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ABSTRACT

As the greenhouse gas concentrations increase, a warmer climate is expected. However, numerous internal
climate processes can modulate the primary radiative warming response of the climate system to rising
greenhouse gas forcing. Here the particular internal climate process that we focus on is the Atlantic merid-
ional overturning circulation (AMOC), an important global-scale feature of ocean circulation that serves to
transport heat and other scalars, and we address the question of how the mean strength of AMOC can
modulate the transient climate response. While the Community Earth System Model version 2 (CESM2) and
the Energy Exascale Earth System Model version 1 (E3SM1) have very similar equilibrium/effective climate
sensitivity, our analysis suggests that a weaker AMOC contributes in part to the higher transient climate
response to a rising greenhouse gas forcing seen in E3SM1 by permitting a faster warming of the upper ocean
and a concomitant slower warming of the subsurface ocean. Likewise the stronger AMOC in CESM2 by
permitting a slower warming of the upper ocean leads in part to a smaller transient climate response. Thus,
while the mean strength of AMOC does not affect the equilibrium/effective climate sensitivity, it is likely to
play an important role in determining the transient climate response on the centennial time scale.

1. Introduction the redistribution of oceanic heat, salt, and biogeo-
chemical tracers. Studies based on both idealized
models and coupled general circulation models sug-
gest that the AMOC may have multiple equilibrium
states and changes from one equilibrium state to an-
other may be abrupt, and thus capable of inducing
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the potential abrupt transition of the AMOC from one
state to another, it has been a central focus of many
studies on both past and future climate changes (e.g.,
Hu et al. 2004, 2008, 2010, 2012, 2015; Gregory et al.
2005; Stouffer et al. 2006). Given the current upward
trend of atmospheric greenhouse gas concentrations,
coupled climate models participating in phase 5 of
the Coupled Model Intercomparison Project (CMIPS5)
have projected a decline of AMOC in the twenty-first
century and beyond, and the rate of the AMOC’s de-
cline depends on the different climate forcing path-
ways (e.g., Cheng et al. 2013). Most CMIP6 models
also projected a significant weakening of the AMOC
(Weijer et al. 2020). Here we focus on the role of the
AMOC in the transient response of the climate system to
changes in greenhouse gas forcing, a topic that has not
been fully addressed, using two CMIP6 models: the
Community Earth System Model version 2 (CESM2;
Danabasoglu et al. 2019) and the Energy Exascale Earth
System Model version 1 (E3SM1; Golaz et al. 2019).

Although all CMIP models show a rising of the global
mean surface air temperature as greenhouse gas con-
centration increases, the rate of this warming and the
total warming are different from one model to another,
which significantly inhibits our ability to accurately as-
sess the potential future climate changes due to changes
in greenhouse gas forcing. As indicated by Weijer et al.
(2020) and Lin et al. (2019), the equilibrium climate
sensitivity (ECS) may be related to the mean AMOC
strength (e.g., a lower ECS corresponds to a stronger
AMOC). This suggests that the AMOC may play a role in
determining the climate response to increased atmospheric
CO, concentration. Here our interest in CESM2 and
E3SML1 is partially motivated by the nearly identical ECS
in these two models (Gettelman et al. 2019; Golaz et al.
2019) but the simulated AMOC strength is quite different
in their preindustrial control simulations. This result is
striking and runs counter to the results of Weijer et al.
(2020), and here we suggest that in these two models
AMOC could critically impact the transient climate re-
sponse to rising greenhouse gases and may not as critically
impact the ECS.

The rest of the paper is organized as the following:
section 2 introduces the models and numerical experi-
ments analyzed in this study; section 3 illustrates the
major results; and section 4 is the conclusion.

2. Model and experiments

CESM2 is the newest version of the global climate
model developed at National Center for Atmospheric
Research in collaboration with scientists from univer-
sities and U.S. Department of Energy laboratories
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(Danabasoglu et al. 2019). Its atmospheric component
is the Community Atmospheric Model version 6 (CAMS),
the ocean component is the Parallel Ocean Program ver-
sion 2 (POP2), the sea ice component is the CICE version
5 (CICES), and the land surface component is the
Community Land Model version 5 (CLM5). The hori-
zontal resolution for all components is a nominal 1° and
the simulated climate agrees with observations rea-
sonably well [for more model evaluations, please see
the CESM2 collection of the Journal of Advances in
Modeling Earth Systems; https://agupubs.onlinelibrary.
wiley.com/doi/toc/10.1002/(ISSN)1942-2466.CESM2].

E3SM1 is a coupled climate model newly developed at
U.S. Department of Energy, which was branched from
CESM1 (Hurrell et al. 2013) with new component
models and improvements in model physics. Its atmo-
spheric model is the E3SM atmospheric model (EAM),
which uses a spectral element dynamic core, increased
vertical resolution, and significantly modulated model
physics in comparison to CAMS; the ocean and sea ice
components use the Model for Prediction Across Scales
(MPAS) framework; and the land model is a revised
version of CLM4.5 with many improvements (Golaz
et al. 2019). The horizontal resolution for E3SM1 is
also anominal 1°. The simulated climate also agrees with
observations [e.g., Golaz et al. 2019; Petersen et al. 2019;
for a collection of E3SM1 publications, please see
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/
(ISSN)2169-8996. ENERGY1].

Here we primarily analyze the preindustrial control
runs, the twentieth-century historical runs (1850-2014),
and the idealized 1% CO, runs, which are part of
the DECK experiments (Diagnostic, Evaluation and
Characterization of Klima; Eyring et al. 2016). For the
preindustrial control runs, all external forcing is fixed at
1850 level. For twentieth-century runs, time-evolving
forcing from all known sources (e.g., solar and volcanic,
CO,, CHy, SO,) is used from 1850 to 2014. The 1% CO,
run is an idealized 150-yr-long simulation with CO,
concentration increasing 1% per year compound so the
CO, concentration doubles around model year 70 and
quadruples around model year 140. For CMIP6, CESM2
provides a 1200-yr-long preindustrial control run, 11-
member ensemble twentieth-century runs, and one 1%
CO, run; E3SM1 provides a 500-yr preindustrial control
run, S-member ensemble twentieth-century runs, and
one 1% CO, run. We also include the Shared Socio-
Economic Pathways (SSPs) simulations, which CESM2
has published but E3SM1 has not. The SSPs discussed
here are SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.
The second number indicates the greenhouse gas—-induced
radiative forcing by the end of the twenty-first century
(in Wm™?).
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FIG. 1. Time evolution of the AMOC index in the (top left) preindustrial control run, (top right) twentieth-

century and future SSP runs, (bottom left) 1% CO, runs,
control run mean in 1% CO, runs.

3. Results
a. AMOC mean state and transient changes

Figure 1 shows the time evolution of AMOC in the
preindustrial control run, twentieth-century run, and
future projection runs (SSPs). The mean strength of the
AMOC (defined as the maximum of the Atlantic over-
turning streamfunction below 500-m depth) in the pre-
industrial control run is 24.6Sv (18Sv at 26.5°N) for
CESM2 and 14.3 Sv (9 Sv at 26.5°N) for E3SM1 (1Sv =
10°m’s™!). In comparison to the observed estimates
(e.g., ~18Sv at 26.5°N from RAPID-MOCHA based
on a 14-yr record, Smeed et al. 2019; Cunningham et al.
2007, 2013; Cunningham and Marsh 2010; Johns et al.
2011), AMOC in CESM2 is very close to the observed
value as suggested by the RAPID-MOCHA project
and might be slightly on the high side and the AMOC
in E3SM1 is surely on the low side and is too weak in
comparison to recent observations and simulations
from other CMIP6 models (Weijer et al. 2020). In
comparison to the CMIP5 models (Collins et al. 2013),
the mean AMOC strength in the control run is in the

and (bottom right) the percentage changes relative to the

medium to high range for CESM2 and in the low range
for E3SM1.

During the historical period (1850-2014), AMOC
has a slightly upward trend in both CESM2 and E3SM1
ensembles, and this trend is more obvious in CESM2
than in E3SM1 (Fig. 1 top-right panel; the thick lines are
the ensemble mean and thin lines are the individual
members). After the mid-1980s, AMOC starts to decline
in CESM2 and the rate of AMOC decline is not too
different from different future SSPs. Overall, the decline
of AMOC is the greatest in SSP5, a scenario with the
highest greenhouse gas forcing than the other SSPs.

To better assess the different changes of AMOC un-
der greenhouse gas forcing, here we focus on the com-
parison of the AMOC in the idealized 1% CO,
simulations from these two models. AMOC weakens
from ~26Sv at the beginning of the 1% CO, run to
~12 Sv at the time of CO,, quadrupling in CESM2, and
from ~14 to ~10Sv in E3SM1 (Fig. 1 bottom-left
panel). Percentagewise, AMOC weakens slightly more
than 50% for CESM2, but only roughly 35% for E3SM1
(Fig. 1, bottom-right panel). Therefore, the AMOC
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FIG. 2. (top) The Atlantic meridional streamfunction in the control run and the anomaly relative to control run in
the 1% CO, runs at times of CO, (middle) doubling and (bottom) quadrupling. The contour interval for the top row
is 2 Sv for the positive values and 0.5 Sv for the negative values; for the middle and bottom rows, the contour interval

is 1.5 Sv.

weakens more both in absolute and relative value in
CESM2 than in E3SM1. This can be seen more clearly
in Fig. 2, which shows the mean Atlantic meridional
streamfunction in the control runs and the change of
these streamfunctions at times of CO, doubling and
quadrupling. In CESM2, AMOC in the control run
penetrates much deeper than that in E3SM1 (the upper
positive cell in the top panels of Fig. 2), such that AMOC
reaches a depth of about 3200m in most parts of the
Atlantic basin with a maximum depth over 4000 m
around 45°N in CESM2, but only about 2300m in

E3SM1. As indicated by Broecker (1998) and Barker
et al. (2009), there is a seesaw-like change between the
North and South Atlantic Ocean circulation, such that
with a stronger AMOC (upper cell in the top panels of
Fig. 2), the Antarctic Bottom Water (AABW) forma-
tion in the Southern Ocean (related to the bottom
negative cell in the top panels of Fig. 2) would be
weaker, and vice versa. The overturning in the top
panels of Fig. 2 agree with these previous studies,
showing a stronger upper overturning cell (AMOC, re-
lated to the North Atlantic Deep Water formation, or
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FIG. 3. The global mean surface temperature changes in the (top left) preindustrial control runs, (top right)
twentieth-century and SSP runs, and (bottom left) the 1% CO, runs and (bottom right) the percentage changes

relative to the control run mean in 1% CO, runs.

NADW) and slightly weaker bottom cell (related to the
AABW formation) in CESM2 than in E3SMI1. As
AMOC weakens due to the elevated greenhouse gas
concentration, the upper cell weakens with a strength-
ening of the bottom cell for CESM2. However, the
changes of the Atlantic meridional streamfunction are
different in E3SM1, where the upper portion of the
bottom cell strengthens slightly but the lower portion of
it weakens, indicating that as CO, concentration in-
creases the lighter portion of AABW formation en-
hances with a weakening of the densest AABW
formation in E3SM1. These different changes of AMOC
and AABW are associated with different responses of
the surface climate to the rising of the atmospheric CO,
concentration, which will be addressed further later
(section 3d).

b. Global mean and regional surface temperature
changes

The global mean surface air temperature from the
preindustrial control runs, twentieth-century historical
runs, SSP runs, and 1% CO, runs is shown in Fig. 3 (the

thick lines are the ensemble mean and thin lines are the
individual members). The global mean temperature in
the control runs is 288.3K for CESM2 and 287.8K for
E3SM1, so the preindustrial mean climate in E3SM1 is
about 0.5K cooler than that in CESM2. Over the 1200
years, the surface climate has a small warming trend
(0.025K century ') in CESM2; however, for E3SM1
this trend is only 0.013K century ' in the 500-yr-long
control run due to choices made in tuning E3SM1
(Golaz et al. 2019). These small trends are related to the
top-of-atmosphere radiation imbalance and the heat
exchange between deeper ocean and the surface.

In the historical simulations, the time evolution of the
global mean temperature varies in a very similar way in
CESM2 and E3SM1. The overall rise of the global mean
temperature is a few tens of a degree higher in CESM2
relative to E3SM1 (1.14 vs 0.88 K averaged over 2010-14
across all ensemble members). In CESM2, the increase
in global mean temperature by the end of the twenty-
first century is 2.43 K for SSP1-2.6, 3.35K for SSP2-4.5,
449K for SSP3-7.0, and 6.02K for SSP5-8.5 averaged
over 2091-2100. To compare more objectively between
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these two models, we investigate the global mean tem-
perature changes in the 1% CO, simulations where the
only forcing varied with time is the CO, concentration in
the atmosphere. As shown in bottom panels of Fig. 3, the
increase in global mean temperature is higher (both
absolute values and percentagewise) in E3SM1 than in
CESM2 averaged over the times of CO, doubling and
quadrupling (2.97 vs 2.05 K for doubling CO, and 7.24 vs
5.24K for quadrupling CO,). As indicated by previous
studies, the equilibrium climate sensitivity (ECS; based
on the Gregory method; Gregory et al. 2004) in both
CESM2 and E3SM1 is 53K (Gettelman et al. 2019;
Golaz et al. 2019). The different rate of warming in the
1% CO, simulations in these two models suggests that
the transient response of the climate system could be
significantly different from equilibrium response, and
that the ECS is not a good indicator of transient climate
sensitivity (defined as the global mean surface temper-
ature change at time of CO, doubling in the 1% CO,
run, an average between model years 61 and 80). Since
the external forcing is the same for both models, these
differences must be related to the internal climate pro-
cesses and how these processes would respond to the
changes in greenhouse gas forcing.

The regional temperature patterns in both control
simulations are very similar to each other (top two
panels in Fig. 4); however, the Northern Hemisphere is
overall warmer in CESM2 than in E3SM1, especially in
the subpolar North Atlantic region (top panel in Fig. 5,
which is the difference between the left and right panels
in Fig. 4). This pattern of surface temperature difference
between these two models (top panel in Fig. 5) is very
similar to the surface temperature change pattern with a
strengthening of the AMOC (e.g., Stouffer et al. 2006;
Hu et al. 2010, 2013, 2015). With a stronger AMOC,
more heat is transported into the North Atlantic region,
leading to a warmer North Atlantic and the surrounding
regions, even the whole Northern Hemisphere (Rugenstein
et al. 2013). This result suggests that the surface air tem-
perature difference between these two models is in part
related to a stronger AMOC in CESM2 than that in E3SM1.

In response to the rising CO, concentration, the sur-
face climate warms up almost everywhere in both
models, except in the subpolar North Atlantic region in
CESM2 where it shows a cooler temperature relative to
the preindustrial climate (middle-left and bottom-left
panels in Fig. 4). This cooler temperature has been seen
in previous simulations from models participating
CMIP3 and CMIPS5 (Meehl et al. 2007; Collins et al.
2013) and has been demonstrated to be associated with
the weakening of the AMOC (e.g., Drijfhout 2010; Hu
et al. 2011, 2013; Winton et al. 2013). Polar amplified
warming is significantly bigger in E3SM1 than in
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CESM2, especially at the time of CO, quadrupling.
Overall, the warming in CESM2 in response to the rising
CO, concentration is less than that in E3SM1 almost
everywhere, particularly in the Northern Hemisphere
mid- to high latitudes (Fig. 5, middle and bottom
panels). If the global mean difference is subtracted from
the middle and bottom panels of Fig. 5, the reduced
warming in CESM2 in comparison to E3SM1 is much
larger in the Northern Hemisphere than that in the
Southern Hemisphere. In other words, this reduced
warming in CESM2 is much less than the global mean
reduced warming in the Northern Hemisphere and a
slightly above that in the Southern Hemisphere, a pat-
tern similar to that induced by a weakening of AMOC
(e.g., Stouffer et al. 2006; Hu et al. 2011). Therefore, this
overall reduced warming in response to the same rate of
CO; increase in CESM2 relative to E3SM1 is primarily
induced by the much significant decline of the AMOC to
rising CO, in CESM2 than in E3SM1.

c. Possible causes for a weaker AMOC in E3SM1 in
comparison to that in CESM2

It is important to understand why the AMOC is sig-
nificantly weaker in E3SM1 than in CESM2. Figure 6
shows the winter mixed layer (MLD) depth difference
between CESM2 and E3SM1 (March MLD for
Northern Hemisphere and September MLD for
Southern Hemisphere). In general, the MLD is deeper
in CESM2 than in E3SM1 almost everywhere, especially
in the subpolar North Atlantic. A deeper winter mixed
layer is an indicator of a stronger water mass exchange
between the surface ocean and the subsurface/deep
ocean or an overall weaker oceanic stratification. The
winter MLD mean state in these two models (Fig. S1 in
the online supplemental material) shows that there is no
deep convection in the Labrador and Irminger Seas in
E3SM1 (with mixed layer depth less than 300 m), where
allits deep convection occurs in the Greenland-Iceland—
Norwegian Seas (GIN Seas; with mixed layer depth over
500m). This pattern of deep convection does not agree
with observations (e.g., Smethie et al. 2000; Tanhua et al.
2005). On the other hand, the winter mixed layer is over
1000 m deep in the Labrador and Irminger Seas and over
500 m in the GIN Seas, suggesting that deep convection
in CESM2 occurs in both GIN Seas and the Labrador
and Irminger Seas, agreeing with the observations (e.g.,
Smethie et al. 2000; Tanhua et al. 2005). Lack of deep
convection in the Labrador and Irminger Seas in E3SM1
is consistent with its weak AMOC, which was also noted
in Golaz et al. (2019).

A comparison of the sea surface temperature (SST)
and salinity (SSS) between these two models in the
preindustrial control runs suggests that in the subpolar
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FIG. 4. (top) Mean surface temperature in control run and the mean temperature changes in the 1% CO, runs at
times of CO, (middle) doubling and (bottom) quadrupling. The contour interval for the control runs is 5 K and for

the temperature anomaly is 1.5 K.

North Atlantic, the surface water is warmer and more
saline in CESM2 than in E3SM1 (top two panels in Fig. 7
and Fig. S2), which is consistent with an excessive sea ice
bias in the Labrador and Irminger Seas in E3SM1
(Golaz et al. 2019) that is not evident in CESM2. The
melt of this excess ice during boreal summer in E3SM1
results in a cold bias of up to 5°C in E3SM1 relative to
CESM2 and an SSS bias up to 3-5 psu (practical salinity
units) lower in E3SM1 than in CESM2. It is possible that
this fresher and cooler water in E3SM1 prevents the
deep convection in the subpolar North Atlantic, reduc-
ing the strength of AMOC in E3SM1. This fresher and
cooler water is further amplified due to the feedback of

the weaker AMOC in E3SM1, which transports signifi-
cantly less heat and salt (from the subtropical region)
into the subpolar region. The surface freshwater input in
this region is, in fact, much larger (up to 1 mmday ') in
E3SM1 than in CESM2, which is again consistent with
excess sea ice formation and melting and larger precip-
itation minus evaporation in the North Atlantic in
E3SM1. However, in the GIN Seas, the freshwater input
is much less (up to 3mmday ') in E3SM1 than in
CESM2, which is responsible for a stronger deep con-
vection there in E3SM1.

To check whether this biased ocean stratification
would affect the zonal mean water mass property, we
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FIG. 5. Surface temperature difference between CESM2 and
E3SM1 in (top) the control run, and in the 1% CO, run at times of
CO, (middle) doubling and (bottom) quadrupling. The contour
interval is 1 K.

analyze the zonal mean salinity in the Atlantic (Fig. 8). It
shows a clear signature of the NADW formation and the
high-salinity water in the middepth ocean in association
to the NADW pathway and the lower-salinity Antarctic
Intermediate Water subducted around 55°S to a depth
about 1000m and flowing northward in CESM2
(Fig. 8), a feature that agrees very well with observations
(Reid 1994). In E3SM1, there is no clear signature of the
low-salinity Antarctic Intermediate Water and the sig-
nature of the NADW is also not as clear as in CESM2.
The upper 200 m ocean north of 40°N is much fresher in
E3SM1 than CESM2, consistent with the lack of deep
convection in Labrador and Irminger Seas in E3SM1.

90E  120E 150E 180
CO, quadrupling m
PP PP I I I - .

150W 120W 90W  60W  30W 0 30E 60E  90E

-100 -60 -20 20 60 100

FI1G. 6. Winter mixed layer depth difference between CESM2
and E3SM1 in (top) the control run (CESM2 minus E3SM1) and in
the 1% CO, run at times of CO, (middle) doubling and (bottom)
quadrupling. The contour interval is 10 m.

90E 120E 150E 180

Because the lower boundary of AMOC is much shal-
lower in E3SM1, the penetration of the high-salinity
water (salinity above 35 psu) is only to a depth of about
1000 m, but to about 2000m in CESM2. These features
suggest that not only is the AMOC in E3SM1 weaker
than in CESM2, but also the vertical structure of the
AMOC is biased in comparison to observations. These
biases of vertical salinity pattern in E3SM1 might be a
result of the overall weaker AMOC and feedbacks
between a weaker AMOC and the surface climate.

In summary, it is the fresher surface water in associ-
ation to a higher surface freshwater input in the subpolar
North Atlantic, which leads to a less dense surface water
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Annual mean sea surface temperature/salinity difference
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FIG. 7. Annual mean sea surface (left) temperature (SST) and (right) salinity (SSS) difference between CESM2
and E3SM1 in (top) the control run, and in the 1% CO, run at times of CO, (middle) doubling and (bottom)
quadrupling. The contour interval is 1 K for the left column and 0.5 psu for the right column.

in this region and prevents the occurrence of deep
convection in this region in E3SM1. Although the deep
convection is slightly stronger in GIN Seas in E3SM1,
this is still not enough to compensate for the lack of the
deep water formation in the Labrador and Irminger
Seas, producing a weaker AMOC in E3SM1 than in
CESM2. This weaker AMOC also feeds back to the
upper-ocean property. By transporting less subtropical
saline water to the subpolar North Atlantic, AMOC also
indirectly contributes to the low salinity bias in this re-
gion in E3SM1.

While it is likely that the fresher surface water asso-
ciated with a higher surface freshwater input in the
subpolar North Atlantic contributes to the reduced
AMOC in E3SM1, sensitivity tests conducted during
development of E3SM version 2 suggest that this does
not completely explain the weak AMOC in E3SM. In

these test experiments (not shown), the surface fresh-
water input is dramatically improved and the SSS biases
seen in Fig. 7 are greatly reduced, yet the AMOC only
improves by ~1Sv. Oddly, despite the improvement
of upper-ocean salinity, the deep convection in the
Labrador and Irminger Seas remains weak, suggesting it
is still possible that the lack of deep convection in these
areas contributes to the weak AMOC in E3SML. It is
also possible that a lack of overflow parameterization
(e.g., Yeager et al. 2012) in E3SM1, differences in
abyssal mixing parameterizations, or formulations of the
mesoscale eddy parameterizations (e.g., the Gent and
McWilliams parameterization; Gent and McWilliams
1990) could further contribute to the weak AMOC in
E3SM1. Thus, understanding the weak AMOC in E3SM
remains an active and critical area of research, but be-
yond the scope of this study.
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FIG. 8. (top) Atlantic zonal mean salinity in control runs, and the zonal mean salinity anomaly in the 1% CO, runs
at times of CO, (middle) doubling and (bottom) quadrupling. The contour interval is 0.2 psu for the control runs,
and 0.1 psu for positive anomalies and 0.05 psu for negative anomalies for the 1% CO, runs.

d. Role of AMOC in response of surface climate to
elevated greenhouse gas concentrations

As we have discussed earlier, the ECS in both models
is the same, but the transient climate response is much
larger in E3SM1 than in CESM2. Although there are a
number of differences in model formulation between
these two models, the most obvious difference in their
preindustrial control simulation is the strength of the
AMOC. Therefore, the differences in transient climate
response to the rising of atmospheric CO, concentration
could at least be partially due to the AMOC, which we
will illustrate in more detail here.

A weaker and shallower AMOC, in general, will lead
to a stronger upper-ocean stratification, at least in the
Atlantic basin. A stronger upper-ocean stratification
will reduce the formation of deep water masses. As the
atmospheric CO, concentration increases, the warming
of the upper ocean will further strengthen the oceanic
stratification, and make the heat exchange and forma-
tion of deep water masses be even less sufficient. If these
basic physical processes are at work, we would expect
that the subsurface warming in the 1% CO, runs will be
less in E3SM1 than in CESM2. The global zonal mean
temperature in the control runs shows that the deeper
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FI1G. 9. (top) Global zonal mean temperature in control runs, and the zonal mean temperature anomaly in the 1%
CO, runs at times of CO, (middle) doubling and (bottom) quadrupling. The contour interval is 2°C for the control
runs, and 0.5°C for positive anomalies and 0.1°C for negative anomalies for the 1% CO; runs.

ocean in E3SM1 is colder than that in CESM2 (Fig. 9). In
the Atlantic, this temperature difference between these
two models is more than 1K for waters deeper than 500-m
depth (not shown). In the 1% CO, simulations, the
comparison of the oceanic warming between these two
models shows that the upper-ocean warming is slightly
higher in E3SM1 than in CESM2 at time of CO, dou-
bling, but much higher at time of CO, quadrupling
(bottom four panels in Fig. 9). Moreover, the warming
for the water between roughly 500- and 2000-m depth is
higher in CESM2 than in E3SM1, especially at time of

CO, quadrupling. This pattern of the ocean temperature
change is even more obvious in the Atlantic zonal mean
temperature change (figure not shown), suggesting that
the AMOC may indeed play a role in determining the
transient climate response to an elevated atmospheric
CO, concentration.

In response to the rising atmospheric CO, concen-
tration, the surface warming is less in CESM2 than in
E3SM1 almost everywhere, and the largest discrepancy
occurs in the subpolar North Atlantic region with a
temperature difference up to 10K (bottom four panels
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in Fig. 4 and bottom two panels in Fig. 5). The pattern of
the temperature change difference between these two
models shows much less warming in the Northern
Hemisphere than in Southern Hemisphere in CESM2, a
pattern resembling the surface climate response to a
weakening of AMOC. As we have shown earlier, al-
though AMOC is always stronger in CESM2 than
E3SM1, AMOC weakens more in CESM2 than in
E3SM1 both in absolute value and the percentage. A
large decline in AMOC strength will reduce the green-
house gas-induced warming in the subpolar North
Atlantic and the surrounding regions, even the entire
Northern Hemisphere (Hu et al 2015). The similarity
between the temperature difference of these two models
in 1% CO; runs and the surface temperature changes in
response to a AMOC decline suggests that the differ-
ence in transient climate response to the greenhouse gas
forcing between these two models is caused by the dif-
ferent response of AMOC in these two models (and the
different ocean stratification associated with the differ-
ent AMOC mean state in the preindustrial control run).

To further demonstrate the effect of AMOC on the
transient climate response to greenhouse gas forcing, we
will examine the changes of mixed layer depth. As we
have indicated earlier, the winter mixed layer is in
general deeper in CESM2 than in E3SM1 in the prein-
dustrial control runs (Fig. 6). In response to the rising
CO, concentration, winter mixed layer depth reduces
almost globally in both models with mixed layer deep-
ening only in portions of the Southern Ocean; the latter
is associated with a strengthening of the AABW for-
mation as shown in the Atlantic meridional stream-
function (Fig. 2), which is induced by a strengthening of
the Southern Ocean westerlies (Hu and Bates 2018).
The most significant shoaling of the mixed layer is in the
Labrador and Irminger Seas in CESM2, with a maxi-
mum reduction over 1400m in March at the times of
CO, doubling and quadrupling, indicating a nearly col-
lapsed deep convection in these seas caused by the quick
surface warming and freshening (bottom panels in
Figs. 8 and 9, and Fig. S1). At the same time, the mixed
layer deepens by a couple of hundred meters in GIN
Seas when CO, concentration doubles, suggesting a
strengthening of the deep convection there, which
agrees well with previous studies (e.g., Hu et al. 2004).
However, at the time of CO, quadrupling, the mixed
layer becomes shallow in GIN Seas. These results show
that the initial response of the mixed depth (strength of
the deep convection) is to shoal in the Labrador and
Irminger Seas with a deepening in GIN Seas due to the
warming in the former region (Gregory et al. 2005) and
the more saline upper ocean due to reduced sea ice ex-
port from the Arctic and increased inflow of the more
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saline North Atlantic water for the latter (Hu et al.
2004). Later, the shoaling of mixed layer in GIN Seas is
caused by the further surface warming in GIN Seas and
increase of the exported melt sea ice water from the
Arctic in association to the greenhouse gas forcing.

Because there is no deep convection in the Labrador
and Irminger Seas in E3SM1, the weakening of deep
convection occurs only in GIN Seas in response to rising
CO; concentration and this reduction ranges from ~300
to 350m, about 56% to 66% of the control run depth
from CO, doubling to CO, quadrupling. This shoaling of
the mixed layer is nearly basin wide in GIN Seas at time
of CO, quadrupling.

In comparison to the winter mixed layer depth
changes between these two models (lower two panels in
Fig. 6), the shoaling of the mixed layer is much larger in
most parts of the ocean in CESM2 than that in E3SM1.
The winter mixed layer depth in CESM2 changes from
about 20-60m deeper than that in E3SM1 in most
tropical to subpolar oceans to about similar depth in
some regions (mostly subtropical regions) or only about
20m deeper. In the southern oceans, the mixed layer is
up to 100m deeper in CESM2 than in E3SM1 in asso-
ciation to the much stronger AABW formation in
CESM2 than in E3SM1. In the subpolar North Atlantic,
with a significantly larger shoaling of the mixed layer in
the 1% CO, run than in the control run, the winter
mixed layer is still deeper in CESM2 than in E3SM1 in
both Labrador and Irminger Seas, and the GIN Seas.
This is not only related to the overall less surface
warming over this region in CESM2 than in E3SM1, but
also related to the overall more saline surface ocean in
CESM2 than in E3SM1 in this region (Fig. S2) despite
the larger freshening in CESM2. Both of the tempera-
ture and salinity changes contribute to a denser surface
water in CESM?2 than in E3SM1 in the subpolar North
Atlantic and an overall stronger AMOC in CESM2
throughout the entire course of the 1% CO, runs than
that in E3SM1. Therefore, it further demonstrates that
the preindustrial mean state of the AMOC (or the ocean
stratification) can affect the response of the climate to
the rising atmospheric CO, concentration, at least in
these 1% CO, runs.

In summary, these changes in winter mixed layer
depth imply that the changes in AMOC may have
contributed to the global mixed layer depth variations.
As AMOC weakens, the deep convection reduces,
leading to a reduced formation of deep water masses.
As a result, the upwelling of subsurface colder water in
association to AMOC also reduces, further strengthen-
ing the global ocean stratification. Therefore, our results
suggest that the difference in AMOC mean state and its
transient response to the greenhouse gas changes can
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significantly affect the transient response of the climate
system to the greenhouse gas forcing, agreeing with
some of the previous studies (Winton et al. 2013; Kostov
et al. 2014; Stolpe et al. 2018).

4. Conclusions

In this work, we have analyzed simulations from two
CMIP6 models, CESM2 and E3SM1, focusing on the
AMOC and the transient climate response. Our analysis
shows that the preindustrial mean AMOC in E3SM1 is
about 40% weaker than that in CESM2, and the mean
AMOC strength in CESM2 agrees with observations
very well. The weaker AMOC in E3SM1 is likely due
to a number of factors, including the absence of deep
convection (NADW formation) in the Labrador and
Irminger Seas. In response to the rising greenhouse gas
forcing, warming of the surface climate is faster in
E3SM1 than in CESM2 due to a much stronger ocean
stratification. This stronger upper-ocean stratification in
E3SM1 can be attributed partially to a weaker AMOC,
which generates a weaker sinking of the upper-ocean water
and a weaker upwelling of deep water. As the climate
warms, the stronger stratification in E3SM1 further in-
creases due to a faster surface warming than the warming in
subsurface ocean. This results in a much faster warming
in the upper ocean and less warming in the subsurface ocean
in E3SM1 than in CESM2, which further demonstrates
that the AMOC mean state and its transient response to
greenhouse gas forcing can modulate the ocean stratifica-
tion, and further affects the model transient climate
response.

In this work, although we have compared the mean
strength of the simulated AMOC with observations, we
did not compare the detailed structure of the AMOC
(including the Gulf Stream) with the observations since
this is not the focus of this study. As indicated recently
by Seidov et al. (2019), different ocean horizontal res-
olutions can produce significantly different structure of
the AMOC system in observations. A high resolution
will produce a much better AMOC system than the one
by lower resolution in observations. For both CESM and
E3SM, previous studies also indicate that the simulated
Gulf Stream is much closer to the observed one in the
1/10° horizontal resolution version of the models than
that in the standard 1° version (Bryan et al. 2010; Small
et al. 2014; Caldwell et al. 2019). Nevertheless, any detailed
comparisons between model simulations and observations
are complicated not only by the dependence of the details
of the modeled AMOC including the Gulf Stream system
and their biases on resolution, but also by the dependence
of the details of the observed climatology on the resolution
at which it is compiled (e.g., see Seidov et al. 2019).
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