
Received June 15, 2020, accepted July 12, 2020, date of publication July 17, 2020, date of current version July 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009902

Inverse Feature Learning: Feature Learning Based
on Representation Learning of Error
BEHZAD GHAZANFARI 1, (Graduate Student Member, IEEE),
FATEMEH AFGHAH 1, (Senior Member, IEEE), AND
MOHAMMADTAGHI HAJIAGHAYI2
1School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86001, USA
2Department of Computer Science, University of Maryland, College Park, MD 20742, USA

Corresponding author: Behzad Ghazanfari (bg697@nau.edu)

This material is based upon work supported by the National Science Foundation under Grant Number 1657260.

ABSTRACT This paper proposes inverse feature learning (IFL) as a novel supervised feature learning
technique that learns a set of high-level features for classification based on an error representation approach.
The key contribution of this method is to learn the representation of error as high-level features, while
current representation learning methods interpret error by loss functions which are obtained as a function
of differences between the true labels and the predicted ones. One advantage of this error representation is
that the learned features for each class can be obtained independently of learned features for other classes;
therefore, IFL can learn simultaneously meaning that it can learn new classes’ features without retraining.
Error representation learning can also help with generalization and reduce the chance of over-fitting by
adding a set of impactful features to the original data set which capture the relationships between each
instance and different classes through an error generation and analysis process. This method can be
particularly effective in data sets, where the instances of each class have diverse feature representations
or the ones with imbalanced classes. The experimental results show that the proposed IFL results in better
performance compared to the state-of-the-art classification techniques for several popular data sets. We hope
this paper can open a new path to utilize the proposed perspective of error representation learning in different
feature learning domains.

INDEX TERMS Representation learning of error, inverse feature learning, classification.

I. INTRODUCTION
Recent feature learning trend and its branches such as deep
learning have offered remarkable performance in image,
speech, and natural language processing. Supervised or unsu-
pervised representation learning are generally based on ele-
ments such as restricted Boltzmann machines (RBMs) [1],
autoencoder [2], [3], convolutional neural networks (Con-
vNets) [4], sparse coding [5], [6], and clustering methods
[7]–[9]. In the majority of existing supervised learning and
representation learning methods, the term error refers to a
function of the differences between the true and the predicted
labels (i.e., loss functions). The error is utilized to optimize
the training process or the learned features (e.g., optimizing
the weights of neural nets). However, the notion of error can
be considered in a more general term as a dynamic quantity

The associate editor coordinating the review of this manuscript and

approving it for publication was Wai Keung Fung .

that can capture the relationships between the instances and
the predicted labels.

In this paper, we introduce the concept of error repre-
sentation learning and propose a new framework for error
generation and analysis called inverse feature learning (IFL).
IFL is a feature learningmethod based on error representation
to learn an additional set of impactful high-level features.
The error representation learning is inspired by human’s
decision-making process that involves analysis and inference
of the results of his decisions. We believe proper error anal-
ysis to interpret error in the form of high-level knowledge is
one of the missing puzzle pieces in the literature of feature
learning. Such a perspective is somehow inspired by inverse
reinforcement learning [10], which attempts to learn the
reward function instead of the optimal policies. IFL interprets
error representation in the form of several variables which
depend on the predicted labels and the instances rather than
the traditional notion of scalar values (e.g. loss functions).
In other words, IFL is a supervised feature learning approach

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 132937

https://orcid.org/0000-0003-3004-0823
https://orcid.org/0000-0002-2315-1173
https://orcid.org/0000-0002-3367-1711

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

that learns a new set of high-level features by analyzing
the interactions of instances and classes in a trial approach.
The trial approach investigate the impact of assigning the
instances to different labels.

To the best of our knowledge, IFL is the first work that
performs feature leaning based on the perception of error
representation. IFL proposes a new framework of learning
by analyzing the interactions of instances and classes in a
trial approach. During this trial phase, all possible labels are
assigned to a test instance in order to generate the required
perspective between the instances and each label in the form
of new features. The key motivation of this paper is to intro-
duce a new perspective for error representation in representa-
tion learning, and this basic proposed model can be improved
in several levels and be applied in other domains.

II. RELATED WORKS
Representation learning refers to a set of techniques which
involve learning features from raw data to improve super-
vised, unsupervised, or semi-supervised learning approaches
[11], [12]. Representation learning techniques have been uti-
lized in several domains including speech recognition, signal
processing, natural language processing, and text classifica-
tion [11], [13].

The current methods in supervised or unsupervised repre-
sentation learning are developed based on the representation
of data. Some of the popular representation learning methods
include ConvNets, RBMs, autoencoder, clustering methods,
and sparse coding [1]–[9]. Supervised representation learning
typically refers to a class of feature learning methods where
the features are learned using the labeled data in a closed-loop
manner. Deep learning techniques, as a subcategory of rep-
resentation learning, learn a set of compact and high-level
features of each class through multiple layers.

In recent representation learning methods, the unsuper-
vised feature learning is usually used for pre-training nets,
generally for deep networks, or for extracting high-level fea-
tures, denoising, and dimensionality reductions. The authors
in [14] used unsupervised learning for pre-training deep
supervised networks, deep belief networks. Convolutional
deep belief networks have been used for audio data in [15]
and image processing in [7]. The authors in [8] used K-means
as a clustering approach for each layer of the neural net-
works sequentially in a bottom-up approach and in an end-
to-end way in [16]. Besides the aforementioned applications
of unsupervised learning methods, clustering is also used or
combined with classification methods. An example of com-
bining clustering with classification is in the form of ensem-
ble learning [17], [18]. Clustering methods can enhance
the performance of classification techniques (even for shal-
low networks) through feature construction or extraction
approaches [19]–[21]. For instance, the centers of clusters
can be used as meta-data points or representative of instances
inside a cluster [8], [22]. The authors in [23] developed
a representation learning method for quasi-periodic signals

based on clustering, where a set of high-level features were
learned from the obtained clusters and used for classification.

Here, we would like to point out the distinctions of the
proposed IFL techniques related to some common trends in
machine learning. The proposed error representation learning
method learns high-level features depending on the instances
and classes. This IFL method generates error by trial and cal-
culates the resultant representation of the error. The proposed
method is considerably different from existing techniques in
the literature since they focus on data representation learning
and calculate errors by the loss functions that take the differ-
ence between the predicted labels and true labels.

This proposed method is different from generative adver-
sarial nets (GANs) [24], which use two separate neural net-
works competing against each other with the ultimate goal of
generating synthetic data similar to the original data inputs
through the generator. This proposed method is also differ-
ent from similarity learning [25], which learns a similarity
function to measure how similar two objects are, in the sense
that it extracts the relationships between the objects and
the classes. Self-supervised learning methods are based on
finding patterns inside of input instances [26].

The semi-supervised learning and active learning methods
that utilize a combination of classification and clustering are
based on the assumption that the instances which are in the
same cluster have the same label and using this assumption
toward predicting the labels for new instances [27]–[30].
In these methods, the instances near the center of clusters are
considered as the most representative objects to determine
the labels. Other approaches including [31], [32] utilized
clustering for active learning in several different ways. The
proposed IFL technique utilizes clustering for error repre-
sentation learning in an innovative framework. Error repre-
sentation learning is based on error generation and analysis
scheme in which the instances are included in a cluster-based
representation of different classes in order to observe the
relationships between the inserted instances and different
members of each class and the caused effects of that insertion.

Metric learning, similarity learning, techniques in
semi-supervised learning, and adversarial autoencoders like
GANs learning are based on data representation learning with
the same traditional notion of error that refers to calculating
the differences between the true labels and the predicted ones.
However, our proposed method learns the representation
of error that is intentionally generated in a trial process to
generate an error for each class and to process this novel
notion of class-dependent error in the form of features.
The aforementioned methods do not generate and process
representation of error for each and all classes simultaneously
as a reference but rather use the error as a by-product of true
and predicted labels. Therefore, our method develops a novel
concept for error representation.

III. INVERSE FEATURE LEARNING
In this section, we introduce the proposed IFL mechanism
that learns the representation of error using a trial approach.

132938 VOLUME 8, 2020

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

FIGURE 1. Block diagram of the proposed IFL method. The figure demonstrates the feature learning process for both training and test sets. The upper
part of the figure depicts the inner-folding for the training set during r rounds. The one fold of the inner-test in each run is highlighted by green. The
lower part of the figure demonstrates the feature learning process for the test data set.

The operation of this method for training and test instances
is described in the following sub-sections III-A and III-B,
respectively. The overall block-diagram of this method is
shown in figure 1.

A. ERROR REPRESENTATION LEARNING FOR TRAINING
INSTANCES
The objective of the IFL method is to learn a set of addi-
tional features per sample by trial to extract the relations
between the sample and the classes. This process is performed
during two phases for the training and test sets. In each
phase, the samples are assigned to the set of samples of
the available classes one at a time and the changes in the
characteristics of data before and after adding each sample
are analyzed. Here, we provide an overview of the proposed
method.

First, in inner folding phase, we partition the training
instances to inner-training and inner-test sets during each fold
in such a way that each training instance is considered as an
inner-test instance once. Then, in layer 1 of the proposed IFL,
the inner-training samples with the same labels are grouped
together. Next, the groups of samples (i.e., the samples with
the same label) are clustered to a pre-determined number of
clusters. The representation of these clusters for each label
are calculated in the form of several intermediate features.
In layer 2, each inner-test sample is intentionally assigned to
all available classes, and then one of two described strategies
are performed to extract and analyze a notation of error as a
means to learn a new set of high-level features. In layer 3,
regardless of the fact that the sample has been assigned to the

right or wrong classes, we measure two sets of metrics per
sample for each class. These two sets of learned metrics are
then added to the original data as the learned features. Since
these features are learned per class, the features belonging
to different classes need to be separated from one another.
Therefore, we introduce two techniques that depending on
the number of instances and the number of classes are used.
The model is trained and evaluated by adding the learned
features per instance to the set of the primary features of the
corresponding instance for both training and test instances,
respectively. In the feature learning for training instances, the
features are only learned for inner-test samples, in which their
labels are not considered in the process. The reason is that
we aim to develop a unified framework for feature learning
during the training and test phases in classification, where the
test instances do not have labels.

To formulate the problem, the input training data set is
presented with D = 〈XTrain,Y Train〉, in which XTrain =
{x1, · · · , xn} indicates the set of input training instances and n
shows the number of input instances in the training partition.
Each instance xi = 〈xi,1, · · · , xi,h〉 consists of h features. The
label set is denoted by Y Train, where Y Train = {y1, · · · , yn} is
a vector corresponded with data set XTrain. Thus, yi shows the
corresponding label for xi. Since we focus on classification,
the labels are categorical. Z = 〈z1, · · · , zm〉 shows the set of
classes, in which m indicates the number of classes. XTest

=

〈x ′1, · · · , x
′
f 〉 denotes the test set in which f refers to the

number of test instances. Notation |b| indicates the number of
instances in set b. In continue, we describe the building blocks
of this method with more details, as depicted in figure 2.

VOLUME 8, 2020 132939

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

FIGURE 2. Diagram of the main blocks of the proposed feature learning process for the training data set including the inner-folding, layer 1
(clustering) and layer 2 (adding the inner-test samples). In this example, the number of classes in round j is assumed as 3 (i.e., qj = 3). It is also
assumed that the one fold inner-test includes five samples. These samples are denoted with circles in layer 2.

1) INNER FOLDING
The first step is to find the representation of samples belong-
ing to different classes for both training and test sets. It is
simple to obtain the representation of each class for the
test samples as we can simply partition the training samples
to different classes in order to obtain the representation of
each class. However, the equivalent process of partitioning
is more computationally complex for training samples, since
each sample of the training set should be considered against
all remaining samples with a strategy similar to leave-one-
out cross-validation. In each case, the number of remaining
samples to learn the class representation is n− 1, in which n
denotes the number of training instances. Hence, this process
involves a large number of repetitions of the feature learning
process (i.e., n times) that is not scalable to large data sets.
Therefore, we instead apply a folding mechanism, here called
inner folding to only perform the feature learning process for
a limited number of runs (i.e., r-runs, where r � n). During
each round of inner folding, the training samples are divided
into two partitions of inner-training and inner-test samples.

We introduce inner folding as a partitioning mechanism
that works similar to k-fold cross-validation in terms of parti-
tioning data, but the objective of this inner folding is different
from typical cross-validation folding methods. Inner folding
is a framework that partitions 〈X train,Y train

〉 to r folds. It runs
r times, wherein each run, r − 1 folds are used for training
and 1 fold is used for test. Here, each fold is considered as a
test fold only one time. The training and test partitions in each
run are called as inner-training and inner-test, respectively.

Thus, inner folding is different from cross-validation since it
is used as a mechanism to evaluate the characteristics of one
test sample of inner-test against the inner-training samples in
each run.

The inner-training and inner-test sets of the jth-run of the
inner folding are shown with 〈X Inner_train

j ,Y Inner_train
j 〉, and

〈X Inner_test
j 〉, respectively. Clearly, XTrain

= X Inner_test
j

⋃
X Inner_train
j for each j. The trial process involves assigning

each test instance, ∀x ′f ∈ X
Inner_test
j , to each available label,

zi, zi ∈ Z that exists in Y Inner_train
j . In continue, we describe

the three layers of error representation for each run of the
inner-folding process.

2) LAYER 1: CLUSTERING AND EXTRACTING INTERMEDIATE
FEATURES
As mentioned before, the proposed IFL method is designed
based on the analysis of error representation. The error is
measured using different metrics after the assignment of the
inner-test samples to different classes in order to investigate
the variations in the relative relations among the samples.
To do that, first, the instances of each class are clustered to a
pre-determined number of clusters using K -means algorithm
as an unsupervised learning method. K-means algorithm is
selected as the clustering technique since it is very fast and
can be scaled to high-dimensional data sets [33]. However,
we understand thatK -means algorithm does not performwell
in cases, where the instances have different densities or the
instances are distributed in non-spherical forms. We should

132940 VOLUME 8, 2020

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

note that the IFL method is generic and can be implemented
with other clustering techniques.

During each round j of the inner-folding process, the
instances of X Inner_trainj are first categorized based on their
labels, Y Inner_trainj , to Gj = 〈G1

j , · · · ,G
qj
j 〉, in which qj

shows the number of labels in Y Inner_trainj . The corresponding
input instances and labels of group i during round j, Gij, are

shown with X Inner_train,ij . Then, the samples of each class i,
Gij, are clustered to k clusters. These clusters are ordered
based on the number of their member instances and shown
with CGij = 〈C

1
Gij
, · · · ,Ck

Gij
〉.

During the clustering, each object is assigned to the cluster
that has the nearest centroid as a mean of its instances based
on a distance metric. The objective function of K-means is
considered to find the centroid1, . . . , centroidk in order to
minimize the objective function, O, as described in (1).

O =
k∑
t=1

s∑
l=1

‖x tl − Centroidt‖2 (1)

where s denotes the number of instances in group Gij with
label i, and x tl denotes the instance xl that belongs to cluster t .
Mean-group is a metric defined as the mean of each group,

Gij. This metric, as described in algorithm 1, is a vector
denoted by µij that its l

th-element is calculated as the average
of l th features of all instances that belong to this group.
In order to evaluate the characteristics of the clusters of

each class, we define three other metrics of confidence,mean,
and centroid, as described in algorithm 1. These measures
act similar to kernel functions of ConvNets to extract the
representation of each cluster. The centroid indicates the
center of a cluster that is obtained by the clustering method.
The Confidence is a singular scalar value and defined as the
ratio of the number of instances of each cluster to the number
of all instances of that class. In other words, the confidence
metric is a membership value that shows the probability that
an instance belongs to a particular class. Themean is a vector
with length h that calculates the average of l th features of all
instances that belong to a cluster. The calculation of these
measures in layer 1 captures the baselines to learn the error
as defined in layer 2.

3) LAYER 2: ERROR GENERATION
In machine learning methods, error is the result of differences
between the predicted output and true output that is measured
by loss functions and used to train the model. In a simple
case, the error is ‘‘one’’ when a predicted label is incorrect,
and the error is ‘‘zero’’ when the predicted label is correct.
In the proposed IFL method, instead of using this traditional
notion of error, the error is measured based on a resultant
representation of assigning the instances to different classes
in a trial approach.

As mentioned earlier, the instances that belong to each
group Gij of G

j
= 〈G1

j , · · · ,G
qj
j 〉 have the same label. In

layer 1, the representation of each class and its clusters were

Algorithm 1Clustering and Extracting Intermediate Features
for the jth Run

1: Input: Gj = 〈G1
j , · · · ,G

q
j 〉; the number of clusters (k).

2: Output: Calculating the mean of group Gj, cluster-
ing each member of Gj (i.e., Gij) into k clusters,
〈C1

Gij
, · · · ,Ck

Gij
〉, and calculatingmean, centroid, and con-

fidence for each cluster.
3: for i=1: qj do
4: Cluster Gij into k clusters.
5: ∀ xt ∈ Gij :
6: for l=1:h do
7: µij,l← average (xt,l), where xt,l denotes feature l of

sample xt .
8: end for
9: Sort the clusters based on the number of instances in

them: CGij = 〈C
1
Gij
, · · · ,Ck

Gij
〉.

10: for a=1:k do
11: Centroid_Ca

Gij
← The center of cluster Ca

Gij
.

12: Confidence_Ca
Gij
←

|Ca
Gij
|

|C
Gij
|
.

13: Mean_Ca
Gij
← mean(∀xt ∈ Ca

Gij
).

14: end for
15: end for

measured using several intermediate features (e.g. the mean
of a class, and the centroid, the mean, and the confidence of
the clusters). The goal of layer 2 is to evaluate the changes
in these intermediate features, and in a more general sense,
the representation of each class using the formed clusters
by adding the test samples of inner-test. In other words,
we assign the samples of the inner-test set to the existing
labels one at a time. Therefore, the term trial refers to the
process of inserting a new inner-test sample, x ′l ∈ X

Inner_test
j ,

to a group of samples with the same label, Gij and generating

a new set of (X Inner_training,ij
⋃
x ′l).

We have considered two strategies to evaluate the char-
acteristics of data after addition of new inner-test samples.
In the first strategy, the similarity between the instance and
the centers of clusters of each class is measured to find the
closest one in order to assign that instance to this closest
cluster. In other words, this sample is added to the closest
cluster. Thus, in the first strategy, which is the simpler option,
is to calculate the distances between the sample of inner-
test, x ′p, (x

′
p ∈ X Innertestj) and the centers of all clusters in

CGj = 〈C
1
Gij
, · · · ,Ck

Gij
〉 (obtained in algorithm 1), and then

assign x ′p to the closest cluster of the class i. This cluster
is denoted by C∗

Gij
. After that, the confidence, centroid, and

mean are only calculated for the nearest cluster. This strategy
is described in Algorithm 2.

In the second strategy, the formed clusters of layer 1,
CGij , are no longer used. Instead, in this strategy, the set

VOLUME 8, 2020 132941

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

Algorithm 2 Error Generation Using the First Strategy

1: Input: CGij = 〈C
1
Gij
, · · · ,Ck

Gij
〉; X Inner_testj ; the number of

clusters (k).
2: Output: C

′
∗

Gij
; µ
′i
j ; Centroid_C

′
∗

Gij
; Confidence_C

′
∗

Gij
; and

Mean_C
′
∗

Gij
.

3: for each x ′p ∈ X
Inner_test
j do

4: Find the closest cluster by measuring the dis-
tance between x ′p and the center of each cluster,
〈C1

Gij
, · · · ,Ck

Gij
〉. The closest cluster is denoted by C

′
∗

Gij
.

Sort the clusters based on their number of instances.
5: ∀ xt ∈ C

′
∗

Gij
:

6: for l=1:h do
7: µ

′i
j,l← average (xt,l), where xt,l denotes feature l of

sample xt .
8: end for
9: Centroid_C

′
∗

Gij
← The center of cluster C

′
∗

Gij
.

10: Confidence_C
′
∗

Gij
←

|C
′
∗

Gij
|

|C ′
Gij
|
.

11: Mean_C
′
∗

Gij
← mean(∀xt ∈ C

′
∗

Gij
).

12: end for

of instances in each class including the primary and new
instances are clustered again. The first strategy involves fewer
computations, however, it does not necessarily perform as
well as the second strategy of re-clustering when the densities
of clusters are considerably different. For instance, when
there are several outliers in the original groups.

4) LAYER 3: ERROR CALCULATION
The purpose of layer 1 was to capture the representation
of classes in the form of clusters before the trial process.
In layer 2, the representation of each inner-test instance and
classes after the trial was captured when each inner-test
instance is added to a cluster of each class. Now in layer 3, the
representation of error is learned through several high-level
features by non-linear modules as described in the fol-
lowing. These features capture the relationships between
the inner-test samples and the clusters through two feature
sets. The definition of these features are summarized in
Algorithm 3.

Feature Set 1: The distances between the new instance
and the clusters of each label

This feature set captures the representation of error inside
of each class including the distance of this instance to its
closest adjacent instance in the class (feature1.0), the distance
of the instance with the mean-group (feature1.1) as well as
the distance of the inner-test sample with the centers of all
clusters for each class (feature set: feature1.2), the distance of
the inner-test sample with the means of all clusters of each
class (feature set: feature1.3).

Algorithm 3 Error Calculation

1: Input: CGij ; C
′

Gij
; µij; µ

′i
j ; Centroid_CGij ; Centroid_C

′

Gij
;

Confidence_CGij ; Confidence_C ′
Gij
; Mean_CGij ;

Mean_C ′
Gij
; the number of clusters (k).

2: Output: feature1, · · · , featuree as the vector of learned
features for each instance in X Inner_testj .

3: for each x ′l ∈ X
Inner_test
j do

4: ========Feature set 1=========
5: −−−−−−−−−−−− 1.0
6: feature1.0← distance(x ′l , the closest instance in C

′
∗

Gij
))

7: −−−−−−−−−−−− 1.1
8: feature1.1← distance(x ′l , µ

′i
j)

9: −−−−−−−−−−−− 1.2
10: for a=1:k do
11: featurea1.2← distance(x ′l ,Centroid_C

′a
Gij
)

12: end for
13: −−−−−−−−−−−− 1.3
14: for a=1:k do
15: featurea1.3← distance(x ′l ,Mean_C

′a
Gij
)

16: end for
17: ========Feature set 2 =========
18: −−−−−−−−−−−− 2.1
19: feature2.1← distance(µij, µ

′i
j)

20: −−−−−−−−−−−− 2.2
21: for a=1:k do
22: featurea2.2←distance(Centroid_Ca

Gij
,Centroid_C

′a
Gij
)

23: end for
24: −−−−−−−−−−−− 2.3
25: for a=1:k do
26: featurea2.3← distance(Confidence_Ca

Gij
,

Confidence_C
′a
Gij
)

27: end for
28: −−−−−−−−−−−− 2.4
29: for a=1:k do
30: featurea2.4← distance(Mean_Ca

Gij
,Mean_C

′a
Gij
)

31: end for
32: end for

Feature Set 2: The changes in class representations
before and after inserting the new inner-test sample

To capture the effects of error in the level of classes, the
distances between the means and confidences of the clusters
of each class, formed in layer 1 and layer 2, are calculated.
Also, the distances between the centers and the means of
clusters that were formed in layer 1 and layer 2 within each
class are measured. We also measure the difference between
the confidencemetric of original cluster formed in layer 1 and
the cluster including the sample in layer 2 that represents the
membership value denoted by feature2.3.

Each instance in the training is considered as the inner-test
instance for one time and then these features are calculated

132942 VOLUME 8, 2020

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

TABLE 1. The specification of data sets.

for this sample. The learned features in layer 3 are added
to the set of the primary features of that inner-test instance.
Thus, the output of the inner folding is a set of features per
instance of the training. There are two techniques to join the
learned features with the primary features. First, the learned
features of each class are joined to each other and the primary
features. Second, each instance is replicated as the number of
classes and the learned features of each class are joined to
one of the replications. If the number of instances and also
the number of classes are few, we use the first technique. The
second technique preferred if the number of classes or the
number of instances are large enough. Since learned features
of each instance are calculated for each class, they need to
be differentiated from each other by a hint if the number of
the instances is too few such as ‘‘Cryotherapy’’ data set in
Table 1. Therefore, the features of each class are multiplied
by the class ID to be separated from each other in which the
number of instances is too few. For example, if we have three
classes, a, b, and c, the learned features of these classes are
multiplied to 1, 10, and 20, respectively to be distinguished
from each other. The idea behind multiplying the learned
features of different classes to a pre-determined number is
to explicitly separate them from each other. In our selected
strategy where the learned features of different classes are
multiplied by a multiple of the classes’ ID, the set of corre-
sponding features of each class can be distinguished by their
values and this fact can be used as a key additional clue for
the classifier. We use the multiplying just for ‘‘Cryotherapy’’
data set. We show the used technique for each data set in the
experimental results. ‘‘No free lunch’’ theorem implies that
there is no method that is superior to other methods over all
data sets. We learn two sets of features that some features
are selected depend on the data sets to have general abilities.
We use ReliefF [41] as a feature selection approach for this
purpose and we tune the number of features depending on
each data set. Such separation of learned features of differ-
ent classes cannot be easily handled by some classification
methods, therefore, we utilized ensemble decision tree as
the classifier for our approach to best treat this proposed
embedded distance mechanism. In the following section, the
process of feature learning for the test instances XTest has
been described.

B. ERROR REPRESENTATION LEARNING FOR TEST
INSTANCES
In this phase, as is shown in figure 1, the entire training set
along with its additional learned features can be used as the

training instances in the feature learning method (i.e., the
inner folding process is no longer required). Therefore, the
training and test instances are fed to the three-layer feature
learning method to learn corresponding features for the test
instances. We would like to note that the training instances
are grouped based on their labels and then clustered. The test
instances, which their labels are not available, are assigned
to the proper cluster of each label and then the features
are learned for each test instance. Hence, this step does not
require the labels of test instances. Finally, the extended
training and test data sets with the learned features are fed
to the classifier.

C. AN ILLUSTRATIVE EXAMPLE FOR IFL
In this section, we provide a simple illustrative example to
explain the proposed IFL process. The idea of the IFL is
inspired by the human decision-making process, where the
expected outcome of every potential action is envisioned
before making a decision. In the proposed IFL method,
a trial process is designed in which through an inner-folding
process, the instances for each class are clustered and then
for each new inner-test instance, the possible outcomes of
assigning different labels to this new instance is evaluated in
the form of some learned features.

Let us consider an example of a data set with two features,
〈x1, x2〉, and three classes as shown in figure 3a. In figure 3b,
the instances from each class which are mixed with the sam-
ples from the majority of other classes are marked with num-
bers. In figure 3c, the instances that are shown with question
marks are test instances that illustrate the case, where the test
instances are added to the figure. It is a challenge to provide
the decision function that minimizes the risk for a classifier to
learn the labels of the instances that are marked with numbers
as training instances in figure 3b. They are close to the groups
of instances that the major of them belong to a different
class and several instances of different classes that exist in
that around. This example intends to demonstrate a scenario,
where the test instances are likely to be misclassified by
common classification methods.

We propose inverse feature learning that trial different
assumptions of different classes one by one. First, we obtain
a fine resolution of each class by a clustered representation
as shown in figure 3d. Then, we follow a trial of different
assumptions of belonging as shown in figure 2. The features
that calculate characteristics of the instances to the centers of
the closest clusters capture the local perceptive. The features
that measure the characteristics of a selected cluster to all
other clusters capture global perspectives. In other words, IFL
features represent the possibility of each class considering the
local and global aspects of the feature space. An instance is
assumed to be assigned to each potential label for training
and test instances. This method is specifically valuable to
learn the representation of the samples which are close to
the borders of other classes (see the numbered instances in
figure 3b) during the training phase of the trial, as small
clusters are formed for these samples to learn their relative

VOLUME 8, 2020 132943

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

FIGURE 3. A challenging example for a classifier and how IFL capture the local and global representation.

representation related to the distributions of each class with
a higher resolution. During the test phase, when the test
instances (marked with a question mark) are given to the
learning algorithm, their relations to the cluster representation
of each class are calculated and used as additional informa-
tion for classification. Now, IFL gives the importance to the
numbered one of instances and the main portions of different
classes based on what is learned through training.

IV. TIME COMPLEXITY
The IFL method is developed based on clustering the data
set using K -means algorithm through a trial process to learn
several high-level features based on representation of error.
For the sake of simplicity, this process is explained in a
sequential way (algorithm 1), however, the process of cluster-
ing for different instances can be performed simultaneously.
Therefore, the time complexity of this method would be
a function of time complexity of the underlying K -means
clustering algorithm.

The time complexity of Lloyd’s algorithm of K -means
is O(eknh), in which e is the number of iteration, k is the
number of clusters, n is the number of instances, and h is
the number of features [34]. Since the number of iterations,
e, the number of features, h, and the number of clusters, k ,

are constant, the time complexity of this algorithm is linear.
In the second strategy of error generation, the samples in each
class are clustered again after adding a new test sample as
described in Section III-A3. Hence, the K -means clustering
method is performed 2 × r times during the inner folding
process, in which the number of runs, r � n, is a constant
number. Thus, the time complexity of the feature learning
process is linear. Obviously, the time complexity of the first
strategy in error generation, where the new instance is added
to the cluster with the closest center is also linear.

V. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of IFL method
using several popular binary and multi-class data sets. To do
so, we compared its performance versus several classification
methods that only use the original features. We embed the
corresponding classes of learned feature sets of instances by
two different techniques depending on the number of classes
and the number of instances as described in III-A4. We use
the first technique for ‘‘Cryotherapy’’, ‘‘Diabetes’’, ‘‘Heart’’,
and ‘‘Ionosphere’’ data sets in which the multiplication is
applied just to the ‘‘Cryotherapy’’ data set because its number
of instances is too few. We use the second technique for
the other data sets. The classifiers that consider the whole

132944 VOLUME 8, 2020

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

TABLE 2. The comparison of accuracy and F1 score of the baseline classifiers and the IFL. We have evaluated the performance of data sets with several
popular classifiers libraries in MATLAB and sklearn including SVMs and logistic regressing but only the best results among different classifiers are
reported. In the proposed method, the learned features are independent of the classifier, hence using a better classifier can achieve higher accuracy over
our learned features as it does over other sets of features.

features as a unified set are subject to a weak performance
here. Thus, we used boosting decision trees as the main
classifier for the proposed method because it works based
on several decision trees that can better handle a bigger set
of features of learned and original features corresponding
to different classes compared to other classifiers. Different
metrics including accuracy and F1 scores are used to evaluate
the performance of our method. Also, we compared the per-
formance of this IFL versus several deep representation learn-
ing approaches, as described in [35], such as Linear ELM
[36], Deep Belief Networks [37], Stacked Auto-Encoder [14]
for pre-training weights of the deep network alongside a
softmax classifier [38], DrELM [35], and DrELM r [35]. The
results are reported using ‘‘Statistics and Machine Learning
Toolbox’’ of MATLAB R©.
We also evaluate the performance of the IFL method in

comparison with several feature selection, feature extraction,
and feature transformation techniques which are applicable
to the selected data sets. Feature selection methods remove
redundant, irrelevant, and noisy features that help to make
a balance between the number of features and number of
instances for classic classification in small data sets. Feature
extraction or learning methods which are based on learning
new features from raw data still suffer from degraded per-
formance to provide a useful inference in data sets with a
small instance space and a large number of features [39], [40].
The feature extraction methods which are based on objective
functions can construct and learn a new set of features to
improve the performance. The performance of our proposed
method is compared with several feature learning, feature
extraction and feature selection techniques in Table 3. The
same Ensemble classifier is used for these techniques as well
as the IFL algorithm.

Feature selection (FS) methods are categorized into three
groups: filter-based techniques that analyze the data indepen-
dent of the classifier, the embedded methods which integrate
the selection process into the learning the classifier, and the
wrapper-based methods which measure the importance of
the features based on the classifier performance. Among the
filter-based FS methods, we have selected ReliefF [41] and
Fisher [42]. ReliefF is a supervised approach that works in
an iterative manner. Fisher as a supervised feature selection

method calculates the importance of the features as the
ratio of inter-class separation and intra-class variances [43].
In the Embedded category, we compare the performance of
IFL with Lasso [44] and unsupervised discriminative feature
selection (UDFS) [45]. In Lasso, the features are ranked
by using K-nearest neighbors per class. The importance of
features is measured based on their separation power in a
linear SVM. UDFS as an unsupervised FS algorithm uses
L2,1-norm regularized searches for the most discriminative
feature subset in batch mode [46]. In the wrapper category,
we select FSV [47] and dependence guided unsupervised
feature selection (DGUFS) [48]. FSVworks based on a linear
programming technique through the training of an SVM.
DGUFS selects the features and partition data in a joint
manner that preserves the dependency among data, cluster
labels, and selected features [48]. We select 90% of the most
important of features as the input features of the Ensemble
classifier and the remaining 10% features (redundant and
correlated features) are discarded.

We also used two known feature extraction meth-
ods including sparse filtering (SF) algorithm [49] and
reconstruction independent component analysis (RICA)
Algorithm [50]. They learn transformations that map the fea-
tures to new features. Sparse filtering algorithm and RICA
attempt to minimize the sparse filtering objective function
and Reconstruction ICA Objective Function by using a stan-
dard limited memory Broyden-Fletcher-Goldfarb-Shanno
(LBFGS) quasi-Newton optimizer respectively. For exam-
ple, the objective function of sparse filtering simultaneously
learns several features for each instance as each learned fea-
ture has a similar weight [49], [50]. We evaluate the sparse
filtering and RICA in two scenarios where the number of
learned features added to the data set is equal to 20% or 50%
of the number of original features.

We also compared the IFL method against principal com-
ponent analysis (PCA) as a common feature transformation
technique [51]. We consider two scenarios of using the PCA
method with the threshold value of 99% and 99.9%.

We evaluated the results of our method over several runs
for different data sets and the results showed very small
variances. Theoretically speaking, since we just added a
number of features and used the common classifiers that

VOLUME 8, 2020 132945

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

TABLE 3. The comparison of accuracy and F1 score of several feature processing methods for Ensemble as the classifier in comparison to IFL features.
The numbers in the parenthesis in front of PCA shows the threshold of variance. The numbers in the parenthesis in front of RICA and SF shows the ratio
of the number of learned features related to the number of original features that are added to the original features. The numbers in the parenthesis in
front of Relief-F, Fisher, Lasso, UDFS, FSV, DGUFS shows the ratio of the number of selected features to the number of original features.

TABLE 4. Comparison of the performance of the proposed IFL method
with the reported results in [35] in terms of accuracy for two data sets of
Segment and Diabetes. The reported results of other methods were tuned
to provide their best performance.

do not depend on stochastic behaviors; therefore, the results
only have very small variances over different runs. The only
stochastic part of the method is the clustering, where the
clustering methods such as k-means can be easily stabilized
[52], [53] and are used in feature learning methods [8], [9].

A number of common data sets with a different number of
instances, features, and classes are used in this study includ-
ing Cryotherapy, Heart, Segment, Magic, Letter, Credit,
Spam, and Ionosphere [54]. The characteristics of these data
sets are summarized in Table 1. The reported results are

obtained using k-fold cross-validation. Let us first describe
the parameters involved in the proposed method before pre-
senting the results.

As described in Section III, the feature learning process
for training data is based on a r-fold inner folding process,
where r shows the number of folds. Each round of inner fold-
ing involves clustering the training data set using K -means,
in which k is the number of clusters. We consider k equals
with r in experiments and we use the City Block as the
distance metric in clustering and feature calculation. The
corresponding parameters used in the proposed IFL method
for the results in Table 5 are described. The number of folds
for cross-validation of the baseline classifier in Table 2 is
selected as 5, 10, or 15 as used for the proposed method in
the second column of Table 5.

The reported results are based on using the first strategy
of error generation (i.e., assigning the test instances to the
closest cluster). The results are reported for the case that the
proposed IFL method is performed over boosting decision
trees classifier. The reason behind selecting the boosting deci-
sion trees is its robust performance versus different feature
sets per class since we embedded the label of each class in

132946 VOLUME 8, 2020

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

TABLE 5. The description of parameters used in the proposed IFL method.

the learned features of that class. Different baseline classifiers
such as Naive Bayes (NB), Decision Tree, K -nearest neigh-
bors (KNNs), and an Ensemble Classifier in form of boosting
decision trees, as the same classifier that we used for IFL, are
used for the sake of comparison.

As it can be seen in Table 2, the proposed feature learning
method provides considerably better results in different data
sets compared to the known classifiers that only work with
original features. It means that the learned features using
our method can significantly improve the results of popular
classifiers. The parameters of the proposed feature learning
method are fine-tuned based on the data sets as described in
Table 5. In Table 5, the fourth column describes the set of
learned features (as described in Algorithm 3) that are used
for each data set.

We also compared the result of the proposed method in
terms of accuracy with several most known approaches that
learn deep representation in Table 4. As can be seen in the
table, the proposed method can provide comparable results
with these methods or outperform for some data sets, while
it is worth noting that our method can learn new classes in an
incremental manner without modifying the learned features
of previous classes. However, the deep representation learn-
ing generally cannot be easily scaled-up to learn new classes
without re-training. Based on the well-known ‘‘no free lunch"
theorem, there is no method that is superior to other methods
over all data sets. As it can be seen in Table 4, for Diabetes
data set, the accuracy of the IFL is just about 1% below than
DrELM r [35] and the accuracy for Segment data set is 2.2%
better than the known deep representation leanings as the-
state-of-art in recent literature.

As it is shown in Table 3, the performance of the IFL
method is better than the feature selections and extraction
methods. The results indicate that the IFL method is capable
of extracting useful information from the data set that are
not captured by common feature extraction, selection, and
transformation methods. The comparison of the elapsed time
of the classifier based on the primary features with the elapsed
time of IFL calculation and the classifier for IFL is shown in
Table. 6. The elapsed times are reported in seconds and the
calculation of the features is done serially. Since the features
are calculated for each instance depending on each class,

TABLE 6. The comparison of elapsed time in seconds of the classifier for
primary features and the time for calculation of IFL features and the
classifier for IFL. It should be noted the reported times are measured
based on a serial calculation for IFL. The IFL features of instances can be
calculated in parallel since the features are calculated per instance and
the big differences appear in data sets in which the number of instances
is more than thousand instances.

it can be seen the differences become larger in which the
number of instances is large. The calculation of the features
in a parallel way depends on the available resource that can
decrease the elapsed time considerably.

We should note that we evaluated the performance of this
IFL method using other clustering techniques such as spec-
tral clustering (e.g., DBSCAN [55]). Using this clustering
method led to better results since it can handle different
data densities in better forms. However, this clustering works
based on a graph Laplacian matrix that requires a consider-
able memory to operate, therefore, it was not easily feasible
for large scale data sets.

VI. CONCLUSION
In this paper, we propose error representation learning as a
new feature learning trend that deals with error as a dynamic
component that can disclose a valuable set of information
about the relations of the instances and the classes. To the
best of our knowledge, current machine learning methods
interpret the error in a simple notion of a constant scalar that
evaluates the differences between the true and the predicted
labels. In this paper, we propose a general concept of error
representation that can evaluate the error in several new lev-
els in order to learn high-level and explicable features by
trial. The proposed feature learning method based on error
representation, called inverse feature learning adds the set
of learned features to the set of primary features. The IFL
method is performed in a hierarchical structure by evaluating
the results of adding each instance of interest to available
classes using several different metrics. The experimental
results show the significant performance of this feature learn-
ing method compared to several state-of-the-art classification
methods and most known deep representation learning meth-
ods. Another clustering strategy to handle large scale data
sets is using deep learning deep-learning-based clustering
methods. However, the deep learning strategy cannot learn
classes simultaneously, be applied on small data sets, and
learn new classes without learning from scratch. We consider

VOLUME 8, 2020 132947

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

developing a deep-learning-based clustering approach for
inverse future learning as our future work [56].

ACKNOWLEDGMENT
The authors would like to thank the high performance com-
puting team of Northern Arizona University. They would also
like to thank the reviewers’ comments and suggestions which
helped to improve the research and this article.

REFERENCES
[1] P. Smolensky, ‘‘Information processing in dynamical systems: Founda-

tions of harmony theory,’’ in Parallel Distributed Processing, vol. 1,
D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA: MIT
Press, 1986, pp. 194–281, ch. 6.

[2] H. Bourlard and Y. Kamp, ‘‘Auto-association by multilayer perceptrons
and singular value decomposition,’’ Biol. Cybern., vol. 59, nos. 4–5,
pp. 291–294, Sep. 1988.

[3] G. E. Hinton and R. S. Zemel, ‘‘Autoencoders, minimum description length
and Helmholtz free energy,’’ in Proc. Adv. Neural Inf. Process. Syst., 1994,
pp. 3–10.

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[5] B. A. Olshausen and D. J. Field, ‘‘Sparse coding with an overcom-
plete basis set: A strategy employed by v1?’’ Vis. Res., vol. 37, no. 23,
pp. 3311–3325, Dec. 1997.

[6] H. Lee, A. Battle, R. Raina, and A. Y. Ng, ‘‘Efficient sparse coding
algorithms,’’ in Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 801–808.

[7] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, ‘‘Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations,’’ in Proc. 26th Annu. Int. Conf. Mach. Learn. (ICML), 2009,
pp. 609–616.

[8] Coates and A. Y. Ng, ‘‘Learning feature representations with k-means,’’ in
Neural Networks: Tricks of the Trade. Berlin, Germany: Springer, 2012,
pp. 561–580.

[9] J. Xie, R. Girshick, and A. Farhadi, ‘‘Unsupervised deep embedding for
clustering analysis,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 478–487.

[10] A. Y. Ng and S. J. Russel, ‘‘Algorithms for inverse reinforcement learning,’’
in Proc. ICML, 2000, pp. 663–670.

[11] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:
A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[12] G. Zhong, L.-N. Wang, X. Ling, and J. Dong, ‘‘An overview on data
representation learning: From traditional feature learning to recent deep
learning,’’ J. Finance Data Sci., vol. 2, no. 4, pp. 265–278, Dec. 2016.

[13] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, ‘‘Network representation
learning with rich text information,’’ in Proc. 24th Int. Joint Conf. Artif.
Intell., 2015, pp. 1–7.

[14] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, ‘‘Greedy layer-wise
training of deep networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2007,
pp. 153–160.

[15] H. Lee, P. Pham, Y. Largman, and A. Y. Ng, ‘‘Unsupervised feature
learning for audio classification using convolutional deep belief networks,’’
in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1096–1104.

[16] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, ‘‘Deep clustering
for unsupervised learning of visual features,’’ 2018, arXiv:1807.05520.
[Online]. Available: http://arxiv.org/abs/1807.05520

[17] R. Evans, B. Pfahringer, and G. Holmes, ‘‘Clustering for classification,’’
in Proc. 7th Int. Conf. Inf. Technol. Asia (CITA), Jul. 2011, pp. 1–8.

[18] X. Ao, P. Luo, X. Ma, F. Zhuang, Q. He, Z. Shi, and Z. Shen, ‘‘Combin-
ing supervised and unsupervised models via unconstrained probabilistic
embedding,’’ Inf. Sci., vol. 257, pp. 101–114, Feb. 2014.

[19] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Eds., Foundations and
Applications (Studies in Fuzziness and Soft Computing). Heidelberg,
Germany: Springer, 2006.

[20] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Hoboken,
NJ, USA: Wiley, 2012.

[21] D. Storcheus, A. Rostamizadeh, and S. Kumar, ‘‘A survey of modern
questions and challenges in feature extraction,’’ in Proc. 1st Int. Workshop
Feature Extraction, Modern Questions Challenges (NIPS), 2015, pp. 1–18.

[22] K. Kenyon-Dean, A. Cianflone, L. Page-Caccia, G. Rabusseau,
J. C. K. Cheung, and D. Precup, ‘‘Clustering-oriented representation
learning with attractive-repulsive loss,’’ 2018, arXiv:1812.07627.
[Online]. Available: http://arxiv.org/abs/1812.07627

[23] B. Ghazanfari, F. Afghah, K. Najarian, S. Mousavi, J. Gryak, and J. Todd,
‘‘An unsupervised feature learning approach to reduce false alarm rate in
ICUs,’’ in Proc. 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC),
Jul. 2019, pp. 349–353.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[25] M. Kostinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof, ‘‘Large
scale metric learning from equivalence constraints,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2012, pp. 2288–2295.

[26] V. R. de Sa, ‘‘Learning classification with unlabeled data,’’ in Proc. Adv.
Neural Inf. Process. Syst., 1994, pp. 112–119.

[27] O. Chapelle, B. Scholkopf, and A. Zien, Eds, ‘‘Semi-supervised learning
(Chapelle, O. et al., Eds.; 2006) [book reviews],’’ IEEE Trans. Neural
Netw., vol. 20, no. 3, p. 542, Mar. 2009.

[28] K. Benabdeslem and M. Hindawi, ‘‘Efficient semi-supervised feature
selection: Constraint, relevance, and redundancy,’’ IEEE Trans. Knowl.
Data Eng., vol. 26, no. 5, pp. 1131–1143, May 2014.

[29] M. Seeger, ‘‘Learning with labeled and unlabeled data,’’ Univ. Edinburgh,
Edinburgh, U.K., Tech. Rep., 2000.

[30] O. Chapelle, J. Weston, and B. Schölkopf, ‘‘Cluster kernels for
semi-supervised learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2003,
pp. 601–608.

[31] Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang, ‘‘Representative sampling for
text classification using support vector machines,’’ in Proc. Eur. Conf. Inf.
Retr. Berlin, Germany: Springer, 2003, pp. 393–407.

[32] H. T. Nguyen and A. Smeulders, ‘‘Active learning using pre-clustering,’’
in Proc. 21st Int. Conf. Mach. Learn., 2004, p. 79.

[33] A. Coates, A. Ng, and H. Lee, ‘‘An analysis of single-layer networks in
unsupervised feature learning,’’ inProc. 14th Int. Conf. Artif. Intell. Statist.,
2011, pp. 215–223.

[34] S. Lloyd, ‘‘Least squares quantization in PCM,’’ IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129–137, Mar. 1982.

[35] W. Yu, F. Zhuang, Q. He, and Z. Shi, ‘‘Learning deep representations
via extreme learning machines,’’ Neurocomputing, vol. 149, pp. 308–315,
Feb. 2015.

[36] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, ‘‘Extreme learning machine:
A new learning scheme of feedforward neural networks,’’ in Proc. IEEE
Int. Joint Conf. Neural Netw., vol. 2, Jul. 2004, pp. 985–990.

[37] G. E. Hinton and R. R. Salakhutdinov, ‘‘Reducing the dimensionality of
data with neural networks,’’ Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[38] W. H. Greene, Econometric Analysis, 5th ed. Englewood Cliffs, NJ, USA:
Pearson, 2003.

[39] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Eds., Feature Extrac-
tion: Foundations and Application (Series Studies in Fuzziness and Soft
Computing), vol. 207. New York, NY, USA: Springer, 2006.

[40] G. Chandrashekar and F. Sahin, ‘‘A survey on feature selection methods,’’
Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014.

[41] M. Robnik-Šikonja and I. Kononenko, ‘‘Theoretical and empirical analysis
of ReliefF and RReliefF,’’ Mach. Learn., vol. 53, nos. 1–2, pp. 23–69,
Oct. 2003.

[42] Q. Gu, Z. Li, and J. Han, ‘‘Generalized Fisher score for feature
selection,’’ 2012, arXiv:1202.3725. [Online]. Available: http://arxiv.
org/abs/1202.3725

[43] G. Roffo, S. Melzi, and M. Cristani, ‘‘Infinite feature selection,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4202–4210.

[44] H. Zou and T. Hastie, ‘‘Regularization and variable selection via the elastic
net,’’ J. Roy. Stat. Soc., Ser. B (Stat. Methodol.), vol. 67, no. 2, pp. 301–320,
Apr. 2005.

[45] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, ‘‘L2, 1-norm regular-
ized discriminative feature selection for unsupervised,’’ in Proc. 22nd Int.
Joint Conf. Artif. Intell., 2011, pp. 1–6.

[46] G. Roffo, S.Melzi, U. Castellani, andA. Vinciarelli, ‘‘Infinite latent feature
selection: A probabilistic latent graph-based ranking approach,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 1398–1406.

[47] P. S. Bradley and O. L. Mangasarian, ‘‘Feature selection via concave mini-
mization and support vector machines,’’ in Proc. ICML. vol. 98, Jul. 1998,
pp. 82–90.

132948 VOLUME 8, 2020

B. Ghazanfari et al.: IFL: Feature Learning Based on Representation Learning of Error

[48] J. Guo and W. Zhu, ‘‘Dependence guided unsupervised feature selection,’’
in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 1–8.

[49] J. Ngiam, Z. Chen, S. A. Bhaskar, P. W. Koh, and A. Y. Ng, ‘‘Sparse
filtering,’’ in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 1125–1133.

[50] Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng, ‘‘ICA with reconstruction
cost for efficient overcomplete feature learning,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2011, pp. 1017–1025.

[51] H. Abdi and L. J. Williams, ‘‘Principal component analysis,’’ Wiley Inter-
discipl. Rev., Comput. Statist., vol. 2, no. 4, pp. 433–459, 2010.

[52] L. I. Kuncheva and D. P. Vetrov, ‘‘Evaluation of stability of k-means cluster
ensembles with respect to random initialization,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 11, pp. 1798–1808, Nov. 2006.

[53] A. Rakhlin and A. Caponnetto, ‘‘Stability of k-means clustering,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2007, pp. 1121–1128.

[54] D. Dheeru and E. K. Taniskidou. (2017). UCI Machine Learning Reposi-
tory. [Online]. Available: http://archive.ics.uci.edu/ml

[55] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, 1996, vol. 96, no. 34, pp. 226–231.

[56] B. Ghazanfari and F. Afghah, ‘‘Deep inverse feature learning: A repre-
sentation learning of error,’’ 2020, arXiv:2003.04285. [Online]. Available:
http://arxiv.org/abs/2003.04285

BEHZAD GHAZANFARI (Graduate Student
Member, IEEE) is currently pursuing the Ph.D.
degree with Northern Arizona University. He is
involved in reinforcement learning, representa-
tion learning, multi-objective reinforcement learn-
ing, deep learning, multi-agent systems, and
bio-medical signal processing.

FATEMEH AFGHAH (Senior Member, IEEE) is
an Associate Professor with the School of Infor-
matics, Computing and Cyber Systems, Northern
Arizona University (NAU), Flagstaff, AZ, USA,
where she is the Director of Wireless Networking
and Information Processing (WiNIP) Laboratory.
Prior to joining NAU, she was an Assistant Profes-
sor with the Electrical and Computer Engineering
Department, North Carolina A&T State Univer-
sity, Greensboro, NC, USA, from 2013 to 2015.

She received the Air Force Office of Scientific Research Young Investigator
Award in 2019 and the NSF CRII Award in 2017. Her research inter-
ests include wireless communication networks, decision making in multi-
agent systems, radio spectrum management, and artificial intelligence in
healthcare.

MOHAMMADTAGHI HAJIAGHAYI is currently
the Jack and Rita G. Minker Professor with
the Computer Science Department, University of
Maryland, College Park, where he is an affiliated
Professor with the Robert H. Smith School of
Business. In addition, he holds a research affil-
iate position at the MIT Computer Science and
Artificial Intelligence Laboratory (CSAIL). He is
also a Permanent Member of the Center for Dis-
crete Mathematics and Theoretical Computer Sci-

ence (DIMACS) at Rutgers. He has been a Guggenheim Fellow, since 2019,
and an ACM Fellow, since 2018 (the youngest in the class of 2018 fellows).

VOLUME 8, 2020 132949

	INTRODUCTION
	RELATED WORKS
	INVERSE FEATURE LEARNING
	ERROR REPRESENTATION LEARNING FOR TRAINING INSTANCES
	INNER FOLDING
	LAYER 1: CLUSTERING AND EXTRACTING INTERMEDIATE FEATURES
	LAYER 2: ERROR GENERATION
	LAYER 3: ERROR CALCULATION

	ERROR REPRESENTATION LEARNING FOR TEST INSTANCES
	AN ILLUSTRATIVE EXAMPLE FOR IFL

	TIME COMPLEXITY
	EXPERIMENTAL RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	BEHZAD GHAZANFARI
	FATEMEH AFGHAH
	MOHAMMADTAGHI HAJIAGHAYI

