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1. Introduction

A formula by Peano states that if f : [a1, an] → R is an n − 1 times continuously 
differentiable function, then

f [a1, . . . , an] = 1
(n− 1)!

an∫
a1

f (n−1)(x)F (x; a1, . . . , an) dx. (1)

See, for instance, [4, Chap. III, Sec. 3.7] or [2]. Here a1 < a2 < · · · < an are real numbers, 
f [a1, . . . , an] denotes the nth divided difference of f , which may be written as

f [a1, . . . , an] =
n∑

j=1

f(aj)∏
k �=j(aj − ak)

,

and F (x; a1, . . . , an) is the Curry–Schoenberg B-spline introduced in [2], one representa-
tion of which is

F (x; a1, a2, . . . , an) = n− 1
2

n∑
j=1

|aj − x|(aj − x)n−3∏
k �=j(aj − ak)

. (2)

The function F (x; a1, . . . , an) is positive on (a1, an), and hence if f (n−1) is nonnegative 
and not identically zero on R, then (1) implies that f [a1, . . . , an] > 0 whenever a1 <

a2 < · · · < an. Taking f(x) = xp+n−1 with a nonnegative integer p, we obtain from (1)
that

f [a1, . . . , an] =
(
p + n− 1
n− 1

)∫
R

xpF (x; a1, . . . , an) dx, (3)

and it is well known that in this case f [a1, . . . , an] is just the complete homogeneous 
symmetric polynomial

hp(a1, a2, . . . , an) =
∑

1≤j1≤j2≤···≤jp≤n

aj1aj2 · · · ajp ,

with the convention h0(a1, a2, . . . , an) = 1; see, e.g., [9, Theorem 1.2.1]. Thus, if p is 
an even positive integer then hp(a1, a2, . . . , an) > 0 for arbitrary pairwise different real 
numbers a1, . . . , an. This is a classical result by Hunter [6]. He proved it in a completely 
different way. The easy argument employed above is essentially from [5].

The purpose of this paper is to extend Hunter’s result to more general functions, in 
particular to complete homogeneous symmetric polynomials of fractional degree and to 
sums of products of the classical homogeneous symmetric polynomials. Our approach is 
based on the preceding argument and a determinantal representation of B-splines.
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2. Main results

Jacobi’s bialternant formula says that for each positive integer z we have

hz(a1, a2, . . . , an)V (a1, a2, . . . , an) = det

⎡
⎢⎢⎢⎣

1 a1 a2
1 · · · an−2

1 az+n−1
1

1 a2 a2
2 · · · an−2

2 az+n−1
2

...
...

...
. . .

...
...

1 an a2
n · · · an−2

n az+n−1
n

⎤
⎥⎥⎥⎦ , (4)

where hz(a1, a2, . . . , an) is the complete homogeneous symmetric polynomial introduced 
above and

V (a1, a2, . . . , an) = det

⎡
⎢⎢⎢⎣

1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

...
...

...
. . .

...
1 an a2

n · · · an−1
n

⎤
⎥⎥⎥⎦ =

∏
1≤i<j≤n

(aj − ai)

is the n × n Vandermonde determinant; see, e.g., [10].
For the moment we assume that a1, a2, . . . , an are pairwise distinct real numbers and 

that none of them is zero. Putting azj = ez log aj with a choice of the branch of the 
logarithm that is defined on R \ {0}, the right-hand side makes sense for every z ∈ C. 
Thus, it is natural to take (4) as the definition of hz(a1, a2, . . . , an) for z ∈ C, that is, 
of fractional degree complete homogeneous symmetric polynomials. For example, in the 
case of three variables we obtain

hz(a, b, c) = az+2(b− c) + bz+2(c− a) + cz+2(a− b)
(a− b)(a− c)(b− c) . (5)

As said, for positive integers z, these are the usual complete homogeneous symmetric 
polynomials. For other choices of z we get, for instance, h−1(a, b, c) = h−2(a, b, c) = 0, 
and

h 1
2
(a, b, c) = a

5
2 (b− c) + b

5
2 (c− a) + c

5
2 (a− b)

(a− b)(a− c)(b− c) ,

h− 1
2
(a, b, c) =

√
a
√
b +

√
a
√
c +

√
b
√
c

(
√
a +

√
b)(

√
a +

√
c)(

√
b +

√
c)
,

h− 3
2
(a, b, c) = − 1

(
√
a +

√
b)(

√
a +

√
c)(

√
b +

√
c)
,

h− 5
2
(a, b, c) =

a−b√
c

+ b−c√
a

+ c−a√
b

(a− b)(a− c)(b− c) ,

h−3(a, b, c) = 1
,

abc
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h−4(a, b, c) = ab + ac + bc

a2b2c2
,

hi(a, b, c) = a2ei log a(b− c) + b2ei log b(c− a) + c2ei log c(a− b)
(a− b)(a− c)(b− c) , i =

√
−1,

each of which is a symmetric function of a, b, c. These examples are already in [5], where 
an unexpected connection between complete homogeneous symmetric polynomials and 
the statistical properties of factorization lengths in numerical semigroups was investi-
gated.

If Re (z+n −1) > 0, we put 0z+n−1 := 0. Thus, under the assumption that Re z > −1, 
we may use (4) to define hz(a1, a2, . . . , an) for n ≥ 2 also in the situation where (exactly) 
one of the numbers a1, a2, . . . , an is zero. The following theorem provides us with an 
alternative representation of complete homogeneous symmetric polynomials.

Theorem 1. Let n ≥ 2, let a1, a2, . . . , an ∈ R with a1 < a2 < · · · < an, and let 
F (x; a1, . . . , an) be the function (2). If z ∈ C and Re z > −1, then xzF (x; a1, a2, . . . , an)
is absolutely integrable and

hz(a1, a2, . . . , an) =
(
z + n− 1
n− 1

)∫
R

xzF (x; a1, a2, . . . , an) dx. (6)

The use of such a theorem in connection with fractional degree complete homogeneous 
symmetric polynomials was first indicated in [5]. There it was shown that F (x; a1, . . . , an)
is a probability density supported in [a1, an] which is piecewise polynomial of degree 
n − 2 and which is n − 3 times continuously differentiable. In [5], the function arose in 
the formula

lim
m→∞

|{� ∈ L�m� : � ∈ [αm, βm]}|
|L�m�| =

β∫
α

F (x; 1/mn, . . . , 1/m1) dx,

where L�m� is the multiset of lengths � = x1 + · · · + xn of possible decompositions m =
x1m1+· · ·+xnmn with nonnegative integers xj for given positive integers m1 < · · · < mn

satisfying gcd(m1, . . . , mn) = 1. (This is related to the coin problem of Frobenius.)
Once Grigori Olshanski saw a preliminary version of this paper, he kindly informed 

us that F (x; a1, . . . , an) is nothing but the B-spline introduced by Curry and Schoenberg 
in [2]. Thanks to this observation we were released from our effort devoted to proving 
positivity, support in [a1, an], and unimodality of the function F (x; a1, . . . , an) since 
these turned out to be well-known properties of B-splines. As Olshanski pointed out, 
with x+ := max(x, 0) we have |x| = 2x+ − x and x+x

n−3 = xn−2
+ , hence the sum in (2)

equals

n− 1
2

n∑ 2(aj − x)n−2
+∏

k �=j(aj − ak)
− n− 1

2

n∑ (aj − x)n−2∏
k �=j(aj − ak)

,

j=1 j=1
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and since the second sum is just (2) for x < a1, which is known to be zero, we get

F (x; a1, . . . , an) = (n− 1)
n∑

j=1

(aj − x)n−2
+∏

k �=j(aj − ak)
,

which is exactly the formula given in [2] and in [8].
Curry and Schoenberg proved in particular that F (x; a1, . . . , an) is a probability den-

sity supported in [a1, an] and that the kth derivative (k = 0, 1, . . . , n − 3) of the function 
has exactly k simple zeros in (a1, an). They also proved the remarkable geometric in-
terpretation of F (x; a1, . . . , an) as the linear density function obtained by projecting 
orthogonally onto the x-axis the volume of an (n − 1)-dimensional simplex of volume 1, 
so located that its n vertices project orthogonally into the points a1, . . . , an of the x-axis. 
That an interpretation of this type might be true was independently communicated to 
us by Terence Tao.

For more on splines we refer to the monographs [3] and [9]. We here only note that 
there are different normalizations of B-splines: those of Curry and Schoenberg are nor-
malized so that their integral is 1 whereas the B-Splines of de Boor are normalized so 
that a certain collection of them (over shifted intervals) sums to 1.

So far we assumed that a1 < a2 < · · · < an. By appropriate limit passages or by 
constructing B-splines via recursion formulas and making thorough use of the convention 
0/0 := 0 (called “the useful maxim” on page 117 of [3]), one may extend the definition of 
F (x; a1, . . . , an) to arbitrary a1 ≤ a2 ≤ · · · ≤ an under the mere assumption that a1 <

an. The resulting functions are still positive piecewise-polynomial probability densities 
supported in [a1, an], and only the smoothness is lowered to some n − r < n − 3.

For a positive integer p the polynomial hp(a1, . . . , an) is well-defined without the 
assumption that the aj be pairwise distinct. Again by appropriate limit passages in 
Vandermonde-like determinants (leading to so-called confluent Vandermonde-like deter-
minants), one may also define hz(a1, . . . , an) for Re z > −1 under the sole requirement 
that among a1, . . . , an there are at least two different numbers. Finally, for a �= 0, the 
natural definition of hz(a, . . . , a) respecting continuity is

hz(a, . . . , a) =
(
z + n− 1
n− 1

)
az = (z + n− 1) · · · (z + 1)

(n− 1)! az. (7)

These limit passages give Theorem 1 under the only assumption that

a1 ≤ a2 ≤ . . . ≤ an and a1 < an. (8)

The classical result by D.B. Hunter [6] mentioned states that if p is a nonnegative 
integer, then h2p(a1, . . . , an) > 0 for all (a1, . . . , an) ∈ Rn \{(0, . . . , 0)}. See [11] for more 
results on this topic. We will prove the following generalization of Hunter’s result.
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Theorem 2. Choose the branch of the complex logarithm that is analytic on C cut along 
the negative imaginary axis and takes the value 0 at 1. Let μ > −1 be a real number and 
suppose (a1, . . . , an) ∈ Rn \ {(0, . . . , 0)}.

(a) If |μ − 2p| < 1
2 for some nonnegative integer p, then Rehμ(a1, . . . , an) > 0.

(b) If |μ − (2p − 1)| < 1
2 for some integer p ≥ 0, then Rehμ(a1, . . . , an) > 0 for 

(a1, . . . , an) ∈ [0, ∞)n and Rehμ(a1, . . . , an) < 0 for (a1, . . . , an) ∈ (−∞, 0]n.

(c) If |μ − p| = 1
2 for some nonnegative integer p, then Rehμ(a1, . . . , an) ≥ 0, and we 

have Rehμ(a1, . . . , an) = 0 for (a1, . . . , an) ∈ (−∞, 0]n.

Note that the cases |μ − 2p| < 1
2 , |μ − (2p + 1)| < 1

2 , and |μ − p| = 1
2 are equivalent 

to the cases cos(μπ) > 0, cos(μπ) < 0, and cos(μπ) = 0, respectively. Section 4 contains 
some more results related to Theorem 2. Theorems 1 and 2 complement recent work 
of Terence Tao [11] concerning different ways of proving the positivity of even degree 
complete homogeneous symmetric polynomials. We emphasize that the polynomials con-
sidered here are polynomials of fractional degree and that they should be distinguished 
from the symmetric functions in a fractional number of variables introduced implicitly 
in [12].

We now turn to combinations of the classical complete homogeneous symmetric poly-
nomials. The following result is about linear combinations.

Theorem 3. Let H(a1, a2, . . . , an) =
∑m

j=0 cjhj(a1, a2, . . . , an) with real coefficients cj
and let −∞ ≤ r < s ≤ ∞. Then

H(a1, . . . , an) > 0 for all (a1, . . . , an) ∈ (r, s)n \ {(0, . . . , 0)}

if and only if H(a, a, . . . , a) > 0 for all a ∈ (r, s) \ {0}.

Here is a sufficient condition for the positivity of combinations involving products. 
We confine ourselves to the case of at most two factors. The extension to more than two 
factors is obvious.

Theorem 4. Let

H(a1, . . . , an) =
m∑

j,k=1

cjkhj(a1, . . . , an)hk(a1, . . . , an)

with real coefficients cjk and let −∞ ≤ r < s ≤ ∞. Put

P(x, y) =
m∑

j,k=1

cjkhj(x, x, . . . , x)hk(y, y, . . . , y).

If P(x, y) ≥ 0 for (x, y) ∈ (r, s)2 \ {(0, 0)} and H(a, a, . . . , a) > 0 for a ∈ (r, s) \ {0}, 
then H(a1, . . . , an) > 0 for (a1, . . . , an) in (r, s)n \ {(0, . . . , 0)}.
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We remark that Theorem 4 is subtler than it might appear at the first glance. Consider, 
for example,

H(a1, . . . , an) = 2αh2(a1, . . . , an)h4(a1, . . . , an) − 3βh2
2(a1, . . . , an) + 2,

and let us omit the arguments, that is, let us simply write

H = 2αh2h4 − 3βh2
2 + 2.

Recall that h0(a1, . . . , an) = 1, so that 2 may be interpreted as 2h2
0. By (7), the polyno-

mial P(x, y) is

2α
(

2 + n− 1
n− 1

)(
4 + n− 1
n− 1

)
x2y4 − 3β

(
2 + n− 1
n− 1

)2

x2y2 + 2,

and let us choose α and β so that this becomes

P(x, y) = 2x2y4 − 3x2y2 + 2.

Since P(x, 1) = −x2 + 2 < 0 for x >
√

2, Theorem 4 does not give anything for (r, s) =
(−∞, ∞). However, we may write

H = αh4h2 + αh2h4 − 3βh2
2 + 2,

and now, with the same choice of α and β as above, we obtain

P(x, y) = x4y2 + x2y4 − 3x2y2 + 2.

This is 1 plus the famous Motzkin polynomial. (The Motzkin polynomial introduced 
in [7] was the first explicit example of a nonnegative polynomial that is not a sum of 
squares of polynomials. See [1] for a recent survey. Note that nonnegativity is simple: we 
have

x2y2 = 3
√

x4y2 · x2y4 · 1 ≤ 1
3(x4y2 + x2y4 + 1)

by the arithmetic-geometric mean inequality.) Hence P(x, y) ≥ 1 on all of R2. As also 
H(a, a, . . . , a) = P(a, a) ≥ 1 for all a, we can now invoke Theorem 4 to conclude that 
H(a1, . . . , an) > 0 for all (a1, . . . , an) ∈ Rn. One is tempted to draw this conclusion from 
inserting u = h2 and v = h4 in the inequality

g(u, v) = 2αuv − 3βu2 + 2 > 0 for (u, v) ∈ [0,∞)2,

but this inequality is not true because g(u, 1) → −∞ as u → ∞.
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Theorems 1 to 4 will be proved in Sections 3 and 5. In Section 6 we establish expres-
sions for hz(a1, . . . , an) in terms of Schur polynomials in the cases where z is a negative 
integer or a positive rational number.

3. Proof of Theorem 1

We first rewrite F (x; a1, a2, . . . , an) in terms of determinants. Let a1, a2, . . . , an ∈ R

with a1 < a2 < · · · < an and let F (x; a1, a2, . . . , an) be defined by (2). In what follows, 
V (a1, . . . , ̂aj , . . . , an) denotes the (n − 1) × (n − 1) Vandermonde determinant obtained 
from V (a1, a2, . . . , an) by removing aj . Then

F (x; a1, a2, . . . , an)

= n− 1
2

n∑
j=1

|aj − x|(aj − x)n−3∏
k �=j(aj − ak)

= n− 1
2

n∑
j=1

|aj − x|(aj − x)n−3∏
1≤k<j(aj − ak)

∏
j<k≤n(aj − ak)

= (−1)n−j(n− 1)
2

n∑
j=1

|aj − x|(aj − x)n−3∏
1≤k<j(aj − ak)

∏
j<k≤n(ak − aj)

= n− 1
2

n∑
j=1

V (a1, . . . , âj , . . . , an)
V (a1, a2, . . . , an) (−1)n−j |aj − x|(aj − x)n−3

= (n− 1)
∑n

j=1(−1)n+jV (a1, . . . , âj , . . . , an) · |aj − x|(aj − x)n−3

2V (a1, a2, . . . , an)

and hence

F (x; a1, a2, . . . , an)

= n− 1
2V (a1, a2, . . . , an) det

⎡
⎢⎢⎢⎣

1 a1 a2
1 · · · an−2

1 |a1 − x|(a1 − x)n−3

1 a2 a2
2 · · · an−2

2 |a2 − x|(a2 − x)n−3

...
...

...
. . .

...
...

1 an a2
n · · · an−2

n |an − x|(an − x)n−3

⎤
⎥⎥⎥⎦ . (9)

We now prove (6), that is, the equality

gz(a1, . . . , an) =
(
z + n− 1
n− 1

)∫
R

xzf(a1, . . . , an) dx

with
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gz(a1, . . . , an) = det

⎡
⎢⎢⎢⎣

1 a1 a2
1 · · · an−2

1 az+n−1
1

1 a2 a2
2 · · · an−2

2 az+n−1
2

...
...

...
. . .

...
...

1 an a2
n · · · an−2

n az+n−1
k

⎤
⎥⎥⎥⎦ (10)

and

f(a1, . . . , an) = n− 1
2 det

⎡
⎢⎢⎢⎣

1 a1 a2
1 · · · an−2

1 |a1 − x|(a1 − x)n−3

1 a2 a2
2 · · · an−2

2 |a2 − x|(a2 − x)n−3

...
...

...
. . .

...
...

1 an a2
n · · · an−2

n |an − x|(an − x)n−3

⎤
⎥⎥⎥⎦ . (11)

We may assume that aj �= 0 for all j because both (10) and (11) depend continuously on 
a1, . . . , aj . Multiplying (11) by xz and integrating the result amounts to replacing the 
jth entry of the last column by

an∫
a1

xz|aj − x|(aj − x)n−3 dx

=
aj∫

a1

xz(aj − x)n−2 dx−
an∫

aj

xz(aj − x)n−2 dx

=

⎛
⎝ aj∫

0

−
a1∫
0

−
an∫
0

+
aj∫
0

⎞
⎠xz(aj − x)n−2 dx

= 2
aj∫
0

xz(aj − x)n−2 dx−
a1∫
0

xz(aj − x)n−2 dx−
an∫
0

xz(aj − x)n−2 dx

=: 2I1 − Ij2 − Ij3 .

We have

Ij2 =
n−2∑
k=0

a1∫
0

xz

(
n− 2
k

)
akj (−1)n−2−kxn−2−k dx =

n−2∑
k=0

ck(z)akj

and, analogously, Ij3 =
∑n−2

k=0 dk(z)akj . It follows that the columns col(Ij2)nj=1 and 
col(Ij3)nj=1 are linear combinations of the first n − 1 columns of the determinant (11). 
Consequently, the jth entry of the multiplied and integrated determinant may simply be 
replaced by 2I1. We finally have

2I1 = 2
aj∫
xz(aj − x)n−2 dx = 2az+n−1

j

1∫
tz(1 − t)n−2 dt
0 0
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= 2az+n−1
j

Γ(z + 1)Γ(n− 1)
Γ(z + n) = 2az+n−1

j

Γ(z + 1)(n− 2)!
(z + n− 1) · · · (z + 1)Γ(z + 1)

= 2az+n−1
j

(
z + n− 1
n− 1

)−1 1
n− 1 ,

which is the asserted equality. �
4. Proof of and more results around Theorem 2

Proof of Theorem 2. Since hμ(a) = hμ(0, 0, a) and hμ(a, b) = hμ(0, a, b), we may restrict 
ourselves to n ≥ 3. Suppose first that all aj are equal to a �= 0. Then aμ > 0 for a > 0, 
and for a < 0 we have

aμ = eμ log a = eμ(log |a|+i arg a) = eμ(log |a|+iπ) = |a|μ cos(μπ) + i|a|μ sin(μπ).

Consequently, (7) implies all assertions of the theorem. As (6) remains true if (8) holds, 
we obtain that

hμ(a1, . . . , an) = (μ + n− 1) · · · (μ + 1)
(n− 1)!

∫
R

xμF (x; a1, . . . , an) dx.

With F (x; a1, . . . , an) abbreviated to F (x), it follows that Rehμ(a1, . . . , an) is a positive 
constant times

Re

⎛
⎝ 0∫

−∞

eiμπ|x|μF (x) dx +
∞∫
0

|x|μF (x) dx

⎞
⎠

= cos(μπ)
0∫

−∞

|x|μF (x) dx +
∞∫
0

|x|μF (x) dx. (12)

If cos(μπ) > 0, then (12) is greater than or equal to cos(μπ) 
∫
R |x|μF (x) dx, and this is 

strictly greater than zero because F (x) > 0 on some open interval. Let cos(μπ) < 0. If 
a1 ≥ 0, then (12) equals 

∫
R |x|μF (x) dx, which is strictly positive because F (x) is strictly 

positive on some open interval, and if an ≤ 0, then (12) is cos(μπ) 
∫
R |x|μF (x) dx, which 

now is strictly negative. Finally, if cos(πμ) = 0, then (12) equals 
∫∞
0 |x|μF (x) dx. This 

is always nonnegative and this vanishes if an ≤ 0. �
Hunter [6] even proved the sharp lower bound h2p(a1, . . . , an) ≥ 1/(2pp!) under the 

restriction a2
1 + · · · + a2

n = 1. Here is an extension of this result to fractional degrees.

Proposition 5. Suppose |μ − 2p| < 1
2 for some nonnegative integer p and let 2q be the 

smallest even integer such that μ ≤ 2q, i.e., q = p if μ ≤ 2p and q = p + 1 if μ > 2p. 
Then
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Rehμ(a1, . . . , an) ≥ (μ + n− 1)(μ + n− 2) · · · (μ + 1)
(2q + n− 1)(2q + n− 2) · · · (2q + 1)

cos(μπ)
2qq!

whenever a2
1 + · · · + a2

n = 1.

Proof. With F (x; a1, . . . , an) abbreviated to F (x), we have

(
μ + n− 1
n− 1

)−1

Rehμ(a1, . . . , an) = Re

⎛
⎝ 0∫

−∞

eiμπ|x|μF (x) dx +
∞∫
0

|x|μF (x) dx

⎞
⎠

= cos(μπ)
0∫

−∞

|x|μF (x) dx +
∞∫
0

|x|μF (x) dx

≥ cos(μπ)
∫
R

|x|μF (x) dx.

The equality a2
1 + · · ·+ a2

n = 1 implies that |aj | ≤ 1 for all j. Thus [a1, an] ⊂ [−1, 1], and 
since |x|μ ≥ |x|2q for |x| ≤ 1, it follows that

(
μ + n− 1
n− 1

)−1

Rehμ(a1, . . . , an) ≥ cos(μπ)
an∫

a1

|x|μF (x) dx

≥ cos(μπ)
an∫

a1

|x|2qF (x) dx.

But the last integral equals 
(2q+n−1

n−1
)−1

h2q(a1, . . . , an) and Hunter [6] showed that 
h2q(a1, . . . , an) is at least 1/(2qq!). �

The imaginary part of hμ(a1, . . . , an) is

(
μ + n− 1
n− 1

)⎛
⎝sin(μπ)

0∫
−∞

|x|μF (x) dx +
∞∫
0

|x|μF (x) dx

⎞
⎠ .

If 2p < μ < 2p + 1 with a nonnegative integer p, this is strictly positive with the lower 
bound

(μ + n− 1)(μ + n− 2) · · · (μ + 1)
(2p + n + 1)(2p + n) · · · (2p + 3)

sin(μπ)
2qq!

for a2
1 + · · ·+a2

n = 1. (Note that the smallest even integer greater than μ is 2q = 2p +2.) 
Thus, if μ ∈ (2p, 2p + 1

2 ), then hμ maps all of Rn \ {(0, . . . , 0)} into the open upper-
right quarter-plane. The set (0, ∞)n is always mapped into the open right half-line. The 
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function hμ maps (−∞, 0)n into the upper-left quarter-plane for μ ∈ (2p + 1
2 , 2p + 1), 

into the lower-left quarter-plane for μ ∈ (2p + 1, 2p + 3/2), and into the lower-right 
quarter-plane for μ ∈ (2p + 3/2, 2p + 2).

Let again Re z > −1 and let the branch of the complex logarithm be the one specified 
in Theorem 2. If λ > 0, then (λa)z = λzaz, but if λ < 0 and a < 0, then (λa)z =
λzaze−2πiz. Thus, hz(a1, . . . , an) is positively homogeneous but in general not genuinely 
homogeneous. If z = μ is a real number and if λ > 0, we have

Rehμ(λa1, . . . , λan) = Re [λμhμ(a1, . . . , an)] = λμ Rehμ(a1, . . . , an),

and hence Rehμ(a1, . . . , an) is also positively homogeneous. This makes Proposition 5
useful. However, if, for instance, z = iν with a real number ν �= 0, then, for λ > 0,

hiν(λa1, . . . , λan) = λiν hiν(a1, . . . , an)

=
(

cos(ν log λ) + i sin(ν log λ)
)(

Rehiν(a1, . . . , an) + i Im hiν(a1, . . . , an)
)
,

which reveals that neither Rehiν(a1, . . . , an) nor Imhiν(a1, . . . , an) is positively homo-
geneous. The following proposition completes the picture provided by Theorem 2.

Proposition 6. If z ∈ C \ R and Re z > −1, then both the real part and the imaginary 
part of hz(a1, . . . , an) are indefinite.

Proof. From (7) we infer that if z = μ + iν with μ, ν ∈ R and ν �= 0, then, for a > 0,

hz(a, . . . , a) =
(
z + n− 1
n− 1

)
aμ+iν =

(
z + n− 1
n− 1

)
aμeiν log a,

which shows that the range of hz contains a spiral (a circle for μ = 0) rotating around 
the origin and hence reveals that both Rehz and Imhz assume strictly positive as well 
as strictly negative values. �
5. Proofs of Theorems 3 and 4

Proof of Theorem 3. If H(a, a, . . . , a) ≤ 0 for some a in (r, s) \ {0}, then the inequality 
H(a1, . . . , an) > 0 is not true for all (a1, . . . , an) in (r, s)n \ {(0, . . . , 0)}.

So assume H(a, a, . . . , a) > 0 for a in (r, s) \ {0}. We have to show that then 
H(a1, . . . , an) > 0 whenever aj ∈ (r, s) for all j and at least two of the numbers are 
different. Since H(a1, . . . , an) is symmetric, we may assume that a1 ≤ · · · ≤ an. We 
know that Theorem 1 extends to the case (8). Thus, we have

H(a1, . . . , an) =
an∫
P(x)F (x; a1, . . . , an) dx (13)
a1
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with

P(x) =
m∑
j=1

(
j + n− 1
n− 1

)
cjx

j .

From (7) we see that P(x) = H(x, x, . . . , x). Thus, if H(a, a, . . . , a) > 0 for a in (r, s) \{0}, 
then P(x) > 0 for x ∈ (r, s) \ {0} and (13) implies that H(a1, . . . , an) > 0 if r < a1 ≤
· · · ≤ an < s and at least two of the aj are different. �
Proof of Theorem 4. Since we require that H(a, a, . . . , a) > 0 for nonzero a ∈ (r, s), we 
are left with the case where r < a1 ≤ · · · ≤ an < s and a1 < an. We then get that 
H(a1, . . . , an) equals

an∫
a1

an∫
a1

P(x, y)F (x; a1, . . . , an)F (y; a1, . . . , an) dx dy

with

P(x, y) =
m∑

j,k=1

(
j + n− 1
n− 1

)(
k + n− 1
n− 1

)
cjkx

jyk.

From (7) it follows that

P(x, y) =
m∑

j,k=1

cjkhj(x, x, . . . , x)hk(y, y, . . . , y).

Consequently, if P(x, y) ≥ 0 on (r, s)2 \ {(0, 0)}, then the double integral is strictly 
positive. �
6. Emergence of Schur polynomials

Throughout the following think of a1, . . . , an as variables or as nonzero and pairwise 
distinct real numbers. Given an n-tuple λ = (λ1, λ2, . . . , λn) of integers satisfying λ1 ≥
λ2 ≥ · · · ≥ λn ≥ 0, the Schur polynomial sλ(a1, a2, . . . , an) is defined as

sλ(a1, a2, . . . , an) =

det

⎡
⎢⎢⎢⎣
aλn
1 a

λn−1+1
1 a

λn−2+2
1 · · · aλ1+n−1

1
aλn
2 a

λn−1+1
2 a

λn−2+2
2 · · · aλ1+n−1

2
...

...
...

. . .
...

aλn
n a

λn−1+1
n a

λn−2+2
n · · · aλ1+n−1

n

⎤
⎥⎥⎥⎦

V (a1, a2, . . . , an) ; (14)

see, for example, [10]. From (4) we see that if z is a nonnegative integer, then
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hz(a1, a2, . . . , an) = s(z,0,...,0)(a1, a1, . . . , an),

with s(0,0,...,0)(a1, a2, . . . , an) = 1.

Proposition 7. Let z be a positive integer. If 1 ≤ z ≤ n − 1, then h−z(a1, . . . , an) = 0. If 
z ≥ n, then

h−z(a1, . . . , an) = (−1)n−1(a1 · · · an)n−1−zs(z−n,...,z−n,0)(a1, . . . , an).

Proof. Consider (4) with z replaced by −z. If 1 ≤ z ≤ n − 1, then the determinant on 
the right contains a repeated column and hence it is zero. So let z ≥ n. Then, again 
by (4),

h−z(a1, . . . , an)V (a1, . . . , an) = det

⎡
⎢⎢⎢⎣

1 a1 a2
1 · · · an−2

1 a−z+n−1
1

1 a2 a2
2 · · · an−2

2 a−z+n−1
2

...
...

...
. . .

...
...

1 an a2
n · · · an−2

n a−z+n−1
n

⎤
⎥⎥⎥⎦ ,

and this equals (a1 · · · an)−z+n−1 times

det

⎡
⎢⎢⎢⎢⎣
a
0+(1+z−n)
1 a

1+(1+z−n)
1 a

2+(1+z−n)
1 · · · a

n−2+(1+z−n)
1 1

a
0+(1+z−n)
2 a

1+(1+z−n)
2 a

2+(1+z−n)
2 · · · a

n−2+(1+z−n)
2 1

...
...

. . .
...

...
a
0+(1+z−n)
n a

1+(1+z−n)
n a

2+(1+z−n)
n · · · a

n−2+(1+z−n)
n 1

⎤
⎥⎥⎥⎥⎦ .

This last determinant is

(−1)n−1 det

⎡
⎢⎢⎢⎢⎣
a0
1 a

1+(z−n)
1 a

2+(z−n)
1 · · · a

(n−1)+(z−n)
1

a0
2 a

1+(z−n)
2 a

2+(z−n)
2 · · · a

(n−1)+(z−n)
2

...
...

...
. . .

...
a0
n a

1+(z−n)
n a

2+(z−n)
n · · · a

(n−1)+(z−n)
n

⎤
⎥⎥⎥⎥⎦ .

Thus, letting

λ = (z − n, z − n, . . . , z − n︸ ︷︷ ︸
n−1 copies

, 0)

we get

h−z(a1, . . . , an) = (−1)n−1(a1 · · · an)n−1−zsλ(a1, . . . , an). �
Proposition 8. Let z be a positive rational number but not be an integer. Write z = p/q

with q ≥ 2 and gcd(p, q) = 1. Then hz(a1, . . . , an) is
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∏
1≤i<j≤n

1
a
(q−1)/q
i + a

(q−2)/q
i a

1/q
j + · · · + a

(q−1)/q
j

sλ(a1/q
1 , . . . , a1/q

n ).

Proof. We start again with (4). The determinant on the right may be written as

det

⎡
⎢⎢⎢⎢⎣

1 (a1/q
1 )q (a1/q

1 )2q · · · (a1/q
1 )(n−2)q (a1/q

1 )p+(n−1)q

1 (a1/q
2 )q (a1/q

2 )2q · · · (a1/q
2 )(n−2)q (a1/q

2 )p+(n−1)q

...
...

...
. . .

...
...

1 (a1/q
n )q (a1/q

n )2q · · · (a1/q
n )(n−2)q (a1/q

n )p+(n−1)q

⎤
⎥⎥⎥⎥⎦ .

This equals

det

⎡
⎢⎢⎢⎢⎣

1 (a1/q
1 )1+(q−1) (a1/q

1 )2+2(q−1) · · ·
1 (a1/q

2 )1+(q−1) (a1/q
2 )2+2(q−1) · · ·

...
...

...
. . .

1 (a1/q
n )1+(q−1) (a1/q

n )2+2(q−1) · · ·

· · · (a1/q
1 )n−2+(n−2)(q−1) (a1/q

1 )(n−1)+p+(n−1)(q−1)

· · · (a1/q
2 )n−2+(n−2)(q−1) (a1/q

2 )(n−1)+p+(n−1)(q−1)

. . .
...

...
· · · (a1/q

n )n−2+(n−2)(q−1) (a1/q
n )(n−1)+p+(n−1)(q−1)

⎤
⎥⎥⎥⎥⎦ ,

and from (14) we deduce that the last determinant is

V (a1/q
1 , . . . , a1/q

n )sλ(a1/q
1 , . . . , a1/q

n )

with λ = (p + (n − 1)(q − 1), (n − 2)(q − 1), . . . , 2(q − 1), (q − 1), 0). Consequently,

hz(a1, . . . , an) = detV (a1/q
1 , . . . , a

1/q
n )

detV (a1, . . . , an) sλ(a1/q
1 , . . . , a1/q

n )

=
∏

1≤i<j≤n

1
a
(q−1)/q
i + a

(q−2)/q
i a

1/q
j + · · · + a

(q−1)/q
j

· sλ(a1/q
1 , . . . , a1/q

n ). �

These ideas extend to a related formula when p/q is negative. We leave the details to 
the interested reader.

Example 9. If z = 2/3 and n = 4, then λ = (2 +3 ·2, 2 ·2, 2, 0) = (8, 4, 2, 0) and we obtain 
that

h 2
3
(a1, a2, a3, a4)

=

⎛
⎝ ∏ 1

a
2/3 + a

1/3
a
1/3 + a

2/3

⎞
⎠ · s(8,4,2,0)(a

1/3
1 , a

1/3
2 , a

1/3
3 , a

1/3
4 ).
1≤i<j≤4 i i j j
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