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1. Introduction

A formula by Peano states that if f : [a;,a,] — R is an n — 1 times continuously
differentiable function, then

1 F
flarseo o] = gy [ £V @) F@san. . a) da 1)
ay
See, for instance, [4, Chap. III, Sec. 3.7] or [2]. Here a; < as < - - < a, are real numbers,
flai,...,a,] denotes the nth divided difference of f, which may be written as
n
@
f[a17~"7an] f( ]) )

a = Hk;éj(aj —ay)

and F(x;aq,...,ay,) is the Curry—Schoenberg B-spline introduced in [2], one representa-
tion of which is

n—1<xx |aj —z|(a; — )" 3
F(x;alaG'Q,"'7an): 9 | : |( . ) (2)
= hglay —ar)
The function F(z;aq,...,a,) is positive on (a1, a,), and hence if F=1 is nonnegative
and not identically zero on R, then (1) implies that f[ai,...,a,] > 0 whenever a; <
ag < -++ < ap. Taking f(x) = 2P*"~1 with a nonnegative integer p, we obtain from (1)
that
p+n—1
f[al,...,an]:< S )/pr(x;al,...,an)dx, (3)
R
and it is well known that in this case flay,...,a,] is just the complete homogeneous

symmetric polynomial

hp<a17a27"'7a"n): § a’jlan.”a.ﬁﬁ
1<j1<je < <jp<n

with the convention hg(ai,as,...,a,) = 1; see, e.g., [9, Theorem 1.2.1]. Thus, if p is
an even positive integer then h,(ai,as,...,a,) > 0 for arbitrary pairwise different real
numbers ay, ..., a,. This is a classical result by Hunter [6]. He proved it in a completely
different way. The easy argument employed above is essentially from [5].

The purpose of this paper is to extend Hunter’s result to more general functions, in
particular to complete homogeneous symmetric polynomials of fractional degree and to
sums of products of the classical homogeneous symmetric polynomials. Our approach is
based on the preceding argument and a determinantal representation of B-splines.
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2. Main results

Jacobi’s bialternant formula says that for each positive integer z we have

1 a a2 --- aff_z af"'"_i
1 ay a3 -+ ay % a3t
hz(a17a/27-~-7an)V(a17a27"'aa’n) = det . . . . . . ) (4)
2 n—2 z+n—1
1 ap, a;, --- a ay,
where h,(a1,as9,...,ay,) is the complete homogeneous symmetric polynomial introduced
above and
2 n—1
1 a1 af a -
1 ay a3 -+ ay”
V(ay,as,...,a,) =det | . . o ) = H (a; — a;)
S 32 - : 1<i<j<n
e
1 a, a; a,

is the n x n Vandermonde determinant; see, e.g., [10].

For the moment we assume that aq,as,...,a, are pairwise distinct real numbers and
that none of them is zero. Putting af = €* loga; with a choice of the branch of the
logarithm that is defined on R \ {0}, the right-hand side makes sense for every z € C.
Thus, it is natural to take (4) as the definition of h,(a1,as,...,a,) for z € C, that is,
of fractional degree complete homogeneous symmetric polynomials. For example, in the
case of three variables we obtain

a*t2(b—c) + b* 12 (c — a) + *2%(a — b)

(a—=b)la—c)(b—2c)

As said, for positive integers z, these are the usual complete homogeneous symmetric

hz(aa b, C) = (5)

polynomials. For other choices of z we get, for instance, h_1(a,b,¢) = h_s(a,b,c) = 0,
and

a3(b—c)+b3(c—a)+c3(a—0b)
(a—b)(a—rc)(b—rc) ’

(a.bc) = Vavb + ay/c + Ve

hi(a,b,c) =

1
2

h_1 ’
(Va+VB)(Va+ Vo) (Vb + )

h_z(a,b,c) =— 1

e v+ Ve
oy TR

,g(a, ,¢) = (a_b)(a—c)(b—c)’

h_3(a,b,c) = . )

abe
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ab + ac+ be
h_4(a,b,c) = B TC Y
hi(avb’ C) _ a2eiloga(b_ C) +b2eilogb(c_ a) +c2eilogc(a _ b) . _17

(a—b)(a——c)(b—rc) ’

each of which is a symmetric function of a, b, c. These examples are already in [5], where
an unexpected connection between complete homogeneous symmetric polynomials and
the statistical properties of factorization lengths in numerical semigroups was investi-
gated.

If Re (z+n—1) > 0, we put 0*t"~1 := 0. Thus, under the assumption that Rez > —1,
we may use (4) to define h, (a1, as,...,a,) for n > 2 also in the situation where (exactly)
one of the numbers ai,as,...,a, is zero. The following theorem provides us with an
alternative representation of complete homogeneous symmetric polynomials.

Theorem 1. Let n > 2, let ay,a2,...,a, € R with a1 < as < --- < an, and let
F(z;aq,...,a,) be the function (2). If z € C and Rez > —1, then 2*F(z;a1,a2,...,a,)
is absolutely integrable and

h.(a1,az,...,a,) = <Z : " I 1> /Z‘ZF(J?;CM,G,Q, ceyp) d. (6)

The use of such a theorem in connection with fractional degree complete homogeneous
symmetric polynomials was first indicated in [5]. There it was shown that F(x;aq,...,ay)
is a probability density supported in [a1,a,] which is piecewise polynomial of degree
n — 2 and which is n — 3 times continuously differentiable. In [5], the function arose in
the formula

B
lim [{eeLlm] : £ € [am, fm]}| = /F(aj, 1/mp,...,1/my)dx,

m—00 [IL[m]|

«

where L[m] is the multiset of lengths £ = 1 + - - - + x,, of possible decompositions m =
x1mq+- - -+, my with nonnegative integers x; for given positive integers m; < --- < my,
satisfying ged(myq, ..., m,) = 1. (This is related to the coin problem of Frobenius.)
Once Grigori Olshanski saw a preliminary version of this paper, he kindly informed
us that F(x;ay,...,a,) is nothing but the B-spline introduced by Curry and Schoenberg
in [2]. Thanks to this observation we were released from our effort devoted to proving
positivity, support in [ai,a,], and unimodality of the function F(x;aq,...,a,) since
these turned out to be well-known properties of B-splines. As Olshanski pointed out,

n—3

with 4 := max(z,0) we have |z| = 22, — 2 and x12"3 = 2"/ 2, hence the sum in (2)

equals

n—1e~ 2(a;—2)1° n-1g~ (a;—x)"2

2 = Hk;éj(aj —ag) 2 e Hk;ﬁj(aj —ak)’
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and since the second sum is just (2) for = < aq, which is known to be zero, we get

n n—2

F(z;ai,...,a,) =(n—1) %,
= Hk;éj(aj — ak)
which is exactly the formula given in [2] and in [8].

Curry and Schoenberg proved in particular that F'(z;aq,...,a,) is a probability den-
sity supported in [a1, a,] and that the kth derivative (k = 0,1,...,n — 3) of the function
has exactly k simple zeros in (ai,a,). They also proved the remarkable geometric in-
terpretation of F(z;aq,...,a,) as the linear density function obtained by projecting
orthogonally onto the z-axis the volume of an (n — 1)-dimensional simplex of volume 1,
so located that its n vertices project orthogonally into the points a1, ..., a, of the z-axis.
That an interpretation of this type might be true was independently communicated to
us by Terence Tao.

For more on splines we refer to the monographs [3] and [9]. We here only note that
there are different normalizations of B-splines: those of Curry and Schoenberg are nor-
malized so that their integral is 1 whereas the B-Splines of de Boor are normalized so
that a certain collection of them (over shifted intervals) sums to 1.

So far we assumed that a1 < as < --- < a,. By appropriate limit passages or by
constructing B-splines via recursion formulas and making thorough use of the convention
0/0 := 0 (called “the useful maxim” on page 117 of [3]), one may extend the definition of
F(z;a4,...,a,) to arbitrary a; < as < --- < a, under the mere assumption that a; <
an- The resulting functions are still positive piecewise-polynomial probability densities
supported in [a1, a,], and only the smoothness is lowered to some n —r < n — 3.

For a positive integer p the polynomial hy(as,...,a,) is well-defined without the
assumption that the a; be pairwise distinct. Again by appropriate limit passages in
Vandermonde-like determinants (leading to so-called confluent Vandermonde-like deter-
minants), one may also define h.(ay,...,a,) for Rez > —1 under the sole requirement
that among ay,...,a, there are at least two different numbers. Finally, for a # 0, the
natural definition of h,(a,...,a) respecting continuity is

z+n—-1\ ., (z4+n—-1)---(z+1) ,
hz(a,...,a)< n—1 )a = =1 a®. (7)

These limit passages give Theorem 1 under the only assumption that
a1 <as <...<a, and a1 < a,. (8)
The classical result by D.B. Hunter [6] mentioned states that if p is a nonnegative

integer, then hoy(as,...,a,) > 0 for all (a1,...,a,) € R*\{(0,...,0)}. See [11] for more
results on this topic. We will prove the following generalization of Hunter’s result.
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Theorem 2. Choose the branch of the complex logarithm that is analytic on C cut along
the negative imaginary axis and takes the value 0 at 1. Let u > —1 be a real number and
suppose (ay,...,a,) € R™\ {(0,...,0)}.

(a) If | — 2p| < % for some nonnegative integer p, then Rehy (a1, ..., a,) > 0.

(b) If | — (2p — 1)| < L for some integer p > 0, then Rehy(ay,...,a,) > 0 for
(a1,...,a,) € [0,00)" and Rehy(ay,...,an) <0 for (ai,...,an) € (—o0,0]™.

(c) If [u— p| = & for some nonnegative integer p, then Rehy(ai, ..., a,) > 0, and we
have Rehy(aq, ... ,a,) =0 for (ai,...,a,) € (—o0,0]".

Note that the cases [u— 2p| < %, | — (2p+ 1)| < 3, and |u — p| = 3 are equivalent
to the cases cos(um) > 0, cos(um) < 0, and cos(um) = 0, respectively. Section 4 contains
some more results related to Theorem 2. Theorems 1 and 2 complement recent work
of Terence Tao [11] concerning different ways of proving the positivity of even degree
complete homogeneous symmetric polynomials. We emphasize that the polynomials con-
sidered here are polynomials of fractional degree and that they should be distinguished
from the symmetric functions in a fractional number of variables introduced implicitly
in [12].

We now turn to combinations of the classical complete homogeneous symmetric poly-
nomials. The following result is about linear combinations.

Theorem 3. Let H(ay,as,...,a,) = Z;nzo cihj(ar,as, ..., an) with real coefficients c;
and let —oo <r < s < oo. Then

H(ay,...,an) >0 forall (a1,...,a,) € (r,8)" \ {(0,...,0)}
if and only if H(a,a,...,a) >0 for all a € (r,s) \ {0}.

Here is a sufficient condition for the positivity of combinations involving products.
We confine ourselves to the case of at most two factors. The extension to more than two
factors is obvious.

Theorem 4. Let
m
H(ay,...,an) = Z cikhj(ar,...,an)hi(ar, ..., an)
J,k=1
with real coefficients cji, and let —oo <r < s < oo. Put
m
P(xa y) = Z Cjkhj(xax7 e 7x)h‘k(y7ya ey y)
J,k=1

If P(x,y) > 0 for (z,y) € (r,8)%\ {(0,0)} and H(a,a,...,a) > 0 for a € (r,s) \ {0},
then H(ay,...,an) >0 for (ay,...,ay,) in (r,s)" \ {(0,...,0)}.
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We remark that Theorem 4 is subtler than it might appear at the first glance. Consider,
for example,

H(ay,...,an) = 2ahy(a, ... ,ap)ha(ay,. .. a,) — 38h3(a, ... a,) + 2,
and let us omit the arguments, that is, let us simply write
H = 20hohy — 38h% + 2.

Recall that ho(ay,...,a,) =1, so that 2 may be interpreted as 2hZ. By (7), the polyno-
mial P(x,y) is

24n—1\ [ 44+n—-1 24+n—1\°
2« tn tn 22yt —38 n z2y% + 2,
n—1 n—1 n—1
and let us choose o and 8 so that this becomes
P(z,y) = 222" — 32%9% + 2.

Since P(x,1) = —x? +2 < 0 for x > /2, Theorem 4 does not give anything for (r,s) =
(—00,00). However, we may write

H = ahyhy + ahohy — 362 + 2,
and now, with the same choice of a and 3 as above, we obtain
Plx,y) = xhy? 4+ 22yt — 322y 4 2.

This is 1 plus the famous Motzkin polynomial. (The Motzkin polynomial introduced
in [7] was the first explicit example of a nonnegative polynomial that is not a sum of
squares of polynomials. See [1] for a recent survey. Note that nonnegativity is simple: we

have
2.2 3/ 4,2 2.4 1 4. 2 2 4
e7y” = Vaty? 2yt -1 < S(@fyt + eyt 4+ )
by the arithmetic-geometric mean inequality.) Hence P(z,y) > 1 on all of R2. As also
H(a,a,...,a) = P(a,a) > 1 for all a, we can now invoke Theorem 4 to conclude that
H(ay,...,ay) > 0forall (ay,...,a,) € R™ One is tempted to draw this conclusion from

inserting u = ho and v = hy4 in the inequality
g(u,v) = 20uv — 3Bu* +2 > 0 for (u,v) € [0,00)?,

but this inequality is not true because g(u,1) = —o0 as u — 0.
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Theorems 1 to 4 will be proved in Sections 3 and 5. In Section 6 we establish expres-
sions for h,(ay,...,ay) in terms of Schur polynomials in the cases where z is a negative
integer or a positive rational number.

3. Proof of Theorem 1

We first rewrite F'(z;aq,as,...,a,) in terms of determinants. Let a1, as,...,a, € R
with a1 < ag < --+ < a, and let F(z;a1,a2,...,a,) be defined by (2). In what follows,
V(ai,...,a;,...,a,) denotes the (n — 1) x (n — 1) Vandermonde determinant obtained
from V(a1,as,...,a,) by removing a;. Then

F(x;a'laGQa R )an)

n—1<la; — z|(a; — )" 3

Hk;ﬁj(a’j —ay)

j=1

n—1 aj —z|(a; — )" 3
J J

2 = H1§k<j(aj — a) Hj<kgn(aj —ay)

()" (n—1) ¢ laj — z[(aj —x)" 3

2 = H1§k<j(a’j — ag) Hj<k§n<ak —ay)

1~ V(ai,...,a,... :
e P TR (T

2 = Viay,azg,...,an,)
:(n_1)2?:1(—1)”‘”‘/(@,...7@7...,an)-|aj—x\(aj—1:)"_3
2V (ay,az,...,ay)
and hence
F(z;a1,a9,...,a,)
1 a af ay™? |ay —z|(ay —x)" 73
n—1 q 1 ay a3 -+ ay > |ag —2|(ag — )" 9
= t .
2V (a1, az,...,ay) © Co S : : ®)
1 ay, a% a2_2 |an—x|(an—x)”_3

We now prove (6), that is, the equality

g:(a1,...,a,) = <Z+n_1>/xzf(a1,...,an)dx
R

n—1

with
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-2 —1
1 ai CL2 . am az-‘rn
1 1

1
L B
i a.n a? agl—z az-ﬁ-.n—l
and
Loarad o al ™ a -l - a)n
flaroian =" Laer || @ 7g'f @ lae—allez =)™ (11)
A

We may assume that a; # 0 for all j because both (10) and (11) depend continuously on
ai,...,a;. Multiplying (11) by z* and integrating the result amounts to replacing the
jth entry of the last column by

/xz|aj —x|(a; — x)" P dx
ai
a; an
= /o:z(aj — )" % dx — /xz(aj — )" % da
al aj
aj ay an a;
= /—/—/+/ 2*(a; — )" *dax
o 0 o0 o0
a;j al An
= Q/xz(aj — )" ?dr — /a:z(aj — )" ?dr — /xz(aj — )" dx
0 0 0
=20, — I} — IJ.
We have
o on=2 a1 n—2 n—2
G5 [ (7))t o
k=07 k=0
and, analogously, I} = ZZ;S dk(z)a;?. It follows that the columns col(1] )j—; and

col(I3)%_, are linear combinations of the first n — 1 columns of the determinant (11).
Consequently, the jth entry of the multiplied and integrated determinant may simply be
replaced by 21;. We finally have

aj 1
21 = 2/xz(aj — )" dr = 2a§-+”71 /tz(l — )" 2 dt
0 0
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_ 2a;+n—1r(z +l(n—1) _ 9z =1 I(z+1)(n—2)!
J I'(z+n) J (z+n—-1)--(z+ D' (z+1)
-1
_ +n-—1 1
— ggtn-1(”
% ( n—1 ) n—1’

which is the asserted equality. O
4. Proof of and more results around Theorem 2

Proof of Theorem 2. Since h,(a) = h,(0,0,a) and hy(a,b) = h,(0,a,b), we may restrict
ourselves to n > 3. Suppose first that all a; are equal to a # 0. Then a* > 0 for a > 0,
and for a < 0 we have

at = eitlosa _ op(loglajtiarga) _ pu(loglal+im) _ |la|* cos(pm) 4 ila| sin(pr).

Consequently, (7) implies all assertions of the theorem. As (6) remains true if (8) holds,
we obtain that

(ptn—1)---(p+1)

hu(ay, ... a,) = oD /m“F(m;al,...,an)dx.
R

With F(z;a1,...,ay,) abbreviated to F'(x), it follows that Re hy (a1, ..., a,) is a positive
constant times

0 o
Re /e”“r|x|“F(x) d:r:+/\1:|"F(x)dx
0

0 00
= cos(um) / |x|* F(x) dx+/|x|“F(x) dz. (12)
—00 0

If cos(pm) > 0, then (12) is greater than or equal to cos(um) [ [#|*F(z) dz, and this is
strictly greater than zero because F'(x) > 0 on some open interval. Let cos(um) < 0. If
a1 > 0, then (12) equals [, [z|*F(x) dz, which is strictly positive because F(x) is strictly
positive on some open interval, and if a,, <0, then (12) is cos(um) [, ||*F(x) dz, which
now is strictly negative. Finally, if cos(mp) = 0, then (12) equals [ |z|*F(z) dx. This
is always nonnegative and this vanishes if a,, < 0. O

Hunter [6] even proved the sharp lower bound hop(a1,...,a,) > 1/(2Pp!) under the
restriction a? + - -+ + a2 = 1. Here is an extension of this result to fractional degrees.

Proposition 5. Suppose |p — 2p| < % for some nonnegative integer p and let 2q be the
smallest even integer such that u < 2q, i.e., g=pifu <2p and q=p+1 if u > 2p.
Then
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(tn—D(utn—2-(uit1) coslun)
Rehy(ar, ..., an) = 2¢+n—1)(2¢+n—2)---(2g+1) 24q!

whenever a3 + -+ + a2 = 1.

Proof. With F'(z;aq,...,a,) abbreviated to F(z), we have

0 0o

-1
) Rehy(a1,...,a,) =Re / e x| F () da + / |z|H F(x) dx

—o0 0

p+n—1
n—1

0 00
= cos(um) / |a:|“F(x)dx+/|a:|“F(x)dx
—00 0
zcos(,mr)/bv\“F(x) dx.
R

The equality a? + -+ a2 = 1 implies that |a;| <1 for all j. Thus [a1,a,] C [-1,1], and
since |z|* > |x|?? for |x| < 1, it follows that

(u—l—n—l

1 QAn
1 ) Rehy(ar,...,an) > cos(,wr)/kr\“F(x) dx
n—
ax

> cos(,mr)/|x\2qF(:c) dzx.

But the last integral equals (2q:f;1)_1h2q(a1,...,an) and Hunter [6] showed that

haog(ai,...,ay) is at least 1/(2%!). O

The imaginary part of h,(a1,...,a,) is
1 0 ')
(H :; ﬁ; ) sin () / |z| F () de + / |z|* F () dx
—00 0

If 2p < p < 2p + 1 with a nonnegative integer p, this is strictly positive with the lower
bound

(p+n—1(p+n—2)-- (u+1)sin(pr)
2p+n+1)(2p+n)---(2p+3) 244q!

for a? +---+a? = 1. (Note that the smallest even integer greater than y is 2¢ = 2p+2.)
Thus, if © € (2p,2p + %), then h, maps all of R™ \ {(0,...,0)} into the open upper-
right quarter-plane. The set (0, 00)" is always mapped into the open right half-line. The
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function h, maps (—o00,0)" into the upper-left quarter-plane for p € (2p + 1,2p + 1),
into the lower-left quarter-plane for u € (2p + 1,2p + 3/2), and into the lower-right
quarter-plane for u € (2p + 3/2,2p + 2).

Let again Re z > —1 and let the branch of the complex logarithm be the one specified
in Theorem 2. If A > 0, then (Aa)® = A*a?, but if A < 0 and a < 0, then (Aa)* =
Na*e=2™%* Thus, h.(ai,...,a,) is positively homogeneous but in general not genuinely
homogeneous. If z = p is a real number and if A > 0, we have

Reh,(Aai,...,Aan) = Re[Nhy(ai,. .., a,)] = M Rehy(a,. .. an),

and hence Reh,(a1,...,a,) is also positively homogeneous. This makes Proposition 5
useful. However, if, for instance, z = iv with a real number v # 0, then, for A > 0,

hil,(/\al, ceey )\an) = )\iu hiy(al, .. ,an)
= (cos(l/ log \) + i sin(v log /\)) (Re hiv(ai,...,an) +iImhy(ag,. .., an)),

which reveals that neither Re h;y,(aq,...,a,) nor Imh;,(aq,...,a,) is positively homo-
geneous. The following proposition completes the picture provided by Theorem 2.

Proposition 6. If z € C \ R and Rez > —1, then both the real part and the imaginary
part of hy(a1,...,a,) are indefinite.

Proof. From (7) we infer that if 2 = p + iv with p,v € R and v # 0, then, for a > 0,

hz(a, .. .,CL) = (Z+n o 1>ali+“’ — <Z+7’L - 1)a/teiuloga’

n—1 n—1

which shows that the range of h, contains a spiral (a circle for u = 0) rotating around
the origin and hence reveals that both Reh, and Im A, assume strictly positive as well
as strictly negative values. O

5. Proofs of Theorems 3 and 4

Proof of Theorem 3. If H(a,a,...,a) <0 for some a in (r,s) \ {0}, then the inequality
H(aq,...,a,) > 0 is not true for all (ay,...,ay,) in (r,$)" \ {(0,...,0)}.

So assume H(a,a,...,a) > 0 for a in (r,s) \ {0}. We have to show that then
H(ai,...,a,) > 0 whenever a; € (r,s) for all j and at least two of the numbers are
different. Since H(aq,...,a,) is symmetric, we may assume that a1 < --- < a,. We
know that Theorem 1 extends to the case (8). Thus, we have
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with

From (7) we see that P(z) = H(z,x,...,z). Thus, if H(a,a,...,a) > 0for ain (r, s)\{0},
then P(x) > 0 for z € (r,s) \ {0} and (13) implies that H(ay,...,a,) > 0if r < a1 <
-+ < a, < s and at least two of the a; are different. O

Proof of Theorem 4. Since we require that H(a,a,...,a) > 0 for nonzero a € (r,s), we
are left with the case where r < a; < --- < a, < s and a; < a,. We then get that
H(ay,...,ay) equals

/P(l‘ay)F('x;alw"7a7L)F(y;a17"'aan) dl’dy

al ai
with
_ " fi4n—1\[(k+n-1 ik
’P(:&W—}Z( n—1 >< no 1 )CaRTY
7,k=1
From (7) it follows that
,P(:an) = Z Cjkhj(l'axa v ax)hk(:%ya <o 7y)
j k=1

Consequently, if P(z,y) > 0 on (r,5)%\ {(0,0)}, then the double integral is strictly
positive. 0O

6. Emergence of Schur polynomials

Throughout the following think of ai,...,a, as variables or as nonzero and pairwise
distinct real numbers. Given an n-tuple A = (A1, Ag,..., A,) of integers satisfying Ay >
Ag > -+ > A\, >0, the Schur polynomial sy(a1,as,...,a,) is defined as

An—1+1 An_2+4+2 _
ai\n a’l 1+ al 2+ . ai\l—‘r’n 1
A1+l Ap_o42 _
ag‘" a) 1+ a) 2+ o ag\lJrn 1
det
A1+l Ap_o+42 _
af‘L" an v an 2L af‘;*” 1
salar,ag, ... a,) = ; (14)
V(al, as, ..., an)

see, for example, [10]. From (4) we see that if z is a nonnegative integer, then
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hz(alu as, ... 7an) = 8(2,0,.,.,0)(0417(117 R an)»
with s(0,0,....0)(a1,a2,...,a,) = 1.

Proposition 7. Let z be a positive integer. If 1 < z <mn —1, then h_,(a1,...,a,) = 0. If
z > n, then

h—z(U/lv v 7an) = (_1)7171(@1 t an)nilizs(zfn,‘..,zfn,O) (ala v 7an)~

Proof. Consider (1) with z replaced by —z. If 1 < z < n — 1, then the determinant on
the right contains a repeated column and hence it is zero. So let z > n. Then, again

by (4),

P SO SR
h_.(a,...,an)V(ay,...,a,) = det 2 @ W 2 ,
i a.n a.% az;z a,’LZ%L*1
and this equals (ay -+ - a,) *T"~! times
a(l)+(1+z—n) a]}—&-(l-&-z—n) a?+(1+z—n) a;rlz—2+(1+z—n) 1
ot ag+(1+z—n) a;—&-(l-&-z—n) a§+(1+z—n) a;z—2+(1+z—n) 1
a%—&—(l:-&-z—n) ai—&-(l:—&-z—n) aiﬂl;z_") a2_2+(:1+2_n) 1
This last determinant is
af a}-l—(z—n) a?-i—(z—n) agn—1)+(z—n)
(=1)" " det a'g a;ﬂz_n) ang(Z_n) aén_lH(z_n)
a:% Y RN ey
Thus, letting
A=(z—-n,z—n,...,z2—n,0)
n—1 copies
we get
h.(ai,...,an) = (=1)""Hay---an)" 1 "Fsa(ar,...,a,). O

Proposition 8. Let z be a positive rational number but not be an integer. Write z = p/q
with ¢ > 2 and ged(p,q) = 1. Then h.(ay,...,a,) is
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1 1/q 1/
— — ——sa(a)’ Y, o a ).
1§g§n agq 1)/q + al(q 2)/qa;/q NI a§q 1)/q

Proof. We start again with (4). The determinant on the right may be written as

1 (a}/‘I)q (a&/Q)?q L. (a}/Q)(n72)q (a&/q)er(nfl)q
(a;/Q)q (aé/q)2q (a;/Q)(nf2)q (aé/‘Z)er(nfl)q

det
1 (a’}L/‘I)q (a}l/‘I)2q . (a’}L/‘I)(n—2)q (a}’/‘l)p—i-(n—l)q

This equals

(ai/4)1+(q71) (ai/Q)2+2(q71)
(aé/Q)lJr(qq) (a;/Q)2+2(q71)

1
1
det
1 (a}/q)l-ﬁ-(q—l) (a}/q)2+2(q—1)
(a}/Q)nf2+(nf2)(q71) (ai/Q)(nfl)+p+(n71)(q71)
(aé/Q)n—Q—i—(n—Z)(q—l) (aé/Q)(n—l)—s—p—&-(n—l)(q—l)
(a}l/Q)n72+(n72)(q71) (a’}/Q)(nfl)+p+(nfl)(qfl)
and from (14) we deduce that the last determinant is
V(ai/q, ... 7a,1L/q)sA(a}/q, cey a}/q)

with A=(p+(n—-1)(¢g—1),(n—2)(¢—1),...,2(¢ — 1), (¢ — 1),0). Consequently,

_ det V(ai/q, e ,a}/q)

ha(ay,... an) = Va gl
A, an) detV(ay,...,a,) sa(ar - a)
1 1/q 1/
= — — — N (AN =
1SE§H az(_q 1)/q+al(q 2)/qa;/q+...+a§_q 1)/q

These ideas extend to a related formula when p/q is negative. We leave the details to
the interested reader.

Example 9. If z = 2/3 and n = 4, then A = (24+3-2,2-2,2,0) = (8,4, 2,0) and we obtain
that

h%(al, az,as, a4)

1 13 1/3 1/3 1/3
H 2/3 1/3 1/3 2/3 “S8.4,2,0) (0175 05", a5, ay"7).
1<i<j<a @7 tagay o ta



A. Boéttcher et al. / Linear Algebra and its Applications 608 (2021) 68-83 83

Declaration of competing interest
The authors declare that they have no competing interest.
Acknowledgement

We thank Grigori Olshanski and Terence Tao for their valuable comments. In par-
ticular, Grigori Olshanski’s hint to [2] solved the problem (in the affirmative) whether
F(z;aq,...,a,) is unimodal, which was left as an open question in [5].

References

[1] O. Benoist, Writing positive polynomials as sums of (few) squares, Newsl. - Eur. Math. Soc. 105
(2017) 8-13, MR 3726776.

[2] H.B. Curry, I.J. Schoenberg, On Pdlya frequency functions IV: the fundamental spline functions
and their limits, J. Anal. Math. 17 (1966) 71-107, MR 0218800.

[3] C. de Boor, A Practical Guide to Splines, revised edition, Applied Mathematical Sciences, vol. 27,
Springer-Verlag, New York, 2001, MR 1900298.

[4] P.J. Davis, Interpolation and Approximation, Blaisdell Publishing Co. Ginn and Co., New York,
1963, MR 0157156.

[5] S.R. Garcia, M. Omar, C. O’Neill, S. Yih, Factorization length distribution for affine semigroups
IT: asymptotic behavior for numerical semigroups with arbitrarily many generators, https://arxiv.
org/abs/1911.04575.

[6] D.B. Hunter, The positive-definiteness of the complete symmetric functions of even order, Math.
Proc. Camb. Philos. Soc. 82 (2) (1977) 255-258, MR 0450079.

[7] T.S. Motzkin, The arithmetic-geometric inequality, in: Equalities, Proc. Sympos. Wright-Patterson
Air Force Base, Ohio, 1965, Academic Press, New York, 1967, pp. 205-224, MR 0223521.

[8] G. Olshanski, Projections of orbital measures, Gelfand-Tsetlin polytopes, and splines, J. Lie Theory
23 (4) (2013) 1011-1022, MR 3185209.

[9] G.M. Phillips, Interpolation and Approximation by Polynomials, CMS Books in Mathematics,
vol. 14, Springer-Verlag, New York, 2003, MR 1975918.

[10] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics,
vol. 62, Cambridge University Press, Cambridge, 1999, with a foreword by Gian-Carlo Rota and
appendix 1 by Sergey Fomin, MR 1676282.

[11] T. Tao, Schur convexity and positive definiteness of the even degree complete homogeneous sym-
metric polynomials, https://terrytao.wordpress.com/2017/08/06/.

[12] T. Tao, Symmetric functions in a fractional number of variables, and the multilinear Kakeya con-
jecture, https://terrytao.wordpress.com/2019/06/29/.


http://refhub.elsevier.com/S0024-3795(20)30391-8/bib092F2BA9F39FBC2876E64D12CD662F72s1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib092F2BA9F39FBC2876E64D12CD662F72s1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib8D7E99C73CD5A10ADAAF4C9F9A520368s1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib8D7E99C73CD5A10ADAAF4C9F9A520368s1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib88EFEC972D94A2D2F4821833269585EAs1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib88EFEC972D94A2D2F4821833269585EAs1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib8F2D58E32D065296E0DDCFF5F6509A9Fs1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib8F2D58E32D065296E0DDCFF5F6509A9Fs1
https://arxiv.org/abs/1911.04575
https://arxiv.org/abs/1911.04575
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib5E409E09F43D85C6E61301149E4F803Bs1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib5E409E09F43D85C6E61301149E4F803Bs1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib88EF684F04402D0BDB04ACC1A5E380B4s1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib88EF684F04402D0BDB04ACC1A5E380B4s1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bibC93D25F8BCE591B89346B694B535CE15s1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bibC93D25F8BCE591B89346B694B535CE15s1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib9EC75097CE44559E94E404D6A2D395ABs1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bib9EC75097CE44559E94E404D6A2D395ABs1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bibD88319DFA5D204F019B4284149886C59s1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bibD88319DFA5D204F019B4284149886C59s1
http://refhub.elsevier.com/S0024-3795(20)30391-8/bibD88319DFA5D204F019B4284149886C59s1
https://terrytao.wordpress.com/2017/08/06/
https://terrytao.wordpress.com/2019/06/29/

	Weighted means of B-splines, positivity of divided differences, and complete homogeneous symmetric polynomials
	1 Introduction
	2 Main results
	3 Proof of Theorem 1
	4 Proof of and more results around Theorem 2
	5 Proofs of Theorems 3 and 4
	6 Emergence of Schur polynomials
	Declaration of competing interest
	Acknowledgement
	References


