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GROMOV NORM AND TURAEV-VIRO INVARIANTS
OF 3-MANIFOLDS

BY RENAUD DETCHERRY AND ErsTrRATIA KALFAGIANNI

ABSTRACT. — We establish a relation between the “large r” asymptotics of the Turaev-Viro
invariants 7'V, and the Gromov norm of 3-manifolds. We show that for any orientable, compact
3-manifold M, with (possibly empty) toroidal boundary, log |7 V,-(M)| is bounded above by Cr||M ||
for some universal constant C. We obtain topological criteria for the growth to be exponential; that is
log|TV,(M)| > Br, for some B > 0, and construct infinite families of hyperbolic 3-manifolds whose
Turaev-Viro invariants grow exponentially. These constructions are essential for related work of the
authors which makes progress on a conjecture of Andersen, Masbaum and Ueno.

We also show that, like the Gromov norm, the values of the invariants 7'V, do not increase under
Dehn filling. Finally we give constructions of 3-manifolds, both with zero and non-zero Gromov norm,
for which the Turaev-Viro invariants determine the Gromov norm.

RESUME. — Nous relions I'asymptotique des invariants de Turaev-Viro TV, pour r grand a la
norme de Gromov. Nous montrons que pour toute variété de dimension 3 orientable compacte M, a
bord vide ou torique, log | T V- (M )| est inférieur a C r||M || ou C est une constante universelle. Nous ob-
tenons un critére topologique garantissant la croissance exponentielle; c’est-a-dire log |7V, (M)| > Br,
pour un certain B > 0, et nous construisons des familles de variétés hyperboliques dont les invariants
de Turaev-Viro croissent exponentiellement. Ces constructions sont essentielles pour des travaux des
auteurs en lien avec une conjecture d’Andersen, Masbaum et Ueno.

Nous démontrons aussi que, comme pour la norme de Gromov, les invariants de Turaev-Viro
décroissent par remplissage de Dehn.

Enfin, nous contruisons des variétés de dimension 3, de norme de Gromov nulle et non-nulle, dont
les invariants de Turaev-Viro déterminent la norme de Gromov.

Research supported by NSF Grants DMS-1708249 and DMS-2004155.
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1364 R. DETCHERRY AND E. KALFAGIANNI

1. Introduction

Since the discovery of the quantum 3-manifold invariants in the late 80s, it has been a
major challenge to understand their relations to the topology and geometry of 3-manifolds.
Open conjectures predict tight connections between quantum invariants and the geometries
coming from Thurston’s geometrization picture [6, 7]. However, despite compelling physics
and experimental evidence, progress to these conjectures has been scarce. For instance, the
volume conjecture for the colored Jones polynomial has only been verified for a handful of
hyperbolic knots to date. The reader is referred to [6] for survey articles on the subject and
for related conjectures. On the other hand, coarse relations between the stable coefficients of
colored Jones polynomials and volume have been established for an abundance of hyperbolic
knots [9, 14, 15].

In this paper we are concerned with the question of how the “large level” asymp-
totics of the Turaev-Viro 3-manifold invariants relate to, and interact with, the geometric
decomposition of 3-manifolds. The Turaev-Viro invariants 7'V, (M) of a compact oriented
3-manifold M are combinatorially defined invariants that can be computed from triangula-
tions of M [34]. They are real valued invariants, indexed by a positive integer r, called the
level, and for each r they depend on a 2r-th root of unity. We combine TQFT techniques,
geometric decomposition theory of 3-manifolds and analytical estimates of 6;-symbols to
show that the r-growth of TV, (M) is bounded above by a function exponential in r that
involves the Gromov norm of M.

We also obtain topological criteria for the growth to be exponential; that is to have
TV.(M) > exp Br with B a positive constant. We use these criteria to construct infinite
families of hyperbolic 3-manifolds whose SO (3)-Turaev-Viro invariants grow exponentially.
These results are used by the authors [10] to make progress on a conjecture of Andersen,
Masbaum and Ueno (AMU Conjecture) about the geometric properties of surface mapping
class groups detected by the quantum representations.

1.1. Upper bounds

For a compact oriented 3-manifold M, let TV,(M,q) denote the r-th Turaev-Viro
invariant of M at g, where g is a 2r-th root of unity such that g? is a primitive r-th root of
unity. Throughout the paper we will work with ¢ = ¢ and r an odd integer and we will
often write TV, (M) := TV, (M, eer’). This is the theory that corresponds to the SO(3)
gauge group. We define

2
(1) LTV(M) = limsup=" log |TV,(M))|,
r—ooco I
and
.. 2
2 ITV(M) = liminf— log |T V,(M))|,
r—>oo

where r runs over all odd integers. Also we will use ||M ]| to denote the Gromov norm (or
simplicial volume) of M. See Section 2.1 for definitions. The main result of this article is the
following.
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GROMOV NORM AND TURAEV-VIRO INVARIANTS OF 3-MANIFOLDS 1365

THEOREM 1.1. — There exists a universal constant C > 0 such that for any compact
orientable 3-manifold M with empty or toroidal boundary we have

LTV(M) < C||M]].

If the interior of M admits a complete hyperbolic structure then, by Mostow rigidity,
the hyperbolic metric is essentially unique and the volume of the metric is a topological
invariant denoted by vol(M), that is essentially the Gromov norm. In this case, Theorem 1.1
provides a relation between hyperbolic geometry and the Turaev-Viro invariants. If M is the
complement of a hyperbolic link in S 3 then we know that /T V(M) > 0 and in many instances
the inequality is strict (Corollary 1.4).

The problem of estimating the volume of hyperbolic 3-manifolds in terms of topological
quantities and quantum invariants has been studied considerably in the literature. See for
example [1, 14, 16] and references in the last item. Despite progress, to the best of our
knowledge, Theorem 1.1 gives the first such linear lower bound that works for all hyperbolic
3-manifolds.

In the generality that Theorem 1.1 is stated, the constant C is about 8.3581 x 10°.
However, within classes of 3-manifolds, one has much more effective estimates. For instance,
Theorem 7.4 of this paper shows that for most (in a certain sense) hyperbolic links L C $3
we have

LTV(S®*\ L) <10.5vol(S3\ L).
Furthermore, given any constant E arbitrarily close to 1, one has infinite families of hyper-
bolic closed and cusped 3-manifolds M, with LTV(M) < E vol(M). See Section 7.2. for
precise statements and more details.

We also give families of 3-manifolds with LT V(M) = ||M||. One such family of examples
is the class of links with zero Gromov normin S3 orin S! x S2, but we also present families
with non-zero norm (Section 8).

COROLLARY 1.2. — Suppose that M is S or a connected sum of copies of S' x S2. Then,
Jfor any link K C M with ||M \ K|| = 0, we have

2
ITVIM) =LTV(M) = lim —nlog|TV,(M \ K)| =vs||[M\ K| =0,
r—oo r

where r runs over all odd integers.

1.2. Outline of proof of Theorem 1.1

A key step in the proof is to show that LT V(M) is finite for any compact oriented
3-manifold M. This is done by studying the large r asymptotic behavior of the quantum
6/ -symbols, and using the state sum formulae for the invariants 7'V,.. More specifically, we
prove the following.

THEOREM 1.3. — Suppose that M is a compact, oriented manifold with a triangulation
consisting of t tetrahedra. Then, we have

LTV(M) < 2.08vg 1,

where vg ~ 3.6638 is the volume of a regular ideal octahedron.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1366 R. DETCHERRY AND E. KALFAGIANNI

A second key argument we need is Theorem 5.2 of the paper which describes the behavior
of the Turaev-Viro invariants under the operation of gluing or cutting 3-manifolds along
tori. The proof of the theorem uses a version of a result of Roberts and Benedetti-Petronio
that relates 7'V, (M, 82%) to the SO(3)-Witten-Reshetikhin-Turaev invariants, and it relies
heavily on the properties of the corresponding TQFT as constructed by Blanchet, Habegger,
Masbaum and Vogel [3].

By the Geometrization Theorem, a compact oriented 3-manifold M, with possibly empty
toroidal boundary can be cut along a canonical collection of tori into pieces that are either
Seifert fibered manifolds or hyperbolic (JSJ-decomposition). We study the invariant LTV
for Seifert fibered manifolds using TQFT properties and Theorem 5.2. Then we prove
Theorem 1.1 by exploiting, by means of Theorem 5.2, compatibility properties of ||M ||
and LTV with the JSJ decomposition, and by studying separately the case of hyperbolic
manifolds using a theorem of Thurston.

1.3. Lower bounds and the AMU Conjecture

A very interesting problem, that we will not address in this paper, is to prove the opposite
inequality of the one given in Theorem 1.1. We will discuss the weaker problem of exponen-
tial r-growth of the invariants 7'V, (M). Define

2
ITV(M) = liminf=" log |TV,(M)|,
r—oo r

where r runs over all odd integers.

In Section 5 we show that, much like the Gromov norm, the value of the invariant
[TV (M) does not increase under the operation of Dehn filling. We also discuss applications
to the question of the extent to which relations between Turaev-Viro invariants and hyper-
bolic volume are preserved under Dehn filling. This in turn, leads to a topological criterion
for checking whether the invariants 7'V, (M), of a 3-manifold M, grow exponentially with
respect to r. That is checking whether /TV(M) > 0. As a concrete application of this
criterion, combined with a result of [11], we mention the following. More general results
along these lines were obtained in [3].

COROLLARY 1.4. — Let M C S? denote the complement of the figure-8 knot or the
Borromean rings. For any link L C M we have

ITV(M\ L) > 2vs,
where vy ~ 1.0149 is volume of a regular ideal tetrahedron.

Since, by [11], the invariants TV, (S3 \ L) of a link complement are expressed in terms
of the colored Jones polynomial of L, Corollary 1.4 also provides new instances of colored
Jones polynomial values with exponential growth. As far as we know this is the first instance
where exponential growth of a quantum type invariant follows from a topological argument
rather than brute force computations. The result is consistent with the TV, volume conjec-
ture of Chen and Yang [7], which claims that for any hyperbolic 3-manifold of finite volume
we should have [TV (M) = LTV (M) = vol(M). See Section 8 for more details.

Establishing exponential growth of the invariants 7'V, is also important for another
intriguing and wide-open conjecture in quantum topology. This is the AMU Conjecture
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GROMOV NORM AND TURAEV-VIRO INVARIANTS OF 3-MANIFOLDS 1367

due to Andersen, Masbaum and Ueno [2]. In particular, Corollary 1.4 has an essential
application to this conjecture that we will explain next.

For a compact orientable 3-manifold of genus g and n boundary components, say
Ygn, let Mod(Zg ,) denote its mapping class group. The AMU conjecture asserts that
the SU(2) and SO(3) quantum representations Mod(X, ,) should send pseudo-Anosov
mapping classes to elements of infinite order (for large enough level). Despite good progress
on the AMU Conjecture for low genus surfaces [2, 12, 30, 29], the first examples that
satisfy the conjecture in surfaces of genus at least two were recently given by Marché and
Santharoubane [24].

In [10] the authors show that if we have /T V(M) > 0 for all hyperbolic 3-manifolds that
fiber over the circle, then the AMU Conjecture is true. Corollary 1.4 is then one of the key
ingredients used in [10] to prove the following.

THEOREM 1.5 ([10]). — Suppose that either n = 2and g > 3o0rg > n > 3. Then
there are infinitely many pseudo-Anosov mapping classes, up to conjugation and taking powers,
in Mod(X, ;) that satisfy the AM U conjecture.

As far as we know Theorem 1.5 is the first result that provides infinitely many mapping
classes, up to conjugation and taking powers, that satisfy the AMU conjecture for fixed
surfaces of genus at least 2.

The paper is organized as follows: In Section 2, we recall some results about the simpli-
cial volume and the geometric decomposition of 3-manifolds. In Section 3, we define the
Turaev-Viro invariants and explain their TQFT properties. In Section 4 we provide a bound
for quantum 6;-symbols that are used to define 7'V, invariants, in terms of values of the
Lobachevsky function. In Section 5 we study the behavior of LTV under the operations of
cutting or gluing along tori. In Section 6, we study the special case of Seifert manifolds. In
Section 7 we finish the proof of Theorem 1.1 and we derive Corollaries 7.2 and 1.4 and some
generalizations. Finally, in Section 8, we provide some new examples where the growth rate
of Turaev-Viro invariants exactly computes the simplicial volume.

Acknowledgement. We thank Gregor Masbaum, Cliff Taubes and Tian Yang for their
interest in this work and for helpful comments and discussions.

2. Decompositions of 3-manifolds

2.1. Gromov norm preliminaries

In this section, we recall the definition of the Gromov norm (a.k.a. simplicial volume)
of 3-manifolds and some of its classical properties. Gromov defined simplicial volume
of n-manifolds in [18], here we restrict ourselves to orientable 3-manifolds only. For more
details the reader is referred to [31, Section 6.5].

DEFINITION 2.1. — [18, 31] Let M be a compact orientable 3-manifold with empty
or toroidal boundary. Consider the fundamental class [M, dM] in the singular homology
H3(M,0M,R). For z = Y c¢jo; € Z3(M,dM,R), a 3-relative singular cycle, representing
[M, dM], we define its norm to be the real number ||z|| = ) |c¢i].

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1368 R. DETCHERRY AND E. KALFAGIANNI

1. If )M = @, then the simplicial volume of M is
[IM|| = inf{[|z]| / [z] = [M]}.

2. If dM # @, the representative [z] = [M, dM] determines a representative dz of [0M] €
H,(0M, R). Then, as shown in [31, Section 6.5] the following limit exists,

1M = liminf{||z[| / [z] = [M., 9M] and [|9z|| < &},
£~

and is defined to be the simplicial volume of M.

For hyperbolic manifolds, the simplicial volume is proportional to the hyperbolic volume
and it is nicely behaved with respect to some topological operations.

THEOREM 2.2 ([18, 31]). — The following are true:

1. ||M || is additive under disjoint union and connected sums of manifolds.

2. If M has a self map of degree d > 1 then ||M|| = 0. In particular ||Z x S'|| = 0, for
any compact oriented surface X.

3. If T is an embedded torus in M and M’ is obtained from M by cutting along T then
[IM]| < [|M']].
Moreover, the inequality is an equality if T is incompressible in M.

4. If M is obtained from M' by Dehn-filling of a torus boundary component in M’, then
M| < [[M]].

5. If M has a complete hyperbolic structure with finite volume then

vol(M) = vs||M|].

2.2. Geometric decomposition

We recall that any compact oriented 3-manifold is a connected sum of irreducible mani-
folds and copies of §2 x S!. Furthermore, by Jaco-Shalen-Johannson (JSJ) theory [20, 21],
any irreducible 3-manifold M can be cut along a canonical collection of incompressible tori
& ={Ti,...,T,}, so that the components of M \ (T; U ... U T,) are irreducible atoroidal
3-manifolds.

Thurston’s Geometrization Conjecture [32], proved by Perelman, allows one to identify
the pieces of the JSJ decomposition. A consequence of Perelman’s work is the following
theorem which is the solution to Thurston’s Geometrization Conjecture.

THEOREM 2.3 (Geometrization Theorem, [26]). — Any irreducible, compact, orientable
3-manifold M contains a unique (up to isotopy) collection of disjointly embedded incompress-
ible tori & = {Ty, ..., T} such that all the connected components of M \ & are either Seifert
fibered manifolds or hyperbolic.

4¢ SERIE — TOME 53 — 2020 - N° 6



GROMOV NORM AND TURAEV-VIRO INVARIANTS OF 3-MANIFOLDS 1369

2.3. Efficient bounds on triangulations of 3-manifolds

We conclude this section by recalling a result about triangulations of 3-manifolds. As
the Turaev-Viro invariants of a manifold M are defined using state sums whose terms are
products of quantum 6, -symbols over a triangulation of M, we wish to use triangulations
with few tetrahedra to bound the Turaev-Viro invariants. For hyperbolic 3-manifolds, one
way to achieve this is to consider triangulations not of the manifold M itself, but rather of M
minus some geodesics. We will use the following theorem, due to W. Thurston, originally used
in the proof of the so called Jorgensen-Thurston Theorem [31, Theorem 5.11.2].

THEOREM 2.4 (Thurston). — There exists a universal constant Cy, such that for any
complete hyperbolic 3-manifold M of finite volume, there exists a link L in M and a partially
ideal triangulation of M \ L with less than C,||M || tetrahedra.

The proof of Theorem 2.4 comes from the thick-thin decomposition of hyperbolic mani-
folds. Moreover, the constant C; in this theorem can be explicitly estimated:

It follows from the analysis in the proof of [31, Theorem 5.11.2] that given & < 5, where
¢ is the Margulis constant, one can choose

= (’;)v3 where k = L—V(58/4)

4V(e/4) V(e/4)
where V(r) denotes the hyperbolic volume of a ball of radius r. The volume V(r) can be
computed by the formula V(r) = x (sinh(2r) — 2r) (see, for example, [19, Section 3.1]).
Moreover, the Margulis constant has been shown to be at least 0.104 [25]. Using ¢ = &203
we get that in Theorem 2.4, we can use C, = 1.101 x 10°.

-1

2

3. Turaev-Viro invariants and Witten-Reshetikhin-Turaev TQFT

In this section we summarize the definitions and the main properties of the quantum
invariants we will use in this paper. First we recall the definition of the Turaev-Viro invariants
as state sums on triangulations of 3-manifolds. Then in Subsection 3.2 we summarize the
properties of the SO(3)-Witten-Reshetikhin-Turaev TQFT [5, 28, 33] that we will need in
this paper.

3.1. State sums for the Turaev-Viro invariants

2im

Let r > 3 be an odd integer and let ¢ = ¢”r . Define the quantum integer {n} by
q" —q7" 2 Sin(znT”)

qg—q ! 2sin(%%) ’

2 2
n}=q"—q" = 2sin(£) = 2sin(—n)[n], where [n] =
r r

n
and define the quantum factorial by {n}! = ] {i}.
i=1
Consider the set I, = {0,2,4...,r — 3} of all non-negative even integers less than r — 2.
A triple (a;,a;, ay) of elements in I, is called admissible if a; + a; + ax < 2(r —2) and we
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1370 R. DETCHERRY AND E. KALFAGIANNI

have triangle inequalities a; < a; + ag, a; < a; + ax, and ax < a; + a;. For an admissible
triple (a;, a; . ax), we define A(a;, a;,ax) by

1
L ({ai+a2j—ak}!{aj+c12k—ai }!{ai+a2;(—aj }'> 2

Aa;,a;,ar) =7
( 1 J k) ;r {ai+‘g+ak + 1}'

where ¢, = 25in(27”). A 6-tuple (a1, as, as, as, as,ae) € 10 is called admissible if each of the
triples
(3) Fi=(ai,az,a3), F>» = (az,as,a¢), F3 = (a1,as,a6) and Fy4 = (a3, as,as),

is admissible. Given an admissible 6-tuple (a1, a»,as,aq,as,as), we define the quantum
6 -symbol at the root g by the formula

“)

4 min{Q1,0>,03} z
= e [ Y ey )

1 3 ,
i=1 z=max{T},T>,T3,T4} [[ioitz = T [ [rm {Qk — 2!

ap az as

a4 as deg

where A = 3°%_ 4;, and
a; +az + as a; +as + ag a; +ag + ag asz +ag + as

T= ’T=—7T=—andT=_ 5
1 P 2 3 B 4 >

0, = ai +a2+a4+a5’ 0, = a1 +asz +aqg + ag and 05 = a; +asz + as +a6.
2 2 2

DEeFINITION 3.1. — An admissible coloring of a tetrahedron A is an assignment of an

admissible 6-tuple (a1, as, as, aq, as, ag) of elements of I, to the edges of A so that the three

numbers assigned to the edges of each face form an admissible triple. In this setting, the

quantities 7; and Q; defined above correspond to the sums of colorings over faces of the
tetrahedron, and the sums of colorings of edges of normal quadrilaterals in A.

Given a compact orientable 3-manifold M consider a triangulation z of M. If IM # @ we
will allow 7 to be a (partially) ideal triangulation, where some of the vertices of the tetrahedra
are truncated and the truncated faces triangulate dM . Given a partially ideal triangulation ©
the set V' of interior vertices of 7 is the set of vertices of 7 which do not lie on dM. Also
we write E for the set of interior edges (thus excluding edges coming from the truncation
of vertices). A coloring at level r of the triangulated 3-manifold (M, t) is an assignment of
elements of I, to the edges of T and is admissible if the 6-tuple assigned to the edges of each
tetrahedron of t is admissible. Let ¢ be an admissible coloring of (M, t) at level r. Given a
coloring ¢ and an edge e € E let |e|. = (—1)¢@©[c(e) + 1]. Also for A a tetrahedron in 7 let
|A|. be the quantum 6, -symbol corresponding to the admissible 6-tuple assigned to A by c.

2sin(27”)
Jr

We are now ready to define the Turaev-Viro invariants as a state-sum over A, (7):

Finally, let A, (7) denote the set of r-admissible colorings of t and let , =

THEOREM 3.2 ([22, 34]). — Let M be a compact orientable 3-manifold closed or with
boundary. Let b, denote the second Z,-Betti number of M and by be the number of closed
connected components in M. Then the state sum

(5) TV, (M) = 2227t 2V1 N T Jele [T 1AL

c€A,(t) e€E Aet
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GROMOV NORM AND TURAEV-VIRO INVARIANTS OF 3-MANIFOLDS 1371

is independent of the partially ideal triangulation T of M, and thus defines a topological invariant
of M.

Note that while the definition above differs slightly from [22, Definition 7] by the use
of even colors only, by [11, Theorem 2.9] the two definitions are essentially the same; they
only differ by the factor of 222720 The restriction of the coloring set to only even integers is
reminiscent to the SO(3) quantum invariant theory and it facilitates the study of the Turaev-
Viro invariants, for odd levels, via the SO(3)-TQFT theory of [5].

3.2. Witten-Reshetikhin-Turaev invariants and TQFT

The definition of the Turaev-Viro invariants given above will be useful for us to show that
the upper limit LT V(M) is well defined (i.e., it is finite). However, in order to understand
the topological properties of LT V(M) (i.e., its behavior under prime and toroidal decom-
positions of 3-manifolds) it will be convenient for us to view Turaev-Viro invariants through
their relation to the Witten-Reshetikhin-Turaev invariants R7,. (M) ([27]), and the Topolog-
ical Quantum Field Theories (TQFTs) they are part of.

The Witten-Reshetikhin-Turaev TQFTs are functors from the category of cobordisms
in dimension 2 + 1 to the category of finite dimensional vector spaces; they associate a
finite dimensional C-vector space RT,(X) to each compact oriented surface X. Moreover,
their values on closed 3-manifolds M are the Witten-Reshetikhin-Turaev invariants R7, (M)
which are C-valued and are related to surgery presentations of 3-manifolds and colored Jones
polynomials. Also, for M with boundary 0M = ¥, RT,(M) € RT,(X) is a vector.

We will introduce these TQFTs in the skein-theoretic framework of Blanchet, Habegger,
Masbaum and Vogel [5]. As we restrict to level r odd, the resulting TQFTs are the so called
SO(3)-TQFTs. Below we will sketch only the properties of these TQFTs we need, referring
the reader to [5] for a precise definition and more details.

To fix some notations, we recall that when V' is a C-vector space, V denotes the C-vector
space that is V' as an abelian group and whose scalar multiplication is « - v = @v. When V is
a C-vector space, a Hermitian form (-,-) on V' is a map

(.): VeV —>C,

that satisfies {(av + w, v’) = a(v,v’) + {(w,v') and (w, v) = (v, w). Note that a Hermitian
form can be considered a bilinear form over V ® V.

REMARK 3.3. — We note that the invariants R7,(M) in [5] are only well-defined up to
a 2r-th root of unity, this ambiguity being called the anomaly of the TQFT. Resolving the
anomaly requires considering 3-manifolds M with an additional structure called a p;-struc-
ture, see [5] for details. Since in this article we will only be interested in the moduli of the
invariants RT, (M), we will neglect the anomaly. We warn the reader, however, that the rules
for computing R T} in Theorem 3.4 below have to be understood to hold up to a root of unity.

We summarize the main properties of the SO(3)-TQFT defined in [5] in the following
theorem:

THEOREM 3.4 ([5, Theorem 1.4]). — Let r be an odd integer and q be a primitive 2r-th root
of unity. Then there exists a TQFT functor RT, in dimension 2+1 satisfying:
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1. For any oriented compact closed 3-manifold M, RT,(M) € C is a topological invariant.
Moreover if M is the manifold M with the opposite orientation, then RT,(M) =
RT.(M).

2 1 3 2sin(2Z)

2. We have RT, (S x S") = 1and RT,(S°) =n, = T’

3. The invariants RT, are multiplicative under disjoint union of 3-manifolds, and for
connected sums we have

RT,(M#M') = n;'RT,(M)RT,(M’).

4. For any closed compact oriented surface ¥, RT,(X) = V,(X) is a finite dimensional
C-vector space and for disjoint unions we have natural isomorphisms

Ve(S1 ][ 22) = Ve(21) ® V(2.

Moreover, V,(8) = C and for any oriented surface V,(X) is the C-vector space V,(X).

5. For every compact, oriented 3-manifold M with a fixed homeomorphism OM >~ 3 there
is an associated vector RT, (M) € V,(X).

Moreover for a disjoint union M = My || M2, we have
RT,(M) = RT, (M) ® RT,(M>) € V;:(£1) ® V»(Z2).
6. For any odd integer r, there is a natural Hermitian form
() 1 V() ® Ve (T) - C,

with the following property. Given M a compact oriented 3-manifold and X an embedded
surface in M, if we let M’ be the manifold obtained by cutting M along X, with OM' =
SIZ]0M, then we have RT,(M) = ®(RT,(M')). Here ® is the linear map

PV (2) ® V() ® V,(3M) — V. (3M),
defined by (v @ w ® ¢) = (v, w)e.

Mapping Cylinders. — A class of 3-manifolds with boundary to which the construction can
be applied are the mapping cylinders of maps of surfaces: given a surface X and an element
¢ € Mod(X) in its mapping class group, let

M, =[0,1]x X U DIN

o =10 D
Then RT,(M,) is a vector in V,(¥) ® V,.(X¥). The later space can be identified with
End(V, (%)) as V,(Z) ~ V,(Z)* by the natural Hermitian form. The assignment p,(¢) =
RT,(M,), defines a projective representation
pr : Mod(X) — PEnd(V;(X)).

These representations are known as the quantum representations of mapping class groups;
they are projective because of the above mentioned TQFT anomaly factor. Given the
mapping torus

Ny = [0, 1] X Z/ 2, 1)~(p(x).0)
of a class ¢ € Mod(X), by [5, Formula 1.2] we have RT,(N,) = Tr(pr(¢)).

We will need the following well-known fact which we state as a lemma. A proof can be
found for example in [13].
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LEMMA 3.5. — Let T? be the 2-dimensional torus and let ¢ : T? ~ S' x S1 — S x §1,
be the elliptic involution, defined by (x, y) — (=x,—y). Then p,(¢) = idy, (12).

In the next statement we summarize from [5] the facts about the dimensions of V. (X) that
we will need.

THEOREM 3.6 ([S]). — We have the following:

1. For any odd integer r > 3, and any primitive 2r-th root of unity, the vector space

Vi (T?) has dimension % and the Hermitian form {-,-) on V,(T?) is definite positive.

2. If g is the closed compact oriented surface of genus g > 2, then dim(V,(Xg)) is a
polynomial in r of degree 3g — 3.

Proof. — The first assertion of part (1) is proved in [5, Corollary 4.10] and the second
assertion is given in [5, Remark 4.12]. The second assertion follows by [5, Corollary 1.16 and
Remark(iii)]. O

To continue, recall that the double D(M) of a manifold M is defined as M [[ M if M is
closed and as M Lgﬁ if M has non-empty boundary. We end this section with a theorem that

for a manifold M relates the SO(3)-Turaev-Viro invariants 7'V, (M) defined in Section 3.1,
to the RT, invariant of the double D(M) of M.

THEOREM 3.7 ([4]). — Let M be a 3-manifold with boundary, r be an odd integer and
q= e Then
TVy(M,q) = 1, "™ RT,(D(M).e'7),

2sin(27”)

A = RT(S?),

where y(M) is the Euler characteristic of M and n, =

The proof of Theorem 3.7 for closed manifolds is due to Roberts [28] and Walker
and Turaev [33]. The proof for manifolds with non-empty boundary is essentially due to
Benedetti and Petronio [4]: Although in [4] only the invariants R7,(M) corresponding to
the SU(2)-TQFT are considered, the proof can be adapted to the SO(3)-TQFT setting. This
was done in [11, Theorem 3.1].

4. Finiteness of LTV

The goal of this section is to prove Theorem 1.3. We first provide an upper bound to the
quantum 6 -symbols at level r and at the rootg = e 5, Using this we bound the invariants
TV,.(M) of a 3-manifold M in terms of the number of tetrahedra in a triangulation of M.
This, in particular, will prove that LT V(M) is finite.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1374 R. DETCHERRY AND E. KALFAGIANNI

4.1. Quantum factorials and the Lobachevsky function

It is a well known fact in quantum topology that the asymptotics of quantum factorials
are related to the Lobachevsky function. In this section we give a version of this fact at the
rootq = e

For P a Laurent polynomial in one variable, let ev, (P) be the evaluation of the absolute
value of P atg = 3217”, that is ‘

2im
evy(P) =[P(e )l
Let also A(x) denote the Lobachevski function, defined by

Ax) = _/Ox log |2 sin(x)|dx.

2in

We estimate the growth of quantum factorials at ¢ = ¢ using the following

PROPOSITION 4.1. — Given an integer 0 < n < r we have
r 2nmw
log(ev,({n}!)) = _EA(T) + O(logr).

Moreover, in this estimate O(log r) is uniform: there exists a constant Cs independent of n and'r,
such that O(logr) < Cslogr.

n .
Proof. — First note that ev,({n}!) = [] 2sin(217”). In this product, as r is odd and
j=1
0 < n < r, all factors are non-zero. Thus we can write

n .
. 2w
log(ev, (n}) = Y log [2sin(=7)].
=1 d
The function 5
. it
f(@) =log|2 sm(7)|
is differentiable on (0, ) and on (3, r).

Case 1. — Assume that n < 5. The Euler-Mac Laurin formula gives that

1og(eur({n}!)):[1" log|2sin(@)|dt+w+

where the Ry < %fln [f/(t)|ldt <2 sup |f(t)] as f is increasing then decreasing on (0, 5).

t€(1,n]
Note that [n — %] > 7 and sin(r) > 2 for 0 < ¢ < Z. Hence, the quantities | f(1)], | f(n)]

and sup | f(¢)| are all bounded by | log(§)| for big r. Moreover, for big r, we have
te[l,n]

Ry,

1 2t 1 4t 1
‘/ log |2 sin(Z25)|dt <V log(-L)dr <|logr|+‘/ log(41)d1
0 r 0 r 0

Thus

log(ev,({n}!)) = /On log |2 sin(?ﬂdt + O(logr)

; 2
— L/ log|2sint|dr + O(ogr) = ——— ALY + O(logr).
0 2 r

km
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r

Note that in all our estimations the O(logr) was independent on 0 <n < 3

Case 2. — Assume that n > 5. Now we write log(ev,({n}!)) as a sum of two terms

l5] . n )
. 2jm . 2jmw
log(ev,({n}')) = Z log |2 sm(]T)I + Z log |2 s1n(jT)|_
j=1 j=I51

Applying the Euler-Mac Laurin formula for each sum we get

L5] n
log(ev,({n}!)) = /1 log|2 sin(?ﬂdt + /f’1 log|2 sin(?ﬂdl
N S+ f(U5D) ﬂ; SU5D + f(n) Ry,

1 L5] n
Ro<§<fl |f’(t)|dt+/r£]|f’(t)|dt><2< sup | f(H)]+ sup If(r)l),

te[1,151] tel[51.n]

as f is increasing then decreasing on (0, 5) and increasing then decreasing on (5, 7). Since
ris odd and 5 is a half integer, similarly as in Case 1, we have that £ (1), f(|5]). f([5]). f(n)
are all < C; logr for some C3 independent of n. Also

L3] 2t n 2t
/ log [2sin(Z2L)|d1 +/ log |2 sin(Z2L)|dr
1 r 5

,
2
" 2mt 2
- / log [2sin(=2L)|dt + O(logr) = —— A(Z2E) 1 O(logr).
0 r 2 r
This concludes the proof of Proposition 4.1. O

4.2. Upper bounds for quantum 6; -symbols

In this section, we find an upper bound for the quantum 6; -symbols that we will need for
the proof of Theorem 1.3. We show the following:

PROPOSITION 4.2. — For any r-admissible 6-tuple (a,b,c,d, e, f), we have that

2 (
—log | ev,
r
logr

Moreover, in this estimate the O(=;=) is uniform: there exists a constant Cs independent of the
as andr, such that 0(10#) < C31°#.

ai a, as logr

).

T
) <vs +8A(5) + O(
as as aeg 8

REMARK 4.3. — The bound of vg +8A(%) given above is not optimal. In a closely related
context, Costantino proved that the growth rates of quantum 6;-symbols with so-called
hyperbolic admissibility conditions are given by volumes of hyperbolic truncated tetrahedra
[8]. The argument of Costantino is also applicable in our context for some (but not all) values
of the a;’s. More recently, in [3] the authors with Belletti and Yang, building on the analysis
given in this article, proved that the upper bound of Proposition 4.2 can indeed be replaced
with the maximum volume of a hyperbolic truncated tetrahedron, which is vg.
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Proof. — By Equation 4, we have

4
log | evy drazds) ) _ ZloglA(F,-)| + log|S| + O(logr),
dg ds de i=1
where
min{Q1,05,03} (_l)Z{Z + 1}'

S =

) . 3 :
z=max{T},T>,T3,T4} Hj:l{z - TJ}' Hk=1{Qk —zy!

and Fi, F>, F3, F, are defined in equation (3). Each of the A(F;) terms is a product of 4
quantum factorials. Moreover as Q; — T; < (r —2) for all i and j, we have

!
log|S| < max log | —; {Z}'3
maxT; <z<minQ; Hj:l{z — T [ Ti=1{Qk — 2z}!

Here we used the fact that S is a sum of a polynomial number of terms and that for
0 <z <r—2,wehavelogl|{z + 1}| < O(logr) for some O(logr) independent on z.

+ O(logr).

To estimate these terms we will use Proposition 4.1. We will write

2ma; 2nT; 2
A = nal,Uj: n’,ande: an.
r r
We have
(6) log (ev, 412 as )
ay4 as dg
r 1 Az A3 A5 A A2 A4 A6 3 A4 A5
< (VG RED G R PR LD R D)

+ — max g(Z, A;) + O(logr),
2n Z
where

v(%ﬁ,y):%(A(Oﬂrﬂ+7/)—/\(/3+V—Ot)—/\(04+V—ﬂ)—/\(ot+ﬁ—)/)),

and

4 3
g(Z. A=Y NZ-U)+ Y AVi-2)-AZ).
i=1 ji=1
Since the function A is bounded, the functions v and g are also bounded. Thus

log (evr

for some constant C;. We show that one can use C; = vg + 8A (%) by computing the
maximum of functions v and g above. This is done using the following lemma that we will
prove in the appendix.

ap daz as

< ——Cy + O(logr),
a4 as dg 2

LEMMA 4.4. — The maximum of the function v is 5% and the maximum of the function g is
8A ( )- O
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4.3. LTV and state-sums

Using state sums for the Turaev-Viro invariants and Proposition 4.2 we prove Theorem 1.3
stated in the Introduction.

THEOREM 1.3. — Suppose that M is a compact, oriented manifold with a triangulation
consisting of t tetrahedra. Then, we have

LTV(M) < 2.08 vg 1,

where vg ~ 3.6638 is the volume of a regular ideal octahedron.

Proof. — Let t be a triangulation of M with ¢ tetrahedra. Recall that by equation (5) in
the statement of Theorem 3.2

TV, (M) = 222700 2V1 5™ T ele [T 1AL

ceA,(t) e€E A€t

Since the term 252720 is independent of r we may ignore it. Recall that A, (7) is the set
of admissible r-colorings of the edges of the triangulation t. The number of elements of
the set A,(7) is bounded by a polynomial in r as each edge must be colored by an element
of {0,2,...r —3}.So
logr
)’

r

2 2 2
TlongV,(M)| < TIOg(IAr(f)IIPI) < TIOgIPI + O(

where P is the term in the sum of maximal log. Moreover,

log|n,| = log —2 Sin(zTﬂ) = O(logr),
r
and for the factors |e|. we have:
logle|. = log Sin(z,”(d"e)ﬂ)) = O(logr).
sin(2E)

Finally, by Proposition 4.2, for any ¢ € A,(r) and any A € 7, the factor 27” log|A| is
bounded above by C; = vg + 8A (%) =~ 7.5914 < 7.6207 ~ 2.08vg and P has  such
factors. The theorem follows. O

5. Cutting along tori

In this section, we will prove a theorem (Theorem 5.2 below) that describes the behavior of
the Turaev-Viro invariants when cutting a 3-manifold along a torus. This will follow from the
TQFT properties of 7'V, and Cauchy-Schwarz type inequalities. We will need the following
lemma.

LEMMA 5.1. — Let vy, v,,...,v, be vectors in a C-vector space V with positive definite
Hermitian form (-,-) and norm || - ||. Then we have

n n
I il <n) vl .

i=1 i=1
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Proof. — Letey,...,eq be an orthonormal basis of Span(vy, ..., v,) and write

d
V; = Z)Lijej.
j=1

Then
n d n d n n
1Y will? =YD AP <Y ) AP =n) il
i=1 j=1i=1 j=1 i=1 i=1
where the inequality follows from the Cauchy-Schwarz inequality in C”. O

THEOREM 5.2. — Letr > 3 be an odd integer and let M be a compact oriented 3-manifold
with empty or toroidal boundary. Let T C M be an embedded torus and let M’ be the manifold

obtained by cutting M along T. Then

TV,(M) < (%) TV, (M),

and
LTV(M) < LTV(M').
If moreover T is separating then TV,(M) < TV,(M').

Proof. — Let ¥ = oM. We will distinguish two cases:

Case 1. — Suppose that the torus 7 is non-separating. The torus 7 inherits an orienta-
tion from that of M. The manifold M’, obtained by cutting M along T, has boundary
M’ = S][T]IT, where T is the torus T with opposite orientation. With the notation of
Theorem 3.4, we have

RT, (M) € V,(M') = V,(2) @ Vo(T) ® V;,(T) and RT,(M) € V,(2).
Furthermore RT,(M) = ®(RT,(M’)), where ® is the contraction map of Theorem 3.4(6):

D : V(D) @ Vi(T) @ Vi(T) — Vi(2)

VR w; ® wy — O(v ® w; ® wy) = (wy, wa)v.

By Theorem 3.7, we have
TV,(M') = (RT,(M'), RT,(M")) = ||RT,(M")||* and TV,(M) = ||[RT,(M)|]*.

By hypothesis, X is a (possibly empty) union of, say n, tori; thus we have V,(X) =
Vo (T?)®" and V,(0M’) = V,(T?)®"+2 By Theorem 3.6 the Hermitian form on V,(72)
is definite positive. Hence, setting m = %, we have an orthonormal basis (¢i)1<;<m
on V,(T?). Using this basis we can write

RT,(M) = ) vij ® i ® ;.
1<i,j<m
where the v;; are vectors in V;(X) which is also a Hermitian vector space with definite
positive Hermitian form. We have that
@) TV(M') = [[RT.(M)[]> = > |lvy|P?

I<i,j<m
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as ¢ ® ¢; is an orthonormal basis of V,(T) ® V,(T). On the other hand, applying the
contraction map &, we get:

RT,(M) = ®(RT,(M) = > (pi.¢))vij = Y vi.
1<i,j<m 1<i<m

as ¢; is an orthonormal basis of V,(T). Thus
2

TVe(M) = [[RT,(M)|P = || Y wil| <m Y Nwall><m Y vyl = mTV(M"),
1<i<m 1<i<m 1<i,j<m

where the first inequality follows from Lemma 5.1 and the last equality from equation (7).

This proves the first part of Theorem 5.2.

Case 2. — Let T be aseparating torus and let M; and M, be the two components of M \T. Let
us write OM; = T U Xy and dM, = T U %,, where X and X, are actually (possibly empty)
unions of tori. By Theorem 3.6 the natural Hermitian forms on V;.(X;) and V,(X,), are
positive definite. Hence we have orthonormal bases (¢;); and (wj)j of V,:(Z1) and V,(Z»),
respectively. We can write:

RT, (M) = Zvi ® ¢i,
i
where the v; are vectors in V,(T) and

RT, (M) =) w; ® Y,
J

where the w; are vectors in V; (T). From this we get
TVe(My) = ||[RT,(MDI[> =) [Juil >,
i
and likewise

TV (Mp) = [|RT(M2)||> = > [lw; >
J

On the other hand, one has
TV, (M) = |[RT,(M)|* = || Y _(vi.wj)pi @ v|> = > [(vi,wy)?
— o,

1]
<Y il Pllwj|? = TV (M) TV, (M),
i,j

by the Cauchy-Schwarz inequality. O

As a special case of this theorem we get the following.

COROLLARY 5.3. — Let M’ be a compact oriented 3-manifold with non-empty toroidal
boundary and let M be a manifold obtained from M’ by Dehn-filling some of the boundary
components. Then

TV:(M) < TV, (M),
and thus
LTV(M) < LTV(M').
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Proof. — Suppose we are Dehn filling n components of dM’. The Dehn filling M is
obtained from M’[]?_, V; by gluing the boundary of each solid torus V; = D? x S! to
a boundary component of M’. We can do the Dehn filling one component at a time. Thus
Corollary 5.3 is an immediate consequence of Theorem 5.2, the multiplicativity of 7'V, under
disjoint union and the fact that {TV,(D? x S') = RT,(§?> x §') = 1.} O

6. Bounds for Seifert manifolds

The previous section showed that the Turaev-Viro invariants are well behaved with respect
to 3-manifold decompositions along tori. In this section we deal with large r asymptotic
behavior of Turaev-Viro invariants for Seifert manifolds. We will use Corollary 5.3 to show
the TV, invariants of Seifert manifolds are at most polynomially growing. Our argument
will be slightly different depending on whether the Seifert manifold has orientable or non-
orientable base. The following lemma will help us reduce the latter to the former.

LEMMA 6.1. — Let ¥ be a compact non-orientable surface. Then there is a simple closed
curve y on X that is orientation reversing such that the surface ¥ = X \ y obtained from X by
cutting along y is orientable.

Proof. — Without loss of generality, we can assume ¥ is closed. Otherwise, we can fill the
boundary components by disks to get a closed surface %/, and a simple closed curve for ¥/
that cuts it into an orientable surface. Isotopying this curve away from the filled in disks on 3’
we will get a curve that satisfies the conclusion of the lemma for X.

Now, as closed non-orientable surfaces are characterized by their Euler characteristic
which is at most 1, the surface ¥ is homeomorphic either to some RP2#(#T2)? or to
some K2#(#T?)? where K? is the Klein bottle and p > 0. As T2 is orientable, it will then
be sufficient to find such a path in RP? and K?2. In RP? such a path is given by the image of
the equator in S? by the cover map. If we view the Klein bottle K? as

K? ~ §' <o, 1/ 1)~(=x,0)5
then the path S x {0} works. O
We are now ready to bound the Turaev-Viro invariants of Seifert fibered manifolds.
THEOREM 6.2. — Let M be a compact orientable manifold that is Seifert fibered. Then there

exist constants A > 0 and N > 0, depending on M, such that
TV, (M, e’ ") < ArV.
Thus we have LTV (M) < 0.

Proof. — We treat the case of orientable and non-orientable base separately.
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Case 1. — Let us first assume that the base of M is orientable. Drilling out exceptional fibers
and possibly one regular fiber, we obtain a Seifert manifold which is a locally trivial fiber
bundle over an oriented surface with non-empty boundary X, ,. Here, n > 1 is the number
of boundary components of X, , and g is the genus. Because H?(Z, 4, Z) = 0, the Euler
number of the fibration is zero and the S!-fibration is globally trivial. In the end, M is a
Dehn-filling of £z, x S! for some oriented surface X, , of genus g and n > 1 boundary
components.

By Corollary 5.3, we have TV, (M) < TV, (g, x [0, 1]).
It remains to show that TV, (Z, » x S!) is bounded by a polynomial. By Theorem 3.7, we
have that
TVi(Zgn xSV = RT,(D(Zgn x SY)) = RT,(D(Zg.n) x SY).

The double surface D(X, ) is a closed orientable surface with x(D(Zg ) = 2x(Xg4,,) =
4 — 4g — 2n; thus it is the surface Xp44,—1 of genus 2g 4+ n — 1. So that we have

TV (Zgn ¥ Sl) = RT;(Z2g+n—1 X Sl) = Tr(Pr(id22g+,,_1)) = dim(V; (224 4+n-1)),

where p, is the quantum representation of V. (X¥2¢4,—1). The last quantity is a polynomial
by Theorem 3.6(2).

Case 2. — Assume that the base of M is a non-orientable surface ¥. By Lemma 6.1, we have a
simple closed curve y on ¥ such that & = 3\ y is orientable. One can assume that y does not
meet any exceptional fiber up to isotopying y. The fibers of M corresponding to points on y
form an embedded Klein bottle K2 in M. As y is orientation reversing and does not meet
exceptional fibers, a regular neighborhood of y in  will be a Mbius band that does not
meet the exceptional fibers, and its total space by the Seifert fibration will be homeomorphic
to the twisted 7-bundle over the K2.

K*XI =[0,1] x S" x [~1,1]/(1.y.2)~(0.—y.—2)-

The boundary of K?X[ is a separating torus in M and, cutting M along this torus, one
obtains on one side a Seifert manifold M’ that fibers over the orientable surface ¥ and K2% 1
on the other side.

By Theorem 5.2, TV, (M) < TV,(M")TV,(K*XI).

We already know that TV, (M’) is bounded by a polynomial so we only need to discuss
TV,(K?%I). By Theorem 3.7 again, we have that TV, (K?%I) = RT,(D(K?*x1I)). The
double of K?X1 is:

22 1 1
D(K XI) = [0, 1] X S X S/(l,y,z)~(0,—y,—z)'

This is the mapping torus of the elliptic involution s over 7'2. Thus we have that

r—1
>

as the elliptic involution is in the kernel of all quantum representations p, by Lemma 3.5. [

TV (K*X1) = Tr(pr(s)) = dim(V,(T?)) =
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7. Turaev-Viro invariants and simplicial volume

7.1. A universal bound

In this section we complete the proof of Theorem 1.1 and deduce some corollaries. First
we note the following elementary properties of LTV and [TV

ProrosiTiON 7.1. — LTV is subadditive under disjoint unions and connected sums of 3-
manifolds while TV is superadditive.

Proof. — By Theorems 3.4 and 3.7, the Turaev-Viro invariants are multiplicative under
disjoint union. Thus we have TV, (M [ [M') = TV,(M)TV,(M’) and

2 2
limsup =~ log |V, (M | [ M")| = lim supT” (log [TV, (M)| + log |TV,(M")|)
r—00

r—oo I

S LTV(M)+ LTV(M')

as the lim sup operator is subadditive.
For a connected sum, we have

TV, (M)TV,(M') _
TV,(M#M') = —~ = 02TV, (M)TV,(M').
r( ) TV, (S?) Ny F(M)T V(M)
But we have
| log | 2sin(27”) | |
oglnr| _ s ploery
r r r
So the subadditivity of TV, under connected sum follows again from the subadditivity
of lim sup . The claims about / TV follow similarly as lim inf is superadditive. O

We are now ready to finish the proof of the main result of the paper that was stated as
Theorem 1.1 in the introduction. We slightly restate the theorem.

THEOREM 1.1. — There exists a universal constant C such that for any compact orientable
3-manifold M with empty or toroidal boundary we have

LTV(M) < C||IM]||,

where the constant C is about 8.3581 x 10°.

Proof. — As LTV(M) is subadditive and [|[M|| additive under disjoint union and
connected sum, it is enough to prove it for prime manifolds. As TV, (S? x S!) = 1 and
[|S2 x S|| = 0, we can ignore S? x S! factors.

Next we treat the case of hyperbolic manifolds. By Theorem 2.4, if M is hyperbolic, there
is a link L in M such that M \ L admits a triangulation with at most C,||M || tetrahedra,
where C; is the universal constant defined in 2.3. By Corollary 5.3 and Proposition 1.3, we
have

LTV(M) < LTV(M \ L) < C;C||M |-
Setting C = C;C, we recall that C; has been estimated to be less than 1.101 x 10° in
Subsection 2.3. Furthermore C; = vg + 8A (%) which is about 7.5914. Thus the constant
C = C,C; is about 8.3581 x 10°.
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By Theorem 6.2, LTV(M) = 0, if M is a Seifert fibered manifold. As M is a Dehn-filling
of ¥ x S for some surface with boundary X, its Gromov norm is 0 as ||Z x S'|| = 0 by
Theorem 2.2. Thus the result is true in this case.

Now suppose that M is any compact, oriented 3-manifold that is closed or has toroidal
boundary. By the Geometrization Theorem (see Theorem 2.3) there is a collection of essen-
tial, disjointly embedded toriin & = {T1,...,T,}in M, such that all the connected compo-
nents of M \ & are either Seifert fibered manifolds or hyperbolic. By the above discussion
the result is true for each component of M \ & . The simplicial volume is additive over the
components of M \ & (Theorem 2.2).

By Proposition 7.1, LTV is subadditive over the components of M \ & . Applying
Theorem 5.2 inductively we get

LTV(M) < LTM(M \ &) < C|IM\ J1| = C||M]|],
where C = C,C, is about 8.3581 x 10°. This concludes the proof of Theorem 1.1. O

Next we discuss lower bounds for the Turaev-Viro invariants.

COROLLARY 7.2. — Let M, M’ be compact, oriented 3-manifolds with empty or toroidal
boundary and such that M is obtained by Dehn filling from M’ and suppose that I TV (M) > 0.
Then we have

ITV(M') > ITV(M) > 0.

Proof. — Since M is obtained by Dehn filling from M’, Corollary 5.3 gives TV, (M) <
TV,(M’), and thus ITV(M')) 2 ITV(M). O

Corollary 7.2 applies in particular when M is a knot complement in M ; this application
also gives the proof of Corollary 1.4.

Proof of Corollary 1.4. — Let K C S3 be the figure-8 knot or the Borromean rings. By [11,
Corollary 5.2], for Mg = S3\ K, we have ITV(Mg) = v3||Mk|| = vol(Mg) > 2v3, where
the last inequality follows from the fact that the volume of the figure-8 knot complement is
2v3 while the volume of the Borromean rings complement is 2vsg.

If L isalink in §3 that contains K, then M is obtained by Dehn filling from M; = S3\L.
By Corollary 7.2 we have [TV (M) > 2vs. O

Removing solid tori from a 3-manifold can also be thought of as a special case of removing
a Seifert fibered sub-manifold. This generalized operation also preserves exponential growth
of the TV,.

COROLLARY 7.3. — Let M be a compact oriented 3-manifold such that TV,(M) grows
exponentially, that is ITV(M) > 0. Assume that S is a Seifert manifold embedded in M. Then

ITV(M\ S) > ITV(M) > 0.
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Proof. — Note that S consists of n > 1 tori. By Theorem 5.2,

TV, (M) < (’—21) TV,(M \ S)TV,(S).

But by Theorem 6.2, there are constants A > 0 and N such that TV, (S) < Ar". Thus
TV.(M\ S) > Ar N TV, (M)
for some constants A’ > 0and N’, and ITV(M \ S) > ITV(M) > 0. O

7.2. Sharper estimates and Dehn filling

In this section, we will use results of Futer, Kalfagianni and Purcell [15] to obtain much
sharper relations between LTV and volumes of hyperbolic link complements. We will also
address the question of the extent to which relations between Turaev-Viro invariants of
hyperbolic volume survive under Dehn filling. To state our results we need some terminology
that we will not define in detail. For definitions and more details the reader is referred to [16].

Over the years there has been a number of results about coarse relations between diagram-
matic link invariants and the volume of hyperbolic links. See [16] and references therein.
Using such results, for restricted classes of 3-manifolds, we obtain sharper bounds than the
one of Theorem 1.1.

A twist region in a diagram is a portion of the diagram consisting of a maximal string of
bigons arranged end-to-end, where maximal means there are no other bigons adjacent to
the ends. We require twist regions to be alternating. The number of twist regions is the twist
number of the diagram, and is denoted tw(D).

For a link L in S3 with a diagram D with rw(D) twist regions, the augmented link L’
of L is obtained by adding a crossing circle around each twist region and replacing the twist
region by two parallel strands with at most one crossing. See, for example, [16, Figure 2].
The complement of L can be obtained from the complement of L’ by Dehn-filling along the
boundary components corresponding to the crossing circles.

THEOREM 7.4. — Let L bealink in S3, that admits a prime, twist reduced diagram® D with
tw(D) > 1 and such that each twist region has at least n > 7 crossings. Then L is hyperbolic

and we have
—3/2

2
LTV(S3\ L) < 10.4 (1 - (’122—”“) ) vol(S3\ L).

Proof. — By a result of Agol and D. Thurston ([23, Appendix]) the complement of the
augmented link L’ obtained from D has a triangulation with at most 10(zw(D) — 1) ideal
tetrahedra. Thus by Theorem 1.3

LTV(S*\ L) < (2.08) - 10vs (tw(D) — 1) = (10.4) - 2vg (tw(D) — 1).

The complement of the link L is obtained by Dehn-filling from S \ L’. In fact, Futer
and Purcell [17, Theorem 3.10] show that if each twist of D has at least n crossings, then all
the filling slopes for the Dehn-filling from S3 \ L’, to $3 \ L, have length at least +/n2 + 1.
Suppose that the diagram D of L has at least n crossings per twist region for some n > 7.

() Every prime knot has prime twist reduced diagrams.
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Then by [15, Theorem 1.2] and its proof, we have

5 N\ —3/2
2vg(tw(D) - 1)) < @ (1 - (nz—n-i—l) ) vol(S3\ L).

By Corollary 5.3, we have
LTV(S3\ L) < LTV(S*\ L.

Now combining the three last inequalities we get the desired result. O

REMARK 7.5. — Theorem 7.4 says that for most links we have LTV(S3 \ L) <
10.5 vol(S3 \ L): Indeed, for links with at least n twists per twist region as above, for n
large enough the inequality is satisfied. Then for every B > 0, for links L that admit
diagrams with rw(D) < B, for a generic choice of the number of twists in each twist region,
the inequality is satisfied.

To continue, let M be a compact 3-manifold with toroidal boundary whose interior is
hyperbolic, and let 77, ..., T; be some components of dM. On each T;, choose a slope s;,
such that the shortest length of any of the s; is £iy > 2. Then the manifold M(sq, ..., sg)
obtained by Dehn filling along s1, ..., s is hyperbolic and [15, Theorem 1.1] gives a corre-
lation between its volume and the volume of M .

The next result provides some information on how relations between Turaev-Viro invari-
ants and hyperbolic volume behave under Dehn filling.

COROLLARY 7.6. — Let M be a compact 3-manifold with toroidal boundary whose interior
is hyperbolic and let the notation be as above. Suppose that LTV (M) = vol(M). For £y, > 27
we have

LTV(M(s1.....5r)) < B(€min) VOI(M(s1,...,5k)),

where B(€min) is a function that approaches 1 as £yin — 00.

Proof. — Since £y > 27, Theorem [15, Theorem 1.1] applies to give

ar 2\ 2
(1—( ”) ) vol(M) < vol(M(sy,. ... 5%)).

emin

Combining the last inequality with Corollary 5.3 we have

o\ —3/2
LTV(M(s1,...,8;)) <LTV(M)=vol(M) < (1 — ( 2m ) ) vol(M(sy,...,5k)).

Emin

By [11, Theorem 1.6] if M is the complement of the figure-8 knot or the Borromean
rings B we have LTV(M) = vol(M). Let K, denote the double twist knot obtained
by 1/n-filling along each of two components of B. By Corollary 7.6, for any constant E
arbitrarily close to 1, there is nq so that LT V(S3\ K,,) < E vol((S3\ K,) whenever n > ny.
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8. Exact calculations of Gromov norm from Turaev-Viro invariants

In this section we give two examples of families of manifolds M where the growth rate of
Turaev-Viro invariants gives the Gromov norm || M || exactly. Both examples are derived as
applications of the results in Section 5, 6 and 7. Both results provide partial verification of
the following.

CoNJECTURE 8.1 (Turaev-Viro invariants volume conjecture, [7]).

For every compact orientable 3-manifold M, with empty or toroidal boundary, we have
. 2
LTV(M) = limsup= log |TV,(M)| = vs||M]|,
r—oo I
where r runs over all odd integers.

A stronger version of Conjecture 8.1 was first stated by Chen and Yang [7] for hyperbolic
manifolds only and was supported by experimental evidence. The version above, which is
the natural generalization of the conjecture in [7] was stated in [11] for links in S 3, where the
authors and Yang also gave the first examples where the conjecture is rigorously verified. In
particular, they proved it for knots in S3 of simplicial volume zero. Here, as a corollary of
Theorem 1.1 and Corollary 5.3 we generalize this later result as follows.

COROLLARY 8.2. — Suppose that M is a compact, orientable 3-manifoldwith [TV (M) > 0.
Then, for any link K C M with ||M \ K|| = 0, we have

2
ITV(M) = LTV(M) = lim ~Zlog|TV,(M \ K)| = v3||M \ K|| = 0,
r—>o0o r

where r runs over all odd integers. That is Conjecture 8.1 holds for M \ K.
In particular, the conclusion holds if M = S3 or #(S! x §2)k.

Proof. — By Theorem 1.1, LTV(M \ K) < 0. By Corollary 5.3,
TV,(M) < TV,(M \ K),

and thus 0 < ITV(M) < LTV(M \ K) < 0. Thus the conclusion follows.

The claim about S3 or #(S' x $2)¥ follows since, as it is easily seen by Theorem 3.4(2),
we have [TV (S3),ITV(S! x S?) > 0, and [TV is superadditive under connected sums. [

To describe our second family of examples, we introduce an operation we call invertible
cabling that leaves both the Gromov norm and the growth rate of Turaev-Viro invariants
unchanged.

DEeFINITION 8.3. — A manifold S, with ||S|| = 0 and with a distinguished torus
boundary component 7T, is called an invertible cabling space if there is a Dehn-filling
on some components of 35 \ T that is homeomorphic to T x [0, 1].

A way to obtain invertible cabling spaces is to start with a link L in a solid torus such
that L contains at least one copy of the core of the solid torus. One example of such a cabling
space S is the complement in a solid torus of p > 2 parallel copies of the core.

Using Corollary 5.3 we also show the following:
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COROLLARY 8.4. — Let M be a 3-manifold with toroidal boundary for which Conjecture 8.1
holds and S be an invertible cabling space. Let M' be obtained by gluing a component of 0S \ T
to a component of M. Then, we have

LTV(M) =ITV(M) =ITV(M") = LTV(M’),
and thus Conjecture 8.1 holds for M.
Proof. — As there is a Dehn-filling on components of S \ 7 that is homeomorphic

to T x [0, 1], M is a Dehn-filling of M’ and TV, (M) < TV,(M’) by Corollary 5.3.
On the other hand, M’ is obtained by gluing S to M along a torus. By Corollary 5.3 again,

TV(M') < TV (M)TV,(S).

But as S has volume 0, by Theorem 6.2, we know that there exist constants A and N such
that

TV.(S) < ArV.

On the other hand, we also have that ||[M'|| = ||[M LTJ S| < [IM|]| + |IS]] = ||M]] by
Theorem 2.2, and also ||[M|| < ||[M’|| as M is a Dehn-filling of M’. Thus M and M’ have
the same simplicial volume too. O

Corollary 8.4 applies in particular for M the complement of the figure-8 knot or to links
with complement homeomorphic to the complement of the Borromean rings. Furthermore,
it applies to complements of fundamental shadow links for which Conjecture 8.1 was verified
in [3].

Appendix

Proof of Lemma A.1
We prove Lemma A.1 which we use to get the upper bound for 6 -symbols in Section 4.2.

]EEI\;IMA A.1. — The maximum of the function v is 5% and the maximum of the function g is
8A (%
8

Proof. — The function v is differentiable and s-periodic in all variables, so such a

maximum exists and is a critical point of v. Computing the partial derivatives S—Z g—g and

g—]‘j,we see that (o, B, y) is a critical point of v if and only if
AN+ B+
1-1-11 A,(( +§ y;
o _
Rl | ;) =0
a f—
11 -11 v
ANPB+y—a)

1 1
The matrix (i —1{ 11 —11 ) has rank 3 and kernel Vect (}) Hence (a, B, y) is a critical point
- 1
of v if and only if

Nea+p+y)=Ae+p-y)=ANa+y-BFH=NPB+y—o),
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which, given that A’(x) = —log(]2 sin x|), is equivalent to

|sin(e + B+ y)| = [sin(a +  —y)| = [sin(a +y — B)| = |sin(B + y —)|.
This means that the angleso + 8+ y, 0 + p—y, ¢ + y — f and B + y — « are all equal or
opposite mod . Let us write

x=a+B+y=x(e+B—-y)=x(a+y—B)==x(8+y—a)(mod n).

Given that A is 7 periodic and odd, at such a critical point we have v(a, B,y) = FA(x),
where n is an even integer between —2 and 4. Moreover we have v(e, 8,y) = 2A(x) if and
only if

@tBty=—@+p—y)=—(+y—p)=—(f+y—o)(modn).

This system is equivalent to « = O(mod %) and B =y = a(mod 7). We then see that
the maximal value of v at such a critical point is 2A (%) = “&. This value is obtained
fore ==y = %’ or if two of the angles «, 8, y are equal to 7 and the last one is 37”.
For other critical points, where v(a, B, y) = 5 A(x) with [n| < 2, the value of v is bounded
by A (%) as A (%) = 3A (%) = % is the maximum of A.
But we have that vz ~ 1,01494... < % = 1.83419... So the maximum of v is 2.

Similarly, we see that (Z, A1, A,, Az, A4, As, Ag) is a critical point of g if and only if

A(Z)
-11 1 1 1 —-1-1-1
AN (Z —Uy)
0-1-10 01 1 0
AN (Z - U,)
0-10-101 0 1
A(Z - Us)
0-10 0-1011 =0.
AN(Z —Uy)
0 0 0-1-11120
ANV —2Z)
0O 0-10-11 01
N(Va—2Z)
0 0-1-10 0 1 1
AN(V3—2Z)
1
-11 1 1 1 —-1-1-1 |
0-1-10 0 1 1 O {
0-10-101 01 :
Thematrix | 0 —1 0 0 —1 0 1 1 | hasrank 7 and kernel Vect |
00 0-1-1110 :
0 0-10-11 0 1 |
0O 0-1-10 0 1 1 {

Hence (Z, A1, Ay, A3z, Ay, As, Ag) 1s a critical point of g if and only if
NZ)y=N(Z-U)=AN(Z-U)=N(Z-Us) =N (Z-U,)
=NV —-2)=NV2-2)=N(V3-2),
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which is equivalent to
Z=+(Z-U)=+(Z-Uy) =+(Z-Us) = £(Z - Uy)
=+t —-2)=x(Vo,—Z) = £(V3 — Z)(mod 7).
As above, the function being m-periodic and odd, at such a critical point we will have
g8(Z, A1, Az, A3, A4, As, Ag) = —nA(Z),
with n an even integer between —6 and 8. Furthermore, n = 8 if and only if we have
Z=—(Z-U)=—(V; —Z) (mod n).
From this we get U; = 2Z (mod x) and V; = 0 (mod ). But, as
Uy +U, +Us +Us = V1 + Vo + V3,
we have that 8Z = 0 (mod 7).
Finally, as A (Z) =~ 0.490936 > 0.457982 ~ A (%) and
8A (%) ~ 3.927488 > 3vs = 6A (%) ~ 3,0448,

the maximum value of g is 8A (%).

Notice that this maximum is attained for Z = %” andeitherall A; = 7, orall A; are equal
to 37” mod 7, except two corresponding to opposite edges in the tetrahedron which are equal
to Z. O

4
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