
Temperature Dependence of the Water Infrared

Spectrum: Driving Forces, Isosbestic Points, and

Predictions

Zeke A. Piskulich and Ward H. Thompson∗

Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA

E-mail: wthompson@ku.edu

1

wthompson@ku.edu


Abstract

The temperature derivative of the infrared (IR) spectrum of HOD/D2O is directly

calculated from simulations at a single temperature using a fluctuation theory ap-

proach. It is demonstrated, based on an energetic decomposition of the derivative,

that the blueshift with increasing temperature is associated with the competition be-

tween electrostatic and Lennard-Jones interactions. The same competition gives rise,

where their contributions cancel, to a near isosbestic point. The derivative is further

used to define an effective internal energy (and entropy) associated with the IR spec-

trum and it is shown how a van’t Hoff relation can be used to accurately predict the

spectrum over a wide range of temperatures. These predictions also explain why a

precise isosbestic point is not observed.
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The behavior of liquid water vibrational spectra with temperature has long been of

interest1–27 because of the potential insight it can offer into the underlying driving forces for

the liquid structure and dynamics. Among the prominent features observed are isosbestic

points found in the IR4,9–11 and Raman2,6,7,12,13,16–18,26,27 spectra as temperature is varied.

These have been used to argue for two-state models of the water hydrogen-bond (H-bond)

network,4,6,8,9,11 but more recently it has been shown they instead arise as a natural feature

of inhomogeneous broadening.16–18

In this Letter, we investigate the energetic origins of the temperature dependence of the

IR spectrum of dilute HOD in D2O to shed new light on these issues. Specifically, we directly

calculate the temperature derivative of the IR spectrum using molecular dynamics (MD) sim-

ulations. The theoretical approach is an application of fluctuation theory to dynamics,28–31

similar to that previously described by Morita and co-workers.22–25 This method provides

new mechanistic insight into the energetic driving forces – e.g., kinetic energy, Coulombic

and Lennard-Jones interactions – behind spectral changes with temperature, including the

nature and origin of the isosbestic point. We show that the effects can be characterized by

an (effective) internal energy as a function of frequency, which itself can be used to predict

the IR spectrum for temperatures spanning at least 80 K.

We calculate the IR lineshape from the Fourier transform

I(ω) =
1

2π

∫ ∞

−∞
e−iωt ϕ(t) dt, (1)

of the dipole-dipole response function,

ϕ(t) =
⟨
µ⃗01(0) · µ⃗01(t) e

i
∫ t
0 ω01(τ) dτ

⟩
e−|t|/2T1 . (2)

Here µ⃗01(t) = ⟨1|µ̂|0⟩ = µ01(t) e⃗OH(t) is the matrix element of the transition dipole moment

vector for the OH bond at time t, ω01(t) is the 0 → 1 vibrational frequency at time t, and T1

is the n = 1 vibrational relaxation lifetime. The brackets ⟨· · · ⟩ indicate a thermal average.
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It is within this thermal average that the temperature dependence of the IR spectrum

appears in two factors: the Boltzmann weighting factor in the average and the canonical

partition function that normalizes it.29,31 Thus, taking the derivative of the IR lineshape

gives a simple expression

dI(ω)

dβ
= − 1

2π

∫ ∞

−∞
e−iωt ϕH(t) dt, (3)

where β = 1/kBT with kB Boltzmann’s constant and ϕH(t) is, within a sign, the β derivative

of ϕ(t),

dϕ(t)

dβ
= −

⟨
δH(0) µ⃗01(0) · µ⃗01(t) e

i
∫ t
0 ω01(τ) dτ

⟩
e−|t|/2T1 = −ϕH(t). (4)

Here, δH(0) = H(0) − ⟨H⟩ is the fluctuation in the total system energy from its average

value. For simplicity, we neglect the temperature dependence of T1 and use the value of 700

fs from Fecko et al.32

In this work, we evaluate these quantities using the empirical mapping approach15,33,34

from a classical MD simulation of H2O, considering each OH bond as independent and

isotopically dilute (i.e., neglecting vibration-vibration coupling) to effectively model dilute

HOD in D2O.15 In this approach, ω01 and µ01 are obtained from the electric field along the

OH bond, exerted by the surrounding waters on the H atom of interest, as determined by a

correlation with electronic structure results. This approach has been shown to be accurate

for a water in a variety of environments34 and over a wide range of temperatures.15,35

The simulated IR lineshape for HOD in D2O is presented in Fig. 1a. The peak maximum

is at 3382 cm−1 and the full-width half-maximum (FWHM) is 270 cm−1. It is interesting

to compare the IR lineshape with the distribution of frequencies, P (ω) = ⟨δ[w − w01(Q)]⟩,

which is also plotted in Fig. 1a. P (ω) is notably blueshifted, with a maximum at 3465 cm−1,

broader (FWHM = 382 cm−1), and more asymmetric with a long tail to lower frequencies.

The differences are partially a result of non-Condon effects, i.e., the transition dipole moment

that governs the IR intensity is larger for stronger H-bonds, which are captured in the spectral
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density, Pµ(ω) = ⟨|µ01(Q)|2 δ[w − w01(Q)]⟩. The spectral density is also plotted in Fig. 1a

and more closely resembles the IR lineshape: it peaks at 3385 cm−1 but is still broader

(FWHM = 361 cm−1). The difference between the the IR lineshape and spectral density

can be attributed primarily to dynamical effects, particularly motional narrowing resulting

from rapid fluctuations of the vibrational frequency.36
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Figure 1: (a) HOD in D2O IR spectrum (black), frequency distribution (red), and spectral
density (blue) at 298.15 K. The (b) frequency distribution, (c) spectral density, and (d) IR
spectrum, with the maximum set to 1, are reproduced (solid black) along with the total
derivative with respect to β (dashed black) and the contributions to the derivative from the
kinetic (dashed red), Lennard-Jones (dashed violet), and Coulombic (dashed blue) energies.

The temperature (or β) derivative of the frequency distribution and spectral density can
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be calculated like that for I(ω),

dP (ω)

dβ
= −⟨δH δ[w − w01(Q)]⟩ ≡ −PH(ω), (5)

and

dPµ(ω)

dβ
= −⟨δH |µ01|2 δ[w − w01(Q)]⟩ ≡ −Pµ,H(ω). (6)

A key advantage of this approach is that it provides additional mechanistic information

because the system energy is divisible into physically meaningful components, e.g., δH(0) =

δKE(0) + δVLJ(0) + δVCoul(0), yielding the contributions to the derivative from each of

these motions or interactions, e.g., PH(ω) = PKE(ω) + PLJ(ω) + PCoul(ω). Here, KE is the

kinetic energy and VLJ and VCoul are the Lennard-Jones and Coulombic potential energies.

It should be noted that other decomposition are possible as long as the terms sum to the

total energy; though for the present work we consider the simple decomposition above. The

total temperature derivatives of P (ω), Pµ(ω), and I(ω) are shown in Fig. 1b-d along with

the contributions to each derivative from the different energy components.

Considering the frequency distribution first, Fig. 1b shows that the total derivative is

positive at lower frequencies (i.e., the amplitude in this region will grow as β increases and

T decreases) and negative at higher frequencies. Note that because P (ω) is a normalized

probability distribution, its derivative must integrate to zero. This gives rise to at least one

frequency where the derivative is zero and therefore where P (ω) is unchanged by temperature

(at least over some interval). Geissler has previously pointed this out in the context of

understanding isosbestic points that have been observed in the Raman and IR spectra of

water,16–18 the former of which can often be well described by the frequency distribution.

New insight into the origin of the isosbestic point is offered by the energetic contribu-

tions to the derivative. Because P (ω) depends only on configurational variables, the kinetic

energy contribution is rigorously zero. The total derivative, dP (ω)/dβ, is thus determined

by the direct competition of the Lennard-Jones and Coulombic interactions. Namely, in an
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H-bond the waters sit on the repulsive wall of the Lennard-Jones potential, held there by

the attractive Coulombic attraction between the donor H atom and the accepting O atom.

The frequency distribution captures a continuum of H-bond structures with lower frequen-

cies corresponding to greater electrostatic stabilization and larger Lennard-Jones repulsion.

Conversely, the highest frequencies, which reflect weak or even transiently broken H-bonds,

involve more favorable Lennard-Jones and poorer Coulombic interactions. This behavior is

reflected in the Lennard-Jones and Coulombic contributions to the P (ω) derivative shown

in Fig. 1b. The former favors higher frequencies and the latter favors lower frequencies as

T decreases. The electrostatic interactions are dominant, so the total derivative reflects the

partial cancellation of the Coulombic contribution by the Lennard-Jones term.

The frequency where the total derivative is zero, the isosbestic point for P (w) with

changes in T , is thus determined by the competition between the Coulombic and Lennard-

Jones interactions that are held in tension in an H-bond.37–39 The same battle between these

interactions explains an analogous isosbestic point in the water O–O radial distribution

function,37 which has been observed in both measurements and simulations.40–43

The IR spectrum differs from the frequency distribution due to both non-Condon and

dynamical effects (Fig. 1a). The effect of the former on the temperature dependence is

explored in Fig. 1c, where the spectral density derivative, dPµ(ω)/dβ, is shown along with

its kinetic, Lennard-Jones, and Coulombic energy contributions. These are qualitatively

similar to those for the frequency distribution. Indeed, the spectral density is the frequency

distribution weighted by the average square transition dipole moment at each frequency,

increasing the relative amplitude of both Pµ(ω) and its derivatives at lower frequencies

compared to P (ω). The temperature dependence of Pµ(ω) and P (ω) thus only differ if

⟨|µ01|2⟩(ω) changes with temperature. Within the empirical mapping description this is not

the case and there is no temperature dependence of the non-Condon effect itself.

Because the IR spectrum includes dynamical effects that significantly affect the lineshape,

it is perhaps not obvious that it would retain an isosbestic point. This is explored in Fig. 1d,
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which shows the total derivative of I(ω) with respect to β and it energetic components. The

total derivative is in general agreement with that previously reported by Joutsuka and Morita

using a flexible, polarizable water model to directly describe the frequencies;25 they did not

report energetic decompositions. The results clearly show that the general shape of dI(ω)/dβ

is similar to that for the frequency distribution and spectral density, including the presence

of a frequency at which the derivative is zero, indicative of an (at least local) isosbestic

point at 3454 cm−1, which is redshifted relative to the 3482 cm−1 found for P (ω) and

Pµ(ω); experiments on H2O find an isosbestic point at 3460 cm−1.10 As with the frequency

distribution, this can be understood based on the energetic contributions to the derivative,

which measure how the interactions drive the changes in I(ω) with T . The dynamical nature

of the IR lineshape means that the kinetic energy contribution to its derivative is non-zero,

but it remains quite small. Thus, dI(ω)/dβ is largely determined by the competition between

the Coulombic and Lennard-Jones interactions of the water molecules that, as T is decreased,

favor lower and higher OH frequencies, respectively.

It is interesting and useful to examine the thermodynamics that underlie the frequency

distribution by considering the corresponding (Helmholtz) free energy profile as a function

of frequency,

∆A(ω) = −kBT lnP (ω) = ∆U(ω)− T∆S(ω), (7)

where ∆U(ω) and ∆S(ω) are the internal energy and entropy. It is straightforward to

show that, within the van’t Hoffian assumption that ∆U(ω) and ∆S(ω) are temperature

independent,37

∆U(ω) =
PH(ω)

P (ω)
. (8)

The entropic contribution can be directly obtained from ∆A(ω) and ∆U(ω). Geissler derived

an analogous expression to Eq. 8 in explaining the ubiquity of isosbestic points.17,18 (The

spectral density free energy is the same as that for P (ω) within the present model.) In addi-

tion, because PH(ω) can be decomposed into Lennard-Jones and Coulombic contributions,
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Figure 2: Free energy ∆A (solid black), internal energy ∆U (dashed black), entropic con-
tribution −T∆S (dashed red) are plotted versus frequency along with the Lennard-Jones
(dashed violet) and Coulombic (dashed blue) internal energy components for the (a) fre-
quency distribution and (b) IR spectrum at 298.15 K.

so can the internal energy. Namely,

∆U(ω) =
PLJ(ω)

P (ω)
+

PCoul(ω)

P (ω)
= ∆ULJ(ω) + ∆UCoul(ω), (9)

providing additional insight into the energetic driving forces.

The free energy, internal energy, entropy, and internal energy components for the fre-

quency distribution are shown in Fig. 2a. The internal energy ∆U(ω) has a broad minimum

around 3200 cm−1 resulting from the competition between the Coulombic and Lennard-Jones

contributions. The former decreases monotonically toward lower frequencies, i.e., more red-

shifted, strongly hydrogen-bonded OH groups, while the latter decreases monotonically as

the frequency increases. The entropic contribution, −T∆S(ω), also favors higher frequencies,

further indicating that they correspond a more disordered H-bonding arrangement involving

weaker, or even transiently broken, H-bonds.

The IR spectrum, as a dynamical quantity, cannot be rigorously converted to a free

energy, but we can consider an effective free energy defined in analogy to Eq. 7:

∆AIR(ω) = −kBT ln I(ω) = ∆UIR(ω)− T∆SIR(ω). (10)
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Analogous to the frequency distribution, the internal energy can be decomposed as ∆UIR(ω) =

∆UIR,KE(ω)+∆UIR,LJ(ω)+∆UIR,Coul(ω), noting that the kinetic energy contribution is non-

zero.

These effective free energy, internal energy, entropy, and internal energy components for

the IR spectrum are shown in Fig. 2b. They exhibit behavior that is generally the same as for

the frequency distribution, with the primary difference occurring at the highest and lowest

frequencies. Namely, ∆AIR(ω) asymptotically approaches constant values at the limits of

the spectrum. Similarly, ∆UIR(ω) and −T∆SIR(ω) exhibit local maxima and minima due

to this behavior. This difference in shapes with the P (ω) results is due to both non-Condon

effects, which appear only in the free energy and entropy since the transition dipole moment

is not T dependent, and dynamical effects such as motional narrowing (see Fig. 1a); the

latter make these only effective energy curves. Otherwise, the results for the IR spectrum

show the same competition between Coulombic and Lennard-Jones interactions as well as

between internal energy and entropic factors.

Effective internal energy curves have been previously reported by Hare and Sorenson6

and Walrafen13 obtained from numerical derivatives of the water Raman spectrum. They

obtained shapes quite similar to the ∆UIR(ω) shown in Fig. 2b. They assigned the energy

difference between the maximum and minimum in ∆UIR(ω) to that required to break an

H-bond; here we find that difference to be 2.3 kcal/mol whereas they obtained 3.2 and

5.1 ± 0.5 kcal/mol.6,13 We have separately calculated the activation energy for an H-bond

exchange, or “jump,” (see Ref. 39) and find Ea,jump = 3.79 ± 0.06 kcal/mol. Thus, the

present results are not consistent with such an interpretation, though this may be related to

the larger non-Condon effects present in the IR spectrum.

A key advantage of calculating ∆U(ω) is that it provides a van’t Hoff approach to predict

P (ω) at different temperatures from a single temperature simulation as

Ppred(ω;Tb) =
P (ω;Ta) e

−(βb−βa)∆U(ω)∫
P (ω;Ta) e−(βb−βa)∆U(ω) dω

. (11)
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Figure 3: Predicted frequency distribution (solid lines) for 280 (blue), 320 (orange), 340
(magenta), and 360 K (red) from the 298.15 K distribution (black) and its derivative; direct
calculations at these temperatures are shown as dashed lines of the same color. Results are
shown based on (a) first-order Taylor series approximations and (b) van’t Hoff predictions,
Eq. 11.

The denominator is included to account for the fact that exp{−(βb−βa)∆U(ω)} is not norm

conserving. Here the a and b subscripts label the simulation and predicted temperature,

respectively. The frequency distribution at other temperatures predicted from Eq. 11 based

on P (ω) and ∆U(ω) calculated at 298.15 K are shown in Fig. 3b and compared to the

distributions calculated directly at the same temperatures. The agreement is excellent.

Only for the highest temperature, 360 K, are there any significant differences between the

predicted and directly calculated distributions, where the predicted distribution is slightly

too narrow. These shortcomings of the predictions are indicative of non-van’t Hoff behavior,

i.e., temperature dependence of ∆U(ω) and ∆S(ω).

The directly calculated and predicted frequency distributions do not exhibit a precise isos-

bestic point, but only an approximate one, which is a consequence of the normalizing denomi-

nator in Eq. 11. Without it, the frequency distribution would have a rigorous isosbestic point

at the frequency where ∆U(ω) = 0, i.e., where dP (ω)/dβ = 0. Note that a first-order Taylor

series expansion of the exponential in Eq. 11, P1st−order(ω;Tb) = P (ω;Ta) [1−(βb−βa)∆U(ω)],

does conserve the normalization of the distribution, illustrating the local nature of the isos-

11



3000 3200 3400 3600 3800
ω (cm-1)

0

0.2

0.4

0.6

0.8

I(ω
; T

)
a

3000 3200 3400 3600 3800
ω (cm-1)

0

0.2

0.4

0.6

0.8

I(ω
; T

)

b

Figure 4: Predicted IR spectrum (solid lines) for 280 (blue), 320 (orange), 340 (magenta),
and 360 K (red) from the 298.15 K spectrum (black) and its derivative; direct calculations
at these temperatures are shown as dashed lines of the same color. Both (a) unnormalized
and (b) normalized results, Eq. 12, are shown (see the text).

bestic point. Results from this description are shown in Fig. 3a. The approximation is

reasonable for approximately ±20 K from the temperature at which the derivative is calcu-

lated, but leads to significant deviations for larger variations in the temperature.

The temperature dependence of the IR spectrum is naturally of greater interest. A key

difference with P (ω) is that the spectrum is not normalized and thus we cannot simply

substitute I(ω) for P (ω) in Eq. 11. One approach is to use the unnormalized spectrum

obtained as I(ω;Tb) = I(ω;Ta) e
−(βb−βa)∆UIR(ω), the results of which are shown in Fig. 4a.

The spectra predicted this way are in reasonable agreement with those calculated explicitly

at the different temperatures. The key differences are, however, an issue of the overall

intensity. This can be reasonably remedied by using the change in the frequency distribution

normalization as a proxy, namely,

Ipred(ω;Tb) =
I(ω;Ta) e

−(βb−βa)∆UIR(ω)∫
P (ω;Ta) e−(βb−βa)∆U(ω) dω

. (12)

The results for this approach are presented in Fig. 4b. They are in excellent agreement

with the explicit calculations of I(ω, T ), with only slight differences for T ≥ 340 K in the
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width of the spectrum. As with P (ω), this renormalization provides a better description of

the T -dependent spectra, but also results in an only approximate isosbestic point (Fig. 4b)

rather than a precise one (Fig. 4a).

In summary, we have directly evaluated the temperature derivatives of the OH frequency

distribution and IR spectrum of HOD in D2O and shown how they can be used to predict

the behavior over a wide range of temperatures (e.g., 280-360 K) using a van’t Hoff relation.

The competition between Coulombic and Lennard-Jones interactions underlies the spectral

properties, including the location of a (near) isosbestic point. A precise isosbestic point is not

observed due to a subtle renormalization of the non-norm-conserving van’t Hoff factor. The

approaches described here should be useful in understanding and predicting the temperature

dependence for a wide range of spectroscopic measurements probing liquids, including Raman

and two-dimensional IR photon echo spectra.

Computational Methods

MD simulations of 343 TIP4P/200544 molecules in a periodic simulation cell of side length

21.725311 Å (ρ = 0.997 g/cm3) were carried out using the Large-scale Atomic/Molecu-

lar Massively Parallel Simulator (LAMMPS).45 A 1 fs timestep was used with the SHAKE

algorithm to hold the water bonds and angle rigid (tolerance of 1×10−4) and the electrostatics

described with the Particle-Particle-Particle Mesh Ewald summation method46,47 (tolerance

of 1 × 10−4). At 298.15 K, six 4 ns NVT trajectories were propagated with positions and

energies saved every 4 fs; the IR spectra was calculated at 280, 320, 340, and 360 K from one

4 ns NVT trajectory at each temperature. Temperature was maintained with a Nosé-Hoover

thermostat48,49 with a damping parameter of 2 ps, long enough to avoid thermostat effects

on the response functions ϕ(t) and ϕH(t). All reported uncertainties correspond to a 95%

confidence interval according to the Student’s t-distribution50 over an average of six blocks

(each block representing a 4 ns trajectory).
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