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Abstract

The polar diatom Fragilariopsis kerguelensis is ubiquitous in Southern Ocean waters and is a major responder to
iron fertilization, encountering large gradients in iron concentrations and light availability. We performed a com-
parative transcriptomic analysis of F. kerguelensis grown under varying iron and light conditions in order to investi-
gate the molecular underpinnings that may explain its physiological response to iron and light limitation. Low
iron reduced growth rates more than low light, but there was not an additive effect of low iron and low light on
growth rate. Low iron treatments (saturating and low light) had the largest transcriptomic response; however,
expression patterns were more similar in low light treatments (high and low iron). Under iron and light limitation,
carbon fixation and amino acid, ribosome, and sulfur metabolisms were overrepresented relative to the control
(iron replete, saturating light). Transcripts of genes encoding for the proteins aquaporin, proteorhodopsin, plasto-
cyanin, and flavodoxin were overrepresented to the greatest extent in the low iron/low light treatment, indicating
there may be an additive effect of iron/light colimitation at the molecular level. Iron and light replete cells demon-
strated increased expression of genes encoding for the proteins ferritin, carbonic anhydrase, and numerous iron-
dependent proteins relative to the growth-limiting treatments. This transcriptome analysis reveals mechanisms
that may underpin the ecological success of this diatom in low iron and light environments, highlighting the
important role of diversified photosynthetic isoforms, iron acquisition, unique detoxification mechanisms of reac-

tive oxygen species, and metabolic shifts in amino acid recycling and carbon metabolism.

The Southern Ocean (SO) has a disproportionately large
influence on global biogeochemical cycles by transporting and
storing nutrients, heat, and anthropogenic CO, (Sarmiento
et al. 2004; Gruber et al. 2009). Biological processes in the SO
are mediated by phytoplankton, of which diatoms can be
responsible for as much as 75% of annual primary production
(Tréguer et al. 1995) and almost all of the silica sedimentation
below the Antarctic Circumpolar Current (ACC) (Abelmann
et al. 2006; Tréguer et al. 2014). Furthermore, nutrient inven-
tories in the low latitudes, where water upwells after being
subducted in the SO, are largely determined by SO diatom pro-
ductivity and subsequent nutrient utilization (Sarmiento et al.
2004; Assmy et al. 2013). Diatoms in this region support mas-
sive krill stocks that sustain a diverse and rich marine food
web of fish, birds, seals, and whales (Saba et al. 2014).

SO diatoms must cope with extreme environmental condi-
tions characterized by steep gradients in chemical and
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physical properties such as iron and light availability. The SO
is the largest high nutrient, low chlorophyll (HNLC) region in
which nitrate concentrations are consistently high and phyto-
plankton productivity is limited by the availability of the
micronutrient iron (Martin 1990; Boyd et al. 2007). New iron
inputs are episodic, primarily from aeolian dust deposition,
glacial meltwater discharge, resuspension of sediments, and
deep winter mixing; however, rapid biological uptake and par-
ticle scavenging quickly deplete available iron in the upper
ocean (Edwards and Sedwick 2001; Cassar et al. 2007). Investi-
gations of artificial and natural iron fertilization experiments
have shown that upon iron enrichment, the growth rates of
large diatoms increase and they soon comprise the bulk of the
phytoplankton biomass (de Baar et al. 1990; Arrigo et al. 1998;
Boyd et al. 2000; Blain et al. 2007). However, when iron con-
centrations are low, diatoms must be able to survive until
another pulse of iron becomes available.

Iron is used in many enzymes within the cell and is particu-
larly abundant in proteins involved in photosynthesis (Raven
2013). Iron limitation results in the reduction of diatom growth
rate, photosynthetic efficiency, and chlorophyll a (Chl a) con-
tent (Sunda and Huntsman 1995; Timmermans et al. 2001;
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Arrigo et al. 2010). To cope with iron limitation, diatoms invoke
a number of acclimation strategies that include substitutions of
iron-containing proteins with non-iron equivalents (La Roche
et al. 1996; Maldonado et al. 2006; Peers and Price 2006), a
reduction in cell size, reduction in iron to carbon ratio (Sunda
and Huntsman 1995; Strzepek and Harrison 2004), luxury
uptake of iron (Marchetti et al. 2009), altering photosynthetic
architecture (Strzepek et al. 2012), and in some diatoms, induc-
tion of a high affinity iron uptake system (Kustka et al. 2007;
Lommer et al. 2012; McQuaid et al. 2018).

In addition to large gradients in iron availability, diatoms
must cope with variations in light availability. Daily and sea-
sonal variations in irradiance are extreme at high latitudes and
deep mixing by strong winds results in low average light
intensities within the mixed layer (Boyd et al. 2001). Diatoms
that overwinter in the SO can experience considerable periods
of light limitation (Sallée et al. 2010). During austral summer,
light limitation may still persist due to deep mixed layers and
diatoms may not benefit from iron inputs if wind-driven
mixing dominates over the effects of stratification (Mitchell
et al. 1991; van Oijen 2004). Thus, there is high potential for
iron and light colimitation in SO diatoms throughout the
growing season (Boyd 2002; Galbraith et al. 2010; Cassar et al.
2011). Polar diatoms may also increase the size, rather than
the number, of their photosynthetic subunits under low light,
thereby minimizing their overall iron requirements (Strzepek
et al. 2012). Yet the specific molecular underpinnings of accli-
mation to low light by iron-limited diatoms remain largely
unknown.

Fragilariopsis, a genus of pennate diatoms, are among the
most dominant diatoms in the pelagic zone and in sea ice of
polar regions (Boyd et al. 2000; Hoffmann et al. 2007; Strzepek
et al. 2011). Frustules of F. kerguelensis are particularly robust
(Hamm et al. 2003) and have been proposed to serve as proxies
for paleoceanographic processes as their frustules comprise as
much as 70% of the marine biogenic silica in sediments below
SO current systems (Zielinski and Gersonde 1997; Assmy et al.
2006; Marchetti and Cassar 2009; Tréguer et al. 2014). Numer-
ous studies have demonstrated that F. kerguelensis has adapted
to residing in iron deprived waters of the ACC by reducing cel-
lular iron demands and accessing a wide range of iron forms
(Timmermans et al. 2004; Assmy et al. 2006; Timmermans and
van der Wagt 2010; Strzepek et al. 2011). F. kerguelensis is a
main responder to artificial iron enrichment experiments and
is abundant in naturally iron-fertilized waters (Boyd et al. 2000;
Blain et al. 2007; Hoffmann et al. 2007). Its frustules are heavily
silicified and can deplete surface waters of silicic acid to a
greater extent than nitrate, thereby decoupling silicon and car-
bon cycles in the SO and reducing silicic acid concentrations in
subducted waters that are eventually transported to lower lati-
tude regions (Sarmiento et al. 2004; Assmy et al. 2013).

Interacting environmental factors influence phytoplankton
assemblages in the SO. While several studies have examined
the physiological responses of SO diatoms to the interactive
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effects of iron and light, as well as other factors such as temper-
ature and CO, (van Oijen 2004; Feng et al. 2010; Hoppe et al.
2013; Boyd et al. 2015), few have investigated the molecular
underpinnings orchestrating these physiological responses to
individual or interactive effects (Mock et al. 2017). Several labo-
ratory and field-based studies have investigated the growth and
physiology of F. kerguelensis, as well as other species of this
genus, in relation to the interactive effects of iron and light lim-
itation (Timmermans et al. 2004; Hoffmann et al. 2007;
Timmermans and van der Wagt 2010); however, molecular
explanations were not provided. An understanding of species-
specific physiological and molecular responses to these com-
monly limiting growth variables is necessary given the impor-
tance of diatoms to ocean biogeochemical cycles.

Here, we examined an isolate of F. kerguelensis exposed to a
matrix of light and iron levels in order to investigate both
independent and interactive effects of limitation on its trans-
criptome and inferred physiology. Using de novo transcriptome
assemblies sequenced as part of the Marine Microbial
Expressed Transcriptome Sequencing Project (MMETSP)
(Keeling et al. 2014), we performed a comparative gene expres-
sion analysis to investigate the response of F. kerguelensis to
steady-state iron and light limitation. Gene expression pat-
terns obtained through comparative transcriptome analyses
were confirmed through quantitative reverse transcriptase
polymerase chain reaction (RT-qPCR) for select target genes.
In particular, we investigated pathways that are predicted to
be significantly affected by iron and/or light limitation, such
as photosynthesis, nitrogen assimilation, carbon metabolism,
and iron homeostasis. By leveraging high-throughput
sequencing of F. kerguelensis mRNA, we have gained a more
complete understanding of the molecular processes underpin-
ning this diatom’s unique physiological characteristics.

Materials and methods

Culture conditions and growth characteristics

Experiments were performed with Fragilariopsis kerguelensis
strain L26-CS5, isolated from the Atlantic Sector of the SO
(48°S, 16°W) in 2009 (18S GenBank accession number
KJ866919). Cells were maintained at 4°C, under a continuous
photon flux density of either 10 ymol photons m™2 s~ (low
light [LL]) or 90 gmol photons m™2 s™! (growth saturating
light [SL]) until the variation in specific growth rates between
transfers did not exceed 10% (4-5 cell transfers). Cells were
grown in standard AQUIL medium using trace metal clean
techniques (Marchetti et al. 2006). Macronutrients were added
to achieve final concentrations of 300 umol L™! NO;,
200 ymol L' Si(OH)4, and 20 gmol L~! PO,. Vitamins (cyano-
cobalamin, thiamine, and biotin) and trace metals were filter-
sterilized through 0.2 um cutoff Acrodiscs before being added
to the medium. Trace metals were buffered using 100 ymol L™}
of EDTA according to Price et al. (1989). Iron-replete treat-
ments (+Fe) were prepared by adding 1370 nmol L™! of total
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iron (FeT) in a 1:1 Fe:EDTA solution to Aquil medium,
corresponding to a dissolved inorganic iron (Fe) concentra-
tion of 2.7 nmol L™!. Iron-limited treatments (—Fe) were pre-
pared by adding 3.1 nmolL™! FeT to achieve an Fe'
concentration of 6 pmol L™! (Marchetti et al. 2009). Cultures
were grown in acid-washed 28 mL polycarbonate centrifuge
tubes (Nalgene) and maintained in exponential phase by serial
transfer. Specific growth rates of cells between transfers were
calculated from the linear regression of the natural log of
in vivo Chl a fluorescence using a Turner 10-AU fluorometer
(Brand et al. 1981).

Photophysiological parameters such as the maximum quan-
tum efficiency of photosystem II (F,/Fy,) were measured with a
Fluorescence Induction Relaxation System (FIRe) (Satlantic).
Samples were dark acclimated for at least 10 min and triplicate
measurements were taken of each culture for F,/F,, and func-
tional absorption cross-section of PSII (opsy [nm? quanta™']).
The excitation wavelength was 450 nm with other parameters
set to measure single turnover flash (80 us) of PSII reaction cen-
ters (single closure event) with a sample delay of 1000 ms
(Gorbunov and Falkowski 2005). To test for statistically signifi-
cant differences in growth rate and photophysiology between
treatments, a two-way ANOVA was performed. Data sets were
tested for normality and equal variance, and Tukey pairwise
multiple comparison tests was performed using SigmaPlot 12.5.
The level of significance was p < 0.05.

Cultures for high-throughput sequencing of mRNA were
grown in acid-washed 2-liter polycarbonate bottles. After
reaching late exponential phase, cultures were harvested onto
polycarbonate filters (3.0 ym pore size, 25 mm), flash frozen
in liquid nitrogen and immediately stored at —80°C. Total
RNA was extracted using the RNAqueous 4PCR Kit (Ambion)
according to the manufacturer’s protocols. Initial bead beating
was performed to remove all cells from the filters and lyse
cells. Residual genomic DNA was removed by DNAse I diges-
tion at 37°C for 45 min and then purified with DNase inacti-
vation reagent (Ambion).

Sequencing, assembly, read counts, and annotation

Library preparations, sequencing, transcriptome assembly,
annotations, and generating read counts were carried out by
the MMETSP with the following protocol (Keeling et al. 2014).
RNA was quantified with the Invitrogen Qubit Q32855 and the
quality was assessed using the Agilent 2100 Bioanalyzer. Librar-
ies were made from approximately 2 ug RNA using Illumina’s
TruSeq RNA Sample Preparation Kit. The average insert size of
each library ranged from 250 to 350 bp. Libraries were
sequenced on the Illumina HiSeq 2000 to obtain 2 x 50 bp
(paired-end) reads. Transcriptome assembly was carried out
using the internal pipeline BPA2.0 (Batch Parallel Assembly ver-
sion 2.0) from the National Center of Genome Resources.
Sequence reads were preprocessed using the string graph assem-
bler SGA algorithm for quality trimming (swinging average) at
Q15 (Simpson and Durbin 2011). Reads less than 25 bp after
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trimming were discarded. Preprocessed sequence reads from
each individual sample were assembled into contigs with ABySS
v1.3.3, using 20 unique kmers between k = 26 and k = 50
(Simpson et al. 2009). ABySS parameters are as follows: mini-
mum kmer coverage of 5, popping at > 0.9 branch identity,
with the scaffolding flag disabled to avoid over-reduction of
divergent regions. Unitigs from all kmer assemblies and all sam-
ples were combined and redundancies were removed using CD-
HIT-EST with a clustering threshold identity of 0.98 (Li and
Godzik 2006). The overlap layout consensus assembler CAP3
was used to identify minimum 100 bp overlaps between the
resultant contigs and assemble larger sequences (Xiaoqui and
Anup 1999). The resulting contigs were paired-end scaffolded
using ABySS. Sequence read pairing information was used in
GapCloser (SOAP de novo package v1.10; Luo et al. 2015) to
close gaps created during scaffolding. Redundant sequences
were again removed using CD-HIT-EST at a clustering threshold
of 0.98 identity. The consensus contigs were filtered to a mini-
mum length of 150 bp to produce the final set of contigs.

Read counts were generated with Bowtie 2 v2.2.5 (default
parameters) by mapping raw reads from each treatment trans-
criptome to the contigs of the combined assembly (Langmead
and Salzberg 2012). Only unique read pairs that aligned once
were reported. Reads were filtered by mapping quality with
SAMtools v1.2. BUSCO v2 (Benchmarking Universal Single-
Copy Orthologs) software was used to assess the completeness
of each transcriptome and the combined assembly (Simao et al.
2015). Coding sequences (CDS) were predicted using ESTScan
with a Bacillariophyta scoring matrix (Iseli et al. 1999; Lottaz
et al. 2003). Peptide predictions over 30 amino acids in length
were annotated. CDS annotation by homology was determined
using BLASTx (E-value < 10™) to the Kyoto Encyclopedia of
Genes and Genomes (KEGG, Release 80.2; Kanehisa et al.
2006). Only the top KEGG Ortholog (KO) and module annota-
tion (MO) hits were chosen for further analysis. Read counts
for identically annotated functional genes, that is, KOs, were
summed together. For pathway level analysis, at the module
(MO) and KEGG Class 3 level, read counts corresponding to
KOs contained within each MO were also summed together.
For genes of interest that do not have a KO, but had a KEGG
functional gene definition (e.g., ISIPs, RHO, CREG) read counts
corresponding to these definitions were summed.

Differential gene expression

The edgeR v3.12.0 package was used to normalize reads
with the trimmed means of M normalization method (TMM)
and to detect differentially expressed genes in comparisons
between the iron replete, saturating light control (+FeSL) and
the tested treatments: iron-limited, saturating light (—FeSL);
iron replete, low light (+FeLL); and iron-limited, low light
(-FeLL) (Robinson and Smyth 2007; Robinson et al. 2009).
We estimated dispersion from a reduced design model by
treating similar treatments as replicates (+Fe vs. —Fe and SL
vs. LL). Because differences in treatments must be larger than
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those in replicates, we estimated a conservative dispersion
coefficient of 0.1 subsequently used in the model across all
samples to determine significance (p value <0.05). The
exactTest was used to determine normalized fold change
(FC) and counts-per-million (CPM). This approach resulted in
a relatively small set of significantly differentially expressed
genes (DEGs). DEGs that recruited higher or lower normalized
transcript abundance in the treatment relative to the control
are described as overrepresented or underrepresented, respec-
tively. Gene expression FC was used to visualize treatment-
specific differences of gene expression at the KO level. Nor-
malized reads that were assigned to KOs were then grouped
together into pathway level modules (MO). A Wilcoxon rank-
sum test was used to determine significantly differentially
expressed MOs. Finally, KOs that had KEGG Class 3 annota-
tions were grouped together to determine broad level changes
in cell metabolism. FCs were used to visualize KO, MO and
Class 3 level expression patterns in heatmaps, ratio average
plots, and cell schematic figures. CPM was used to visualize
ternary figures at all three annotation levels. All figures were
generated in R using ggplot2 (Wickham 2016) and ggtern
(Hamilton 2018) packages.

qPCR validation of differential gene expression

Primers for genes of interest used for qPCR validation of the
transcriptome were designed using Primer3 v0.4.0 (Supporting
Information Table SS1). Amplification efficiency of each primer
pair was determined by creating a fivefold dilution of template
material and plotting cycle threshold values on a logarithmic
scale, along with corresponding concentrations, to generate a
linear regression curve. Efficiency was calculated using the
slope of the curve and the equation E = —1 + 10<1/51°P9_ primer
efficiencies ranged between 92% and 109%. Correct target
primer amplification was determined with Sanger sequencing
of the PCR product (Supporting Information Table SS1). Up to
2 ug of cDNA was reverse transcribed with the SuperScript IIT
First-Strand c¢DNA Synthesis kit with oligo-dT primers
(Invitrogen). RT-qPCR was performed on synthesized cDNA
with a Mastercycler ep realplex (Eppendorf) and the KAPA
SyberFast qPCR kit mix (Kapa). Relative gene expression of
10 genes in relation to the housekeeping genes Actin (ACT)
and Tubulin (TUB) was determined using the Pfaffl method
with primer efficiency correction (Pfaffl 2001). Correlation was
evaluated using Pearson correlation coefficients.

Results and discussion

Comparative transcriptomics was used to understand how
the SO diatom F. kerguelensis responds to low iron, low light,
and combined low iron/low light conditions. Several investi-
gations have previously reported the gene expression patterns
or protein responses of diatoms and other ecological impor-
tant phytoplankton groups to acclimated iron limitation or
rapidly induced iron stress (Lommer et al. 2012; Nunn et al.
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2013; Mock et al. 2017; Koch et al. 2019), as well as the meta-
transcriptomic responses of phytoplankton to iron enrich-
ment in temperate oceans (Marchetti et al. 2012; Cohen et al.
2017b) and Antarctic waters (Bertrand et al. 2015; Pearson
et al. 2015). However, few studies have investigated the whole
transcriptome response of a polar diatom to the interactive
effects of iron and light limitation. By leveraging the high-
throughput transcriptome sequencing efforts of the MMETSP,
we have performed a comparative gene expression analysis of
F. kerguelensis using denovo transcriptomics under three
growth-limited conditions relative to an iron replete, saturat-
ing light control. We used conservative methods to interpret
our data and analyzed transcription patterns of both single
genes and overall pathways in order to achieve a higher level
of confidence to elucidate the collective transcription patterns
in this ecologically important diatom.

Growth characteristics

Numerous laboratory-based experiments, and both artificial
and natural iron enrichment studies, have shown that
F. kerguelensis and other large diatoms are quickly altered in
terms of growth rates, nutrient uptake ratios, and morphology
following the addition of iron to iron-limited cells (Boyd et al.
2001; Timmermans et al. 2004; Timmermans and van der
Wagt 2010). In the present study, iron and/or light limitation
influenced growth rates, photophysiology, and the trans-
criptome of steady-state F. kerguelensis cells (Fig. 1A-C). The
maximum growth rate in the iron replete, saturating light
(+FeSL) control was 0.22 4+ 0.01 d~!, consistent with other
published studies that ranged from 0.2 to 0.4 d*'
(Timmermans et al. 2001; Hoffmann et al. 2007; Timmermans
and van der Wagt 2010). Limitation of Fe (—FeSL) or light
(+FeLL) reduced growth rates by 70% and 37%, respectively
(Fig. 1A; Supporting Information Fig. SS1A). Growth rates were
not further reduced in the combined low Fe/low light (—FeLL)
treatment compared to the low Fe (—FeSL) treatment, indicat-
ing F. kerguelensis growth rates do not exhibit an additive
effect of iron and light limitation. In other words, iron limita-
tion had a greater effect on growth rate, while light limitation
in iron-limited cells may be partially relieved by intracellular
mechanisms. As we do not see a statistical difference in
growth rates in low iron conditions between light treatments,
potential enhancement in Fe’ concentrations produced by the
photodissociation of ferric iron chelates do not appear to be
sufficient to significantly affect the growth rate in the low Fe
(—FeSL), EDTA-buffered cultures (Sunda and Huntsman 1995).

In addition to a reduction in growth rates, iron and/or light
limitation affected the photochemical efficiency (F,/F,,) and
the absorption cross-section of PSII (epsyy). Iron-replete diatoms
had comparable, but significantly different F,/F,, at high and
low light, with the maximum F,/F,, of 0.73 measured under
low light (Fig. 1B). Iron-limited cells had reduced F,/F,,, at both
high light (26% reduction) and low light (18% reduction) com-
pared to the control. Iron-replete ops;; values were comparable,



Moreno et al.

(A) 025
0.20
kS
o 015
(L]
o
g 0.10
o
)
0.05
0.00
(B) 0.8
0.6
=
< 04
U
0.2
0.0
© 14
12
s 10
=
S s
T
=
£
o
b

o N b~ O

HH

H

+FeSL -FeSL +FelLL -FelLL

Iron and light limitation in a polar diatom

~ 3.7 nm? quanta!, and not significantly different from each

other between light treatments (Fig. 1C). Iron limitation
increased opgsy; by threefold under saturating light and by two-
fold under low light. As was expected from previous studies
(Suggett et al. 2009; Strzepek et al. 2012), there was an inverse
relationship between F,/F,, and ops; among the four treat-
ments (Supporting Information Fig. SS1B); however, in the low
Fe/low light (-FeLL) treatment, F,/F,, was higher and ops;; was
lower than in low Fe (-FeSL), indicating a more efficient photo-
system in the former treatment. As diatoms in the ACC are
often mixed out of the euphotic zone, it may be beneficial if
they maintained the structure of their photosynthetic subunits
under low light or darkness whether iron-limited or not, as
they could then quickly take advantage of light when they are
brought to the surface (Peters and Thomas 1996).

RNA sequencing, assembly, and validation

The transcriptome size and sequencing statistics for
F. kerguelensis were overall within range of a majority of trans-
criptomes sequenced within the MMETSP, including number of
reads and contigs, N50, mapping efficiency, and BUSCO com-
pleteness scores (Keeling et al. 2014). High-throughput sequenc-
ing yielded an average of 46 million raw reads for each
treatment, resulting in a combined assembly with approxi-
mately 184 million raw reads (Table 1). The NCGR assembly
pipeline produced approximately 50,000 contigs per treatment,
resulting in a combined nonredundant assembly with
75,180 contigs with a range of contig lengths from 500 to
23,605 bp. Transcriptomes corresponding to each treatment
were assigned an average BUSCO completion score of ~ 74%,
suggesting a comprehensive coverage of functional core genes.
Read mapping efficiencies were between 70% and 75%. Approx-
imately 15% of the differentially expressed genes in each trans-
criptome were associated with KEGG functional annotations.
The number of functionally annotated genes detected was 2999
and is equivalent to other MMETSP sequenced diatoms (Bender
et al. 2014; Cohen et al. 2017a) and prymnesiophytes (Koid
et al. 2014). An exploratory, multidimensional scaling plot of
KO annotated gene expression profiles of each library revealed
that treatments could be distinguished based on replete (+FeSL)
or stressed conditions (+FeLL, —FeSL, —FeLL) and that low light
treatments (+Fe, —Fe) were more similar to each other than low
Fe (SL, LL) (Supporting Information Fig. S2). The transcriptome
and RT-qPCR analysis of single genes of interest demonstrated
considerable agreement between treatments and the control,

Fig. 1. Growth characteristics of F. kerguelensis. (A) Specific growth rates,
(B) maximum photochemical yield of PSIl (f,/Fy,), and (€) the functional
absorption cross-section of PSIl (6psi; [nm? quanta”]) of F. kerguelensis as
a function of iron and light status. Treatments are Fe-replete, saturating
light (+FeSL; served as control), Fe-limited, saturating light (—FeSL), Fe-
replete, light-limited (+FeLL), and Fe-limited, light-limited (—FeLL). Error
bars represent the standard deviation of biological triplicates.
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Table 1. Sequencing statistics, transcriptome coverage, and mapping statistics.

+FeSL —FeSL +FelL —FelL Combined assembly
Raw sequence reads 43,124,296 45,553,318 49,019,016 47,136,326 184,832,956
Number of contigs 50,930 56,173 51,006 48,729 75,180
Maximum length (bp) 23,605 16,027 16,160 16,511 16,675
Minimum length (bp) 150 150 150 150 150
N50 1927 1754 1818 1786 1546
BUSCO Eukaryota (%) 74 74 72 75 74
Functionally annotated (%) 13 15 15 15 —
Mapping efficiency to combined assembly (%) 70 73 74 75 —

validating the precision of the RNAseq approach for gene
expression analysis (R = 0.66, p < 0.003) (Supporting Informa-
tion Fig. S3).

Photosynthetic energy production and photoprotective
strategies

The ability of F. kerguelensis to survive and often bloom in
the SO could be due to its highly adapted photosynthetic capa-
bility, particularly under conditions of low iron and light avail-
ability. Therefore, we examined transcriptional patterns of
genes involved in photosynthesis, light harvesting, and related
pathways. Despite poly-A selection for nuclear transcripts, a
large number of plastid-related transcripts, many of which are
not polyadenylated, were detected in the F. kerguelensis trans-
criptome. These transcripts are useful in understanding changes
occurring within the photosynthesis pathway and other
chloroplast-related processes (Lima and Smith 2017). Yet expres-
sion patterns of genes that do not contain a poly-A tail should
be interpreted with caution as their partial removal implies they
may no longer be proportionally represented. Furthermore,
many of the genes and metabolic pathways identified as having
large expression changes under low iron and/or low light condi-
tions inherently include metabolic shifts that could also natu-
rally occur under any growth limitation; therefore, it may be
difficult to tease apart the specific effects of low iron and/or low
light compared to that of a general effect of decreased growth
on the expression of certain genes and metabolic pathways.

As expected, the broad photosynthesis metabolic pathway
was consistently underrepresented in all treatments compared
to the control (Figs. 2, 3A); however, at the individual photo-
system and subunit levels, there were contrasting expression
patterns (Figs. 3B, 4). Despite both photosystems requiring iron
(PSII requires two iron atoms per subunit while PSI requires
12 atoms per subunit) (Strzepek et al. 2012), PSI was overrepre-
sented 4.6-fold in low Fe (SL) and 2.45-fold in low light (+Fe)
compared to the control (Fig. 5; for detailed log,FC and CPM
values in each treatment, see Supporting Information Table S4).
The expression of the PSI KEGG module was likely driven by
the expression of PsaE, a gene encoding a PS1 subunit, which
was overrepresented 7.7-fold under low Fe (SL) and 4.1-fold

under low light (+Fe) (Fig. 4; for detailed log,FC and CPM
values in each treatment, see Supporting Information Table S5).
PsaE does not require Fe, but may be helpful in maintaining
the structural integrity of the PSI complex, or in avoiding elec-
tron leakage to oxygen, thereby preventing the formation of
reactive oxygen species (ROS) (Jeanjean et al. 2008). Similar
expression patterns were detected with genes encoding sub-
units of PSII (PsbO, PsbP) in which they were overrepresented
in the low iron and/or low light treatment despite the larger
complex overall being underrepresented relative to the control
(Fig. 4). These expression patterns indicate that while both pho-
tosystem complexes are working collaboratively under stressful
conditions to create a proton gradient for ATP synthase, albeit
at a slower rate, individual subunits likely have unique, impor-
tant functions under low iron and/or low light to maintain the
efficiency of photosynthesis.

Substantial expression changes were seen in the iron-rich
components of photosynthesis as well as their iron-free equiva-
lents. The gene encoding for cytochrome bgf iron-sulfur sub-
unit (PetC) was underrepresented in low Fe (SL, LL) (Fig. 4), but
not significantly overrepresented under low light (+Fe),
although it was most abundant in this treatment (Fig. 3B—top
of triangle). PetC functions to transfer electrons between the
two reaction center complexes but can be replaced with the
copper-containing plastocyanin (PCYN) when the cell is
iron-limited (Peers and Price 2006). F. kerguelensis contains
three isoforms of PCYN, more than all other diatoms
sequenced in the MMETSP transcriptomes (Groussman et al.
2015). We observed two different expression responses;
PCYN-2b was overrepresented 8.8-fold under low Fe
(SL) and > 18-fold under low light (+Fe, —Fe), indicating a
general stress response with particular sensitivity to light
level (Fig. 4). Two other isoforms, PCYN-2a and -3, appeared
sensitive to iron status, but transcripts were only weakly
overrepresented in low Fe (SL, LL) (Fig. 4) and were not as
abundant as PCYN-2b (Fig. 3B—bottom portion of triangle).
Both of these isoforms were underrepresented in low light
(+Fe), suggesting substantial dependence on PCYN-2b in low
light scenarios.

Transcripts for ferredoxin (PetF), an iron-containing photo-
synthetic electron transfer protein, were not detected in any
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indicate underrepresented category annotations. Dendrogram clustering of treatments and categories are based on Euclidean distances.

of our transcriptomes; however, we detected transcripts for
two isoforms of flavodoxin (FLDA), an iron-free equivalent to
PetF; one isoform of FLDA1, and two paralogs of the FLDA2
isoform (Fig. 4). Transcripts for FLDA2a and FLDA1 were over-
represented > 2.8-fold (p <0.03) in low Fe (SL), > 4.2-fold in
low light (+Fe), and > 9.4-fold in low Fe/low light (-FeLL),

suggesting an additive effect of iron and light limitation on
FLDA isoform gene expression (Fig. 4). The most differentially
expressed gene in our study was FLDAZ2b, which was highly
overrepresented in low Fe (SL, LL) (log, FC = 10.9), as tran-
scripts were barely detected in iron-replete cells (Fig. 3B—
bottom axis of triangle). The replacement of PetF with FLDA
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has been documented in many laboratory and field studies
and has been proposed as a molecular indicator of iron limita-
tion (La Roche et al. 1996; Allen et al. 2008; Chappell et al.
2014). As observed here, F. kerguelensis may rely heavily on
FLDA2b when iron-limited and FLDA2a and FLDA1 when
light limited. Although not detected in our transcriptomes,
F. kerguelensis could possess a PetF gene, as in the case of the
recently sequenced genome of the sea-ice diatom
Fragilariopsis ~ cylindrus  (Mock et al. 2017); however,
F. kerguelensis may be permanently adapted to using diversi-
fied copies of FLDA that are responsive to different types of
stressors as an important strategy to survive under rapidly
changing iron and light regimes. Indeed, a dependence on
iron-free electron transfer proteins such as PCYN and FLDA
appears to be more common in SO diatoms than in non-SO
diatoms (Moreno et al. 2018).

Proteorhodopsins (PRs) may serve as another low iron and
light mitigation strategy that F. kerguelensis utilizes under
stress. PRs are common in diatoms residing in SO waters and
other HNLC regions (Marchetti et al. 2015), but unlike iron-
rich photosynthesis complexes, PRs can absorb light energy to
create a proton gradient across cell membranes for ATP syn-
thesis without an associated high iron requirement (Kloer
et al. 2005; Marchetti et al. 2015). Additionally, the photo-
isomerization reaction within PRs, transporting H" ions across
membranes, is likely insensitive to low temperatures, whereas
photosynthesis and respiration rates decrease with tempera-
ture (Strzepek et al. 2019). Therefore, SO diatoms may use PRs
to supplement the energy demands of the cell. Transcripts for
a gene encoding a rhodopsin (RHO) were overrepresented
15.8-fold in low light (+Fe), 25.5-fold in low Fe (SL), and
46.5-fold in low Fe/low light (—FeLL) (Fig. 4). RHO appears to
be part of a general stress response in F. kerguelensis, with an
additive interaction between iron and light limitation on RHO
gene expression; the highest CPMs were also detected in the
—FeLL treatment (Fig. 3B). F. cylindrus RHO was similarly over-
represented to varying degrees under several types of growth-
limiting conditions (Strauss 2012), and RHO gene and protein
expression in the oceanic diatom Pseudo-nitzschia granii was
shown to be most sensitive to iron status (Marchetti et al.
2015). RHO is likely an integral part of maintaining the energy
demands of F. kerguelensis and perhaps other SO diatoms.

Iron and light limitation in a polar diatom

Reorganization of the light harvesting machinery is an
important acclimation strategy to cope with variable iron and
light conditions. Similar to expression patterns within photo-
synthesis, transcript abundances of light-harvesting complex
Chl a/b-binding protein (LHC) varied in relation to both iron
and light availability. The LHC complex I genes, particularly
LHC complex I protein 1, were influenced by light availability,
being the most abundant and overrepresented under low light
(+Fe) (Fig. 3B). Light-harvesting transcripts were overrepre-
sented in sea-ice phytoplankton relative to pelagic communi-
ties along the Western Antarctic Peninsula (WAP) (Pearson
et al. 2015). An LHC complex stress-related I gene in
Phaeodactylum tricornutum was shown to be highly expressed
in low-light acclimated cells, providing the diatom with a high
nonphotochemical quenching capacity, which could be useful
under fluctuating or high light conditions (Bailleul et al.
2010). On the other hand, transcripts for LHC complex II
genes were overrepresented under low Fe (SL, LL) (Fig. 3B), in
parallel with findings from previous transcriptome studies of
iron-limited diatoms (Allen et al. 2008; Lommer et al. 2012).
In particular, LHC complex II binding protein 6 demonstrated
sensitivity to iron status as it was overrepresented > 7.1-fold
under low Fe (SL, LL), and only a few transcripts were detected
in low light (+Fe) (Fig. 4).

SO phytoplankton have been shown to have large amounts
of Chla per photosystem and comparably larger absorption
cross-sections, even under iron limitation (Strzepek et al.
2012). Many phytoplankton maintain a large percentage of
their chlorophyll and light harvesting complexes despite
experiencing severe iron deprivation (Moseley et al. 2002;
Allen et al. 2008). F. kerguelensis did not highly regulate chlo-
rophyll and porphyrin metabolism, but did appear to utilize
chlorophyll and iron recovery and maintenance strategies.
Transcripts that may be involved in plastid iron homeostasis
include a heme oxygenase (HO), a ferrochelatase (HEMH), and
a putative bilin oxidoreductase-encoding enzyme (PebA).
While only weakly overrepresented, these transcripts suggest a
role in the synthesis (HEMH) and breakdown (HO) of heme in
order to recover iron from damaged porphyrins (Marchetti
and Maldonado 2016). The breakdown of heme to free iron
also yields bilirubin IX-alpha (BV), and the increased expres-
sion of PebA may suggest that BV acts as the chromophore for

Fig. 3 Ternary plot derived from normalized CPM gene expression data from the three treatments for (A) overall metabolisms and selected genes, (B)
photosynthesis, and (C) broad nitrogen metabolisms. The size of each circle indicates the CPM of a gene or module, whereas the position of the circles
represents the relative abundance of the gene or module in each treatment. Blue lines within ternary plot denote 20% increments of the total contribu-
tion of reads from the low Fe treatment. The direction of the blue arrow indicates the increase in relative contribution toward 100%. Similarly depicted
for the low light treatment (red axis) and the low Fe/low light treatment (green axis). Transcripts that are equally abundant in all three treatments will be
located toward the center of the triangle, whereas those found near the corners indicate higher relative abundance in that treatment than in the other
two treatments. Circles located on triangle sides denote genes or modules with higher relative abundance in the two treatments at those corners that are
not present in the treatment of the opposite corner. AOX, mitochondrial alternative oxidase; CREG, cellular repressor of E1-A gene; SOD, superoxide dis-
mutase; FBA, fructose bisphosphate aldolase; FLDA, flavodoxin; PCYN, plastocyanin; PetC, cytochrome bsf complex Fe-S subunit; PTOX, plastid terminal
oxidase; AMT, ammonium transporter; GS/GOGAT, glutamine synthase/ferredoxin glutamate synthetase; NR, nitrate reductase NAD(P)H; SAM, s-

adenosylmethionine synthetase.
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diatom phytochrome, which senses red/far-red light in the
ocean (Fortunato et al. 2016). Even while severely energy lim-
ited, F. kerguelensis appears to allocate resources to chlorophyll
and pigment maintenance and/or degradation that may
enable the cell to cope under low iron and/or low light
conditions.

Iron acquisition and homeostasis

Diverse iron metabolism proteins are critical in helping the
cell maintain growth during periods of iron limitation. One
strategy that may be particularly helpful is luxury uptake of
iron beyond what is needed for the cell to achieve maximum
growth rates (Marchetti et al. 2009). Iron storage proteins such
as ferritins (FIN) safely store iron to minimize potential cell
damage from ROS and oxidative stress via iron-mediated
Fenton chemistry (Imlay 2008). F. kerguelensis uses FTN to gen-
erate iron reserves for subsequent cell growth when iron levels
decline to growth-limiting concentrations and has been pro-
posed as a molecular indicator of iron status in polar diatoms
(Marchetti et al. 2017). F. kerguelensis FTN was significantly
underrepresented by fivefold and ninefold in low Fe (SL) and
in low Fe/low light (-FeLL), respectively (Fig. 4). Transcripts
for FTN were most abundant in the +Fe (LL) treatment
(Fig. 3A). Considering ephemeral iron inputs into the SO, stor-
ing iron when it is available is likely a critical strategy to their
survival.

Numerous strategies for acquisition of organically com-
plexed iron have been documented in model diatoms, but
those specifically invoked by F. kerguelensis are unknown. At
the KEGG Class 3 level, F. kerguelensis overrepresented the
metallic cation iron-siderophore and vitamin B, transport
system under low Fe (SL) compared to the control (Fig. 2). At
the module level, this diatom overrepresented the “iron com-
plex transport system” and the “iron-starvation induced
protein (ISIP)” modules, indicating the cell was activating
iron-acquisition and trafficking machinery (Fig. 5A,C). Many
laboratory and field based studies have documented overrepre-
sentation of a phytotransferrin (pTF) protein (McQuaid et al.
2018), previously iron starvation-induced protein 2a (ISIP2a),

Iron and light limitation in a polar diatom

under iron limitation (Lommer et al. 2012; Marchetti et al.
2012; Cohen et al. 2017b). This gene is a high-affinity Fe(III)
concentrating protein (Morrissey et al. 2015; McQuaid et al.
2018) and is likely an important mechanism by which
F. kerguelensis acquires iron as it was overrepresented 4.2-fold
and highly abundant in low Fe (SL); however, the increase in
low Fe/low light (—FeLL) was not significant (Fig. 4).

The function of iron starvation-induced protein 1 (ISIPI) in
the uptake of iron-siderophore complexes has recently been
demonstrated (Kazamia et al. 2018), but the function of ISIP3,
another iron response gene, remains mostly unknown
(Lommer et al. 2012; Marchetti et al. 2012; Morrissey et al.
2015; Cohen et al. 2017b). ISIP3 shared similar expression pat-
terns to pTF in that it was overrepresented 2.6-fold in low Fe
(SL) (p = 0.03), whereas the increase in low Fe/low light
(—FeLL) was not significant. ISIP1 was overrepresented in all
treatments, but appeared most sensitive to iron status, being
overrepresented sevenfold in low Fe (SL) and 3.6-fold in low
Fe/low light (-FeLL) (Fig. 4). While the distribution of pTF and
ISIP3 genes appears cosmopolitan throughout the world’s
oceans, ISIP1 is more common in SO diatoms (Moreno et al.
2018) and may enable F. kerguelensis to take up and use hydro-
xamate siderophores via endocytosis (Kazamia et al. 2018).
Gene expression patterns of pTF and ISIP3 have been proposed
as molecular indicators of iron limitation in diatoms, but
expression of ISIP1 could also serve as an indicator for iron sta-
tus in F. kerguelensis, and perhaps other polar diatoms, as it
appears to be specific to iron limitation regardless of light
level.

In further support that nonreductive iron acquisition via ISIPs
is a primary strategy employed by SO diatoms, many SO diatoms
do not appear to contain a complete high-affinity Fe(Ill) uptake
system (Groussman et al. 2015; Moreno et al. 2018). The
F. kerguelensis transcriptome does not include transcripts for an
iron permease, but does contain two copies of iron reductase
(FRE), more than most other MMETSP diatoms. One copy (FREI)
was overrepresented greater than twofold (p = 0.04) in low
Fe/low light (—FeLL), and the second copy (FRE2) was > 2.62
overrepresented in low Fe (SL, LL) (p<0.04); however, the

Fig. 4 Simplified cell schematic visualizing select genes of interest and their expression changes in N, C, Fe, and metal transport/assimilation pro-
cesses within F. kerguelensis. Colored squares indicate log, fold-change in each treatment vs. the control with red representing higher expression
under treatment conditions and blue representing higher expression under Fe-replete control conditions. Red outlines of genes indicate an Fe-
requiring protein. Purple outlines indicate Fe-free equivalents. Dashed outlines indicate putative cellular localization. Empty boxes indicate genes that
had low sequence abundance or were not detected in the transcriptome. [Plastid] PsbA, photosystem Il P680 reaction center D1 protein; PsbB, pho-
tosystem Il CP47 chlorophyll apoprotein; PsbC, photosystem Il CP43 chlorophyll apoprotein; PsbO, photosystem Il oxygen-evolving enhancer pro-
tein 1; PsbP, photosystem |l oxygen-evolving enhancer protein 2; PsbU, photosystem Il PsbU protein; PsaB, photosystem 1 P700 Chl a apoprotein
A2; PsaE, photosystem 1 subunit IV; Psal, photosystem | subunit VIII; PTOX, plastid terminal oxidase; PetC, cytochrome bsf complex Fe-S subunit;
FNR, ferredoxin-NADPH reductase; CA, carbonic anhydrase; FBA, fructose bisphosphate aldolase; Fd-Nir, ferredoxin-nitrite reductase; GS, glutamine
synthetase; Fd-GOGAT, ferredoxin glutamate synthetase; FTN, ferritin; Fe-Mn SOD, Fe/Mn superoxide dismutase; Cu-Zn SOD, Cu/Zn superoxide dis-
mutase; TRPB, tryptophan synthase beta chain; [Mitochondria] AOX, mitochondrial alternative oxidase; ARG, arginase; ASSY, arginosuccinate
synthase; ASL, arginosuccinate lyase; FUMC, fumarate hydratase; GLDH-NADP+, NADP+ dependent glutamate dehydrogenase; OTC, ornithine car-
bamoyltransferase; PC, pyruvate carboxylase; PDHA, pyruvate dehydrogenase E1 component; unCPS, carbamoyl-phosphate synthase. [Cytosol] NRT,
MES transporter, NNP family, nitrate/nitrite transporter; NR, nitrate reductase NAD(P)H; G6PD, glucose-6-phosphate dehydrogenase; SLC4, solute
carrier protein; [Vacuole] CREG, cellular repressor of E1-A gene; NRAMP, natural resistance-associated macrophage protein; RHO, rhodopsin; VITT,
vacuolar iron transporter.
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boxylic acid cycle.

transcript abundance of FREZ was low (Fig. 4). In addition to
Fe(Ill) transporters, transcripts for divalent metal transporters
belonging to the ZIP and NRAMP families were detected in
F. kerguelensis. NRAMP is thought to transport metals out of vac-
uolar storage and has been hypothesized to function similarly in
centric diatoms (Kustka et al. 2007; Nuester et al. 2012), but in
F. kerguelensis it was only weakly overrepresented in the low Fe
(SL) treatment. A ZIP transporter was overrepresented under all
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conditions compared to the control, but had low transcript
abundances. We hypothesize that the high-affinity iron uptake
system, NRAMP, and ZIP may not be primary strategies that
F. kerguelensis employs, but may still be useful under certain
environmental conditions.

Finally, an ATP binding cassette (ABC)-type ferric iron trans-
porter (ABC.FEV.S) was identified in F. kerguelensis and was sig-
nificantly overrepresented in all treatments compared to the



Moreno et al.

control, but appeared to be more sensitive to iron limitation
being overrepresented sixfold and fourfold in low Fe (SL) and
low Fe/low light (-FeLL), respectively (Fig. 4). ABC.FEV.S was
similarly expressed in diatom metatranscriptomes from a low
iron WAP region (Pearson et al. 2015) and in iron-limited
Thalassiosira from the California upwelling system (Cohen
et al. 2017b), suggesting its usefulness under low iron scenar-
ios. As iron-limited F. kerguelensis decrease growth rates and
Chl a contents, cells maintain low iron quotas (Fe:C), low half
saturation values (K;,) for growth with respect to iron, and
have high iron use efficiencies (Timmermans et al. 2004; Hoff-
mann et al. 2007; Marchetti and Cassar 2009; Strzepek et al.
2011), likely through a reliance on distinct molecular strate-
gies. Given their sensitivity to iron status in laboratory cultures
and in the field, we hypothesize FTN, pTF, ISIP1, and ABC.FEV.
S may play critical roles in maintaining growth during periods
of low iron conditions and could be used as molecular indica-
tors for iron limitation in the field. Additional characterization
is needed to clarify their specific roles in binding, transporting
and delivering iron to iron-demanding intracellular processes.

Mechanisms to reduce ROS under low iron/low light
conditions

Metabolic imbalances between photosynthesis, photorespi-
ration, and alternative oxidative pathways can be exacerbated
by nutrient limitation, extremely low temperatures, increased
solubility of oxygen in polar oceans, and UV damage. There-
fore, F. kerguelensis must use a broad spectrum of antioxidant
enzymes to protect its cellular machinery against ROS. Due to
iron limitation, ROS defense proteins that require iron as a cat-
alytic cofactor can be inhibited, thereby increasing dangerous
ROS levels in the cell (Allen et al. 2008). The increased abun-
dance of transcripts associated with serine, glycine, and threo-
nine metabolism (Fig. 2), mainly under the low Fe/low light
(—FeLL) condition, suggests intensified photorespiration and
increased ROS levels (Davis et al. 2016). If so, F. kerguelensis
must have effective mechanisms for removing excess electrons
for scavenging ROS that are produced as a consequence of
these processes (Peers and Price 2004).

Iron limitation can generate ROS in the mitochondria
from an iron-compromised electron transport chain, yet
F. kerguelensis did not highly express alternative mitochondrial
oxidase (AOX), Fe-Mn superoxide (SOD), or Cu-Zn SOD (Fig. 4)
as do other diatoms, such as P. tricomutum and
Thalassiosira pseudonana (Peers and Price 2004; Allen et al.
2008; Bailleul et al. 2015). Because regulating the traffic of
reducing equivalents between mitochondria and plastids is
important, F. kerguelensis likely possesses an additional set of
ROS mitigation strategies in these organelles. Iron and heme-
free antioxidant enzyme-encoding genes increased in expres-
sion under low iron conditions, presumably to replace other
ROS scavenging functions. A chloroplast, non-heme-
containing peroxiredoxin (PrxQ) using thioredoxin as an elec-
tron donor to detoxify various peroxide substrates (Laxa et al.
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2007) was overrepresented 13.5-fold under low Fe (SL) and
twofold (p = 0.02) in low Fe/low light (—FeLL), but was barely
detected under low light (+Fe) (Fig. 3A). In Arabidopsis thaliana,
PrxQ is targeted to plastids and functions to protect PSII
(Lamkemeyer et al. 2006). In F. kerguelensis, PrxQ may serve a
similar antioxidant function for PSII under low iron condi-
tions. The expression of PrxQ may also depend on the extent of
iron limitation, whether being a short- or long-term acclima-
tion. Studies on the effects of temperature stress on corals have
shown that heat shock proteins are expressed in the early
stages of acclimation while peroxiredoxins are expressed dur-
ing longer acclimation periods (Portune et al. 2010; Meyer
et al. 2011). It may be possible that F. kerguelensis relies on PrxQ
under extreme low iron/low light scenarios to avoid
photoinhibition.

Under all stressed conditions, but particularly iron limita-
tion, a myo-inositol dehydrogenase (InDH) was overrepre-
sented 14.2-fold under low Fe (SL), and 16.1-fold under low
Fe/low light (-FeLL). Similar expression patterns of this gene
under iron limitation were observed in P. tricornutum (Allen
et al. 2008) and F. cylindrus (Strauss 2012). Myo-inositol is
incorporated into cellular structures by interacting with mem-
branes, proteins, and enzymes (Valluru and Van den Ende
2011) and was also found to be in higher cellular concentra-
tions in P. tricornutum under iron stress (Allen et al. 2008). As
red algal mitochondria can use myo-inositol for respiration, it
was proposed that InDH is involved in a mitochondrial inosi-
tol/inosase shuttle system for reducing equivalents in chroma-
Iveolates and red algae (Gross and Meyer 2003). InDH has also
been proposed to be involved in mitigating ROS production
along with the use of AOX and NADH dehydrogenase systems
(Allen et al. 2008; Kroth et al. 2008). This may be a strategy
that F. kerguelensis relies on more than AOX or an NADPH
dehydrogenase system, as these enzymes were not signifi-
cantly overexpressed. Nevertheless, InDH has broad associa-
tions with signal transduction, hormone regulation, and stress
tolerance and could be involved in other aspects of carbohy-
drate metabolism (Kroth et al. 2008).

Amino acid and protein metabolisms

Iron and light limitation invoked a dramatic response from
ribosome, amino acid (cysteine, methionine, and branched-
chain), and sulfur-based metabolisms in the transcriptome of
F. kerguelensis. Several amino acid pathways and genes were
overrepresented under low light (+Fe, -Fe), including
branched-chain amino acids (BCAAs), cysteine and methionine
metabolism, and other amino acid metabolisms at the KEGG
Class 3 category level (Fig. 2). Located in the plastid, BCAAs are
synthesized denovo from pyruvate, 2-oxobutanoate and
acetyl-CoA, and are associated with protein repair and signaling
(Smith et al. 2016). Several intermediate steps in the BCAA bio-
synthesis pathway were overrepresented, especially under low
Fe/low light (-FeLL), including a ketol-acid reductoisomerase
(ilvC) and 3-isopropylmalate dehydrogenase (leuB) (p = 0.03),
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which were overrepresented by fivefold and twofold, respec-
tively. These transcripts indicate that synthesis of valine and
isoleucine may be important when the chloroplast is energy-
limited, but these enzymes also catalyze reverse reactions. More
likely, BCAA catabolism may be important under stressful con-
ditions as it could provide energy-limited cells labile sources of
carbon and chemical energy via pyruvate.

A diversity of enzymes involved in amino acid pathways
could contribute to recycling of intracellular carbon and nitro-
gen, forming new amino acids or even ammonium or pyruvate.
Aromatic amino acids (AAAs) are formed via the shikimate
pathway and include phenylalanine, tryptophan, and tyrosine,
which are important precursors to numerous pigments, hor-
mones, and cell wall components (Bromke 2013). The
shikimate pathway was weakly overrepresented under low
Fe/low light (—FeLL) conditions (Fig. 5C), while tryptophan bio-
synthesis was not overrepresented in any treatment. However,
transcripts for the enzyme that catalyzes the last step of the
pathway, tryptophan beta synthase (TrypB), were overrepre-
sented threefold under low Fe (SL) (Fig. 4). Tryptophan biosyn-
thesis is energetically costly, but TrypB may confer quenching
of variable fluorescence of chlorophyll at the D2 protein of PSII
under high light as was observed in a cyanobacteria (Vavilin
et al. 1999; Allen et al. 2008), perhaps explaining the higher
expression of this gene under low Fe (SL). The increased expres-
sion of the shikimate pathway could also be explained by the
synthesis of mycosporine-like amino acids (MAAs), which play
a role in protecting against UV radiation as well as having other
possible functions as antioxidants and osmolytes (Llewellyn
and Airs 2010); however, biosynthetic enzymes that produce
MAAs, and the genes that encode them are putative and were
not identified in the F. kerguelensis transcriptome.

Major shifts in the transcription of genes involved with
sulfur-containing cysteine and methionine biosynthesis path-
ways were also induced under the low Fe/low light (—FeLL) con-
dition (Fig. 2). Iron and sulfur are required in stoichiometric
proportions to synthesize Fe-S clusters, indicating the two path-
ways must be tightly regulated in order to meet the changing
nutrient status of the cell while also potentially avoiding free
iron and sulfur in organelles, which could be toxic (Giordano
et al. 2005). After the reduction of sulfate, almost all sulfur in
the cell is incorporated into cysteine, serving as a precursor for
the biosynthesis of methionine, Fe-S clusters, and the redox
compound glutathione (Giordano et al. 2005). Methionine is
used to synthesize S-adenosyl-L-methionine (SAM), an impor-
tant methylating agent, propylamine donor, and radical source
(Bertrand et al. 2012). In all treatments, but particularly evident
under low iron/low light (—FeLL), we observed an overrepresen-
tation of sulfur metabolism genes at the KEGG Class 3 level
(Fig. 2), as well as those involved in methionine degradation
and cysteine biosynthesis (Figs. 3C, 5C). Apparently,
F. kerguelensis increases the capacity to synthesize and/or catab-
olize cysteines and methionines under low iron and/or low
light conditions compared to iron-replete conditions.
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Upregulation of these pathways could be a response to elevated
oxidative stress as ROS are more likely to target proteins that
contain sulfur-containing amino acids and thiol groups, such
as Fe-S clusters and cysteines (Berlett and Stadtman 1997).
Alternatively, an upregulation of cysteine and methionine
catabolism does not rely on NADH and could provide N in the
form of recycled ammonium deaminated by a methionine-
gamma-lyase (Hildebrandt et al. 2015). Highlighting this dual
shift in amino acid synthesis and degradation, we observed
transcripts of methionine-gamma-lyase (MGL) and SAM synthe-
tase (METK) to be overrepresented 3.6-fold and 3.7-fold in low
Fe/low light (—FeLL), respectively. The increased expression of
METK suggests that DNA methylation may be a strategy that
provides diatoms the plasticity they need to coordinate
responses to abiotic stress, such as, low iron, cold temperatures,
or variable salinity. In P. tricornutum, DNA methylation affected
the expression of over 300 genes (Veluchamy et al. 2013) and
in T. pseudonana, transcription factors were found to control
regulatory networks of thousands of coexpressed genes in
response to a shift from nutrient replete to limiting conditions
(Ashworth et al. 2013). Methionine synthase is also a precursor
to dimethylsulfoniopropionate (DMSP), but expressed genes
for the pathway were absent in the F. Kkerguelensis
transcriptome.

Nitrogen recycling and alternative carbon metabolisms

Nitrogen assimilation is an iron-dependent and energetically
demanding process, driven by reducing power derived from
photosynthesis or from the catabolism of protein and carbon
reserves. Genes encoding proteins that require iron and reduc-
ing equivalents to assimilate nitrate were weakly overrepre-
sented under low light (+Fe), including a cytosolic nitrate
reductase (NR), a nitrite reductase (NirA), and a nitrate trans-
porter (NRT) (Fig. 4). Although N assimilation was mostly
underrepresented under low iron conditions (Figs. 3C, 5B), it
may be possible for the cell to maintain N demands by scaveng-
ing N from amino acids (Rokitta et al. 2014).

Ammonium and glutamate are converted into glutamine
by the activity of glutamine synthetase (GS) and ferredoxin-
glutamate synthase (Fd-GOGAT), a key step in the biosynthesis
of amino acids and other nitrogenous compounds (Hockin
et al. 2012). Both GS (p = 0.03) and Fd-GOGAT (p = 0.03) were
overrepresented ~ 2.5-fold under low light (+Fe) (Fig. 4). The
mitochondrial matrix enzyme NADP+ dependent glutamate
dehydrogenase (GLDH NADP+) was overrepresented 32-fold
under low Fe/low light (-FeLL) (Fig. 4), and catalyzes the oxi-
dative deamination of glutamate to free ammonium and
2-oxoglutarate for subsequent use in the tricarboxylic acid
(TCA) cycle. A GLDH shunt would enable the release of car-
bon skeletons from amino acids and serve as an intersection
between carbon and nitrogen metabolisms (Hildebrandt et al.
2015). In support of this shunt, it appears the amino groups
of methionine and cysteine are released as ammonium during
the deamination reactions performed by methionine gamma
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lyase, as previously mentioned. These changes in N metabo-
lism under iron limitation are similar to those observed in
other diatoms and phytoplankton experiencing N limitation
(Allen et al. 2011; Hockin et al. 2012; Rokitta et al. 2014), and
it may be that the expression of N assimilation transcripts is
more affected by growth rate than by iron or light status.

The ornithine-urea cycle (OUC) is an important hub of
nitrogen and carbon redistribution in diatoms (Allen et al.
2011); however, in F. kerguelensis, the expression of protein-
encoding genes involved in OUC appear to be weakly regu-
lated with most of the genes either not significantly differen-
tially expressed or in very low abundances. The genes
encoding argininosuccinate synthase (ASUS) and arginase
(ARG) were weakly overrepresented in all treatments compared
to the control, significantly increasing in low Fe/low light
(—FeLL) by 3.5-fold and threefold, respectively. Transcripts for
the latter half of the cycle were not detected (Fig. 4). This may
suggest that argininosuccinate produced in the first half of
OUC is returned to the TCA cycle as malate in the aspartate-
argininosuccinate shunt proposed by Allen et al. (2011). More
differentially expressed genes detected at the beginning of the
cycle rather than in subsequent steps has also been observed
in T. pseudonana (Hockin et al. 2012), P. tricornutum (Allen
et al. 2011), and in the coccolithophore Emiliania huxleyi
(Rokitta et al. 2014). Differential regulation within a metabolic
pathway may be the result of post-transcriptional and post-
translational regulation, or it may be attributed to allosteric
regulation of enzymes in response to changes in nutrient
availability (Hockin et al. 2012). Pathways that connect the
urea cycle with proline and polyamine synthesis, as well as
genes such as spermine/spermidine synthase, were not strongly
regulated (Fig. 3C). Because decreased enzyme activity may lead
to increased metabolite pool sizes, it might be they still have
important roles as osmolytes and cell wall components. While
some N intermediates may be important to the TCA cycle, it
appears that in F. kerguelensis amino acid pathways may serve
as a better N recycling strategy during iron and/or light limita-
tion than nitrate assimilation or the urea cycle.

Carbon metabolism genes were investigated to determine the
role of carbon fixation, glycolysis, the pentose phosphate path-
way (PPP), and the TCA cycle. Diatoms have multiple carbon
concentrating mechanisms (CCMs) used to concentrate CO,
near the RuBisCO enzyme within the plastid. One method is
based on the action of carbonic anhydrases (CA) and the other is
based on the delivery of CO, to the plastid by the decarboxyl-
ation of C4 compounds (Kroth et al. 2008). CA was underrepre-
sented by > 50-fold in all treatments compared to the control;
however, a solute carrier (SLC4) associated with the CCM of the
plasmalemma that transports bicarbonate (Nakajima et al. 2013),
was weakly overrepresented in all treatments (Fig. 4). It is also
possible that aquaporins (AQP), that is, water/ion channels that
putatively transport Si or CO,/NOj, are able to transport CO,
to the plastid in addition to SLC4 (Matsuda et al. 2017).
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AQP-Z was 188-fold overrepresented in the low Fe
(SL) treatment and was one of the most highly expressed
genes in this study (Fig. 4). Diatoms may have the ability to
carry out C4 metabolism which would be helpful with excess
energy dissipation and/or cellular pH homeostasis; however,
research has demonstrated inefficient inorganic carbon
cycling and ATP production via C4 (Kroth et al. 2008; Reinfelder
2011; Haimovich-Dayan et al. 2013). C4 metabolism pathway
genes were slightly overrepresented in all three treatments relative
to the control (Supporting Information Table S4), but the two
most overrepresented genes that participate in C4 metabolism,
pyruvate orthophosphate dikinase (PPDK) and phosphoenol pyru-
vate carboxylase (PEPC), also participate in glycolytic and
gluconeogenic reactions making it difficult to distinguish their spe-
cific role in C4 metabolism. Polar diatoms still may activate several
distinct, interconnected mechanisms to deal with decreased effi-
ciency of CCMs arising from iron and/or light limitation.

In F. kerguelensis, the PPP appears to have an important role in
meeting the energy demands of the cell, particularly in iron-
and/or light-limited cells (Fig. 5; Supporting Information Fig. $4).
We observed increased expression of genes involved in the PPP
in light-limited cells with threefold overrepresentation under low
Fe/low light (-FeLL) (Fig. 5C). The PPP may allow iron-limited
cells to bypass the first phase of glycolysis, requiring ATP and
reducing equivalents, while producing CO, and NADPH. The
rate-controlling enzyme of the PPP is a glucose-6-phosphate
dehydrogenase (G6PD), the expression of which was overrepre-
sented in all treatments, but to the greatest extent, 10.6-fold,
under low Fe (SL) (Fig. 4). Enzymes of the upper phase of glycoly-
sis were weakly overrepresented in all treatments (Fig. 5), with
the exception of a fructose-bisphosphate aldolase class I (FBA)
enzyme. FBA class I does not require iron (Smith et al. 2012) and
appeared to have an additive effect of iron and light limitation
on its gene expression with a 2.9-fold increase (p = 0.02) under
low Fe (SL), a 4.2-fold increase under low light (+Fe), and a
9.3-fold increase under low Fe/low light (—FeLL) (Fig. 4). On the
other hand, FBA class II activity depends on metal catalysis
(Marsh and Lebherz 1992) and the gene was weakly expressed in
all treatments, although was most abundant under low light
(+Fe) (Fig. 3B). FBA class II is highly expressed under high iron
conditions in laboratory cultures of Thalassiosira oceanica,
P. tricornutum, and P. granii (Allen et al. 2012; Lommer et al. 2012;
Cohen et al. 2018), but it appears F. kerguelensis may rely more on
FBA class I under all growth conditions. Enzymes involved in the
PPP were also shown to have a key role in the long-term acclima-
tion of P. tricornutum to low iron by providing additional reducing
equivalents (Nunn et al. 2013), as well as in natural diatom com-
munities in Antarctic waters (Pearson et al. 2015).

Summary
Analysis of the F. kerguelensis transcriptome has provided
insights into the molecular underpinnings of the



Moreno et al.

physiological response to iron and light limitation in a polar
diatom and identified a subset of genes that could be used as
molecular indicators to detect iron and/or light stress in natu-
ral assemblages. A dynamic restructuring of carbon and nitro-
gen metabolisms (i.e., amino acid pathways, sulfur
metabolism, and carbon metabolisms) in the low iron/low
light condition and a switch to iron-independent genes and
isoforms may explain the lack of an additive effect between
iron and light on growth rate and photophysiology. However,
the overrepresentation of transcripts for genes encoding PR,
certain isoforms of flavodoxin and plastocyanin, and FBA class
I under the combined low iron and low light treatment, indi-
cate that there was an additive effect between the two resource
limitations at the molecular level. At the broader pathway
levels, ribosome, sulfur metabolism, and certain amino acid
pathways such as BCAAs, AAAs, and cysteine biosynthesis
were enhanced in the combined treatment, likely emphasizing
the importance of recycling N and C compounds. Newly iden-
tified genes that were uniquely responsive to iron limitation
and that may play a role in reducing stress include an
aquaporin, a peroxiredoxin and a myo-inositol dehydrogenase.
Diversified photosynthetic isoforms and iron acquisition strat-
egies, along with unique ROS detoxification techniques and
metabolic shifts in amino acid recycling and carbon metabo-
lisms may also contribute to the ecological success of this
polar diatom in its natural environment.
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