b4 − A4x0 − A3x1 − A2x2 − A1x3 (11)
A0x5 = b5 − A5x0 − A4x1 − A3x2 − A2x3 − A1x4. (12)

To solve this triangular system, denote by F0 = F (A0) the factorization of A0

and x0 = S(F0, b0), the solution of A0x0 = b0 making use of the factorization F0.
Then the Eqs. (7) through (12) are solved in the following steps.

1. F0 = F (A0)
2. x0 = S(F0, b0)
3. b1 = b1 − A1x0, b2 = b2 − A2x0, b3 = b3 − A3x0, b4 = b4 − A4x0,

b5 = b5 − A5x0

4. x1 = S(F0, b1)
5. b2 = b2 − A1x1, b3 = b3 − A2x1, b4 = b4 − A3x1, b5 = b5 − A4x1

6. x2 = S(F0, b2)
7. b3 = b3 − A1x2, b4 = b4 − A2x2, b5 = b5 − A3x2

8. x3 = S(F0, b3)
9. b4 = b4 − A1x3, b5 = b5 − A2x3

10. x4 = S(F0, b4)
11. b5 = b5 − A1x4

12. x5 = S(F0, b5)

(13)

Statements on the same line can be executed simultaneously. With 5 threads, the
number of steps is reduced from 22 to 12. For truncation degree d and d threads,
the number of steps in the pipelined algorithm equals 2(d + 1). On one thread,
the number of steps equals 2(d + 1) + 1 + 2 + · · · + d − 1 = d(d − 1)/2 + 2(d + 1).
With d threads, the speedup is then

d(d − 1)/2 + 2(d + 1)
2(d + 1)

= 1 +
d(d − 1)
4(d + 1)

. (14)

As d → ∞, this ratio equals 1 + d/4. Note that the first step is typically O(n3),
whereas the other steps are O(n2).

Observe in (13) that the first operation on every line is on the critical path
of all possible parallel executions. For the example in (13) this implies that the
total number of steps will never become less than 12, even as the number of
threads goes to infinity. The speedup of 22/12 remains the same as we reduce
the number of threads from 5 to 3, as the updates of b4 and b5 in step 3 can be
postponed to the next step. Likewise, the update of b5 in step 5 may happen in
step 6. Generalizing this observation, the formula for the speedup in (14) remains
the same for d/2 + 1 threads (instead of d) in case d is odd. In case d is even,
then the best speedup is obtained with d/2 threads.
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Better speedups will be obtained for finer granularities, if the matrix factor-
izations are executed in parallel as well.

4.2 Error Analysis of a Lower Triangular Block Toeplitz Solver

In Sect. 4.1, we designed a pipelined method to solve the following lower trian-
gular block Toeplitz system of equations

⎡
⎢⎢⎢⎢⎢⎣

A0

A1 A0

A2 A1 A0

...
...

...
. . .

Ai Ai−1 Ai−2 · · · A0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x0

x1

x2

...
xi

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

b0
b1
b2
...
bi

⎤
⎥⎥⎥⎥⎥⎦

. (15)

In this section, we do not intend to give a very detailed error analysis but indicate
using a rough estimate of the norm of the blocks involved, where and how there
could be a loss of precision in some typical situations. In our analysis we will use
the Euclidean 2-norm ‖ · ‖ = ‖ · ‖2 on finite dimensional complex vector spaces
and the induced operator norm on matrices. Without loss of generality, we can
always assume that the system is scaled such that

‖A0‖ = ‖x0‖ = 1. (16)

Hence, assuming that the components of x0 in the direction of the right singular
vectors of A0 corresponding to the larger singular values are not too small, the
norm of the first block b0 of the right-hand side satisfies

‖b0‖ = ‖A0x0‖ � ‖A0‖‖x0‖. (17)

To determine the first component x0 of the solution vector, we solve the system
A0x0 = b0. We solve this first system in a backward stable way, i.e., the computed
solution x̂0 = x0 + Δx0 can be considered as the exact solution of the system

A0x̂0 = b0 + Δb0 with
‖Δb0‖
‖b0‖ ≈ εmach. (18)

If we denote the condition number of A0 by κ, we get

‖Δx0‖
‖x0‖ ≤ κ

‖Δb0‖
‖b0‖ ≤ κO(εmach). (19)

We study now how this error influences the remainder of the calculations. In
the remaining steps, we use rough estimates of the order of magnitude of the
different blocks Ai of the coefficient matrix, the blocks xi of the solution vector
and the blocks bi of the right-hand side. First we will assume that the sizes of
the blocks xi as well as Ai behave as ρi, i.e.,

‖xi‖ ≈ ρi and ‖Ai‖ ≈ ρi. (20)
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Hence, also the sizes of the blocks bi behave as

‖bi‖ ≈ ρi. (21)

In our context, the parameter ρ should be thought of as the inverse of the
convergence radius R, as defined in (2), for the series expansions. Note that
when ρ is larger, this indicates that the distance to the nearest singularity is
smaller. Consider now the second system

A0x1 = b̃1, (22)

where b̃1 = b1 − A1x0. Using the computed value x̂0, we find an approximation
x̂1 = x1 + Δx1 for x1 by solving the system

A0X = b1 − A1x̂0 = b1 − A1x0 − A1Δx0 = b̃1 − A1Δx0 (23)

for X. We have that ‖b̃1‖ = ‖A0x1‖ ≈ ρ1. Because ‖Δx0‖ ≈ κεmach, this results
in an absolute error Δb̃1 = −A1Δx0 on b̃1 of size κεmachρ or a relative error of
size κεmach. Hence,

‖Δx1‖
‖x1‖ ≈ κ

‖Δb̃1‖
‖b̃1‖

≈ κ2εmach. (24)

In the same way, one derives that

‖Δxi‖
‖xi‖ ≈ κi+1εmach. (25)

Hence, when ‖xi‖ ≈ ρi and ‖Ai‖ ≈ ρi, we lose all precision as soon as
κi+1εmach = O(1). When the matrix A0 is ill-conditioned (i.e., when κ is large),
this may happen already after a few number of steps i.

Assuming now that ‖xi‖ ≈ ρi and ‖Ai‖ ≈ ρ0, we solve for the second block
equation

A0X = b1 − A1x̂0 = b̃1 − A1Δx0 (26)

with ‖b̃1‖ = ‖A0x1‖ ≈ ρ1. However, in this case the absolute error ‖Δx0‖ ≈
κεmach is not amplified and results in an absolute error Δb̃1 = −A1Δx0 of
size κεmach or a relative error of size κεmach/ρ. If κ ≥ ρ this is the dominant
error on b̃1. If κ ≤ ρ, the dominant error is the error of computing b̃1 in finite
precision. In that case, the relative error will be of size εmach. In what follows,
we will assume that κ ≥ ρ. The other case can be treated in a similar way. It
follows that

‖Δx1‖
‖x1‖ ≈ κ

‖Δb̃1‖
‖b̃1‖

≈ κ
κ

ρ
εmach. (27)

Next, the approximation x̂2 = x2 + Δx2 of x2 is computed by solving

A0X = b2 − A2x̂0 − A1x̂1 = b̃2 − A2Δx0 − A1Δx1 (28)

for X, with b̃2 = b2 − A2x0 − A1x1 and ‖b̃2‖ = ‖A0x2‖ ≈ ρ2. The absolute
error Δx0 plays a minor role compared to Δx1. The relative error on x1 of
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magnitude κ(κ/ρ)εmach multiplied by A1 of norm ρ leads to a relative error of
magnitude (κ/ρ)2εmach on b̃2. Hence,

‖Δx2‖
‖x2‖ ≈ κ

‖Δb̃2‖
‖b̃2‖

≈ κ
κ2

ρ2
εmach. (29)

In a similar way, one derives that, when κ ≥ ρ:

‖Δxi‖
‖xi‖ ≈ κ

κi

ρi
εmach. (30)

In an analogous way the other possibilities in the summary hereafter can be
deduced. Assuming that ‖xi‖ ≈ ρi we have the following possibilities:

1. When ‖Ai‖ ≈ ρi, we cannot do much about the loss of accuracy:

‖Δxi‖
‖xi‖ ≈ κi+1εmach. (31)

2. When ‖Ai‖ ≈ 1i, we can distinguish two possibilities:

when κ ≥ ρ :
‖Δxi‖
‖xi‖ ≈ κ

κi

ρi
εmach; (32)

when κ ≤ ρ :
‖Δxi‖
‖xi‖ ≈ κεmach. (33)

The second case cannot arise when ρ < 1.

We observe in computational experiments that in our path tracking method
we are usually dealing with the first case, where ‖Ai‖ ≈ ρi, ‖xi‖ ≈ ρi. This
means that the number of coefficients that we can compute with reasonable
accuracy is bounded roughly by − log(εmach)/ log(κ), where κ is the condition
number of the Jacobian A0.

4.3 Newton’s Method, Rational Approximations, Coefficient Shift

In Newton’s method, the evaluation and differentiation algorithms are followed
by the solution of the matrix series system to compute all coefficients of a power
series at a regular solution of a polynomial homotopy. There are two remaining
stages. Both stages use the same type of parallel algorithm, summarized in the
next two paragraphs.

A Padé approximant is the quotient of two polynomials. To construct an
approximant of degree K in the numerator and L in the denominator, we need
the first K+L+1 coefficients of the power series. Given K and L, we truncate the
power series at degree d = K + L. All components of an n-dimensional vector
can be computed independently from each other, so each job in the parallel
algorithm is the construction and evaluation of one Padé approximant.
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All power series are assumed to originate at t = 0. After incrementing the
step size with Δt, we shift all coefficients of the power series in the polynomial
homotopy with −Δt, so at the next step we start again at t = 0. The shift
operation happens independently for every polynomial in the homotopy, so the
threads take turns in shifting the coefficients.

As the computational experiments show, the construction of rational approx-
imations and the shifting of coefficients are computationally less intensive than
running Newton’s method, or than computing the Jacobian, all Hessians, and
singular values at a point.

5 Computational Experiments

The goal of the computational experiments is to examine the relative compu-
tational costs of the various stages and to detect potential bottlenecks in the
scalability. After presenting tables for random input data, we end with a descrip-
tion of a run on a cyclic n-root, for n = 64, 96, 128, a sample of a well known
benchmark problem [8] in polynomial system solving.

Our computational experiments run on two 22-core 2.2 GHz Intel Xeon
E5-2699 processors in a CentOS Linux workstation with 256 GB RAM. In our
speedup computation, we compare against a sequential implementation, using
the same primitive operations.

For each run on p threads, we report the speedup S(p), the ratio between the
serial time over the parallel execution time, and the efficiency E(p) = S(p)/p.
Although our workstation has 44 cores, we stop the runs at 40 threads to avoid
measuring the interference with other unrelated processes.

The units of all times reported in the tables below are seconds and the times
themselves are elapsed wall clock times. These times include the allocation and
deallocation of all data structures, for inputs, results, and work space.

Table 1. Evaluation and differentiation at power series truncated at increasing
degrees d, for increasing number of threads p, in quad double precision

p d = 8 d = 16 d = 32 d = 48

Time S(p) E, % Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 44.851 154.001 567.731 1240.761

2 24.179 1.86 92.8 82.311 1.87 93.6 308.123 1.84 92.1 659.332 1.88 94.1

4 12.682 3.54 88.4 41.782 3.69 92.2 154.278 3.68 92.0 339.740 3.65 91.3

8 6.657 6.74 84.2 22.332 6.90 86.2 82.250 6.90 86.3 179.424 6.92 86.4

16 3.695 12.14 75.9 12.747 12.08 75.5 45.609 12.45 77.8 100.732 12.32 76.9

32 2.055 21.82 68.2 6.332 24.32 76.0 23.451 24.21 75.7 50.428 24.60 76.9

40 1.974 22.72 56.8 6.303 24.43 61.1 23.386 24.28 60.7 51.371 24.15 60.4
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Fig. 1. Efficiency plots for evaluation and differentiation of power series, with data
from Table 1. Efficiency tends to decrease for increasing p. The efficiency improves a
little as the truncation degree d of the series increases from 8, 16, 32, to 48.

5.1 Random Input Data

The randomly generated problems represent polynomial systems of dimension 64
(or higher), with 64 (or more) terms in each polynomial and exponents of the
variables between zero and eight.

Algorithmic Differentiation on Power Series. The computations in Table 1
illustrate the cost overhead of working with power series of increasing degrees
of truncation. We start with degree d = 8 (the default in [18]) and consider the
increase in wall clock times as we increase d. Reading Table 1 diagonally, observe
the quality up. Figure 1 shows the efficiencies.

The drop in efficiency with p = 40 is because the problem size n = 64 is not
a multiple of p, which results in load imbalancing. As quad double arithmetic is
already very computationally intensive, the increase in the truncation degree d
does little to improve the efficiency. Using more threads increases the memory
usage, as each thread needs its own work space for all data structures used in
the computation of its gradient with algorithmic differentiation. In a sequential
computation where gradients are computed one after the other, there is only
one vector with forward, backward, and cross products. When p gradients are
computed simultaneously, there are p work space vectors to store the intermedi-
ate forward, backward, and cross products for each gradient. The portion of the
parallel code that allocates and deallocates all work space vectors grows as the
number of threads increases and the wall clock times incorporate the time spent
on that data management as well.

Jacobians, Hessians at a Point, and Singular Values. Table 2 summarizes
runs on the evaluation and singular value computations on random input data,
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Table 2. Evaluation of Jacobian and Hessian matrices at a point, singular value decom-
positions, for p threads, in double, double double, and quad double precision

n p Double Double double Quad double

Time S(p) E(p), % Time S(p) E(p), % Time S(p) E(p), %

64 1 0.729 3.964 51.998

2 0.521 1.40 70.0 2.329 1.70 85.1 29.183 1.78 89.1

4 0.308 2.37 59.2 1.291 3.07 76.8 16.458 3.16 79.0

8 0.208 3.50 43.7 0.770 5.15 64.3 9.594 5.42 67.8

16 0.166 4.39 27.4 0.498 7.96 49.8 6.289 8.27 51.7

32 0.153 4.77 14.9 0.406 9.76 30.5 4.692 11.08 34.6

40 0.129 5.65 14.1 0.431 9.19 23.0 4.259 12.21 30.5

96 1 3.562 18.638 240.70

2 2.051 1.74 86.8 11.072 1.68 84.17 132.76 1.81 90.7

4 1.233 2.89 72.2 5.851 3.19 79.64 72.45 3.32 83.1

8 0.784 4.54 56.8 3.374 5.52 69.06 41.20 5.84 73.0

16 0.521 6.84 42.7 2.188 8.52 53.25 25.87 9.30 58.1

32 0.419 8.50 26.6 1.612 11.56 36.13 15.84 15.20 47.5

40 0.398 8.94 22.4 1.442 12.92 32.31 15.84 15.20 38.0

128 1 12.464 62.193 730.50

2 6.366 1.96 97.9 33.213 1.87 93.6 399.98 1.83 91.3

4 3.570 3.49 87.3 17.436 3.57 89.2 213.04 3.43 85.7

8 2.170 5.75 71.8 9.968 6.24 78.0 119.81 6.10 76.2

16 1.384 9.01 56.3 6.101 10.19 63.7 73.09 9.99 62.5

32 1.033 12.06 37.7 4.138 15.03 47.9 43.44 16.82 52.6

40 0.981 12.70 31.7 3.677 16.92 42.3 42.44 17.21 43.0

Fig. 2. Efficiency plots for computing Jacobians, Hessians, and their singular values,
with data from Table 2. The three ranges for p = 2, 4, 8, 16, 32, 40 are from left to right
for n = 64, 96, and 128 respectively. Efficiency decreases for increasing values of p.
Efficiency increases for increasing values of n and for increased precision, where d =
double, dd = double double, and qd = quad double.

for n-dimensional problems. The n polynomials have each n terms, where the
exponents of the variables range from zero to eight.
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Reading the columns of Table 2 vertically, we observe increasing speedups,
which increase as n increases. Reading Table 2 horizontally, we observe the cost
overhead of the arithmetic. To see how many threads are needed to compensate
for this overhead, read Table 2 diagonally. Figure 2 shows the efficiencies.

To explain the drop in efficiencies we apply the same reasoning as before and
point out that the work space increases even more as more threads are applied,
because the total memory consumption has increased with the two dimensional
Hessian matrices.

Pipelined Solution of Matrix Series. Elapsed wall clock times and speedups
are listed in Table 3, on randomly generated linear systems of 64 equations
in 64 unknowns, for series truncated to increasing degrees. The dimensions are
consistent with the setup of Table 1, to relate the cost of linear system solving
to the cost of evaluation and differentiations. Figure 3 shows the efficiencies.

Table 3. Solving a linear system for power series truncated at increasing degrees d,
for increasing number of threads p, in quad double precision

p d = 8 d = 16 d = 32 d = 48

Time S(p) E, % Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 0.232 0.605 2.022 4.322

2 0.222 1.05 52.4 0.422 1.44 71.7 1.162 1.74 87.0 2.553 1.69 84.7

4 0.218 1.07 26.6 0.349 1.74 43.4 0.775 2.61 65.3 1.512 2.86 71.5

8 0.198 1.18 14.7 0.291 2.08 26.0 0.554 3.65 45.6 0.927 4.66 58.3

16 0.166 1.40 8.7 0.225 2.69 16.8 0.461 4.39 27.5 0.636 6.80 42.5

32 0.197 1.18 3.7 0.225 2.69 8.4 0.371 5.45 17.0 0.554 7.81 24.4

40 0.166 1.40 3.5 0.227 2.67 6.7 0.369 5.48 13.7 0.531 8.14 20.3

Consistent with the above analysis, the speedups in Table 3 level off for
p > d/2. A diagonal reading shows that with multithreading, we can keep the
time below one second, while increasing the degree of the truncation from 8 to 48.

Fig. 3. Efficiency plots for pipelined solution of a matrix series with data from Table 3.
Efficiency tends to decrease for increasing p and increase for increasing d.
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Relative to the cost of evaluation and differentiation, the seconds in Table 3 are
significantly smaller than the seconds in Table 1.

Multithreaded Newton’s Method on Power Series. In the randomly
generated problems, we add the parameter t to every polynomial to obtain a
Newton homotopy. The elapsed wall clock times in Table 4 come from running
Newton’s method, which requires the repeated evaluation, differentiation, and
linear system solving. The dimensions of the randomly generated problems are
64 equations in 64 variables, with 8 as the highest degree in each variable. The
parameter t appears with degree one. Figure 4 shows the efficiencies.

Table 4. Running 8 steps with Newton’s method for power series truncated at increas-
ing degrees d, for increasing number of threads p, in quad double precision.

p d = 8 d = 16 d = 32 d = 48

Time S(p) E, % Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 347.85 1176.88 4525.08 7005.91

2 188.92 1.84 92.1 658.93 1.79 89.3 2323.20 1.95 97.4 3806.19 1.84 92.0

4 98.28 3.54 88.5 330.49 3.56 89.0 1193.76 3.79 94.8 1925.04 3.64 91.0

8 54.55 6.38 79.7 191.57 6.14 76.8 638.20 7.09 88.6 1014.85 6.90 86.3

16 31.26 11.13 69.5 97.34 12.09 75.6 352.10 12.85 80.3 571.25 12.26 76.7

32 17.62 19.74 61.7 50.80 23.16 72.4 180.31 25.60 78.4 291.92 24.00 75.0

40 17.45 19.93 49.8 51.70 22.76 56.9 181.56 24.92 62.3 292.55 23.95 59.9

Fig. 4. Efficiency plots for running Newton’s method with data from Table 4. Efficiency
tends to decrease for increasing p and increase for increasing degree d.
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Table 5. Construction and evaluation of Padé approximants for increasing degrees d,
for increasing number of threads p, in quad double precision

p d = 8 d = 16 d = 32 d = 48

Time S(p) E, % Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 0.034 0.109 0.684 2.193

2 0.025 1.36 68.1 0.110 0.99 49.4 0.452 1.51 75.6 1.231 1.78 89.1

4 0.013 2.61 65.2 0.064 1.71 42.6 0.238 2.87 71.8 0.642 3.42 85.4

8 0.007 4.79 59.8 0.035 3.07 38.4 0.189 3.63 45.4 0.365 6.01 75.1

16 0.006 6.09 38.1 0.020 5.52 34.5 0.098 6.96 43.5 0.219 10.00 62.5

32 0.004 9.47 29.6 0.013 8.66 27.1 0.058 11.70 36.6 0.138 15.89 49.7

40 0.003 11.48 28.7 0.009 11.57 28.9 0.039 17.58 43.9 0.130 16.93 42.3

Fig. 5. Efficiency plots for rational approximations with data from Table 5.

The improvement in the efficiencies as the degrees increase can be explained
by the improvement in the efficiencies in the pipelined solution of matrix series,
see Fig. 3.

Rational Approximations. In Table 5, wall clock times and speedups are
listed for the construction and evaluation of vectors of Padé approximants, of
dimension 64 and for increasing degrees d = 8, 16, 24, and 32. For each d, we
take K = L = d/2. Figure 5 shows the efficiencies. The fast drop in efficiency
for d = 8 is due to the tiny wall clock times. There is not much that can be
improved with multithreading once the time drops below 10 ms.

Shifting the Coefficients of the Power Series. Table 6 summarizes exper-
iments on a randomly generated system of 64 polynomials in 64 unknowns,
with 64 terms in every polynomial. Figure 6 shows the efficiencies.

Proportional Costs. Comparing the times in Tables 1, 2, 3, 5, and 6, we
get an impression on the relative costs of the different tasks. The evaluation
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Table 6. Shifting the coefficients of a polynomial homotopy, for increasing degrees d,
for increasing number of threads p, in quad double precision

p d = 8 d = 16 d = 32 d = 48

Time S(p) E, % Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 0.358 1.667 9.248 26.906

2 0.242 1.48 74.0 0.964 1.73 86.5 5.134 1.80 90.1 14.718 1.83 91.4

4 0.154 2.32 58.0 0.498 3.35 83.8 2.642 3.50 87.5 7.294 3.69 92.2

8 0.101 3.55 44.4 0.289 5.77 72.1 1.392 6.64 83.0 3.941 6.83 85.3

16 0.058 6.13 38.3 0.181 9.23 57.7 0.788 11.73 73.3 2.307 11.66 72.9

32 0.035 10.30 32.2 0.116 14.40 45.0 0.445 20.80 65.0 1.212 22.20 69.4

40 0.031 11.49 28.7 0.115 14.51 36.3 0.419 22.05 55.1 1.156 23.28 58.2

Fig. 6. Efficiency plots for shifting series of a polynomial homotopy with data from
Table 6. Efficiency tends to decrease for increasing p and increase for increasing d.

and differentiation at power series, truncated at d = 8 dominates the cost with
348 s for one thread, or 17 s for 40 threads, in quad double arithmetic, from
Table 1. The second largest cost comes from Table 2, for n = 64, in quad double
arithmetic: 52 s for one thread, or 4 s on 40 threads. The other three stages take
less than one second on one thread.

5.2 One Cyclic n-Root, n = 64, 96, 128

Our algorithms are developed to run on highly nonlinear problems such as the
cyclic n-roots problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0 + x1 + · · · + xn−1 = 0

i = 2, 4, . . . , n − 1 :
n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

(34)
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Table 7. Computing C for one cyclic n-root, for n = 64, 96, 128, for an increasing
number of threads p, in quad double precision

p n = 64 n = 96 n = 128

Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 36.862 152.457 471.719

2 21.765 1.69 84.7 87.171 1.75 87.5 262.678 1.80 89.8

4 12.390 2.98 74.4 47.268 3.23 80.6 143.262 3.29 82.3

8 7.797 4.73 59.1 28.127 5.42 67.8 83.044 5.68 71.0

16 5.600 6.58 41.1 18.772 8.12 50.8 53.235 8.86 55.4

32 4.059 9.08 28.4 12.988 11.74 36.7 34.800 13.56 42.4

40 4.046 9.11 22.8 12.760 11.95 29.9 33.645 14.02 35.1

Fig. 7. Efficiency plots for computing C for one cyclic n-root, for n = 64, 96, 128, with
data from Table 7. Efficiency decreases for increasing p and increases for increasing n.

This well known benchmark problem in polynomial system solving is important
in the study of biunimodular vectors [10].

Problem Setup. By Backelin’s Lemma [2], we know there is a 7-dimensional
surface of cyclic 64-roots, along with a recipe to generate points on this surface.
To generate points, a tropical formulation of Backelin’s Lemma [1] is used. The
surface has degree eight. Seven linear equations with random complex coeffi-
cients are added to obtain isolated points on the surface. The addition of seven
linear equations gives 71 equations in 64 variables. As in [17], we add extra slack
variables in an embedding to obtain an equivalent square 71-dimensional sys-
tem. Similarly, there is a 3-dimensional surface of cyclic 96-roots and again a
7-dimensional surface of cyclic 128-roots.

In [23], running the typical predictor-corrector methods, we experienced that
the hardware double precision is no longer sufficient to track a solution path on
this 7-dimensional surface of cyclic 64-roots. Observe the high degrees of the
polynomials in (34).

Table 7 contains wall clock times, speedups and efficiencies for computing
the curvature bound C for one cyclic n-root. Efficiencies are shown in Fig. 7.
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Table 8. Computing R for one cyclic n-root, for n = 64, 96, 128, for degrees d =
8, 16, 24, and for an increasing number of threads p, in quad double precision.

d p n = 64 n = 96 n = 128

Time S(p) E, % Time S(p) E, % Time S(p) E, %

8 1 139.185 483.137 1123.020

2 78.057 1.78 89.2 257.023 1.88 94.0 614.750 1.83 91.3

4 42.106 3.31 82.6 141.329 3.42 85.5 318.129 3.53 88.3

8 24.452 5.69 71.2 81.308 5.94 74.3 176.408 6.37 79.6

16 15.716 8.86 55.4 47.585 10.15 63.5 105.747 10.62 66.4

32 12.370 11.25 35.2 35.529 13.60 42.5 68.025 16.51 51.6

40 12.084 11.52 28.8 35.212 13.72 34.3 62.119 18.08 45.2

16 1 477.956 1606.174 3829.567

2 256.846 1.86 93.0 861.214 1.87 93.3 2066.680 1.85 92.7

4 136.731 3.50 87.4 454.917 3.53 88.3 1072.106 3.57 89.3

8 77.034 6.20 77.6 251.066 6.40 80.0 584.905 6.55 81.8

16 47.473 10.07 62.9 149.288 10.76 67.2 344.430 11.12 69.5

32 32.744 14.60 45.6 97.514 16.47 51.5 205.034 18.68 58.4

40 32.869 14.54 36.4 89.260 18.00 45.0 180.207 21.25 53.1

24 1 1023.968 3420.576 8146.102

2 555.771 1.84 92.1 1855.748 1.84 92.2 4360.870 1.87 93.4

4 304.480 3.36 84.1 956.443 3.58 89.4 2268.632 3.59 89.8

8 160.978 6.36 79.5 523.763 6.53 81.6 1235.338 6.59 82.4

16 98.336 10.41 65.1 312.698 10.94 68.4 726.287 11.22 70.1

32 65.448 15.65 48.9 196.488 17.41 54.4 416.735 19.55 61.1

40 63.412 16.15 40.4 170.474 20.07 50.2 360.419 22.60 56.5

Table 8 contains wall clock times, speedups and efficiencies for computing the
radius bound R for one cyclic n-root. See Fig. 8.

For n = 64, the inverse condition number of the Jacobian matrix is estimated
as 3.9E−5 and after 8 iterations, the maximum norm of the last vector in the
last update to the series equals respectively 4.6E−44, 1.1E−24, and 4.1E−5,
for d = 8, 16, and 24. For n = 96, the estimated inverse condition number
is 2.0E−4 and the maximum norm for d = 8, 16, and 24 is then respectively
1.4E−47, 9.6E−31, and 7.3E−14. The condition worsens for n = 128, estimated
at 4.6E−6 and then for d = 8, the maximum norm of the last update vector is
2.2E−30. For d = 16 and 24, the largest maximum norm less than one occurs at
the coefficients with t15 and equals about 1.1E−1.
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Fig. 8. Efficiency plots for computing R for one cyclic n-root, for n = 64, 96, 128, for
degrees d = 8, 16, 24, with data from Table 8. Efficiency decreases for increasing p.
Efficiency increases as n and/or d increase.

6 Conclusions

The cost overhead of our robust path tracker is O(n), compared with the current
numerical predictor-corrector algorithms. For n = 64, we expect a cost overhead
factor of about 64. We interpret the speedups in Table 7 and Table 8 as follows.
With a speedup of about 10, then this factor drops to about 6. The plan is to
integrate the new algorithms in the parallel blackbox solver [22].
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