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Abstract: 

Mechanical properties such as substrate stiffness are a ubiquitous feature of a cell's environment. Many 

types of animal cells exhibit canonical phenotypic plasticity when grown on substrates of differing 

stiffness, in vitro and in vivo. Whether such plasticity is a multivariate optimum due to hundreds of 

millions of years of animal evolution, or instead is a compromise between conflicting selective demands, 

is unknown. We addressed these questions by means of experimental evolution of populations of mouse 

fibroblasts propagated for ~90 cell generations on soft or stiff substrates. The ancestral cells grow twice 

as fast on stiff substrate as on soft substrate and exhibit the canonical phenotypic plasticity. Soft-selected 

lines derived from a genetically diverse ancestral population increased growth rate on soft substrate to the 

ancestral level on stiff substrate and evolved the same multivariate phenotype. The pattern of plasticity in 

the soft-selected lines was opposite of the ancestral pattern, suggesting that reverse plasticity underlies the 

observed rapid evolution. Conversely, growth rate and phenotypes did not change in selected lines 

derived from clonal cells. Overall, our results suggest that the changes were the result of genetic evolution 

and not phenotypic plasticity per se. Whole-transcriptome analysis revealed consistent differentiation 

between ancestral and soft-selected populations, and that both emergent phenotypes and gene expression 

tended to revert in the soft-selected lines. However, the selected populations appear to have achieved the 

same phenotypic outcome by means of at least two distinct transcriptional architectures related to 

mechano-transduction and proliferation. 

mailto:tanmay.lele@tamu.edu


2 
 

 

Introduction: 

Mechanical properties such as pressure, viscosity and substrate stiffness are inherent components of a 

cell's environment.  This is true for both unicellular microbes and for somatic cells in a multicellular 

organism.  Just as temperature and ambient chemistry often vary over the course of the life of a cell and 

its recent descendants, mechanical properties may be similarly variable.  Therefore, we expect that 

mechanical properties of a cell's environment constitute a significant agent of natural selection; but this 

has never been investigated before to our knowledge.   

Depending on the time scale and predictability of the environmental variation, natural selection 

may favor phenotypic plasticity, wherein an individual of a given genotype develops a different set of 

traits depending on the environmental context (Ghalambor et al. 2007; Price et al. 2003). Evolutionary 

biologists are used to thinking about phenotypic plasticity in the context of autonomous individual 

organisms, but the same principle applies to somatic cells within a developing multicellular organism.  

         In fact, animal somatic cells exhibit remarkably strong and consistent plasticity in response to the 

mechanical environment. For instance, mammary epithelial cells proliferate faster in the terminal end 

buds of developing mammary glands in mice where the extracellular matrix (ECM) is stiff, while they 

proliferate slower in the duct where the matrix is soft. This differential proliferation results in elongated 

and laterally branched structures (Gjorevski and Nelson 2011; Nelson and Gleghorn 2012). Similar 

branching occurs in capillary networks as a result of endothelial cellular response to spatial gradients in 

matrix stiffness that drive tissue patterning during angiogenesis (Huang and Ingber 1999; Ingber 2002). 

Likewise, mesodermal stiffness gradients bias collective cell migration from soft to stiff regions to 

provide shape to the early limb bud in developing mouse embryos (Zhu et al. 2020). Separately from 

development, stiffness gradients guide migration of fibroblasts towards the wound during wound healing 

(Lancerotto and Orgill 2014). In addition to development and normal biological processes, cellular 

responses to changes in matrix stiffness are associated with pathologies including cancer (Chin et al. 

2016). For example, tumor tissue with elevated stromal stiffness promotes malignant cancer cell 

phenotypes and functions like increased proliferation, altered tissue polarity and a lack of lumen in breast 

cancer, prostate cancer and melanoma (Levental et al. 2009; Paszek et al. 2005; Wang et al. 2014; Weder 

et al. 2014)  

Consistent with such in vivo observations, different somatic cell types display consistent 

differences when cultured on soft substrates compared to stiff substrates in the rate of proliferation, 
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apoptosis, differentiation, cell spreading and migration (Janmey et al. 2020; Mih et al. 2011; Peyton and 

Putnam 2005). Mechanical stiffness also affects intracellular features, including cytoskeletal organization, 

nuclear shape and chromatin compaction, and gene expression (Alenghat and Ingber 2002; Dahl et al. 

2008; Navarro et al. 2016).  

There are two possible, ultimate (i.e., evolutionary) explanations for the consistent plastic 

phenotypic differences between cells cultured on soft and stiff substrates.  First, it may be that the 

phenotypic outcome is optimal, i.e., there is no better way for a cell to perform its function on a given 

substrate.  The tremendous morphological, physiological, and biochemical diversity of cell types in an 

organism derived from a common genotype suggests that this possibility cannot be summarily dismissed.  

Alternatively, it may be that the observed plasticity represents a compromise imposed by genetic and/or 

developmental constraints, such that improving the performance of a cell on one substrate necessarily 

reduces its performance on another.  For example, if there is a temporal gradient in substrate rigidity over 

the course of development, optimizing cells for performance early may result in a phenotype that is 

constrained with respect to performance later, because the optimum late phenotype is developmentally 

inaccessible from the optimum early phenotype.  That evolutionary optimization problem is analogous to 

that of life-history evolution, in which the age or stage that is most sensitive to changes in growth rate 

will constrain evolution at other ages/stages (Lande 1982; van Tienderen 1995; Williams 1957).       

 A promising way in which to uncover evolutionary constraints is by means of experimental 

evolution (Teotónio et al. 2017).  For example, if optimal cellular performance on soft substrate is 

constrained by the need for cells to perform well on stiff substrate, and vice versa, then populations of 

cells selected for high fitness on a soft substrate are expected to evolve traits that are sub-optimal on stiff 

substrate, and vice versa.  Conversely, if cells have evolved to have the optimal phenotype on both 

substrates (conditioned on the global constraint imposed by having to be an animal cell), then 

experimental evolution would produce no average change in phenotype (Fig. 1, purple arrow, "perfect 

plasticity").      
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Fig. 1. Correlation between plasticity and evolutionary outcomes. X-axis labels: O represents the 

phenotypic value of the ancestor on the stiff substrate; P represents the plastic phenotypic value of the 

ancestor on the soft substrate and E represents the phenotypic value after evolution on the soft substrate. 

PC designates "plastic change", EC designates "evolutionary change" (see Results).  The solid arrows 

represent potential trajectories of evolution; the dashed arrows represent the direction and magnitude of 

the constraint imposed by the ancestral fitness tradeoff.    

 

         Here we report a study in which we employ experimental evolution to characterize potential 

constraints on the phenotypic plasticity of mouse fibroblasts grown on soft and stiff substrates. We 

propagated replicate, genetically-variable populations of mouse fibroblasts, long adapted to a stiff 

substrate, for 90 cell-generations on soft (1 kPa) and stiff (308 kPa) substrates. To account for the 

possibility that phenotypic plasticity could manifest over longer time periods that might mimic genetic 

evolution, replicate clonal populations derived from single cells randomly sampled from the progenitor 

population were also propagated for 30 cell generations.  

 

Results: 

Genetically variable populations of fibroblasts increased in fitness upon sustained culture on soft 

substrates 

We chose as our source population, NIH 3T3 fibroblasts, which have been maintained in culture on a stiff 

substrate (plastic tissue culture dishes) for more than three decades and are a well-established model 

system for studying cellular sensitivity to substrate stiffness (Lo et al. 2000; Munevar et al. 2001b; 

Pelham and Wang 1997; Wang et al. 2014). The cells were initially derived from a highly inbred mouse 

and presumably were nearly completely homozygous, but have accumulated genetic variation for 
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approximately 104 generations (TODARO and GREEN 1963).  Whole-exome sequencing of the source 

population revealed the fraction of segregating sites on the order of 1%.  Of the 49,388,818 (mostly) 

exonic sites included in the final dataset, 746,629 (~1.5%) were segregating with a minor allele frequency 

(MAF) >0; 427,855 sites (~0.87%) had a MAF>1%. 

           Ten replicate lines were initiated by plating ~104 cells on soft polyacrylamide gels (E = 1 kPa) and 

six replicate lines on stiff (E = 308 kPa) polyacrylamide gels (Fig. 2A).  The specific values of stiffness 

were chosen because the plastic response of the cells on these two substrate stiffnesses has been 

previously reported (Lovett et al. 2013). Cell populations were allowed to grow for approximately three 

days and then 104 cells were passaged onto fresh substrates of the same (corresponding) stiffness (Fig. 

2A; cell doubling times were roughly 1-2 days).  This procedure was carried out for three months, i.e., for 

approximately 90 cell generations. As a measure of fitness, we determined the cellular growth rate at one-

month intervals over the course of the experiment (see methods). 

 

 

Fig. 2. Evidence of evolution on soft substrates in murine fibroblasts. (A) Overview of the evolution 

experiment. Cells were cultured on the soft (red, E = 1 kPa) or stiff substrate (blue, E = 308 kPa) for up to 

90 d. (B) The mean growth rate η (Units are 1/d; 1/η is the doubling time) of selected lines on the soft and 

stiff substrates, measured at different times during sustained 90-d culture. Error bars, SEM; data were 

collected from lines which were derived from the genetically variable ancestral population and were then 

cultured on the soft substrate (at least eight independent lines), or the stiff substrate (at least six 

independent lines). Statistically significant differences between treatments at each time-point were 

determined by Mann-Whitney U test, *P < 0.05; ns: P > 0.05. (C) The mean growth rate of lines derived 
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from clonal cells determined at different times during sustained culture. Error bars, SEM; data were 

collected from eight or more different clonal lines. Difference between groups in the trajectory over the 

course of the experiment was assessed by General Linear Model (GLM; see Methods); also see 

supplemental Fig S1; regression slopes did not differ significantly from 0 (soft substrate, P>0.4, stiff 

substrate, P>0.06). (D) The mean growth rate of soft-selected lines on stiff substrates. Four lines were 

derived from the variable ancestral population and then cultured for 90 d on the soft substrate. These soft-

selected lines were then cultured on soft or stiff substrates (TCP, tissue culture plastic) and their growth 

rate was measured on these substrates over 3 days of culture. Error bars, SEM. Statistical significance was 

determined by Kruskal-Wallis test followed Dunn’s multiple comparison test; *P < 0.05. 

 

 Consistent with previous studies (Mih et al. 2011), the initial growth rate of cells on the soft 

substrate was approximately half that on the stiff substrate (Fig. 2B). After 30 days of culture on the soft 

substrate, the growth rate had approximately doubled and was indistinguishable from the growth rate on 

the stiff substrate for the remainder of the experiment (Fig. 2B). However, assaying growth at 30-day 

intervals provides no information about the trajectory of the increase in growth rate over the initial 30-day 

period.  To establish the early dynamics, we repeated these experiments for nine replicate lines on the soft 

substrate and ten replicates on the stiff substrate and measured the growth rate at seven-day intervals. The 

growth rate of the soft-selected lines on the soft substrate increased rapidly in approximately 2-3 weeks of 

culture, becoming statistically indistinguishable from the growth rate of both the ancestor and the stiff-

selected lines on the stiff substrate. This rapid adaptation of growth rate to substrate stiffness has also 

been reported in other cell types (Syed et al. 2017) . 

To establish the generality of the phenomenon of rapid evolution of growth rate on a novel soft 

substrate, we conducted a similar experiment with a different cell type, murine C2C12 myoblasts (Yaffe 

and Saxel 1977), which also have been maintained on a stiff substrate (tissue culture plastic) for decades 

and thus are also expected to be similarly genetically variable. The myoblast growth rate on the soft 

substrate (n=6 lines) was initially lower than that of the same cells on the stiff substrate (n=6 lines). Over 

the course of two months, the growth rate of the soft-selected lines on the soft substrate had again evolved 

to be statistically indistinguishable from the growth rate of both the ancestor and the stiff-selected lines on 

the stiff substrate (supplemental Fig. S2). These observations indicate that the fitness of genetically 

variable cell lines can and does respond over the course of tens of generations to selection imposed by a 

novel substrate.  

The rapid time scale and remarkable consistency of the increase in growth rate led us to suspect 

that the response could be a different manifestation of phenotypic plasticity.  We reasoned that if the 

underlying cause of the increase in growth rate was phenotypic plasticity, then genetically homogenous 

(i.e., clonal) populations of cells should respond in the same way as the genetically variable populations. 

Accordingly, we repeated these experiments with clonal fibroblast lines initiated from individual cells 

(see methods), which are expected to be genetically homogeneous. Growth rate in clonal soft-selected 
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lines did not change significantly over the course of 4 weeks (Fig. 2C). Thus, a genetically variable 

source population is required for an increase in growth rate on the soft substrate, consistent with the 

interpretation that the change in growth rate is the result of genetic evolution.   

Unless selection is extraordinarily strong (e.g., as in the case of antibiotic exposure leading to 

drug resistance in bacterial culture), one would not expect that detectable evolutionary changes would 

occur on the timescale of a few cell divisions. The observed rapid evolution of growth rate on the soft 

(novel) substrate in the variable but not the clonal lines, combined with the two-fold difference in 

ancestral growth rate between the two substrates imply that the genotypes of the selected cells are present 

at low frequency in the ancestral population. Furthermore, if the selected genotypes are indeed rare in the 

ancestral population, this also implies that these genotypes must grow slowly on the stiff substrate 

because the ancestor had been selected on plastic dishes, which are stiff substrates. If either of those 

conditions did not hold, there would not be a big difference in ancestral growth rate on the two 

substrates.  Consistent with the second prediction, we found that soft-selected lines grew slower on the 

stiff substrate than on the soft substrate (Fig. 2D).  

With respect to the first prediction (i.e., that the selected genotypes are rare in the ancestral 

population), since somatic cells do not recombine during growth and the population size is not small (N = 

approximately 104 cells), we can employ deterministic selection theory applied to competing clones to 

infer the approximate initial frequency and fitness advantage of the positively-selected genotypes 

(Haldane 1927). After t generations, the frequency of a focal clone, pt, can be calculated from the 

equation 
𝑝𝑡

𝑞𝑡
=

𝑝0

𝑞0
(𝑤∗)𝑡, where q = 1–p represents the frequency of the competing clone(s); p0 is the initial 

frequency of the focal clone; and w* is the fitness advantage of the focal clone relative to wild type. The 

relationship between the initial relative frequency of a clone (p0), its relative fitness advantage (w*), and 

its expected relative frequency after t generations (pt) is shown in supplemental Table S1. Comparison of 

the experimental values (supplemental Fig. S3, black squares) with the theoretical predictions revealed 

that the observations are consistent with a rapid increase in frequency (approximately 20 generations) of 

an initially rare clone with an approximately two-fold selective advantage over the wild type (w*~ 2). 

 

Populations of cells evolved by natural selection and not random genetic drift 

It is certain that genetically variable populations of cells will evolve over the course of 90 

generations by random genetic drift even in the absence of selection. If the cause of the consistent change 

in growth rate is phenotypic plasticity, the only evolutionary force acting on the population would be 

random genetic drift (mutation notwithstanding). To investigate the possibility that the observed change 

in growth rate (and phenotype, see below) can be explained simply by random genetic drift, we performed 
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whole exome sequencing of evolved and ancestral populations (see methods for details). Exomes of two 

sets of three pooled replicate soft-selected lines, one set of three pooled replicate stiff-selected lines, and a 

sample of the ancestral population were sequenced. We used the observed allele frequency spectrum of 

the ancestral population to parameterize simulations of in silico experimental evolution to establish the 

extent of sequence evolution that is consistent with selective neutrality. The allele frequency spectra were 

compared to each other and to the distributions simulated under the assumption of neutral evolution.   

The distributions of allele frequencies in the four samples are shown in Fig. 3A. The thick black 

line in Fig. 3A shows the distribution of 500 neutral simulations.  An example of the evolution of allele 

frequencies on a finer scale is shown in Fig. 3B. The distributions of the two sets of pooled soft-selected 

lines are very similar, and distinct from those of the pooled stiff-selected lines and of the ancestral 

population. When compared to the ancestor (purple curve in Fig. 3A), the frequency distribution of the 

soft-selected lines shows both a small peak of high-frequency variants (black arrow), as expected if some 

variants were increasing toward fixation, and a larger peak of low-frequency variants (blue arrow), as 

expected if a large fraction of variants was being removed from the population by selection. The same 

trend is evident in the stiff-selected sample, except that the peaks are at less extreme frequencies, which is 

consistent with directional selection being weaker (and hence the timescale of evolution slower) on the 

stiff substrate than on the soft substrate.  

 

Fig. 3. Density plot of alternative allele frequencies in the ancestral population and selected lines. 

(A) Two sets of three randomly chosen soft-selected lines were pooled to form two groups (Soft1 and 

Soft2). Three stiff-selected lines were also pooled (Stiff1). Exome sequencing of the pooled lines and 

ancestral population was performed at ~1000X average coverage, and allele frequencies calculated. The 

x-axis shows the unfolded allele frequency spectrum of variant alleles relative to the reference allele.  The 

greater density of rare variants is presumably because the inbred mouse from which the cell line was 

derived was homozygous for the reference allele at most loci.  The two pooled sets of soft-selected lines 
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exhibit an excess of alleles that are close to fixation or extinction (black and blue arrows). Black line, 

allele frequencies calculated from 500 simulated trajectories in the absence of natural selection (see text). 

(B) Change in allele frequency by locus, shown for the first 25 polymorphic loci on Chromosome 1. The 

boxplots represent the variation among 500 neutral simulations (see Methods for details of the 

simulations).     

 

To quantify the extent of observed allele frequency change expected to occur in evolving 

populations as a result of random sampling (the cumulative contributions of random genetic drift, sample 

pooling, and sequencing), we simulated the 90 d sustained culture experiment described in Fig. 2A 

forward-in-time in the absence of selection and mutation. We constructed replicate lines as in the 

experiments in silico by randomly sampling 104 completely linked diploid mouse genomes from a starting 

pool of 6 ⋅ 104 genomes (each genome represents one cell) with the allele frequencies sampled with 

replacement from the observed allele frequency distribution in the ancestral population (purple curve in 

Fig. 3A). This simulated population was allowed to grow and evolve for 90 generations, bottlenecking to 

104 genomes at 3-generation intervals to represent cell passaging at three-day intervals. Two sets of three 

pooled lines were sequenced in-silico with the coverage mirroring the experimentally observed 

sequencing coverage at each locus.  

As predicted by theory, the allele frequency changes over the course of 90 generations of neutral 

evolution in a population of N=10,000 are small. The average absolute per-site change in allele frequency 

(|Δp|) across 500 simulations was 2.7% (simulation range 2.66% to 2.74%). The observed change in the 

experimental soft- and stiff-evolved lines was 4.4% and 3.7%, respectively (P < 0.002 based on 500 

simulations). The average absolute relative change in allele frequency (|Δp|/p) across 500 simulations was 

14.1% (simulation range 13.8% to 14.4%). The observed change in the soft- and stiff-selected lines was 

21.7% and 18.2%, respectively (P < 0.002). Further, 13.7% of sites in the soft-selected lines and 12.1% 

sites in the stiff-selected lines exceeded the maximum change for the sites across 500 simulations of 

neutral evolution. The observed changes in allele frequency over the course of 90 generations of evolution 

are too large to be explained by neutral evolution (plus sampling); the obvious conclusion is that the 

populations underwent adaptive evolution in response to natural selection imposed by the substrate. 

To attempt to identify the causal alleles underlying adaptive evolution, we first filtered the 

exome-sequence data by the following criteria: (1) the minimum absolute allele frequency change 

|Δp|>0.0274 (the maximum value in 250 simulations), (2) minimum relative allele frequency change |Δ/ 

pp|<0.141 (the maximum value in 250 simulations), (3) at least ten reads supporting the minor allele in at 

least one sample, and (4) the frequency of the minor allele in the ancestor less than 0.5.  Of the 1394 

variants that met those criteria (see supplemental excel sheet 1), we then looked for alleles that increased 

to a frequency of >25%, averaged over the two sets of soft-selected lines, remained at low frequency in 

the stiff-selected lines, and were covered >100X in at least one of the samples.  Of the 19 variants that 
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met those criteria, only one, a non-synonymous substitution in the carnitine transporter gene Slc22a2, 

reached high frequency (>95%) in both sets of soft-selected lines.  However, both alleles were nearly 

absent in both the ancestor and the stiff-selected lines, suggestive of a false positive. 

 

Soft-selected cells interpret the soft substrate differently than ancestral cells 

Evolutionary biologists typically make the a priori assumption that phenotypic plasticity points in 

the direction that natural selection favors (Price et al. 2003; Waddington 1942). For a hypothetical 

example, suppose a biannual plant reproduces twice a year, first in the wet season then in the dry season, 

and that broad leaves are favored when wet and narrow leaves favored when dry.  Under those 

circumstances, natural selection would favor the evolution of a mechanism of phenotypic plasticity that 

produces broad leaves when wet and narrow leaves when dry.  Now suppose a population of so-evolved 

plants finds itself in a consistently dry environment.  We would predict that plasticity would (eventually) 

be lost, and that natural selection would produce a population with the same narrow leaves as the ancestor 

produced in the dry season ("perfect plasticity", the purple line in Fig. 1).  If the plasticity of leaf width in 

the ancestor was constrained by the selective requirement to produce the opposite leaf shape (broad v. 

narrow) in the opposite environment (wet v. dry), we would predict that the descendant population in the 

constant dry environment would eventually evolve leaves that were even narrower than those produced by 

phenotypic plasticity in the fluctuating ancestral environment ("evolutionary head-start", the orange line 

in Fig. 1).  However, there is strong empirical evidence that the phenotypic plasticity of certain kinds of 

traits – gene expression in particular – often points away from the direction of selection (blue lines in Fig. 

1) (Ho and Zhang 2019)  A caveat is in order, however, which is that most such examples are from 

systems in which the plastic response is initially measured in a novel environment, and the plastic 

response may represent a transient emergency response to environmental stress (Ghalambor et al. 2007).     

We evaluated three traits in fibroblasts that have been previously shown to exhibit plasticity in 

cells cultured on substrates of different rigidities: cell spreading, Yes-associated protein (YAP) 

localization in the nucleus (Dupont et al. 2011), and cytoskeletal organization (Chan and Odde 2008). 

After three months of evolution on the soft substrate, both cell spreading area and nuclear/cytoplasmic 

ratio of YAP were statistically indistinguishable from the ancestral value on the stiff substrate (Fig. 4A–

D). By contrast, these traits did not change over the course of three months in the stiff-selected lines. 

When cultured on soft substrates, ancestral cells do not assemble F-actin structures organized into linear 

contractile fibers and distinct microtubules, unlike ancestral cells cultured on the stiff substrate (Fig. 4E). 

Following evolution on the soft substrate, the cells gained the ability to assemble distinct F-actin fibers 

and microtubule networks comparable to ancestral cells on the stiff substrates. These results indicate that 

the mean phenotype tends to “revert to normal” on soft substrates (blue lines in Fig. 1), where normal 
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refers to the state of the ancestor on stiff substrate. Just as for cell growth rate, phenotypic evolution 

required genetic variability in the starting population, because it was not observed in clonal cell 

populations (supplemental Fig. S4).  The fact that genetically variable populations consistently evolved in 

the same way, and that genetically homogeneous clonal lines evolved far less (if at all) than the variable 

lines; Fig. 2C), strongly implies that the underlying cause of the change in mean phenotype in the 

genetically variable lines is the result of selection among genetically distinct clones, rather than 

phenotypic plasticity in a genetically uniform population manifested over a longer time scale.  

 

 

Fig. 4. Phenotypic evolution. (A) Representative images of F-actin in ancestral populations cultured on 

the soft or stiff substrate for 3 d, and of evolved lines after 90 d of culture on the soft or stiff substrate; 

scale bar: 100 μm. (B) Mean spreading area of the ancestral cells on stiff substrate (O), ancestral cells on 

soft substrate (P) and selected lines after sustained culture (A) on soft (blue) or stiff substrates (red) (A); 

compare with the scheme in Figure 1. Error bars, SEM; each data point represents the mean value from 

over 50 cells from three lines (randomly chosen); Kruskal-Wallis test with Dunn’s multiple comparisons 

test, *P < 0.05; ns, P > 0.05. (C) Representative images of YAP in ancestral populations cultured on the 

soft or stiff substrate for 3 d, and in selected lines after 90 d of culture on the soft or stiff substrate; scale 

bar: 30 μm. (D) Mean nuclear to cytoplasmic YAP intensity ratio in ancestral cells on stiff substrate (O), 

ancestral cells on soft substrate (P) and selected lines after sustained culture (A) on soft (blue) or stiff 

substrate (red) (A); compare with the scheme in Figure 1.  Error bars, SEM; each data point represents the 

mean value from over 50 cells from three lines; Kruskal-Wallis test with Dunn’s multiple comparisons 

test, *P < 0.05; ns, P > 0.05. (E) F-actin and microtubule structures in ancestral cells and selected lines 

after sustained culture on soft and stiff gels. Scale bar: 30 μm. (C and E). (F) Representative images of F-

actin and YAP in soft-selected lines cultured on the soft or stiff substrate for 3 d. Scale bar: 100 m (G) 



12 
 

The mean spreading area of soft-selected lines on soft and stiff substrates. Error bars, SEM; each data 

point represents the mean value from over 225 cells from five or more lines (randomly chosen); Statistical 

significance was determined by Mann-Whitney U test; *P < 0.05. (H) The mean nuclear to cytoplasmic 

YAP intensity ratio of soft-selected lines on soft and stiff substrates. Error bars, SEM; each data point 

represents the mean value from over 200 cells from five or more lines (randomly chosen); Statistical 

significance was determined by Mann-Whitney U test; *P < 0.05. 

 

Taken together, the results imply the following: in the ancestral population, which has been 

maintained for many generations on stiff substrate, there exist, at low frequency, cells with variant 

genotypes that (i) confer high growth rate on soft substrate, (ii) have a substantially lower growth rate on 

stiff substrate, but also (iii) manifest on the soft substrate the same suite of traits that the wild-type cells 

manifest on the stiff substrate. Apparently, there is a single optimal (multivariate) phenotype that confers 

high growth rate, and that phenotype is the same on stiff and soft substrates. This also suggests that the 

pattern of phenotypic plasticity exhibited by the selected cells must differ from the common (wild-type) 

pattern of plasticity present in the ancestral population. Otherwise, cells of the soft-selected lines grown 

on soft substrate would not have the characteristics of wild-type ancestral cells grown on stiff substrate.  

Confirming this intuition, we found that the pattern of plasticity present in the soft-selected lines was the 

opposite of the ancestral pattern. That is, soft-evolved cells spread less on the stiff substrate than on the 

soft substrate (Fig. 4G), and the nuclear/cytoplasmic ratio of YAP was greater on the soft than on the stiff 

substrate (Fig. 4H). 

To characterize the (presumably genetic) variation in phenotypic plasticity, we isolated nine 

fibroblast clones from the ancestral population, expanded them into clonal lines, and then cultured these 

clonal cells on soft and stiff substrates. The clonal cells had low areas on soft substrates, and high areas 

on stiff substrates, as expected, and the correlation was large and positive (Pearson's r=0.87, supplemental 

Fig. S5).   

 

Different replicate lines evolved the same novel phenotypes through distinct patterns of gene expression 

Cells of the soft-selected lines grow at the same rate on the soft substrate as wild-type ancestral 

cells grow on the stiff substrate, and they develop the same suite of phenotypic traits on the soft substrate 

that wild-type ancestral cells develop on the stiff substrate.  An obvious possible point of control is at the 

level of gene expression. We therefore used RNA sequencing to investigate differences in gene 

expression between soft-selected lines and the ancestor in populations of cells cultured on soft and stiff 

substrates.  We used principal component analysis (PCA) to cluster all samples based on the respective 

gene expression profiles (Fig. 5A). PC1, which explains 51% of the variance, clearly separates the 

ancestral and soft-selected populations, irrespective of substrate stiffness. PC2, which explains 28% of the 

variance, separates the soft-selected populations into two distinct clusters, but again there is no 
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correspondence between the clusters and substrate stiffness. The lack of correspondence between clusters 

and substrate stiffness indicates that the soft-selected lines in the two clusters evolved distinct patterns of 

gene expression, independent of substrate. Collectively, these observations suggest that different soft-

selected lines are composed of at least two distinct cell genotypes, which achieve high fitness and the 

same suite of phenotypic traits via at least two distinct transcriptional architectures. 

The “revert to normal” pattern of phenotypic evolution observed on the soft substrate (Fig. 4) is 

consistent with similar patterns observed in both experimental (Fong et al. 2005) and natural populations 

(Ghalambor et al. 2015), in which gene expression has been shown to tend to revert to normal. 

Consequently, we asked whether gene expression also tends to revert to normal in the soft-selected lines. 

However, there is a known statistical bias for gene expression to apparently revert to normal (reversion) 

as opposed to becoming even more extreme (reinforcement) (Mallard et al. 2018). To account for this 

potential bias, we used a parametric bootstrap approach (Ho and Zhang 2019)  to characterize all genes 

that exhibited statistically significant plasticity in the ancestor. This method involves re-sampling from a 

simulated normal distribution with the mean and variance equal to the observed values for each transcript 

(see methods). Using the sampled values, we calculated the plastic change (PC) and evolutionary change 

(EC; note that our EC is conceptually equivalent to the "genetic change", GC, of Ho and Zhang 2018) as 

follows: PC = Lp – Lo, where Lo and Lp represent gene expression levels of the ancestor on the stiff 

substrate (the original environment) and upon plastic change (soft substrate); EC = La – Lp, where La 

represents gene expression of the soft-selected lines on the soft substrate. The subscripts O, P, and A 

signify "original", "plastic", and "adapted", respectively, following the terminology of Ho and Zhang (Ho 

and Zhang 2018). The ratio EC/PC captures both the magnitude and direction of change in gene 

expression upon evolution. If the ratio is negative, the gene expression is reverted (blue lines in Fig. 1), 

and if it is positive, the gene expression is reinforced (orange line in Fig. 1). The propensity of gene 

expression levels to revert or reinforce is captured by the parameter δ; δ = CRV – CRI, where CRV is the 

fraction of significantly reverted genes and CRI is the fraction of significantly reinforced genes. We found 

that δ for the eight soft-selected lines on the soft substrate was approximately 3.8%, indicative of a minor 

bias toward reversion (P < 0.05).  

Next, to determine whether the difference along PC2 in the two clusters is associated with a 

difference in tendency to revert (RV) or reinforce (RI), we repeated the above analysis separately for the 

two clusters of evolved populations separated along PC2. For the North cluster, δ1 = 12.09%, indicating a 

trend toward reversion; for the South cluster, δ2 = 2.40% indicating a minor trend toward reversion. To 

address the possibility that the δ1–δ2 difference (9.7%) could be simply a result of sampling variance, we 

generated a null distribution of δ1 –δ2 by randomly sampling eight replicates from the distributions of GC 

and PC, and assigning them arbitrarily to one of two groups. The simulated null distribution is shown in 
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Fig. 5B. The observed difference falls well outside the right tail of the distribution (red arrow in Fig. 5B), 

implying that the observed difference cannot be explained by sampling. These observations demonstrate 

that the separation of the two clusters along PC2 is caused at least in part by a difference between the two 

groups in the tendency of genes to revert. That is also apparent from the 𝐸𝐶̅̅̅̅ /𝑃𝐶̅̅ ̅̅  distributions over all 

genes that exhibit significant plasticity in the two groups (Fig. 5C). Specifically, the distribution is 

skewed toward negative values (i.e., reversion) for the North cluster, with no such trend in the South 

cluster. Fig. 5D provides a visual representation of reversion and reinforcement of individual genes which 

were identified from the parametric bootstrap simulation as significantly reverted or reinforced. 

Collectively (Fig. 5B–D), these observations indicate that different populations can evolve the same 

phenotypes by means of qualitatively different transcriptional pathways.  

 

 

Fig. 5. Analysis of gene expression. (A) Principal component analysis (PCA) of gene expression 

profiles. A1 and A308 represent ancestral cells cultured for 3 d on the soft (1 kPa) and stiff (308 kPa) 

substrates respectively. E1 and E308 represent cells evolved for 90 on the soft substrate (1 kPa) followed 

by 3 d culture on the soft (1 kPa) and stiff substrate (308 kPa) respectively. (B) Null δ1 –δ2 distribution 

generated by randomly sampling eight replicates from the EC and PC distributions (see text for definition 

of EC and PC). The actual value for δ1 –δ2 is indicated by a red arrow (see text). (C) Probability 
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distributions of  𝐸𝐶̅̅̅̅ /𝑃𝐶̅̅ ̅̅  over all genes that exhibited statistically significant plasticity in the North (top 

cluster along PC2 in Fig. 5A) and South (bottom cluster along PC2 in Fig. 5A) clusters computed from 

parametric bootstrap simulations. (D) Parallel coordinate graphs depicting reversion or reinforcement of 

449 genes identified as significantly reverted or reinforced from the parametric bootstrap simulation. 

Orange lines depict reversion (RV), blue lines depict reinforcement (RI); the indicated quantities at the 

bottom of the x-axis are plotted for each individual, identified gene.  

 

Because δ was significantly positive (indicative of a bias toward reversion) only for the North 

cluster, we performed gene ontology (GO) analysis of genes that reverted in the North cluster. These 

genes were enriched in biological processes related to mitosis and the cell cycle, and included 

microtubule-chromosome association (kinetochore organization), spindle organization, chromosome 

segregation, and regulation of cell cycle phases (supplemental Fig. S6; see methods). This is consistent 

with the phenotype returning to normal in terms of the growth rate on the soft substrate upon evolution 

(Fig. 2). It also suggests that the “revert to normal” of cell spreading and YAP nuclear localization likely 

regulate the expression of genes associated with growth rate.  

  

Gene expression changes in proliferative and mechano-transduction signaling networks.  

The preceding analyses shed light on the average properties of gene expression in the soft-

selected lines, and on the general properties of the evolution of gene expression.  However, they provide 

no information with respect to the specific genes and pathways that directly underlie the differences in 

substrate-specific growth rate and phenotypic plasticity between wild-type cells and the selected variants. 

Because cells sense and transduce mechanical stimuli into phenotypes and growth rates through the 

mechano-transduction pathway, and because evolved cells interpret the soft substrate differently from the 

ancestor, we set out to examine mechano-transduction pathways and growth pathways in lines evolved on 

the soft substrate. We specifically focused on the expression of genes in these pathways as measured by 

mRNA sequencing. These genes include the epidermal growth factor (EGF) pathway, the mitogen-

activated protein kinase (MAPK) pathway, the Phosphoinositide-3 kinase (PI3K) pathway, and the 

mechano-transduction pathway. The genes involved in each pathway were obtained from the Kyoto 

encyclopedia of genes and genomes (KEGG) database (Kanehisa and Goto 2000) and further manually 

curated to remove overlap between pathways. The genes involved in the MAPK pathway were obtained 

from (Shi et al. 2016). The gene sets are provided in supplemental Table S2. To avoid confounding 

interpretations, we only included genes that are expected to be positively correlated with growth. 

Specifically, we did not include the negative regulators PTEN (PI3K) and Cofilin and GAP190 

(mechano-transduction) in the analysis.  

Using the t-test and an FDR of 10%, we identified genes that were differentially up- or down- 

regulated between the North and South clusters, each relative to the ancestral population. Given the 
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baseline frequency 𝑝 of up- or down- regulation estimated from all genes, we expect, by pure chance, that 

some genes in any pathway comprising 𝑁 genes will be up- or down- regulated. We evaluated the 

statistical significance of observing up- or down- regulation of 𝑘 or more genes in any pathway using the 

binomial distribution. The quantity 𝑃(𝑘, 𝑁, 𝑝) = ∑ (
𝑁
𝑛

)𝑁
𝑛=𝑘 𝑝𝑛(1 − 𝑝)𝑁−𝑛 quantifies the probability that 

𝑘 or more genes are upregulated or downregulated in a pathway comprising 𝑁 genes by pure chance. The 

probabilities can be found in supplemental Tables S3 to S6. Two distinct strategies appear to be 

employed by the south and the north clusters, respectively. The south cluster significantly upregulates the 

MAPK and the mechano-transduction pathways and to some extent the PI3K pathway. In contrast, the 

north cluster does not show any significant upregulation but shows significant downregulation in all 

considered pathways. We performed the same analysis for a manually curated set of genes known to be 

downstream of YAP (Wang et al. 2018). Similar to the analyses of growth factor and mechano-

transduction pathways, we found that the YAP downstream targets were significantly upregulated in the 

south cluster and significantly downregulated in the north cluster. Consistent with the PCA above, this 

suggests mechanistically different evolutionary trajectories of the south and the north clusters. 

Specifically, the south cluster appears to evolve by increasing the strength of its coupling with the 

mechanical environment and the north cluster evolves by decoupling the growth machinery from external 

mechanical inputs.  

Discussion: 

Many animal cell types exhibit canonical phenotypic plasticity when cultured on substrates of 

differing stiffness.  In this paper, we started with the premise that the mechanical properties of substrate 

are an inherent agent of natural selection for cells.  We asked two questions:  1) First, do populations of 

cells respond to selection when continuously cultured on substrates of differing stiffness? 2) If cells do 

respond to selection, what type of phenotypic plasticity, gene expression patterns and sequence evolution 

are observed?  If populations of cells do not respond to selection, that would imply either that there was 

no heritable variance for cellular fitness (at least on the relevant substrates), or that the cells were at 

evolutionary equilibrium on each substrate, consistent with the canonical plasticity resulting in the 

optimal cellular phenotype on each substrate. 

We found that genetically variable populations of cells do respond to selection, but clonal 

populations do not.  At the outset of the experiment, all populations of cells grew approximately twice as 

fast on stiff substrate as on soft substrate. As expected, they exhibited the canonical pattern of phenotypic 

plasticity with respect to cell spreading area, YAP localization, and cytoskeletal organization.  Upon 

sustained culture on either soft or stiff substrate, genetically variable populations of cells cultured on stiff 

substrate maintained the ancestral growth rate, whereas growth rate in genetically variable populations of 
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cells cultured on soft substrate increased to equal the growth rate on stiff substrate.  In contrast, growth 

rate of genetically homogeneous populations of cells maintained under the same conditions did not 

change significantly. These results imply that evolution resulted from selection among existing genotypes 

(clones).  Importantly, after 90 days of culture on the soft substrate, the soft-selected lines grew 

approximately half as fast when cultured on stiff substrate.  Taken together, these results imply that the 

response to selection was driven by the increase in frequency of clones that were initially rare in the 

population that "did the wrong thing", i.e., they grew fast on soft substrate and slowly on stiff substrate.   

Strikingly, the soft-selected clones also exhibited the "wrong" pattern of phenotypic plasticity. 

That is, the pattern of cell spreading, YAP localization and F-actin assembly was reversed in the soft-

selected lines (e.g., they spread more on soft substrate than on stiff substrate) from that of the ancestral 

lines.  Clearly, the cells are not at a global optimum with respect to the two different substrate stiffnesses 

investigated here.   

The observation that soft-selected cells "did the wrong thing", i.e., growth rate and phenotypic 

plasticity were both reversed from the pattern in the ancestor, implies that the selected genotypes 

transduce the signal from the soft substrate in such a way as to produce the same suite of phenotypes that 

wild-type cells produce on the stiff substrate, and vice versa. That cells which evolved on soft substrates, 

spread less and also grew slower on the stiff substrate compared to the soft substrate, is consistent with 

the well-known direct relationship between cell spreading and growth rate (Chen et al. 1997). It is 

important to note that the observed reverse phenotypic plasticity of soft-selected cells (Fig. 6B) was not a 

foregone conclusion, and in fact was unforeseen.  It is entirely conceivable that cells exist in which the 

(multivariate) phenotype is simply more extreme overall, in which case the plastic phenotype of soft-

selected cells cultured on stiff substrate would be even more extreme than the ancestral (presumably 

optimum) mean (Fig. 6C), with a concomitant reduction in growth rate.  
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Fig. 6.  Plasticity and evolution revisited. Schematics show possible changes in hypothetical phenotypic 

distributions; labels on the X-axis in panels A-C are as in Figure 1.  Arrows represent the direction of 

plastic change (PC). (A) The phenotypic response is the result of a change in phenotypic plasticity 

("plastic adaptation") over the long term.  This scenario is ruled out (designated by an X) by the lack of 

observed change in clonal populations. (B) The evolutionary response results from selection of a rare 

clone (red) that "does the wrong thing", i.e., its plastic response is opposite of the common types in the 

population. (C) The evolutionary response results from selection of a clone in the extreme upper tail of 

the phenotypic distribution (cyan) with a plastic response in the same direction as the common types in 

the population. (D) Predicted plasticity when evolved populations are exposed to the original 

environment.  The scenario depicted in (B) predicts the observed outcome, shown in red; the scenario 

depicted in (C) predicts the outcome not observed, depicted in cyan. 

Although the response to selection was remarkably consistent among replicates of the soft-

selected lines, analysis of the transcriptome revealed underlying heterogeneity in the soft-selected lines.  

The first principal component, which explains half the variance in gene expression, clearly demarcates the 

soft-selected lines from the ancestor, irrespective of the substrate on which the samples were cultured.  

Thus, there is a common transcriptional response to selection imposed by substrate stiffness.  PC2, which 

explains an additional 28% of the variance, separates the soft-selected lines into two groups, "North" and 

"South", again irrespective of the substrate upon which the samples were cultured.  Targeted analyses 

revealed differences between the North and South clusters in the expression of genes in the mechano-

sensory pathway and genes involved in cell proliferation and growth. It appears that evolution on the soft 

substrate proceeded via one of the two alternatives; (1) by strongly coupling signaling with the 

environment (South) or (2) by decoupling signaling from the environmental input (North).   
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Our findings also inform a more general topic in evolutionary biology, concerning the 

relationship between phenotypic plasticity and adaptive evolution.  As noted above, it is intuitive to think 

that phenotypic plasticity represents a stepping-stone on the way to further adaptation ("evolutionary 

head-start", orange line in Figure 1), but it is well-understood that phenotypic plasticity does not always 

operate in that way, and that plastic phenotypes may often represent an emergency response to stressful 

circumstances (Ho and Zhang 2019).  Although the NIH 3T3 fibroblasts have in fact been cultured on 

stiff substrates for thousands of cell generations, and in that context the soft substrate may legitimately be 

considered "novel", animal cells have experienced variable substrate stiffness during the course of 

organismal development for hundreds of millions of years.  From that perspective, it is not unreasonable 

to think that the common plastic response of cells to substrates of varying stiffness may in fact represent 

optimal phenotypic plasticity.  Consistent with recent findings (Ho and Zhang 2019), our results argue 

against that interpretation, both at the level of emergent phenotypes and of gene expression, both of which 

tend to "revert to normal" in the soft-selected lines.     

Ultimately, we would like to identify the specific genetic variants that are the targets of selection 

imposed by the mechanical environment.  The results of the pooled exome sequencing revealed only one 

rather unconvincing variant that increased to high frequency in both (pooled) samples.  Approximately 20 

initially rare variants increased to ~25% in each pooled sample, although there were no obvious 

functional candidates among them.  Because we sequenced exomes rather than whole genomes, it is 

conceivable (and we think likely) that the causal variants are regulatory rather than coding, and thus not 

represented in the exome sequence.  A more fundamental limitation is that, because animal somatic cells 

do not recombine, all loci in the genome are completely linked, and population-level genome sequencing 

cannot unambiguously associate alleles with traits.  An experiment in which individual cells are barcoded 

and sequenced at the single-cell level will, in principle, permit resolution down to the level of individual 

selected haplotypes, which could then be investigated based on understanding of the functions of the 

genes involved.  

Materials and Methods: 

Experimental cell evolution on soft and stiff substrates 

Synthesis and functionalization of hydrogels 

Polyacrylamide gels of different stiffness were prepared by using a well-established protocol 

(Munevar et al. 2001a). Acrylamide and bis-acrylamide (Bio-rad) were mixed in 50:1 and 12.5:1 ratios to 

prepare gels with Young’s modulus (E) of 1 kPa and 308 kPa, respectively, as previously described 

(Lovett et al. 2013). We have previously shown that the cells sense gel stiffness in this assay and not other 
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properties like ligand spacing (Lovett et al. 2013). The gel solutions contained 99.4% v/v gel mixture, 

0.5% v/v ammonium persulphate (ThermoFisher Scientific), and 0.1% v/v tetramethylethylenediamine 

(ThermoFisher Scientific). For each gel, 100 μl of the gel solution was sandwiched between a 

hydrophobic glass surface and a hydrophilic glass coverslip (18 mm in diameter) for 20 min. The gels 

were functionalized using sulfosuccinimidyl 6-(4’-azido-2’-nitophenylamino) hexanoate (G Biosciences) 

and coated with fibronectin (10 μg/ml) before cell seeding. 

Cell culture 

The mouse fibroblast cell line NIH 3T3 and the mouse myoblast cell line C2C12 were purchased 

from the American Type Culture Collection. Both cell lines have been cultured for decades on (stiff) 

tissue culture plastic, and are expected to be at or near genetic equilibrium. The cells were cultured in 

89% Dulbecco’s modified Eagle’s medium with 4.5 g/l glucose, 4 mM L-glutamine, and 1 mM sodium 

pyruvate (Corning Inc.), supplemented with 10% donor bovine serum (Gibco) and 1% penicillin-

streptomycin mix (Corning Inc.). The cultures were maintained at 37 °C in a humidifier, under 7% CO2. 

The cells were detached from tissue culture dishes or gel surfaces using 0.25% trypsin (Corning Inc.) 

when the culture reached 70–80% confluence and were seeded onto new dishes/gels. 

Cloning 

NIH 3T3 fibroblasts were seeded on a dish (10 cm in diameter) at a density of 500 cells/ 10 cm 

diameter dish and were allowed to grow for 5–7 d. At that time, the cells formed 5–10 distinct colonies 

separate from one other. Each colony was isolated by placing a glass cloning ring (8 mm in diameter) on 

the surface of the tissue culture dish that enclosed a colony and trypsinizing the area of the dish enclosed 

by the cloning ring (McFarland 2000). The colonies were then grown independently in separate tissue 

culture dishes to obtain clones. 

Growth rate measurements 

Lines propagated on a given substrate were sampled at specific time points for growth rate 

measurements. Cells were trypsinized from the substrate of a given stiffness, a fixed number of cells were 

seeded on another substrate of the same stiffness, and allowed to grow for 3 d. On day 3, the cells were 

trypsinized from the gel surface. The trypsinized cells were suspended in 1 ml of the cell culture medium. 

Then, 10 μl of cell suspension was pipetted and mixed with 0.4% trypan blue (ThermoFisher Scientific) 

in 1:1 ratio. The cells were counted using Countess II Automated Cell Counter (ThermoFisher Scientific). 

The total live cell count/ml was recorded as the final number of cells and the growth rate was calculated 

as Nf = N0 2
ηt, where Nf is the final cell count; N0 is the initial cell count which was determined by the 
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same procedure before seeding and was fixed at 10,000 cells; t is time (3 d); and η is the growth rate (per 

d). 

Immunofluorescence staining and microscopy 

Cells grown on the soft and stiff gels were fixed in 4% (wt/vol) paraformaldehyde (Alfa-aesar) in 

water, permeabilized with 0.2% Triton X-100 (Sigma) in PBS, and blocked with 1 mg/ml of bovine 

serum albumin (Sigma). Primary antibodies toward tubulin or YAP were added, and samples were 

incubated overnight at 4 °C. Subsequently, the samples were incubated with secondary antibodies for 2 h 

at room temperature. Microtubules were labeled using rabbit polyclonal anti-alpha tubulin antibody 

(ab18251; Abcam; dilution 1:600); and YAP was labeled using mouse monoclonal anti-YAP antibody 

(sc-271134; Santa Cruz Biotechnology; dilution 1:250). The secondary antibodies used were Alexa fluor 

488-conjugated goat anti-rabbit antibody (A11008; Invitrogen; dilution 1:1000) and Alexa fluor 594-

conjugated goat anti-mouse antibody (A11005; Invitrogen; dilution 1:1000). Nuclei were stained using 

Hoechst 33342 (Life Technologies) and F-actin was stained using Alexa fluor 647-conjugated phalloidin 

(A22287, Invitrogen). The gels were mounted on fluoro-dishes using ProLong Gold Antifade Mountant 

(ThermoFisher Scientific). Samples were imaged using a Nikon A1+ confocal microscope equipped with 

DU4 detector, and 20⋅ air or 60⋅ 1.4 NA oil-immersion objectives. Images were acquired using the NIS 

Elements 5.02 software (Nikon). 

Cell area analysis 

For cell area measurements, bright field images of cells attached to the gels were acquired using 

Zoe Fluorescent Cell Imager (BioRad); images of F-actin (following phalloidin staining in cells) were 

acquired using 20⋅ objective on a Nikon A1+ confocal microscope. Images were acquired at different 

locations on the gel surface and the area of each cell was determined using ImageJ software.  

Measurement of the nuclear to cytoplasmic YAP ratio  

The nuclear and cytoplasmic intensity of YAP was measured using ImageJ software. The nuclear 

boundary was traced in the fluorescent image, and the average YAP intensity in that area was measured 

using an ImageJ tool. The cytoplasmic intensity and background intensity were similarly determined by 

tracing areas. The nuclear to cytoplasmic YAP ratio was calculated as: [(Nuclear YAP intensity) – 

(Background intensity)] / [(Cytoplasmic intensity) – (Background intensity)]  
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Statistical analysis 

The normality of distributions of the measured values was tested using the likelihood ratio test. 

The majority of distributions were not normal. Therefore, statistical comparisons between the control and 

treatment samples were done using the non-parametric Mann Whitney U test (Fig. 2B, 2C and Fig. S1). 

For multiple comparisons, Kruskal-Wallis test with Dunn’s multiple comparisons test was used (Fig. 2D, 

4A, 4C). Graphical plots were generated using Prism version 8.4.0 (GraphPad), MATLAB version 

R2019b (Mathworks), and RStudio version 1.1.463 (RStudio Inc.). PCA data visualization (Fig. 5A, 5D) 

was done using R version 2.12.0 and Tableau Desktop version 2020.1. The details of experimental 

conditions and statistical tests are provided in figure legends. 

The C2C12 growth rate data were analyzed by using the general linear model (GLM) 

implemented in the MIXED procedure of SAS version 9.4. The GLM can be written as  

yijk = μ + ai + bj + cixj + εk(i),  

where yijk is the measured growth rate of a sample; μ is the overall mean; ai is the continuous, linear effect 

of assay day i; bj is the fixed effect of substrate j; cixj is the effect of the interaction between the assay day 

and substrate; and εk(ij) is the residual effect. Variance components were determined using the restricted 

maximum likelihood method. The significance of fixed effects (day, substrate) was evaluated by F-test 

using Type III sums of squares. Degrees of freedom were determined by the method of Kenward and 

Roger (Kenward and Roger 1997). The linear regression of growth rate on assay day was then calculated 

separately for each substrate, using the linear model yij =μ + βtj+ εij, where yij is the growth rate of a 

sample; μ is the intercept and β is the slope of the linear regression of growth rate on assay day t; and εij is 

the residual effect. 

 

Whole-exome sequencing and analysis of gene expression in evolved lines 

Whole-exome sequencing (WES) and variant analysis 

To quantify evolution at the genomic level, WES (approximately 1000⋅ median coverage) was 

used to analyze a sample of the ancestral population, a pooled sample containing three fibroblast lines 

independently evolved for 90 days on the stiff substrate (308 kPa), and two pooled samples each 

containing three lines independently evolved for 90 days on the soft substrate (1 kPa). Whole exome was 

captured and sequenced using the Roche SeqCap® EZ MedExome Kit and Illumina NovaSeq® 6000 

Sequencer, respectively. To minimize sequencing errors, a sequencing protocol involving unique 

molecular identifiers was used (MacConaill et al. 2018) (xGen® Dual Index UMI Adapters from 
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Integrated DNA Technologies). Sequencing reads from each sample were mapped to a mouse reference 

genome version mm9 using BWA-MEM (Li and Durbin 2010). Library preparation, sequencing, de-

multiplexing, read alignment, and quality check were performed according the standard laboratory 

protocols at the University of South California Genomics Core Facility. FreeBayes version 1.2.0 

(Garrison and Marth 2012) joint variant calling method was used to deduce single-nucleotide variants, 

and small insertions and deletions in the aligned sequencing reads, yielding 750,873 variants. To 

maximize the capture of low-allele frequencies in the population, the following FreeBayes parameters 

were used: --pooled-continuous, --pooled-discrete, --min-alternate-fraction 0.001, --min-alternate-count 2, 

and --allele-balance-priors-off. 

RNA extraction, library preparation, and sequencing 

Five replicates of the ancestral population and 10 lines of fibroblasts evolved on soft 1 kPa gels 

for 90 d were each cultured on the soft or stiff gels for 3 d. After 3 d, each replicate population was 

trypsinized, centrifuged at 250 ⋅ g for 5 min, and counted to obtain at least 106 cells per sample. 

Approximately 106 cells were resuspended in RNAase-free PBS. The suspension was again centrifuged at 

1400 ⋅ g for 3 min, the obtained pellet was flash-frozen in liquid nitrogen and immediately stored at –80 

°C. The samples were shipped on dry ice to Novogene Corporation Inc.(Sacramento, California, USA) for 

RNA extraction and sequencing. There, the cell pellets were resuspended in RLT buffer supplemented 

with -mercaptoethanol, lysed using lysis beads (Rodriguez-Palacios et al. 2015)  and total RNA was 

extracted from the cell lysates using Qiagen RNAeasy mini kit according to the manufacturer’s protocol. 

The quality control of total extracted RNA was performed as follows: (1) preliminary quantitation using 

NanoDrop (ThermoFisher Scientific); (2) evaluation of contamination and RNA degradation by agarose 

gel electrophoresis; and (3) RNA integrity analysis using Agilent 2100 analyzer (Applied Biosystems). 

Samples containing over 0.8 g of total RNA and with RNA integrity number > 7.0 were sequenced. 

Polyadenylated RNA was isolated using oligo(dT) beads. It was then randomly fragmented in a 

fragmentation buffer using enzyme method, and cDNA was synthesized using random hexamers and 

reverse transcriptase (included in the NEB Next® Ultra™ RNA Library Prep Kit for Illumina). After the 

first-strand synthesis, the second strand was synthesized using nick-translation in a customized second-

strand synthesis buffer (Illumina) containing dNTPs, RNase H, and Escherichia coli polymerase I. The 

cDNA library was purified, and underwent terminal repair, A-tailing, ligation, size selection, and PCR 

enrichment, using NEB Next® Ultra™ RNA Library Prep Kit for Illumina (New England BioLabs). 

Library concentration was determined using Qubit 2.0 fluorometer (Life Technologies); the library was 

then diluted to 1 ng/l, and  insert sizes were checked using Agilent 2100 analyzer followed by 
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quantitative PCR (Q-PCR) for quantifying to a higher accuracy(library activity>2nM) . Paired-end 150-bp 

(PE150) sequencing (20 million raw reads) was performed using an Illumina HiSeq sequencer. 

RNA sequencing and raw data analysis 

Reads with adaptor contamination were trimmed and short reads (< 30 bp) were removed using 

Trimmomatic (Bolger et al. 2014). Cleaned reads were mapped to the mouse genome (version mm9) via 

HISAT2 (version 2.1.0) (Kim et al. 2015). The counts of aligned reads at the gene level were calculated 

using featureCounts (Subread version 1.6.2) (Liao et al. 2014) corresponding to the Mus musculus 

Ensembl 67 gene annotations. Weakly expressed genes were removed by retaining only the genes with at 

least 0.5 counts per million (CPM) in at least one sample. After the filtering step, 15,250 genes out of 

35,275 genes remained, and were used in subsequent analysis. 

For sample clustering and PCA analysis, counts data were transformed using the regularized log 

(rlog) method. PCA analysis and data visualization were performed in R using the pcaExplorer package 

(version 2.12.0) (Marini and Binder 2019) based on the top-1000 most variable genes across all samples. 

Expression differences between ancestral cells cultured for 3 d on soft substrate (A1) or stiff 

substrate (A308), and cells pre-evolved on the soft substrate for 90 d and post cultured for 3 d on soft (E1) 

or stiff substrates (E308) were analyzed by using DEBrowser (version 1.14, DE method: DEseq2, test 

type Wald) (Kucukural et al. 2019). Adjusted P-value < 0.05 served as a cut-off to determine 

differentially expressed genes. Differential gene expression was visualized using iDEP.90 (Ge et al. 

2018). 

Functional categories over-represented in different subsets of genes were determined using 

WebGestalt 2019 (Liao et al. 2019) with the following parameters: enrichment method, over-

representation analysis; minimum number of genes in a category, 20; FDR method, Bonferroni. Non-

redundant GO biological processes with FDR < 0.05 are reported. 

Parametric bootstrapping  

Parametric bootstrapping was done as described elsewhere (Ho and Zhang 2019). For each 

transcript, random numbers were drawn from an assumed normal distribution with the observed mean and 

standard deviation calculated from the RNA sequencing data. Means and standard deviations were 

calculated for each transcript in the ancestral lines on the stiff and soft substrates, and in cells evolved on 

the soft substrate. Using these sampled values, PC (plastic change) and EC (evolutionary changes) were 

calculated; PC = Lp – Lo, where Lo and Lp represent gene expression levels in the original environment 

(stiff substrate) and upon plastic change (soft substrate), respectively; EC = La – Lp, where La represents 
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gene expression on the soft substrate after evolution. These calculations were repeated 10000 times for 

every transcript. If more than 9500 events of reversion, i.e., a change in sign from EC to PC, occurred, the 

transcript was classified as reverted. If the signs were the same, it was classified as reinforced. CRV was 

calculated as the fraction of genes that reverted, while CRI was calculated as the fraction of genes that 

reinforced.  

 

Forward-in-time simulations of experimental evolution  

 Evolution in a finite population is inevitable because of the random sampling of genomes, 

i.e., the genetic drift. Sampling variance in the sequencing coverage among loci and among samples will 

also lead to observed allele-frequency change. To establish the magnitude of allele-frequency change (Δp) 

consistent with the cumulative effect of genetic drift and sampling of genomes during sequencing of the 

experimental populations, forward-in-time simulations of in silico populations were implemented with the 

same expected initial allele frequency spectra and demography as those of the actual experimental 

populations. The following genomic variants (see section on WES above) were excluded from analysis: 1. 

Those variants whose observed frequencies were consistently over 99% or under 1% across all samples, 

and 2. Those variants whose “Qual” score was less than 30. This resulted in 42,004 polymorphic genetic 

variants that were included in the simulation study.  

 The mouse cells studied here are diploid and genomes do not recombine. Each line was 

initiated by randomly sampling 10,000 cells (= 20K haploid genomes) from a pool of 60,000 cells with an 

allele frequency spectrum equivalent to that of the ancestral experimental population (see section on WES 

above). At each variable site in each simulated (haploid) genome, the allele was assigned with an 

expectation equal to the observed frequency p0. The sampling protocol in effect assumes that genomes are 

initially in linkage equilibrium, which is not true. However, because variable sites are sparse relative to 

the read length and because individual cells were not sequenced in the current study, the initial haplotype 

structure was not known. Neutral allele-frequency dynamics at individual loci do not depend on the 

assumption of linkage equilibrium.  

  Subsequent to initiation, each population of 10,000 cells went through three cycles of cell 

division, with the assumption that every cell divides (i.e., there is no cell death), to a confluent population 

size of 80,000 cells. This mimics the seeding densities and expected division rates of cells in the evolution 

experiment of Fig. 2A. Haploid genomes were paired in cells, and pairs of genomes doubled with each 

cell division event. From this population of 80,000 cells, 10,000 cells were randomly drawn without 

replacement for the next round of population growth, mimicking the passage of cells in the experiment at 
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regular intervals (Fig. 2A). This sampling process was repeated for 26 cycles, nearly equivalent to N = 78 

cycles of cell growth in the actual experiment. At the terminal generation, lines were randomly pooled 

into three “pool-seq” sets of three replicates to mimic the experimental exome sequencing approach. The 

allele-frequency, p', was calculated from the entire sample of 60,000 alleles after sampling the 

corresponding number of reads for each locus. 

The observed difference in allele frequency, p' – p0, is an unbiased estimate of the change in allele 

frequency, Δp, but it underestimates the sampling variance in Δp because the observed allele frequency in 

the ancestor is an estimate rather than a known parameter. To re-estimate p' after accounting for the 

additional sampling variance associated with the estimation of p0, we generated a sample of n binomially 

sampled alleles using p' (as the probability of success), where n is the observed coverage at the locus in 

the ancestor.  We call the mean of the n sampled alleles p*, and the variance in p* accounts for all sources 

of sampling variance: sequencing variance of the ancestor; random genetic drift over the course of the 

experiment; variation associated with the pooling of replicates of evolved populations; and sequencing 

variance of the pooled evolved lines. The simulation process was repeated 500 times.  

Because the loci are completely linked, the upper bound of the uncorrected P-value of an 

observed Δp greater than the most extreme simulated value is 1/500, and the lower boundary is the 

inverse of the product of the number of variable sites (N = 42,004) and the number of simulations, i.e., 

1/(500*N). 
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