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Abstract

The Bateman—Horn conjecture is a far-reaching statement about the distribution of the prime
numbers. It implies many known results, such as the prime number theorem and the Green-Tao
theorem, along with many famous conjectures, such the twin prime conjecture and Landau’s
conjecture. We discuss the Bateman—Horn conjecture, its applications, and its origins.
© 2019 Elsevier GmbH. All rights reserved.
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1. Introduction

Given a collection of polynomials with integer coefficients, how often should we
expect their values at integer arguments to be simultaneously prime? This general

* Corresponding author.
E-mail addresses: lenny@cmc.edu (L. Fukshansky), stephan.garcia@pomona.edu (S.R. Garcia).
URL: http://pages.pomona.edu/~5g064747 (S.R. Garcia).
LLF supported by the Simons Foundation grant #519058, USA.
2 SRG supported by a David L. Hirsch III and Susan H. Hirsch Research Initiation Grant, the Institute for
Pure and Applied Mathematics (IPAM) Quantitative Linear Algebra program, and NSF Grant DMS-1800123,
USA.

https://doi.org/10.1016/j.exmath.2019.04.005
0723-0869/© 2019 Elsevier GmbH. All rights reserved.


http://www.elsevier.com/locate/exmath
https://doi.org/10.1016/j.exmath.2019.04.005
http://www.elsevier.com/locate/exmath
mailto:lenny@cmc.edu
mailto:stephan.garcia@pomona.edu
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
http://pages.pomona.edu/~sg064747
https://doi.org/10.1016/j.exmath.2019.04.005

S.L. Aletheia-Zomlefer, L. Fukshansky and S.R. Garcia / Expo. Math. 38 (2020) 430-479 431

question subsumes a large number of different directions and investigations in analytic
number theory. A comprehensive answer is proposed by the famous Bateman—Horn
conjecture, first formulated by Paul T. Bateman and Roger A. Horn in 1962 [4,5]. This
conjecture is a far-reaching statement about the distribution of the prime numbers. Many
well-known theorems, such as the prime number theorem and the Green—Tao theorem,
follow from it. The conjecture also implies a variety of unproven conjectures, such as
the twin prime conjecture and Landau’s conjecture. We hope to convince the reader that
the Bateman—Horn conjecture deserves to be ranked among the Riemann hypothesis and
abc-conjecture as one of the most important unproven conjectures in number theory.

The amount of literature related to the Bateman—Horn conjecture is large: MathSciNet,
for example, shows over 100 citations to the original Bateman—Horn papers in which
the conjecture was formulated. Somewhat surprisingly, however, we did not find many
expository accounts besides a short note by Serge Lang [51] with just a quick overview of
the conjecture. It is a goal of this paper to provide a detailed exposition of the conjecture
and some of its ramifications. We assume no knowledge beyond elementary undergrad-
uate number theory. We introduce the necessary algebraic and analytic prerequisites as
need arises. We do not attempt a comprehensive survey of all the literature related to
the Bateman—Horn conjecture. For example, recent variations of the conjecture, say to
multivariate polynomials [18,61] or to polynomial rings over finite fields [12,13], are not
treated here.

The organization of this paper is as follows. Section 2 introduces asymptotic equiv-
alence, the logarithmic integral, and the prime number theorem. In Section 3, we go
through a careful heuristic argument based upon the Cramér model that explains most of
the key restrictions and predictions of the Bateman—Horn conjecture. Before proceeding
to various examples and applications of the conjecture, Section 4 revisits some of the
historical background. In particular, we include many personal recollections of Roger
Horn that have never before been published.

One of the main features of the Bateman—Horn conjecture is an explicit constant in the
main term of the asymptotic formula for the number of integers below a given threshold
at which a collection of polynomials simultaneously assume prime values. The expression
for this constant, however, is complicated and involves an infinite product. It is nontrivial
to see that this product converges and we are not aware of a detailed proof of this fact
anywhere in the literature. The original Bateman—Horn paper sketches the main idea
of this proof, but omits almost all of the details. We present this argument in detail in
Section 5.

Section 6 is devoted to a number of important instances and consequences of the single
polynomial case of the conjecture, while ramifications of the multiple polynomial case
are discussed in Section 7. Finally, we discuss some limitations of the Bateman—Horn
conjecture in Section 8. With this brief introduction, we are now ready to proceed.

2. Preliminaries

We will often need to compare the rate of growth of two real-valued functions of a
real variable as their arguments tend to infinity. To this end, we require a bit of notation.
Readers familiar with asymptotic equivalence, Big-O and little-o notation, and the prime
number theorem should proceed to Section 3. A good source of information on classical
analytic number theory is [17].
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2.1. Asymptotic equivalence

In what follows, we assume that f(x) and g(x) are continuous, real-valued functions
that are defined and nonzero for sufficiently large x. We write f ~ g to mean that

i fx)
im — =
¥=00 g(x)
We say that f and g are asymptotically equivalent when this occurs. The limit laws from
calculus show that ~ is an equivalence relation; we use this fact freely.
Two polynomials are asymptotically equivalent if and only if they have the same
degree and the same leading coefficient. For example, 2x% ~ 2x? 4+ x + 1 since

1. 2.1.1)

.27 +x+1 11
lim ————=lm (1+ -+ =) =1
X—00 2x2 X—00 X x2
It is important to note, however, that asymptotic equivalence does not necessarily mean

that “f and g are close together” in the sense that f — g is small. Although 2x? ~
2x% + x + 1, their difference (2x> + x + 1) — 2x? = x + 1 is unbounded.

2.2. Big-O and little-o notation

When we write f(x) = O(g(x)), we mean that there is a constant C such that
| f(x)] < C|g(x)| for sufficiently large x. For example,

4x*> +7xlogx = O(x*)  and sinx = O(1).

What is the relationship between Big-O notation and asymptotic equivalence? If f ~ g,
then f(x) = O(g(x)) and g(x) = O(f(x)). Indeed, (2.1.1) and the definition of limits
ensure that | f(x)| < 2|g(x)| and |g(x)| < 2| f(x)| for sufficiently large x (the number 2
in the preceding inequalities can be replaced by any constant greater than 1). On the other
hand, 2x = O(x) and x = O(2x), although x and 2x are not asymptotically equivalent.
Hence the statement “f ~ g” is stronger than the statement “f(x) = O(g(x)) and
g(x) = O(f(x))”, but both of these statements are asymptotic in their nature.
We say f(x) = o(g(x)) if

tim £9 _
im =

0 g(x)

0.

For instance, x = o(x?) as x — o0o. Notice that if f ~ g, then

SO oy SO -8+ LX) —g) 1

1 = lim ,
X—00 g(x) X—00 g(x) X—00 g(x)
and 50 lim,_, o % = 0. Thus, the error term satisfies | f(x) — g(x)| = o(g(x)). On

the other hand, the assertion that f(x) = O(g(x)) and g(x) = O(f(x)) does not guarantee
a smaller order error term. Indeed, x = O(2x) and 2x = O(x), but |x — 2x| = |x| is not
o(x) or o(2x).
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Fig. 1. The functions f; (lo‘é—’wk for k=1,2,3,4 and x > 2.

2.3. The logarithmic integral

In the theory of prime numbers the offset logarithmic integral’®
*odt

Li(x) = —
1(x) » logt

2.3.1)

and its close relatives frequently arise. Here logt denotes the natural logarithm® of ¢.
Unfortunately, the integral (2.3.1) cannot be evaluated in closed form. As a consequence,
it is convenient to replace Li(x) and its relatives (see Fig. 1) with simpler functions that
are asymptotically equivalent.

dt X
(log)t  (logx)k

Lemma 2.3.2. / fork=1,2,...
2

Proof. L'Hopital’s rule and the fundamental theorem of calculus imply that
X _d
P G Lo 1/(log x)* .
lim ———— = lim =lim —— =
x—o0 x/(logx)*  x—o0 1/(logx)k —k/(log x)¥t!  x—o0 1 — k/logx
One can be a little more precise than Lemma 2.3.2. Integration by parts provides:

Litoy — -~ 0 X
= ogx T (<1ogx>2>

todt x +0< x )
/2 (logty* — (logx)* (log x)&+1 )

3 The function (2.3.1) is a close relative of the standard logarithmic integral li(x), in which the lower
limit of integration in (2.3.1) is O and the singularity at x = 1 is avoided by using a Cauchy principal value.
Since we are interested in large x, we use (2.3.1) instead.

4 The notation Ins may be more familiar to calculus students.

and
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Fig. 2. Graphs of Li(x) versus 7(x) on various scales.

2.4. Prime number theorem

The first signpost toward the Bateman—Horn conjecture is the prime number theorem,
which describes the gross distribution of the primes. Let w(x) denote the number of
primes at most x. For example, 7(10.5) = 4 since 2, 3, 5,7 < 10.5. The following result
was proved independently by Hadamard and de la Vallée Poussin in 1896; see Fig. 2.

Theorem 2.4.1 (Prime Number Theorem). w(x) ~ Li(x).

Although Li(x) ~ x/logx, the logarithmic integral provides a more accurate
approximation to w (x); see Table 1. For simplicity, we work now with the approximation
w(x) ~ x/logx and develop a probabilistic model of the prime numbers that will guide
our progress toward the Bateman—Horn conjecture [78].

For fixed ¢ > 0 and large x, the prime number theorem tells us to expect about

X +cx X —cx 2cx

~

log(x + cx) B log(x — cx) log x

primes in the interval [x — cx, x 4 cx]. Dividing by the length 2cx of the interval, it
follows that the probability that a natural number in the vicinity of x is prime is roughly
1/log x. We use this repeatedly as a guide in our heuristic arguments.
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Table 1
The logarithmic integral Li(x) is a better approximation to the prime counting function
(x) than is x/log x. The entries in the table have been rounded to the nearest integer.

X 7 (x) Li(x) x/logx
1 000 168 177 145
10,000 1,229 1,245 1,086
100,000 9,592 9,629 8,686
1,000,000 78,498 78,627 72,382
10,000,000 664,579 664,917 620,421
100,000,000 5,761,455 5,762,208 5,428,681
1,000,000,000 50,847,534 50,849,234 48,254,942
10,000,000,000 455,052,511 455,055,614 434,294,482
100,000,000,000 4,118,054,813 4,118,066,400 3,948,131,654
1,000,000,000,000 37,607,912,018 37,607,950,280 36,191,206,825

3. A heuristic argument

Now that we know about the gross distribution of the primes, it is natural to ask about
the distribution of primes of certain forms. For example, are there infinitely many primes
of the form n?+1? This was asked at the 1912 International Congress of Mathematicians
by Edmund Landau (1877-1938) and remains open today.’

3.1. A single polynomial

We let Z[x] denote the set of polynomials in x with coefficients in Z, the set of
integers. We denote by N the set {1, 2, ...} of natural numbers. For f € Z[x], we define

O(f:x) = #{n < x: f(n) is prime},

in which #S denotes the number of elements of a set S. We investigate some conditions
that f must satisfy if it is to generate infinitely many distinct primes. To avoid trivialities,
suppose that f is nonconstant and that Q(f; x) — oc.

e Leading coefficient. The degree of f, denoted deg f, must be at least one. Moreover,
the leading coefficient of f must be positive.

e Irreducible. We claim that f is irreducible; that is, it cannot be factored as a product
of two polynomials in Z[x], neither of which is £1.° Suppose that f = gh, in which
g, h € Z[x]. Without loss of generality, we may assume that the leading coefficients
of g and & are positive. Then g(n) = 1 or h(n) = 1 for infinitely many n since f
assumes prime values infinitely often. Consequently, g — 1 or 2 — 1 is a polynomial
with infinitely many roots and hence g or 4 is identically 1. Thus, f is irreducible.

5 Although commonly known as Landau’s conjecture, its first appearance is in a 1752 letter from Leonhard
Euler (1707-1783) to Christian Goldbach (1690-1764) [22, p. 2-3].

6 Gauss’ lemma ensures that a primitive f € Z[x] is irreducible in Z[x] if and only if it is irreducible
in Q[x], the ring of polynomials with rational coefficients [21, Prop. 5, p. 303].
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e Nonvanishing modulo every prime. A nonconstant f € Z[x] may be irreducible, yet
fail to be prime infinitely often. For example, f(x) = x> + x + 2 is irreducible, but
f(n) is divisible by 2 for all n € Z. Similarly, f(x) = x> — x + 3 is irreducible and

Pox43=x—x =x(x — 1Dx+ 1) =0 (mod3),

so f(n) is divisible by 3 for all n € Z. Thus, we must insist that f does not vanish
identically modulo any prime.

3.2. Effect of the degree.

Suppose that f € Z[x] is nonconstant, irreducible, and does not vanish identically
modulo any prime. Let d = deg f and suppose that f has a positive leading coefficient,
c. Then f(x) ~ cx? and our heuristic from the prime number theorem suggest that the
probability f(n) is prime is about

1 1 1 1

~ = ~ . (3.2.1)
log f(n) log(cx?) dlogx +logc dlogx
This suggests that
Lx]
1 1 *odt
;X) ~ ~ . 322
2/ x) Z dlogx degf/z logt ( )

n=2
Is this correct? We should do some computations to see whether this pans out.

3.3. A sanity check

Consider the polynomial
fx)=x*+1,

which is nonconstant, irreducible, and has a positive leading coefficient. Since f(0) = 1,
it follows that f does not vanish identically modulo any prime. Landau’s conjecture is
that f assumes infinitely many prime values; that is, Q(f; x) — oo.

According to (3.2.2)

1
Q(f: N) ~ 7 Li(N). (3.3.1)

However, the numerical evidence disagrees; see Table 2. On the positive side, the loss is
not total since it appears that our estimate is only off by a constant factor. What is this
constant factor and where does it come from?

3.4. Making a correction

We were too quick to celebrate the fact that f does not vanish identically modulo any
prime. Our prediction needs to take into account how likely it is that f(n) = 0 (mod p).
For example, f(n) =n + 1 (mod2) and hence f(n) is even with probability %
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Table 2

The estimate (3.3.1) is clearly incorrect. However, the ratio between the correct
answer and our prediction appears to converge slowly to a constant (the value of
%Li(N) is rounded to the nearest integer for display purposes).

N O(f; N) L LIV) O(f; N)/ALi(v)
100 19 15 1.3067
1,000 112 88 1.26866
10,000 841 623 1.3509
100,000 6,656 4,814 1.38252
1,000,000 54,110 39,313 1.37638
10,000,000 456,362 332,459 1.37269
100,000,000 3,954,181 2,881,104 1.37245
1,000,000,000 34,900,213 25,424,617 1.37269

If we assume for the sake of our heuristic argument that divisibility by distinct primes
p and g are independent events, then we should weight our prediction by’

I1 <1 - —wf(p)> : (3.4.1)

» p

in which w¢(p) is the number of solutions to f(x) = 0 (mod p).

However, there is a problem. The constant factor suggested by Table 2, approximately
1.372, is greater than one, whereas (3.4.1) is not. Therefore, the preceding analysis cannot
be correct. More seriously, there are convergence issues with (3.4.1); see Section 5.1 for
information about infinite products.

We need to weight the factors in (3.4.1) against the probabilities that randomly selected
integers are not divisible by p. This suggests that we adjust (3.3.1) by

-1
c(f)=]_[(1—%> <1—wf(p)> ]_[p wf(p). (3.4.2)

P
Does this agree with our numerical computations? To compute w ;(p), we need to count
the number of solutions to x> 4+ 1 = 0 (mod p). Since —1 is a square modulo p if and
only if p =2 or p =1 (mod4) [62],
1 if p=2,
wr(p)=12 if p=1 (mod4),
0 if p =3 (mod4).
The hundred millionth partial product of (3.4.2) yields
C(f) ~ 1.37281,

which agrees with the data in Table 2. In particular, this suggests an affirmative answer
to Landau’s problem.

7 An important convention we adhere to throughout this paper is that the letter p always denotes a prime
number. A product or sum indexed by p indicates that product or sum runs over all prime numbers.
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Let us pause to summarize the discussion so far. For a single polynomial f, we suspect
that

LG [
o(f; x) deg 7 ) —10gt,
in which
c) =[] <1 _ l>_l (1 _ ‘”f—(m> . (3.4.3)
) p p

This is the Bateman—Horn conjecture for a single polynomial. What about families of
multiple polynomials?

3.5. More than one polynomial

Suppose that fi, f>, ..., fr € Z[x] are distinct irreducible polynomials with positive
leading coefficients. The same reasoning in (3.2.1) tells us the probability that all of the
fi(n) are prime is

ﬁ 1 ﬁ 1 1
cilog fin) i idilogn  ([];_, deg f)(logn)t
Thus, the expected number of n at most x for which fi(n), f>(n), ..., fi(n) are simul-
taneously prime is around

[ S - s
> ([Ti_, deg f;)(log n)* M1, deg f; Jo» (logr)t
As before, we must amend this with a suitable correction factor.

Although perhaps no single f; vanishes identically modulo a prime, these polynomials
might conspire to make

f=nfHfk 3.5.1)

vanish identically modulo some prime. For example, neither fj(x) = x nor fo(x) =x—1
vanish identically modulo a prime, although their product f(x) = x(x — 1) vanishes
identically modulo 2. This “congruence obstruction” prevents n and n + 1 from being
simultaneously prime infinitely often. Consequently, we must require that f does not
vanish identically modulo any prime.

With f as in (3.5.1), one final adjustment to (3.4.3) is necessary. Instead of dividing
by 1—1/p in (3.4.3), we must now divide by (1 —1/p)*, the probability that a randomly
selected k-tuple of integers has no element divisible by p.

3.6. The Bateman—Horn conjecture

The preceding heuristic deductions make a compelling argument in favor of the
following conjecture.
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Bateman-Horn Conjecture. Let f1, f2,..., fi € Z[x] be distinct irreducible
polynomials with positive leading coefficients, and let

O(fr, f2,--os fisx) = #{n <x: filn), fa(n), ..., fi(n) are prime}.  (3.6.1)
Suppose that f = f1 f>--- fi does not vanish identically modulo any prime. Then
C(fl’fz’---’fk) * dt

s J2s oo Jis ~ , 3.6.2
o(f1, f2 Sie; x) ]_[f-;ldegfi | oz iy ( )
in which
1\ wr(p)
Cfi, oo S =[] <1 - ;) (1 - T) (3.6.3)

P

and wy(p) is the number of solutions to f(x) = 0 (mod p).

Under the hypotheses of the Bateman—Horn conjecture, the infinite product (3.6.3)
always converges. However, the proof is delicate and nontrivial; see Section 5 for the
details.

The only case of the Bateman—Horn conjecture that has been proven is the prime
number theorem for arithmetic progressions (Theorem 6.1.1). However, an upper bound
similar to (3.6.2) is known to be true. The Brun sieve provides a constant B that depends
only on k and the degrees of the polynomials involved such that

BC(fi, far s Ji) /x dt
[T, deg f; 2 (logt)*

for sufficiently large x [81, Thm. 3, Sect. 1.4.2]. Thus, the prediction afforded by the

Bateman—Horn conjecture is not unreasonably large.

O(f1, fos oo os fiyx) <

4. Historical background

Before proceeding to applications and examples of the Bateman—Horn conjecture, we
first discuss its historical context. In particular, we briefly examine several important
antecedents that the conjecture generalizes. We are fortunate to have available the
personal recollections of Roger A. Horn, who was kind enough to provide his account
of the events leading up to the formulation of the conjecture.

4.1. Predecessors of the conjecture

The Bateman—Horn conjecture is the culmination of hundreds of years of theorems and
conjectures about the large-scale distribution of the prime numbers [32]. In Section 3 we
arrived at the conjecture from the prime number theorem and heuristic reasoning based
upon the Cramér probabilistic model of the primes (see [30] for a nice exposition of this
model). Although this is easy to do in hindsight, in reality the Bateman—Horn conjecture
evolved naturally from a family of interrelated conjectures, all of which remain open.
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We state these conjectures in modern terminology and with our present notation for the
sake of uniformity and clarity.

Bunyakovsky conjecture [9] (1854): Suppose that f € Z[x] is irreducible, deg f > 1,
the leading coefficient of f is positive, and the sequence f(1), f(2),... is relatively
prime. Then f(n) is prime infinitely often.

This conjecture, which concerns prime values assumed by a single polynomial, was
proposed by Viktor Yakovlevich Bunyakovsky (1804-1889). It implies, for example,
Landau’s conjecture on the infinitude of primes of the form n2 + 1. The condition
that f(1), f(2), ... is relatively prime is equivalent to the assumption that f does not
vanish identically modulo any prime, which appears in the Bateman—-Horn conjecture.
Dirichlet’s theorem on primes in arithmetic progressions (1837) is the degree-one case
of the Bunyakovsky conjecture.

Dickson’s conjecture [20] (1904): If fi, f>,..., fx € Z[x] are of the form f;(x) =
a;x + b;, in which each a; is positive, and there is no congruence obstruction, then
filn), fo(n), ..., fr(n) are simultaneously prime infinitely often.

This was conjectured by Leonard Eugene Dickson (1874—1954) as an extension of
Dirichlet’s theorem. By a “congruence obstruction” we mean that the fi, f,..., fi
are not prevented from assuming infinitely many prime values by some combination
of congruences. For example, fi(x) = x + 3, fo(x) = x + 7, and f3(x) = x — 1 are
congruent modulo 3 to x, x 4+ 1, and x + 2, respectively. For each n € N, at least one
of fi(n), fo(n), f3(n) is divisible by three. Since these polynomials are nonconstant, this
prevents them from being simultaneously prime infinitely often.

First Hardy-Littlewood Conjecture [33] (1923): Let 0 < m; < mp < -+ < my.
Unless there is a congruence obstruction, the number of primes q < x such that

q+2my,q+2my,...,q+ 2my are prime is asymptotic to
" 1—[ <1 B l)“‘*“ (1 _w(psmy,ma, . .,mk)) / dt ’
2 odd p p > (log 7yt
in which w(p; my, ma, ..., my) is the number of distinct residues of 0, my, my, ..., my
modulo p.

Unlike the conjectures of Bunyakovsky and Dickson, the first Hardy-Littlewood
conjecture provides an asymptotic expression for the number of primes of a given form.
It is a special case of the Bateman—Horn conjecture with

fik)y=x, LX) =x4+2m, ..., fiq1(x) =x+2my.

There are k + 1 polynomials involved, which accounts for the power k + 1 that appears
in the product and the integrand.

The classic paper [33] of Hardy and Littlewood is full of conjectures, labeled
“Conjecture A” through “Conjecture P”. Most of these are subsumed under what is now
known as the First Hardy-Littlewood conjecture, which we have just stated. Hardy and
Littlewood end their paper with the remark:
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(a) Paul and Felice Bateman in January 1980. Photo (b) Photo courtesy of the University of Illi-
courtesy of Harold G. Diamond. nois mathematics department

Fig. 3. Paul T. Bateman (1919-2012).

We trust that it will not be supposed that we attach any exaggerated importance to
the speculations which we have set out in this last section. We have not forgotten
that in pure mathematics, and in the Theory of Numbers in particular, ‘it is only
proof that counts’. It is quite possible, in the light of the history of the subject,
that the whole of our speculations may be ill-founded. Such evidence as there is
points, for what it is worth, in the opposite direction. In any case it may be useful
that, finding ourselves in possession of an apparently fruitful method, we should
develop some of its consequences to the full, even where accurate investigation is
beyond our powers.

At least one of their conjectures is “ill-founded”. The second Hardy-Littlewood conjec-
ture asserts that w(x + y) < m(x) + w(y) for x > 2. In 1974, Douglas Hensley and
Ian Richards proved that the second conjecture is incompatible with the first; see [38],
as well as [37,68]. It is not known which of the two conjectures is true, although most
number theorists favor the first.

Schinzel’s Hypothesis H [71] (1958): Let f1, fa, ..., fi be distinct irreducible, integer-
valued polynomials that have positive leading coefficients. If for each prime p there exists
an m € N such that none of the values fi(m), fo(m), ..., fi(m) are divisible by p, then
there are infinitely many n € N such that fi(n), f(n), ..., fi(n) are prime.

This general qualitative predecessor of the Bateman—Horn conjecture was formulated
by Andrzej Schinzel (1937-) in 1958. At that time, Schinzel was a student of Wactaw
Sierpifiski (1882-1969) at Warsaw University, and the hypothesis was first stated in its
general form in their joint paper [71]. In fact, Schinzel wrote the reviews of the two papers
of Bateman and Horn [4,5] for Mathematical Reviews and Zentralblatt MATH, the main
reviewing services of the American and European Mathematical Societies, respectively.
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The Bateman—Horn conjecture is a quantitative version of Hypothesis H. The hypothe-
ses of both conjectures are essentially the same. The condition that for each prime p there
exists an integer m such that none of the values fi(m), fo(m), ..., fi(m) are divisible by
p is equivalent to the condition that the product fi f,--- f; does not vanish identically
modulo any prime.

The Bateman—Horn conjecture unifies all of the conjectures above in one bold
prediction. It provides an asymptotic expression for the relevant counting function and,
moreover, its predictions agree well with numerical computation. We will chronicle many
consequences of the conjecture in Sections 6 and 7.

4.2. Bateman, Horn, and the ILLIAC

Paul T. Bateman (1919-2012) earned his Ph.D. in 1946 under Hans Rademacher
(1892-1969) at the University of Pennsylvania (Fig. 3). He joined the mathematics
department of the University of Illinois, Urbana—Champaign in 1950 and stayed there
until his retirement in 1989, after which he was Professor Emeritus. He was department
head from 1965 until 1980 and is credited by many for his leadership, incredible memory,
and work ethic. Harold G. Diamond [19] tells us

Paul is perhaps best known to the number theory community for the Bateman—Horn
conjectural asymptotic formula for the number of k-tuples of primes generated by
systems of polynomials...Their formula extended and quantified several famous
conjectures of Hardy and J.E. Littlewood, and of Andrzej Schinzel, and they
illustrated its quality with calculations. This topic has been treated in dozens of
subsequent papers.

Hugh Montgomery adds

Bateman not only organized an active number theory group in Urbana, with such
people as John Selfridge, Walter Philipp, Harold Diamond, and Heini Halberstam,
but he also did a lot to promote number theory around the country, and also he did
a huge amount of service to the AMS. Later, when Bateman died, he didn’t get
all the honor and credit he deserved. He had lived so long, that the (comparatively
young) editor of the AMS Notices had no idea who Bateman had been. He insisted
on just a very short (1 page or so) obituary, so many of the reminiscences never
saw the light of day. Harold Diamond may still have drafts of what we wanted to
publish [58].

Fortunately, it appears that Diamond was able to publish much of the desired memorial
tribute online [19].

Roger A. Horn (1942-) received his Ph.D. from Stanford in 1967, under the direction
of Donald Spencer (1912-2001) and Charles Loewner (1893-1968); see Fig. 4. He
worked briefly at Santa Clara University before moving to Johns Hopkins in 1968, where
he founded the Department of Mathematical Sciences (now the Department of Applied
Mathematics and Statistics in 1972) He remained at Johns Hopkins until 1992, when he
moved to the University of Utah as Research Professor. He retired in 2015 and currently
resides in Tampa.
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(a) Roger Horn in his 1963 Cornell graduation photo, (b) Roger Horn on vacation in Buenos
around the time of his work under Bateman. Aires, January 2017.

Fig. 4. Photographs provided courtesy of Roger A. Horn.

Horn is known best for his long and storied career in matrix analysis. Among his chief
publications are the classic texts Matrix Analysis [42] and Topics in Matrix Analysis [41],
both coauthored with Charles Johnson. Of his many papers, only two are on number
theory; both of these date from the early 1960s and concern the Bateman—Horn con-
jecture [4,5]. Consequently, many of his close colleagues are unaware of his connection
to a famous conjecture in number theory.® For example, the third named author wrote
a linear algebra textbook [26] with Roger Horn before he learned, in the course of a
number theory project [27,28], that Roger was “the” Horn from Bateman—Horn!

How did Roger Horn co-propose an important conjecture in a field so far from his
own? We are fortunate to have access to his detailed recollections [39].

In the early 1960s, the National Science Foundation funded several
summer programs intended to introduce college mathematics students to
computing. In 1962 I applied to, and was accepted into, one of those
programs, which was hosted by the Computing Center at the University of
Ilinois in Urbana—Champaign.

There were about 10 participants, from all over the country. We were
housed in university dorm rooms, attended classes in the Computing Center,

8 A common misconception is that Roger Horn is the “Horn” from the famed Horn conjecture about the
eigenvalues of a sum of two Hermitian matrices, settled in 1999 by Knutson-Tao [49] and Klyachko [47].
That distinction belongs to Alfred Horn (1918-2001), who made the conjecture in 1962 [40], the same year
in which the Bateman—-Horn conjecture appeared [4].
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Fig. 5. The ILLIAC I computer around 1952. Courtesy of the University of Illinois Archives.

and had unlimited access to the hottest computer on campus, the ILLIAC,
which later was known as the ILLIAC I when its successor, the ILLIAC II
was built.

The ILLIAC (Illinois Automatic Computer), which powered up on September 22,
1952, was the first computer to be built and owned by a United States academic
institution; see Fig. 5. It was the second of two identical computers, the first of which
was the ORDVAC (Ordnance Discrete Variable Automatic Computer), built by the
University of Illinois for the government’s Ballistics Research Laboratory. The two
machines employed the architecture proposed by John von Neumann in 1945.

In those days, universities built their own computers: IBM hardware was of the
punch-card variety, for which businesses were the primary customers; they were
not well suited for scientific work. It was the size of a small house and it consumed
a prodigious amount of electric power. It stopped working frequently when one of
its thousands of vacuum tubes died. We programmed it in hexadecimal machine
code; no high-level user language (BASIC or FORTRAN, for example) was ever
written for it.

According to the archives of the University of Illinois, the ILLIAC weighed two tons,
measured 10x2x 8.5 feet,” and required approximately 2800 vacuum tubes to operate [1].
A later survey, published in 1961 and based upon observations made in 1959, gives quite

9 Horn says “this was only the console, the big box visible in Fig. 5. All this stuff, and a huge power
supply, was in a big adjoining room (the size of a small house)”.
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different figures: 4427 vacuum tubes of twenty-seven different types [83]. It is likely that
the system was somewhat expanded and upgraded in the period since its construction in
1951 and the latter figure perhaps more closely approximates the system that Bateman
and Horn used.

Some classes were organized for us. One was on Boolean logic and
circuit design, taught by one of the engineers who was working on the design
of ILLIAC II. Another was on numerical analysis, taught by Herb Wilf, who
was a young assistant professor and author (with Anthony Ralston) of a new
numerical analysis textbook [Mathematical Methods for Digital Computers].
I first learned about interpolation and orthogonal polynomials in that class.

Initially, we were given small problems to program for the ILLIAC to
develop our programming skills. Programs were typed onto paper tape with
the same Teletype machines used by Western Union. Noisy! We submitted
our tapes to the ILLIAC operator, who fed them into the machine. We did
that a lot because most of the time our programs crashed. The ILLIAC had
a small speaker hooked up to a bit in its accumulator register, and gave out
a high-pitched whine when it went into a loop. The operator had to flip a
“kill” switch to stop it, and that was embarrassing.

The ILLIAC could read punched paper tape at a rate of 300 characters per second.
Moreover, “five hole teletype tape is used. Numerical data are read with a 4-hole code.
Alphanumerical data employs a 5-hole code and a special instruction” [83]. Output
appeared on paper tape at 60 characters per second, or on a page printer at a sluggish 10
characters per second.

After a couple of weeks we started work on some projects. The organizers had
lined up some faculty who were willing to mentor us and supervise projects. I
chose two: One was as part of a team of three supervised by Herb Wilf. We did a
lot of calculations in an attempt to find a counterexample to the Pélya—Schoenberg
conjecture (if two normalized univalent analytic functions on the unit disk have the
property that each maps the unit disk onto a convex domain, then their Hadamard
product has the same property). Part of the computation required testing some very
large Hermitian matrices for positive definiteness, so I learned something about that
topic. All of our runs produced negative results. .. no counterexamples found. This
was a good thing, because about 10 years later the conjecture became a theorem.

The conjecture, stated in 1958 by George Pdlya (1887-1985) and Isaac Schoen-
berg (1903-1990) [66], became a theorem in 1973 when it was proved by Stephan
Ruscheweyh and Terence Sheil-Small [70]. Although we do not wish to drift too far
afield, there are a few tangential remarks of mild historical interest that are worth making.
First, Herbert Saul Wilf (1931-2012) was at Illinois from 1959 to 1962, after which
he moved to the University of Pennsylvania. Thus, Horn must have worked with Wilf
just before his departure. Wilf’s 1963 paper on the Pélya—Schoenberg conjecture also
mentions Horn’s contribution and identifies several other participants of the 1962 summer
research program:
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The machine program was planned and executed by Messrs. Roger A. Horn
(Cornell University), Forrest R. Miller Jr. (University of Oklahoma) and Gerald
Shapiro (Massachusetts Institute of Technology) who visited the Digital Computer
Laboratory at Illinois during a summer program for undergraduates in Applied
Mathematics sponsored by the National Science Foundation. These calculations
were made possible largely by their dedication and enthusiasm [84].

Now back to number theory and Roger Horn’s account of the origins of the Bateman—
Horn conjecture [39].

My other project was a lone effort supervised by Paul T. Bateman, a famous
analytical number theorist; I think he was chair of the math department at the time.
His Ph.D. advisor was Hans Rademacher. He had me read some papers that dealt
with a variety of number-theoretic conjectures (there were then, and still are now,
a LOT of them!) with the goal of choosing something that might be amenable to
experimental computation. Eventually, we settled on the problem reported on in our
1962 Math. Comp. paper. I burned up about 7 h of ILLIAC time, but the results
were very interesting and gave increased confidence in the conjectures.

The UIUC mathematics department website and two short biographies of Bateman
assert that he was department head (not chair) from 1965 until 1980 [19,64]. Hugh
Montgomery tells us that “Bateman was not the chair of the math dept when I arrived
as a freshman in 1962. The chair at that time was M.M. Day. But during my sophomore
year, Day became ill with an ulcer, and Bateman was then asked to take over. He was
probably chair first, and then head later” [58]."°

Of greater interest to us are the computations mentioned above. The paper [4], in
which the Bateman—Horn conjecture is stated, says the following.

The second-named author [Roger Horn] used the ILLIAC to prepare a list of the
776 primes of the form p?+ p+1 with p a prime less than 113,000. (The program
used was a straightforward one, and the running time was about 400 min.) The first
209 of these primes are listed by Bateman and Stemmler who considered primes
of the form p? + p + 1 in connection with a problem in algebraic number theory.

The “Stemmler” mentioned above is Rosemarie M.S. Stemmler, a student of Bateman
who received her Ph.D. in 1959 [6]. Bateman and Horn computed Q( fi, f>; x) for various
x < 113,000 with f1(t) =t and f>(¢) = t>+¢+1. On the third named author’s late-2013
iMac, the same computation takes only a tenth of a second!

10 Montgomery also remarks “I was interested in number theory already when I was in high school. At
Illinois T started taking their honors math courses. I got to know Bateman during the second half of my
sophomore year, when I took his graduate-level problem-solving class. I worked around 40 h per week on
that one class, while carrying a full load of other courses, but it was worth it. During the summer after my
junior year, he had me stay in Urbana and do a research project, probably on the same grant that Horn had
been on. It was sort of a precursor of REU”.
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Although the summer drew to a close, Horn continued to work on the project:

When the summer was over, I went back to Cornell for my senior year and found
that they had taken delivery of a brand new CDC [Control Data Corporation] 1604
computer. It took a while for folks to discover that it was in operation and move
their work to a new programming environment, so I was able to get quite a lot
of overnight time on the machine, which was much faster than the ILLIAC and
a lot more reliable. It had FORTRAN, too! I ran a lot of additional experiments
that were reported in our 1965 Symposia in Pure Math VIII paper [5]. And then
I graduated, went to graduate school, took other directions in my research, and
haven’t thought about these number theory issues since 1963.

We wrap things up with a humorous anecdote connected to the Bateman—Horn
conjecture. Serge Lang (1927-2005), in his book Math Talks for Undergraduates provides
one of the few expositions of the conjecture [52]. In the introduction, he claims that his
tone was too conversational and informal for certain editors:

[Paul] Halmos once characterized this style as “vulgar”, and obstructed publication
of excerpts in the Math Monthly. A decade later, in the 1990s, the present talk was
offered for publication again in the Math Monthly, and was turned down by the
editor (Roger Horn, this time) because of the spoken style. Well, I like the spoken
style, and I find it effective. Go figure. [52, p. 1]

There is a remarkable confluence here. Paul Halmos, the academic grandfather of the
third named author, was editor(-in-chief) of the American Mathematical Monthly from
1982 to 1986. Herbert S. Wilf, who we met above in connection to the P6lya—Schoenberg
conjecture, was the editor from 1987 to 1991. Roger Horn was editor from 1997 to 2001!

Horn recalls that he “had a memorable bad experience once with Lang, while I was
Editor of the Monthly”. Although he has no recollection of a submission related to the
Bateman—Horn conjecture, he does remember several submissions on other topics. He
also vividly remembers a phone call in which “[Lang] shouted at me for ten minutes or
so, and then hung up”.

5. Why does the product converge?

We now discuss the convergence of the product (3.6.3) that defines the Bateman—Horn
constant C(f1, f2,..., fx). This is a delicate argument that requires elements of both
algebraic and analytic number theory, along with a few tricks to deal with conditionally
convergent infinite products. In [17, p. 36], the authors state:

It is not even clear that in formula (2.18) the expression C(fi, fa, ..., fi) repre-
sents a product which converges to a positive limit.

We wish to provide a thorough account here since most of these details are suppressed
in the original source [4].
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5.1. Infinite products

Before we can proceed with the proof that the product (3.6.3) that defines the
Bateman-Horn constant converges, we require a few general words about infinite
products.

The only way that a zero factor can appear in the evaluation of C(fi, f>,..., fx) is
if wg(p) = p for some prime p; that is, if f vanishes identically modulo p. This is
prohibited by the hypotheses of the Bateman—Horn conjecture, so we can safely ignore
this possibility. Let a, be a sequence in C\{—1}. Fix a branch of log z the logarithm with
log 1 = 0 and for which log(1l + a,,) is defined.

e We say that [[°2,(1+a,) converges to L # 0 if and only if Y .- | log(1+a,) converges
to log L. Otherwise the infinite product diverges.

e If a, is a sequence of real numbers and Y oo | log(1+a,) diverges to —oo, then we say
that [1°2,(1 + a,) diverges to zero. In particular, this means that the partial products
H,’:lzl(l + a,) tend to zero as N — oo.

It turns out that the infinite products that arise in the Bateman—Horn conjecture are
often rather finicky. To handle them, we require the following convergence criterion.
Although it is well known in analysis circles as a folk theorem, we are unable to find
a reference that contains a proof. For the sake of completeness, we provide the proof
below.

Lemma 5.1.1. Ler a, be a sequence in C\{—1}. If Y 2, la,|* < oo, then Yoo an
and [1;2,(1 4 a,) converge or diverge together.

Proof. For |z| < 1,

o (=) 1z 2 ) 5
log(14z) = ZT =Z+<—— +- - " +--->z =z+7°L(2), (5.1.2)

— 23
in which
o0
[L(z)| < Z L —2+1og16=0.77258... < 1
=Lt . o<1

If Z;’O:I |an|2 < 00, then there is an N such that |a,| < % for n > N. Therefore,

oo oo [o.¢]
Y logl+a) =Y a,+ Y aL(a).
n=N n=N n=N

in which the second series on the right-hand side converges absolutely by the comparison
test. Thus,

o]

[o¢]
Zan converges < Z log(1 + a,) converges

n=1 n=1

o0
— 1_[(1 + a,) converges. [l

n=1
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Example 5.1.3. The hypothesis > -, la,|> < 0o is necessary in Lemma 5.1.1. If
=n"
ay = ——
Jnlogn
for n > 2, then

=1

[o.¢]
; @l =2 oan (5.1.4)

n=2

diverges by the integral test. However, Y -, a, converges by the alternating series test
while the second series on the right-hand side of

o0 o0 o0

L(a,
E log(1 4+ a,) = E a, + (@)
n=4 n=4

—n logn

diverges by the limit comparison test against (5.1.4) since L(a,) — —% by (5.1.2)."

The infinite product ]_[;.;1(1 + a,) converges absolutely if ]_[;’o:l(l + |a,|) converges;
this is equivalent to the convergence of ) .-, |a,|. An infinite product that converges but
does not converge absolutely is conditionally convergent.

5.2. Algebraic prerequisites

Let K be a number field; that is, a finite algebraic extension of Q. This implies that
each element of K is algebraic over Q and that the dimension of K as a Q-vector space
is finite. This dimension is called the degree of K over Q and denoted by [K : Q].

For each « € K, there is a unique irreducible polynomial m,(x) € Z[x] with relatively
prime coefficients and positive leading coefficient such that m,(o) = 0. This is the
minimal polynomial of «. The degree of «, denoted by degw, is the degree of the
polynomial m,, which is at most [K : Q]. One can show that

Ok = {a € K : my(x) is monic}

is a subring of K (see, for instance, Theorem 2.9 of [77] or p.16 of [54]); it is the ring
of algebraic integers of K. Since m,(x) = x — n is irreducible for each n € Z, it follows
that Z C Ok.

For o € K, let Q(v) denote the smallest (with respect to inclusion) subfield of K that
contains Q and «. The following important theorem asserts that every number field is
generated by a single algebraic integer [77, Thm. 2.2 & Cor. 2.12].

Theorem 5.2.1 (Primitive Element Theorem). If K is a number field, then there is a
0 € Ok such that K = Q(6).
If K = Q(0), then we have the field isomorphism
K = Qlx]/{mq(x)),

1 To use (5.1.4) we require |a,| < L Note that |a3| > % and |a,| < % for n > 4.
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in which (mg(x)) is the (maximal) ideal in Q[x] generated by the irreducible polynomial
mg(x). In this case, [K : Q] = deg6. Observe that Z[f], the set of integral linear
combinations of powers of 6, is a subring of Ok and hence Ok is a ring extension
of Z[#]. The index of Z[0] inside Ok (as abelian groups), which is finite, is denoted
[Ok : Z[9]].

We say that p is a rational prime if it is a prime in the ring Z; that is, if p is prime in
the traditional sense. For each rational prime p, the set pOx is an ideal in Ok. Although
this ideal might not be a prime ideal in Ok, it can be factored as a product of prime
ideals [77, Thm. 5.6]. Thus, for each rational prime p there exist distinct prime ideals
P1, P2, .- -, P C Ok and positive integers ey, e, ..., e such that

pOk = pi'py - pt. (5.2.2)

This factorization is unique up to permutation of factors. Each prime ideal p C Ok can
be present in the factorization for only one rational prime [77, Thm. 5.14c].

If ¢; > 1 for some i in (5.2.2), then p ramifies in K; the exponents ey, ey, ..., e; are
called ramification indices. There are only finitely many rational primes p that ramify
in a given number field [54, Cor. 2, p. 73]. Since prime ideals in Ok are maximal
[77, Thm. 5.3d], it follows that Ok /p; is a field for each p; in the factorization (5.2.2).
In fact, it is a finite field of characteristic p [54, p. 56] and hence its cardinality is pfi
for some f;, which is called the inertia degree of p at p; (the notation f; is standard
and should not be confused with the polynomials in the statement of the Bateman—Horn
conjecture). The norm of the ideal p; is

N(p:) = |Oxg/pil = pi (5.2.3)

and there are only finitely many prime ideals in Ok of a given norm [77, Thm. 5.17c]. The
factorization (5.2.2) is related to the factorization of my(x) modulo p. This connection
is given by the Dedekind factorization criterion (see [52, Prop. 25, p. 27]).

Theorem 5.2.4 (Dedekind Factorization Criterion). Let K = Q(6), in which 0 € Ok,
and let p a rational prime whose ideal pOx factors as in (5.2.2). If p { [Ok : Z[6]],
then there is a factorization

mg(x) = g1(x) g2(x)? -+ - g(x)* (mod p)

into powers of irreducible polynomials g;(x) modulo p, in which degg;(x) = f;, the
inertia degree of p at the corresponding prime ideal p;.

One immediate and important implication of this theorem is that
k
degh = e fi.

i=1
Observe also that mgy(a) = 0 (mod p) for some a € Z if and only if (x — a) | my(x)
modulo p. This occurs if and only if g;(x) = x — a for some i, in which case
fi = degg; = 1 and (5.2.3) tells us that the corresponding prime ideal p; in the
factorization (5.2.2) has norm p. Since there are only finitely many primes that divide
the index [Ok : Z[0]], we have the following corollary.
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Corollary 5.2.5. Let g(x) € Z[x] be a monic irreducible polynomial with root 6 and
let K = Q(0). For all but finitely many rational primes p, the number w,(p) of solutions

to g(x) = 0 (mod p) equals the number of prime ideals of norm p in the prime ideal
factorization of pOk.

5.3. Analytic prerequisites

Later on we will need the following theorem of Leonhard Euler. We present a proof
due to Clarkson [11]; see [82] for a survey of various proofs.

TmmmmSSJu;EMm]BD.Zp%dWWy&

Proof. Let p, denote the nth prime number and suppose toward a contradiction that

> pL converges. Since the tail end of a convergent series tends to zero, let K be so
large that
— 1 1
> o< g
j=k+1 Pi

Let Q = pi1p>--- px and note that none of the numbers

0+1,20+1,30+1,...

is divisible by any of the primes pi, pa, ..., px. Now observe that
N 1 00 00 1 m 00 1 m
Yoo = (X o) < X(3) -
n=1 ng+1 mel Njmk 1 P m=1 2

for N > 1; the reason for the first inequality is the fact that the sum in the middle, when
expanded term-by-term, includes every term on the left-hand side (and with a coefficient
greater than or equal to 1). This is a contradiction, since ) °, - Ql —7 diverges by the
integral test. [J

A more precise version of the preceding lemma was obtained by Franz Mertens
(1840-1927). Since the proof of Mertens’ theorem would draw us too far afield, we
refer the reader to Terence Tao’s exposition for details [79].

Theorem 5.3.2 (Mertens, 1874).

1 1
Z—:loglogx+B+0< )
p log x

pP=x

in which B = 0.2614972128476. .. is the Meissel-Mertens constant.

Much of the analytic theory of prime numbers goes through to prime ideals, mutatis
mutandis. Define

g (x) = |{p C Ok : p is a prime ideal and N(p) < x}|,
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which is a generalization of the usual prime counting function 7 (x) = mg(x). The prime
number theorem asserts that w(x) ~ x/logx. This is a special case of Landau’s prime
ideal theorem [50], [59, p. 194, p. 267].

Theorem 5.3.3 (Prime Ideal Theorem). If K is a number field, then mg(x) ~ Li(x).

Thus, the asymptotic distribution of prime ideals (by norm) in a number field
mirrors that of the prime numbers in the integers. Therefore, it is not surprising to
find an analogue of Mertens’ theorem (Theorem 5.3.2) that holds for prime ideals
[69, Lemma 2.4] or [53, Prop. 2].

Theorem 5.3.4 (Mertens Theorem for Number Fields). If K is an algebraic number field,
then there is a constant C such that

1
=loglogx+C+0< ),
log x

N(p)=x N

in which the sum runs over all nonzero prime ideals p in Ok of norm at most x.
We are now in a position to prove the following convergence result (recall that p

always denotes a prime number and that , means that we sum over all primes).

Lemma 5.3.5. Let g(x) € Z[x] be monic and irreducible. For each rational prime p,
let w(p) denote the number of solutions to g(x) = 0 (mod p). Then

Zw(p)—l

> p

converges.

Proof. Let K = Q(0), in which 6 is a root of g. Then Corollary 5.2.5 implies that

o(p) 1
2= 2 gy A

pex P Nz

in which the constant A arises from the finitely many rational primes p that are excluded
from Corollary 5.2.5. Theorems 5.3.2 and 5.3.4 imply that

op)—1 _ R e
2 B N(p) ZP+A

p=x P N(p)<x p=x

1
=|:loglogx+C+0< )]
log x
1
—|:loglogx+B+0( >:|+A
log x

1
—a-p+Ct0 ()
log x

converges to A — B+ C asx — oco. [
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5.4. Convergence of the product

We are now ready to prove the convergence of the product (3.6.3) that defines the
Bateman—-Horn constant. Let fi, f>,..., fv € Z[x] be irreducible and define f
fifo-- fr. Let w;(p) and w(p) denote the number of solutions in Z/pZ to f;(x)
0 (mod p) and f(x) = 0 (mod p), respectively.

Lemma 5.4.1. For all but finitely many primes p,
w(p) = wi(p) + - - + wr(p). (5.4.2)

Proof. Since p is prime, each zero of f in Z/pZ is a zero of some f;. Thus,

w(p) < wi(p)+ -+ w(p).

On the other hand, every zero of each f; in Z/pZ is a zero of f. Hence it suffices to
show that f; and f; have no common zeros in Z/pZ if p is sufficiently large. Since
the polynomials f;(x) are irreducible in Z[x] they are irreducible in Q[x]. If i # j then
ged(f;, f;) = 1 in Q[x], which is a Euclidean domain. Hence there exist polynomials
u;j(x) and v;;(x) in Q[x] such that

uij(x) fi(x) +v;;(x) fi(x) = 1.
Let d;; be the least common denominator of the coefficients of u;;(x) and v;;(x), then
8ij(x) = djju;j(x) and h;j(x) = d;;jv;;(x) are in Z[x], and we have:

8ij(x) fi(x) + hij(x) f;(x) = djj.

Suppose that f;(x) mod p and f;(x) mod p have a common root r € Z/pZ for some
prime p. Substituting r for x in the equation above and reducing modulo p yields

dij = 0 (mod p),

meaning that p divides d;;, which is only possible for finitely many primes p since p
has to be smaller than d;;. Hence for all sufficiently large primes p the polynomials f;
and f; have no common zeros in Z/pZ. This completes proof. [J

The product that defines the Bateman—Horn constant need not converge absolutely.
Consequently, we must take care to justify its convergence. We are now ready to prove
the main result of this section.

Theorem 5.4.3. The product that defines C(fi, fa, ..., fi) converges.

Proof. Lemma 5.4.1 implies that

Z CU(P) Z Z w;j (P)

p<x i=1 p=x

for all x > 0; the constant D arises because of the finitely many exceptions to (5.4.2).
The preceding lemma and Lemma 5.3.5 ensure that

k—
Z ﬂ converges. 544

> p
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Then a binomial expansion yields

—k
<1_l) (1_M>=1+k—w(p>+3(§>’
p p p p

in which
k(k —1 1
B(p) = % —w(p)+ 0 (—)
p

is uniformly bounded because |w(p)| < deg f. Let
k— B
_ (p) " (f)
p p
and observe that
k — w(p) B(p)
D e D D
P

p p p p

ap

converges by (5.4.4) and the comparison test. Since
2 k—o(p) | B(p)\’ _ (k—o(p)?  2B(p)k—aw(p)  B(p)
lap|” = t—3) = 2 + 3 T
p p p p p
the comparison test ensures that Zp |ap|2 converges. Consequently, Lemma 5.1.1 tells
us that ]_[p(l + a,), the product that defines C(fi, f2, ..., fx), converges. []

The preceding argument, first envisioned in its general form by Bateman and Horn
(but also in some special cases by Nagell (1921), Rademacher (1924) and Ricci (1937);
see [15] for a discussion), shows that the constant C(fi, fa, ..., fr) is well defined.
However it is still hard to compute due to the fact that the convergence of the product in
question is not necessarily absolute or rapid. This consideration leaves an open problem:
express the constant C(fi, f2, ..., fi) in terms of an absolutely convergent product. This
was done in some special cases in a subsequent paper [5] of Bateman and Horn, and then
generally by Davenport and Schinzel [15]. Several methods to accelerate the convergence
rate of infinite products for approximation purposes use L-functions; see [43,60].

6. Single polynomials

The Bateman—Horn conjecture implies a wide range of known theorems and unproved
conjectures. In this section we examine several such results in the case of a single
polynomial. This provides us with some practical experience computing Bateman—
Horn constants and it also highlights some delicate convergence issues. Applications of
the Bateman—Horn conjecture to families of two or more polynomials are studied in
Section 7.

6.1. Prime number theorem for arithmetic progressions

In 1837, Peter Gustav Lejeune Dirichlet (1805-1859) proved that if a and b are
relatively prime natural numbers, then there are infinitely many primes of the form ar+b,
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in which ¢ € N. For example, there are infinitely many primes that end in 123,456,789.
To see this, apply Dirichlet’s result with a = 10,000,000 and b = 123,456,789.'2

Let 7, 5(x) denote the number of primes at most x that are of the form at + b. The
complex-variables proof of the prime number theorem can be modified to provide the
following asymptotic formulation of Dirichlet’s result [80] (see [73] and the discussion
on [65, p. 236] for information about elementary approaches).

Theorem 6.1.1 (Prime Number Theorem for Arithmetic Progressions). If a and b are
relatively prime natural numbers, then

Tap(x) ~ Li(x). (6.1.2)

¢(a)

Here
¢(n) = #{k e{l,2,...,n}:gcdlk,n) = 1}

denotes the Euler totient function. Its value equals the order of the group (Z/nZ)* of
units in Z/nZ. The totient function is multiplicative, in the sense that ¢(mn) = ¢(m)p(n)
whenever gcd(m, n) = 1. It enjoys the product decomposition

¢(n)=n]_[<1 - %) (6.1.3)

pln
in which the expression p|n denotes that the product is taken over all primes p that
divide n. For example, ¢(6) = 2 since only 1 and 5 are in the range {1,2,...,6} and
relatively prime to 6. The product formulation (6.1.3) tells us the same thing:

$(6) = 6(1 — 1/2)(1 = 1/3) = 6(3)(3) = 2.

What is the intuitive explanation behind the prime number theorem for arithmetic
progressions? If ged(a, b) # 1, then a and b share a common factor and hence at + b
is prime for at most one f. Thus, gcd(a,b) = 1 is a necessary condition for the
polynomial at + b to generate infinitely many primes. For each fixed a, this yields
exactly ¢(a) admissible values of b (moda). Since the prime number theorem tells us
that w(x) ~ Li(x), (6.1.2) tells us that each of the ¢(a) admissible congruence classes
modulo a receives an approximately equal share of primes.

The prime number theorem for arithmetic progressions (Theorem 6.1.1) is a straight-
forward consequence of the Bateman—Horn conjecture. Let f(f) = at + b, in which
gcd(a, b) = 1. Then

f(#)=0(modp) <<= at=-—b (modp). (6.1.4)

If p t a, then a is invertible modulo p and the preceding congruence has a unique
solution. If p|a, then (6.1.4) has no solutions since gcd(a, b) = 1. Therefore,

1 if pta,

@r(p) = 0 if pla,

12 The values of ¢ < 100 for which at 4+ b is prime are 11,29, 43, 50, 59, 64, 68, 73,97, 98.
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and hence

! wf(p)> < 1)“ a
crp=T(1-=) ((-22)=T](1--) =-—X—
i) [J( p) ( » ) 71=3) =56

by (6.1.3). In particular, the potentially infinite product reduces to a finite product indexed
only over the prime divisors of a. Since
x—b

at+b<x << t< ,
a

we have

x—>b
ﬂa,b(x) = Q(f, T)

. a (x —b)/a

¢(a) log((x —b)/a)
_ a4 (x/a)=(b/a)
~ ¢(a) log(x —b) —loga
_a x/a

¢(a) log(x — D)

X 1

~ ~ L

¢(a)logx  ¢P(a)

which is the desired result.

The weaker statement about simply the infinitude of primes in an arithmetic progres-
sion is a special case of the Bunyakovsky conjecture and is currently the only case of
that conjecture which has been settled. The conjecture is open for quadratic and cubic
polynomials, as we discuss next.

1(x),

6.2. Landau’s conjecture and its relatives

In our heuristic argument (Section 3), we explained how Landau’s conjecture (there
are infinitely many primes of the form n%+1) follows from the Bateman—Horn conjecture.
For f(t) = t2 + 1, we showed that

O(f;x) ~ (0.68640...)Li(x);

in particular, the conjecture suggests that Landau’s intuition was correct. Let 7y yndau(¥)
denote the number of primes of the form n? + 1 that are at most x. Since

PHl<xy = t<Jx-1,
it follows that
TLandau(X) = O(f; vV/x — 1) ~ (0.68640...)Li(+/x — 1)

Vx—1
~ (0.68640...)——————
¢ )log(«/x -1
~(1.3728...) vx .
log x

Thus, 71 angau(x) grows like a constant times 7 (x)/+/x.
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The Bateman—Horn conjecture also implies important variants of Landau’s conjecture.
For example, Friedlander and Iwaniec proved that there are infinitely many primes of
the form x? + y* (they also provided asymptotics for the counting function of such
primes) [24]. For each fixed y > 1, the Bateman—Horn conjecture suggests that there
are infinitely many primes of the form x>+ y*. A result of Heath-Brown [35] guarantees
the existence of infinitely many primes (with an asymptotic formula for the growth of
their number) of the form x3 + 2y3, thereby confirming the conjecture of Hardy and
Littlewood on the infinitude of primes expressible as a sum of three cubes. These are
results in the interesting and promising direction of representing primes by multivariate
polynomials, see the survey [61] and the recent preprint [18].

Let us briefly turn to cubic polynomials in one variable. A result of [23] states, roughly
speaking, that on the average polynomials of the form °+k for squarefree k > 1 assume
infinitely many prime values at integer points, in some well-defined sense. We are not
aware of a definitive published result on any specific example of such a polynomial:
an existence of an infinitude of prime values of a cubic polynomial is a special case
of the Bunyakovsky conjecture that is sometimes called the “cubic primes conjecture”.
For example, f(t) = t3 — 2 is irreducible and does not vanish identically modulo any
prime. The Bateman—Horn conjecture predicts that this polynomial assumes prime values
infinitely often.

6.3. Tricking Bateman—Horn?

What happens if we replace n% + 1 with n? — 1 = (n — 1)(n + 1)? The only prime of
this form is 3. Of course, the polynomial in question is reducible and hence is not even
a permissible candidate for the conjecture. Does the Bateman—Horn conjecture “detect
this” attempted fraud, or does it just plow ahead and suggest to the unwary that there are
infinitely many primes of this form? For the sake of curiosity, let us try it and see what
happens.

If f(n) =n*>—1, then f(n) =0 (mod p) becomes n> = 1 (mod p) and hence

») 1 if p=2,
w =
AL 2 otherwise.
Thus,
p—2 1
C(f)=]_[j=]_[ - —). (6.3.1)
p=3 p p=3 p

Let P, denote the set of the first n odd primes. For example, P, = {3}, P, = {3,5},
P; = {3,5,7}, and so forth. Numerical evidence (Table 3) suggests that

, 1
lim ]‘[ <1 — ﬁ> = 0; (6.3.2)
PEPy

that is, the product that defines C(f) diverges to zero (this is the case). If this application
of the Bateman—Horn conjecture were admissible (it is not since f is reducible), we
would expect no primes of the form n> — 1. This is not too far from the truth: we were
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Table 3
The partial products ] pep, (1 - ﬁ) appear to diverge to zero.
n H])EPH (1 - p%l)
10 0.210114
100 0.117208
1,000 0.0824772
10,000 0.0641136
100,000 0.0526554
1,000,000 0.044777
10,000,000 0.0390052

off by only one. The Bateman—Horn conjecture is surprisingly robust; in some sense, it
detected our trickery and rejected it.
Why does (6.3.1) diverge to zero? Euler’s result (Theorem 5.3.1) ensures that
1 1

P R D

peP, p peP, p
which diverges as n — o0o. An application of Lemma 5.1.1 implies that (6.3.1) diverges
(to zero); that is, C(f) = 0. Thus, the Bateman—Horn conjecture detected, in a subtle way,

the difference between the polynomials n? + 1 (which is believed to generate infinitely
many prime values) and n> — 1, which is prime exactly once.

6.4. Prime-generating polynomials

Euler observed in 1772 that the polynomial f(¢) = >+t + 41 assumes prime values
fort =0,1,...,39. However, f(40) = 1681 = 412 is composite. Is there a nonconstant
polynomial that assumes only prime values?

Theorem 6.4.1. Let f € Z[x]. If f(n) is prime for all n > 0, then f is constant.

Proof. Let p = f(0), which is prime by assumption. For each n > 0, the prime f(pn)
is divisible by p. Then f(pn) = p for n > 0 and hence f(pn)— p has infinitely many
roots and is therefore zero. Thus, f is the constant polynomial p. [J

This shows that no single-variable polynomial can assume only prime values for all
natural arguments. Surprisingly, there is a polynomial of degree twenty-five in twenty-
six variables whose positive integral range is precisely the set of prime numbers [45].
This startling fact is related to Matiyasevich’s solution to Hilbert’s tenth problem [55]
and the work of Davis—Putnam—Robinson [16]. It is not known what is the smallest
number of variables a prime-generating polynomial must have, but it is definitely less
than twenty-six: a polynomial with this property in twelve variables is also known; see
[17, Sect. 2.1].

What is so special about 41? Suppose that f(t) = t> 4t + k generates primes for the
first few nonnegative integral values of 7. Then k = f(0) is prime. In 1913, Georg Yuri
Rainich (1886-1968) proved if p is prime, then n>+n+p is prime forn = 0,1, ..., p—2
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if and only if the imaginary quadratic field Q(+/T — 4p) has class number one [67]"?; for
our purposes it suffices to say that this means that Q(,/1T — 4p) is a unique factorization
domain. The Baker-Heegner—Stark theorem ensures that there are only finitely many
primes p with this property [3,36,75,76]. The largest of these, p = 41, corresponds to
the quadratic field Q(+/—163). Thus, we cannot beat Euler at his own game.

Perhaps we can beat Euler on average. Can we find an Euler-type polynomial that
produces an asymptotically greater number of primes than Euler’s polynomial? Let us
first examine what the Bateman—Horn conjecture says about f(¢) = t> +t + 41.

Since f(t) is identically 1 modulo 2, w;(2) = 0. In what follows we use the
“completing the square” identity

4a(at® + bt + ¢) = 2at + b)*> — (b* — 4ac). (6.4.2)
For p > 3, this ensures that
?+t+41=0(modp) << (2t+1)*>=—163 (mod p).

Thus, everything boils down to whether —163 is a quadratic residue or nonresidue modulo
the odd prime p:

—163
wr(p) =1+ <T> .

Here (#) is a Legendre symbol, defined by

0 if ple,

L
(—) =11 if £ is a quadratic residue modulo p,

P —1 if £ is a quadratic nonresidue modulo p.

Numerical computation confirms that —163 is a quadratic nonresidue modulo
3,5,7,11,13,17, 19, 23,29, 31, 37, (6.4.3)

the first eleven odd primes. Thus, w;(p) = 0 for these primes and hence

-1
C(t2+t+41)=l_[<1—%> (1—‘”f—(m>

» p
=2 [T & 11 PELA0) (6.4.4)
p—1 p—1
3=p=37 p=41
~ 2-3.31993 = 6.63985. (6.4.5)
The factors corresponding to p = 2,3, ..., 37 are each greater than one, which drives

C(f) up. We have little control over the second product, although we may hope that

13 Rainich published [67] under his original birth name, Rabinowitsch. According to [63], “Rainich was
giving a lecture in which he made use of a clever trick which he had discovered. Someone in the audience
indignantly interrupted him pointing out that this was the famous Rabinowitsch trick and berating Rainich
for claiming to have discovered it. Without a word Rainich turned to the blackboard, picked up the chalk,
and wrote ‘RABINOWITSCH.” He then put down the chalk, picked up an eraser and began erasing letters.
When he was done what remained was ‘RA IN I CH.’ He then went on with his lecture”.
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1 — ws(p) changes sign regularly enough to keep it in check. Although it is not clear
at first glance that the second product in (6.4.4) converges, the product that defines the
Bateman—Horn constant is guaranteed to converge (see Section 5) and thus the second
product must as well.

The Bateman—Horn conjecture suggests that

Q(t* +1+41; x) ~ (3.31993 .. ) Li(x). (6.4.6)

Can we find a second-degree polynomial f(¢) for which Q(f; x) exceeds this amount
asymptotically? To this end, we want each factor in the product (3.6.3) to be as large
as possible. Unfortunately, we cannot arrange for w,(p) = 0 for all primes p since the
corresponding infinite product

1\"! p 1
[1(-3) =I5 -110+55)
P p P

would diverge by Lemma 5.1.1 and Theorem 5.3.1. However, this would contradict
Theorem 5.4.3.

In fairness to Euler, we should try to beat him with a polynomial of the same type.
Thus, we search for an integer k such that the polynomial f(t) = t> + ¢ + k satisfies
ws(p) = 0 for the first several dozen or so primes. We first need k = 1 (mod2) such
that wy(2) = 0. The identity (6.4.2) shows that for odd p,

fO)=0@modp) <= (2t+1)*=1—4k (modp).

Consequently, we need to choose an odd k such that 1 — 4k is a quadratic nonresidue
modulo p for a long initial string of odd primes.

Let P, denote the set of odd primes at most n. For each p € P,, let r, be a
quadratic nonresidue modulo p. The Chinese Remainder Theorem provides an odd k,,
unique modulo ZHpepn p, such that k, = 47'(1 — rp) (mod p) for each p € P,. Then
1 — 4k, = r, (mod p) is a quadratic nonresidue and hence w,(f) = 0 for each p € P,.
The corresponding Bateman—Horn constant is

p p—ws(p)
P2+r4k)=2 )
cwtrthy=2 [ 51—

3<p=n p>n

If n = 547, the hundredth odd prime, and we let r,, equal the least primitive root of p,
the corresponding constant

C(? +1 + kigo) = 2 - (5.4972...) = 10.9945

easily beats the constant (6.4.5) corresponding to Euler’s polynomial. Unfortunately, koo
is not as easily remembered as Euler’s 41:

3682528442873462645493394982418837604455310384084190749577
5453041420103519734083583186615204669729662489042369819157
7358565650719425670030967384568941667322171286195075149379
680113340447535104953498545635385597443028681.



S.L. Aletheia-Zomlefer, L. Fukshansky and S.R. Garcia / Expo. Math. 38 (2020) 430-479 461

It is conceivable that other choices of r, might lead to a smaller constant, although we
have not looked into the matter.'"* The Bateman—Horn conjecture suggests that

0> + t + kigo: x) ~ (5.4972 .. ) Li(x),

which is asymptotically larger than the corresponding prediction (6.4.6) for Euler’s
polynomial.

Before we pat ourselves on the back for beating Euler, we should point out that
the search for prime-producing polynomials using these sorts of arguments has a long
history [7,25,43]. Moreover, without the Bateman—Horn conjecture or one of its weaker
relatives (Section 4.1), we do not even know if any quadratic polynomial produces
infinitely many primes. Thus, this is all speculative.

6.5. A conjecture of Hardy and Littlewood

A general conjecture about the asymptotic distribution of prime values assumed
by quadratic polynomials is due to G.H. Hardy (1877-1947) and John E. Littlewood
(1885-1977) [33, p. 48] (see also [34, p. 19]). The more convenient formulation below
is from [43, p. 499].

Hardy-Littlewood Conjecture (F). If a, b, ¢ are relatively prime integers, a is positive,
a + b and c are not both even, and b* — 4ac is not a perfect square, then there are
infinitely many primes of the form f(t) = at> + bt + c. The number of such primes at
most x is asymptotic to

A
e [T 2% <1 _ ﬂ) Li(x), (6.5.1)
p=3 p -1 p=3 p -1
plged(a.b) pla
in which

|

3 if21(a+b),

1 otherwise.

This is a consequence of the Bateman—Horn conjecture. Let us see why, paying
careful attention to the relevance of Hardy and Littlewood’s hypotheses. Suppose that
f@) = at? + bt + ¢, in which a > 0. What conditions on a, b, ¢ are necessary for f to
be prime infinitely often? Since
if t =0 (mod?2),

2

at*+bt +c =
a+b+c ift=1 (mod?2),

we want either a + b or ¢ (or both) to be odd. Consequently,

0 ifa+ b is even and c is odd,
ws(2)=31 ifa+bisoddand c is odd, (6.5.2)
1 ifa+bis odd and c is even.

14 If we choose the least primitive roots 2,2,3,2,2,3,2,5,2,3,2 of the primes (6.4.3), respectively, and
apply the algorithm above we obtain k37 = 1,448,243,016,041.
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Suppose that p is an odd prime. There are two cases.

e If pla, then f(¢t) = bt + ¢ (mod p). Since ged(a, b, ¢) = 1, we conclude that

oy [0 i plb.
wr(p) =
A FRNT YY)

e If p {a, then (6.4.2) ensures that
() =0 (mod p) — (2at + b)* = A (mod p),

in which A = b? — 4ac is the discriminant of f. Thus,

A
wf(P) =1+ <;) .

Thus, the Bateman—Horn constant (3.6.3) is

—0 —1 —(1+(A
chH=02-o@) [] ”T ]2 11—[p (1L +(4/p)

p=3, pla p=3, pla P p=3 P 1
plb ptb pta
A
= 2¢ ]_[ P ]_[( ( /p)>. (6.5.3)
p=3 p=3
pl gcd(a,b) pta

There is a subtle point here that we wish to highlight. If A is a perfect square, then
(A/p) = 1 and the second factor in (6.5.3) diverges (to zero) by Lemma 5.1.1 and
Theorem 5.3.1. This does not contradict the Bateman—Horn conjecture, since f is not
irreducible in this case. If A is a perfect square, then the two roots

—b+ A —b— A

_— and _—

2a 2a

of f belong to Q. Then f would be reducible over Q and hence, by Gauss’ lemma
[21, Prop. 5, p. 303], reducible over Z. Thus, A cannot be a perfect square if f is
to be prime infinitely often: this is why Hardy and Littlewood assume that b*> — 4ac
is not a perfect square. If A is not a perfect square, then the prediction (3.6.1) of the
Bateman—Horn conjecture provides the asymptotic formula (6.5.1) proposed by Hardy
and Littlewood.

6.6. Ulam’s spiral

In 1963, Stanistaw Ulam (1909-1984) discovered a startling pattern in the primes,
allegedly while doodling at a scientific meeting; see Fig. 6. The story was popular-
ized by Martin Gardner (1914-2010) in his much-loved Scientific American column
“Mathematical Games” [29]:

Last fall Stanislaw M. Ulam of the Los Alamos Scientific Laboratory, attended
a scientific meeting at which he found himself listening to what he describes as
a “long and very boring paper”. To pass the time he doodled a grid of horizontal
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18 4 1”
19 _ i
20 g 9 4

Fig. 6. The natural numbers spiral outward counterclockwise from the origin. A colored box is placed over
each prime.

and vertical lines on a sheet of paper. His first impulse was to compose some chess
problems, then he changed his mind and began to number the intersections, starting
near the center with 1 and moving out in a counterclockwise spiral. With no special
end in view, he began circling all the prime numbers. To his surprise the primes
seemed to have an uncanny tendency to crowd into straight lines.

The patterns observed by Ulam are evident in Fig. 7. There are certain diagonals that
the primes prefer and others that they eschew. Less prominent, but still noticeable, are
the scarcity or abundance of primes on some horizontal or vertical lines. Others seem
to have more than their fair share of primes. The primes, which are often assumed to
be “random” in their overall distribution (Section 2.4), manage to conspire over great
distances to form these intriguing patterns. What is the explanation for this behavior?

In what follows, it is more fruitful to consider “rays” in the Ulam spiral instead of
“lines”. This is no loss of generality since each line is the union of two rays.

Example 6.6.1. Consider Fig. 8, in which the horizontal ray
8,9, 10,27,52, 85, 126, 175, 232,297, 370, 451, 540, . .. (6.6.2)

in the Ulam spiral appears devoid of primes. Why does this occur? Let us truncate our
sequence slightly to avoid the short stretch of consecutive integers at the beginning. This
yields the sequence

10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, . ... (6.6.3)
To pass from 10 to 27, we walk around the exterior of the 3 x 3 square

5 43
6 1 2
7 8 9
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(a) 125 x 125 (b) 250 x 250

Fig. 7. Plots of the Ulam spiral on grids of several sizes. There are certain diagonals that the primes (black)
prefer and others that they eschew. Less prominent, but still noticeable, are the scarcity or abundance
of primes on some horizontal or vertical lines. The existence of these patterns is a consequence of the
Bateman—-Horn conjecture.

and take one more step; this requires 4 - 4 + 1 = 17 total steps. Similarly, to pass from
27 to 52 we must traverse the exterior of a 5 x 5 square and take an additional step; this
requires 4 X 6 + 1 = 25 total steps. Let f(n) denote the nth number on the list (6.6.3).
Then induction confirms that

f)—=fn—-1) = 8 +1,

and hence

n

fy =Y (fG)— £ — D)+ f(1)

i=

:10+Z(8i+1)

i=2

10+ —1+8) i
i=2
nn—+1)

=n+9+8 1

=4n®+5n+1
=@n+D(n+1). (6.6.4)

This ensures that none of the numbers on the horizontal ray (6.6.2) is prime.
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. 576 575

580 402
581 488 403
582 489 404
583 490 405
584 . 406
585 492 407
586 493 408

. o

588 495 410

589 496 411

590 497 412

591 498 413

592 414

500 415

594 501 416

595 502 417

596 418

597 504

598 505 420 343 344 345

. 506 422 423 424 425 426 427 428 429 430

600 507 508 510 511 512 513 514 515 516 517

. 602 603 604 605 606 . 608 609 610 611 612 . 614 615

Fig. 8. The horizontal ray depicted in yellow is prime free. If we ignore the initial 8 and 9, and start
with f(1) = 10, then the nth element on this list is f(n) = (4n + 1)(n + 1), which is composite (see
Example 6.6.1). Similarly, the diagonal ray depicted in orange is prime free. The nth number on this ray
is 4n% 4+ 12n 45 = 2n + 1)2n + 5) (see Example 6.6.5) .

346 361 362 . 532
440 441 442 531
518 527 528 529 530

622 623 624 625

Example 6.6.5. The diagonal ray 21, 45,77, 117, 165, 221, 285, 357, 437, 525, 621, . ..
in Fig. 8 is similarly devoid of primes. An argument similar to that used in Example 6.6.1
confirms that the nth number on this list is 4n% + 12n +5 = 2n + 1)(2n + 5).

The prime-free rays of Examples 6.6.1 and 6.6.5 (see Fig. 8) are governed by a
reducible quadratic polynomial. What about prime-rich rays?

Example 6.6.6. Consider Fig. 9a, in which the particularly prime-rich diagonal that
includes the primes 7, 19, 23,47,67,79, 103, 167, 199, 223 stands out. As before, it
is more convenient to consider a single ray, in which the first differences increase
monotonically. We therefore study the ray

7,23,47,79,119, 167,223, .... (6.6.7)
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197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183
198 145 144 143 142 141 140 139 138 137 136 135 134 133 182 198 145 144 143 142 141 140 139 138 137 136 135 134 133 182
199 146 101 100 99 98 ' 97 96 95 94 93 92 91 132 181 199 146 101 100 99 98 97 96 95 94 93 92 91 132 181
200 147 102 65 64 63 62 |61 60 59 58 57 90 131 180 200 147 102 65 64 63 62 61 60 59 58 57 90 131 180
201 148 103 66 (37 36 35 34 33 32 31 56 89 130 179 201 148 103 66 37 36 35 34 33 32 31 56 89 130 179
202149 104 67 38 17 16 15 14 |13 30 55 88 129 178 202149 10467 38 17 16 15 14 |13 30 55 88 129 178
203 150 105 68 39 18 & 4 | 3 12 29 54 87 128 177 203 150 105 68 39 18 | 6 4 3 12 29 54 87 128 177
204 (151 28 53 86 127 176 2041561 106 69 40 19 6 1 2 11 28 |63 86 127 176
205 152 27 52 85 126 175 205 152107 70 (41 20 7 8 9 10 27 52 85 126 175
206 153 26 51 84 125 174 206 153 108 |71 42 21 22 23 24 25 26 51 84 125 174
207 154 49 50 | 83 124 173 207 154 109 72 43 44 45 46 47 48 49 50 83 124 173
208 155 80 81 82 123 172 208 155 11078 74 75 76 77 78 |79 80 81 82 123 172
209 156 119 120 121 122 171 209 156 111 112 113 114 115 116 117 118 119 120 121 122 171
210 {157 158 159 160 161 162 163 164 165 166 168 169 170 210 {157 158 159 160 161 162 163 164 165 166 167 168 169 170
211 212 213 214 215 216 217 218 219 220 221 222 224 225 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

(a) The diagonal ray 7,19,23,47,67,79... con- (b) The diagonal ray 5,15, 33,59, 93, ... contains

tains an abundance of primes (red). The nth a few primes. The nth number on the ray is
number on the ray is f(n) = 4n? + 4n — 1. The f(n) = 4n?—2n+3. The Bateman—Horn constant
Bateman—Horn constant of this polynomial is ap- of this polynomial is approximately 1.02.

proximately 3.70.

Fig. 9. The relative number of primes on diagonal rays is governed by the Bateman—Horn conjecture .

Of these numbers only 119 is composite. If f(n) denotes the nth number on the list
(6.6.7), then an argument similar to that of Example 6.6.1 shows that

fm) = f(n—1)=28n

and hence

n

fy =Y (fG)— fi = D)+ f(1)

i=2

:7+i8i
i=2

1
=38 —”(”; )—1>+7

=4n* +4n — 1. (6.6.8)

Unlike (6.6.4), this polynomial is irreducible. Since it has at most two roots modulo
any prime and it does not vanish identically modulo 2, it does not vanish identically
modulo any prime. Consequently, the Bateman—Horn conjecture suggests that it assumes
infinitely many prime values. Since the discriminant of the polynomial (6.6.8) is 32, the
general computation (6.5.3) tells us that

1
Q(f: x) ~ S C(H)HLix),
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in which

32
C(f)zZl_[(l—( /P))_

p=3 p—1

Among the odd primes at most 67 we have

(32) )1 if p=7,17,23,31,41,47,
p) |-1 if p=3511,13,19,29,37,43,53,59,61,67.

This substantial imbalance among the first few odd primes makes C(f) unusually large
and explains the particularly prime-rich diagonal that corresponds to this polynomial. In
particular, numerical computations suggest that %C (f) =~ 3.70.

Example 6.6.9. Consider the diagonal ray 5, 15, 33, 59, 93, 135, 185, .. .; see Fig. 9b.
Although it contains some primes, it does not appear as prime rich as the ray from
Example 6.6.6. Its values correspond to f(¢) = 4t> — 2t + 3, which has discriminant
—44. Since (—44/3) = (—44/5) = 1, the primes 3 and 5 conspire to make C(f)
smaller; see (6.5.3). The coefficient of Li(x) provided by the Bateman—Horn conjecture
is approximately 1.02. This is substantially lower than in the previous example.

In summary, the patterns that Ulam observed can be explained as follows. If we agree
to omit the first several consecutive terms on a given ray, then there are integers b and ¢
such that the nth number on the ray is

f(n)=4n*+bn +c.

If b is even, then the ray is diagonal. If b is odd, then the ray is horizontal or vertical.
Certain combinations of » and ¢ yield reducible polynomials; in these cases the ray
contains at most one prime. Other combinations of b and ¢ yield irreducible polynomials;
the Bateman—Horn conjecture predicts the relative number of primes along each such ray.

7. Multiple polynomials

We are now ready to apply the Bateman—Horn conjecture to families of irreducible
polynomials fi, f>, ..., fi € Z[x] with positive leading coefficients, no two of which
are multiples of each other. Recall that the product f = f|f>--- fi should not vanish
modulo any prime. Then the conjecture predicts that the number Q( fi, f2, ..., fi; x) of
n < x for which f(n), fo(n), ..., fi(n) are simultaneously prime is asymptotic to

C(fls f27"'»fk) * dt
[T deg fi J» (logn)}’

in which
_ A ws(p)
C(f11f27~'-7fk)_1_[ 1__ 1_— .
» P p

In particular, observe that the number k of polynomials involved appears in the exponents
that occur in the integrand and the product that defines the Bateman—Horn constant.
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7.1. Twin prime conjecture

If p and p 4 2 are prime, then p and p 4+ 2 are twin primes. The long-standing twin
prime conjecture asserts that there are infinitely many twin primes. Although this question
likely puzzled thinkers since Euclid’s time, the earliest extant record of the conjecture
(in a more general form, see Section 7.2) is from Alphonse de Polignac (1826-63) in
1849. While it remains unproven, recent years have seen an explosion of closely-related
work [10,56,86].

In 1919, Viggo Brun (1885-1978) proved that the sum

SRR VY L PP L Y (R (7.1.1)
375 57 1113 17 719 o

of the reciprocals of the twin primes converges. This stands in stark contrast to Euler’s
discovery that ) » 1/p diverges (Theorem 5.3.1). Thus, the twin primes must be far
sparser, in the sense of reciprocal sums, than the primes themselves. The sum (7.1.1),
which is now known as Brun’s constant, is greater than 1.83 and less than 2.347 [48]
(numerical evidence suggests a value of approximately 1.9).

What does the Bateman—Horn conjecture have to say about twin primes? Let fi(z) = ¢
and f>(r) =t + 2. Then fi(¢) and f,(¢) are simultaneously prime if and only if 7 is the
lesser element of a twin-prime pair. Let f = f; f. Then

f() =0 (mod p) — t(t +2) =0 (mod p),
and hence
») 1 if p=2,
w =
A T Y

The corresponding Bateman—Horn constant is

N7 wosp)
cir. =[] (1 - ;) (1 - —)

» p
2

_ )4 p—2
_2H(p—1)2

p=3 p

p(p—2)

=2 &&=

]1:[3 (p—1)7?
=2C,,

in which

]_[ plp = ~0660161815
(p—

is the twin primes constant. The Bateman—Horn conjecture predicts that

Yoo dt
Q(flvfzsx)N2C2A (log—t)z'
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(a) = < 10,000 (b) z < 100,000.

Fig. 10. Graph of m,(x) (orange) versus 2Cy fzx(log 1)~2dt (blue) and 2C,x/(logx)? (green). The more
complicated integral expression apparently provides a much better approximation than does the simpler
expression .

It is more traditional to express this in terms of the twin prime counting function.
Let my(x) denote the number of primes p at most x for which p + 2 is prime. Then
mr(x) = Q(f1, f>; x) and (by Lemma 2.3.2)

dt 2Crx .
(logr)>  (logx)*’
see Fig. 10. This asymptotic estimate for mp(x) was first postulated by Hardy and
Littlewood [33].

7'[2()(?) ~ 2C2/
2

7.2. Cousin primes, sexy primes, and more

If p and p + 4 are prime, then p and p + 4 are cousin primes. If p and p + 6 are
prime, then p and p + 6 are sexy primes. Thankfully the nomenclature appears to expire
after this point, although it is still fruitful to consider prime pairs p, p + k, in which
k > 2 1is even.

Alphonse de Polignac conjectured in 1849 that for each even number k, there are
infinitely many prime pairs p, p + k. This is now known as Polignac’s conjecture. The
case k = 2 of Polignac’s conjecture is the twin prime conjecture (Section 7.1), which
remains unproven. In light of the work of Yitang Zhang (1955-) [86] and the Polymath8b
Project [10] on bounded gaps between primes, we know that there is an even k < 246
for which infinitely many prime pairs p, p + k exist. Unfortunately, we do not know a
specific value of k for which this occurs.

The Bateman—Horn conjecture goes much further than even Polignac’s conjecture. It
implies the existence of infinitely many pairs p, p 4+ k of primes for each even k and
also supplies asymptotic predictions that are backed up by numerical computations. The
following calculations were worked out in [28]. Let f;(¢r) =t and f,(¢#) =t + k, and let

f = fif2- Then
f(@) =0 (mod p) — t(t + k) =0 (mod p),
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and hence

() 1 if plk,
wr(p) =
PP =02 i prk.

The Bateman—Horn constant is

N7 (o)
cipo=T(1-7) (1-242)

) p
) ()
— 1— = 1= =
-T1(-5) T(-5) (-
p(p—2)
1,,_\1([ ]_[ - (7.2.1)

To highlight the dependence on k and match the historically established notation in the
twin prime setting (Section 7.1), we denote the preceding constant by 2Cy; that is,

p(p—2)
C : 722
o l_k[,,_ H(p—l)2 722
p>3

We do not define C; for odd k; this would be pointless since for each odd k there is at
most one prime pair p, p+k. Since ) o1/ p? converges, the infinite product (7.2.2) that
defines Cj converges absolutely since

-2 1
rp=2_y_ 1 (7.2.3)
(p—1 (p—=1
Numerical approximations for Cy, Cy, ..., C}59 are given in Table 4. If 7 (x) denotes the

number of primes p < x for which p + k is prime, then the Bateman—Horn conjecture
predicts that

) ~ 2C / T dt 2Cix

Te(x) ~ ~ .

‘ “l Gogn?  (logxy

There are several important observations to make.

e The conjectured rate of growth in 7, depends only upon the constant Cy. Furthermore,
Cy depends only upon the primes that divide k.

e In light of (7.2.3), an examination of (7.2.1) reveals that C; is minimized when k is a
power of two, in which case C, = C4 = C3 = Ci = - - - & 0.660162.

o lim, ., Cy, = C,. That is, C; can be made arbitrarily close to the twin primes
constant C; by letting k = 2p, in which p is a sufficiently large prime.

e C; can be made arbitrarily large by selecting k to have sufficiently many small prime
factors. The first factor in (7.2.1) is

0,5 =T+ =)
plk plk 1
p=3 p>3
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Table 4
Numerical approximations of the constants Cy based upon the first 1,000,000 terms of the product (7.2.1).
k Ci k Ci k Ck k Cx k Cy

2 0.660162 32 0.660162 62 0.682926 92 0.691598 122 0.671351
4 0.660162 34 0.704173 64 0.660162 94 0.674832 124 0.682926
6 1.32032 36 1.32032 66 1.46703 96 1.32032 126 1.58439
8 0.660162 38 0.698995 68 0.704173 98 0.792194 128 0.660162
10 0.880216 40 0.880216 70 1.05626 100 0.880216 130 0.960235
12 1.32032 42 1.58439 72 1.32032 102 1.40835 132 1.46703
14 0.792194 44 0.733513 74 0.679024 104 0.720177 134 0.670318
16 0.660162 46 0.691598 76 0.698995 106 0.673106 136 0.704173
18 1.32032 48 1.32032 78 1.44035 108 1.32032 138 1.3832
20 0.880216 50 0.880216 80 0.880216 110 0.978018 140 1.05626
22 0.733513 52 0.720177 82 0.677089 112 0.792194 142 0.669729
24 1.32032 54 1.32032 84 1.58439 114 1.39799 144 1.32032
26 0.720177 56 0.792194 86 0.676263 116 0.684612 146 0.66946
28 0.792194 58 0.684612 88 0.733513 118 0.671744 148 0.679024
30 1.76043 60 1.76043 90 1.76043 120 1.76043 150 1.76043

Table 5
Values of the counting functions mx(x) at pjor, the 10"th prime. The asymptotic predictions of the Bateman—
Horn conjecture are identical for 7y, 74, and g (blue), and for g and 7y> (green). The computations appear
to corroborate this.

n 7l'2(p10n) 7T4(p1on) Ws(plon) Tl’s(plon) 71'10(;010“) 71'12(1010“) ﬂ'30(p10n)

25 27 48 24 33 48 61
174 170 343 178 230 340 456
1,270 1,264 2,538 1,303 1,682 2,515 3,450
10,250 10,214 20,472 10,336 13,653 20,462 27,434

86,027 85,834 170,910 85,866 114,394 171,618 228,548
738,507 738,718 1,477,321 738,005 984,809 1,477,496 1,970,049
6,497,407 6,496,372 12,992,625 6,497,273 8,667,364 12,994,918 17,331,689

0 N O U W N

If k is the product of the first n primes (that is, k is the nth primorial p,#), then the
preceding diverges as n — oo.

The patterns predicted by the Bateman—Horn conjecture are evident in Table 5, which

provides the numerical values of m;(10") for several k and n = 2, 3, ..., 8. For example,
Table 4 suggests that primes p for which p 4 30 is prime should be about

1.76043

——— & 2.6667

0.660162

times more numerous than twin primes. Among the first 10® primes, Table 5 gives the
proportion
17,331,689

~ 2.66748.
6,497,407

The agreement is remarkable.
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7.3. Sophie Germain primes

A prime number p is a Sophie Germain prime if 2p + 1 is also a prime. Such primes
were first introduced and investigated by the legendary French mathematician, physicist,
and philosopher Marie-Sophie Germain (1776-1831) in the course of her work on some
early cases of Fermat’s Last Theorem; see [74, Sect.5.5.5] for further information.

If p is a Sophie Germain prime, then 2p + 1 is the corresponding safe prime. This
terminology reflects the usefulness of such primes in cryptography. Specifically, the
famous RSA (Rivest—-Shamir—Adleman) cryptosystem is an asymmetric cryptoscheme
using a public key to encrypt a message and a private key to decrypt it [46]. The public
key is a product of two large prime numbers (for example, a product of two safe primes)
and the hardness of a hostile attack is based on the difficulty of factoring such a product.
Factorization is especially difficult if the primes in question are of comparable size.
Cryptographic applications provide a strong modern motivation for studying such prime
numbers, and it is conjectured that there are infinitely many Sophie Germain (and hence
safe) primes. This conjecture is currently open, and the largest Sophie Germain prime
known has 51780 digits [44].

The search for Sophie Germain primes can be rephrased in the language of the
Bateman—Horn conjecture. Let f(f) =t and f>(t) = 2¢t+ 1. Then p is a Sophie Germain
prime if and only if fi(p) and f>(p) are simultaneously prime. The infinitude of these
primes follows from the Bateman—Horn conjecture, which also provides an asymptotic
estimate on their counting function. The polynomial

f(0) = L) fo(t) =12t + 1)

does not vanish identically modulo any prime since f(1) = 1 (mod?2) and f has at most
two roots modulo any odd prime. Since f vanishes at O and (p — 1)/2 for every odd
prime p, we deduce that
) 1 if p=2,
[OF; =
1P 2 if pis odd.

Thus,

1\~ p(p—2)
C(f, =2 1—— ~ 1.32032....
(1. f2) l_[( p) ( ) H(p—1)2

p#2
Since deg f; = deg f, = 1, we obtain the estimate
*odt
, fisx) ~ (1.32032... _—.
O(f1, fiix) ~ ( ) | Gogr?

This is the same asymptotic prediction as in the twin-prime case (Section 7.1).

7.4. Cunningham chains

A sequence pyp, p2, ..., py of primes is a Cunningham chain of the first kind if
pi+1 =2p; + 1 foreach 1 <i <n — 1 and of the second kind if p;y; = 2p; — 1. That
is, every p; in a Cunningham chain of the first kind, except for p,, is a Sophie Germain
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prime and every p;, except for py, is a safe prime. Cunningham chains are named after
the British mathematician Allan Joseph Champneys Cunningham (1842-1928) who first
introduced and studied them [14]. Here are a few examples of Cunningham chains of the
first kind

(2,5,11,23,47), (3,7), (89,179, 359,719, 1439, 2879),
and of the second kind
2,3,5), (7,13), (19, 37, 73).

The longest known Cunningham chains have length 19 [2].
The existence of arbitrary long Cunningham chains follows from the first
Hardy-Littlewood conjecture, and hence from the Bateman—Horn conjecture. Indeed, let

fio=t, LO=2fihx],..., fl®)=2f/_ @) 1.

We need these all to be prime simultaneously. Bateman—Horn guarantees the existence
of infinitely many such k-tuples and even gives an asymptotic estimate on the growth of
their number that is analogous to the argument above for Sophie Germain primes. On the
other hand, it has been proved that a Cunningham chain of infinite length cannot exist.
Indeed, suppose for instance that odd primes pj, pz, ... form a Cunningham chain of
the first kind. Then

i—1

Pit1 =2pi+1=22pi 1+ ) +1=---=2p +22j =2p+Q -1
j=0

and hence p;y; = 2° — 1 (mod p;). On the other hand, Fermat’s little theorem implies
that

271~ — 1 =0 (mod py),

meaning that p, would be divisible by p;, and so cannot be prime. This implies that, in
fact, a Cunningham chain starting with an odd prime p; cannot have more than p; — 1
terms in it. If p; = 2, then the same argument can be applied to the chain p», ps,....
Further information about Cunningham chains and their use in cryptography can be found
in [85].

7.5. Green—Tao theorem

One of the most spectacular results in twenty-first century number theory is the
Green—Tao theorem [31], which asserts that the primes contain arbitrarily long arithmetic
progressions. That is, given k > 1 there is a k-term arithmetic progression

b, b+a, b+2a,..., b+k—1a

of prime numbers. For example, 5, 11, 17,23, 29 is a 5-term arithmetic progression of
primes with b =5 and a = 6.
Consider the k linear polynomials

fit) =1, ht)y=t+a,..., fi(t)=t4 (k- Da,
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each of which is obviously irreducible. Let f = fif>--- fi denote their product. The
congruence f(t) =0 (mod p) is

1t +a)t+2a)--- (t + (k — Da) = 0 (mod p).
Thus,

) 1 if pla,
w =
PP = mingk, p) if pta.

If p <k and p{a, then f vanishes identically modulo p. Consequently, we require that
pla for all primes p < k. This suggests that we take a = p;#, the product of the first k
prime numbers. Then

Y odt
QUf1, fas ooy fis X) ~ C(f"fz"”’fk)/z (log )¢’

in which

k 1 —k+1 00 1 —k k
C(flvas""fk)zl_[<1__> 1_[ <1_—> (1——)

n=1 n n=k+1 p p

is a nonzero constant. This yields the following famous result [31, Thm. 1.1].

Theorem 7.5.1 (Green—Tao, 2004). For each positive integer k, the prime numbers
contain infinitely many arithmetic progressions of length k.

8. Limitations of the Bateman—Horn conjecture

Although we have touted the Bateman—Horn conjecture as “one conjecture to rule
them all”, it has its limitations. We briefly discuss a number of topics in number theory
that the conjecture does not appear to address.

First of all, the Bateman—Horn conjecture is a statement about the overall distribution
of prime numbers. It says little about what happens on small scales. For example, it does
not appear to resolve Legendre’s conjecture (for each n there is a prime between n> and
(n + 1)?). Bateman—Horn also does not tell us much about the additive properties of the
prime numbers. For instance, it does not seem to imply the Goldbach conjecture (every
even number greater than 4 is the sum of two odd prime numbers).

The Bateman—Horn conjecture does an excellent job predicting the asymptotic distri-
bution of primes generated by families of polynomials. However, it does not tell us much
about primes generated by non-polynomial functions. For example, it has nothing to say
about the number of primes of the form 22" + 1 (Fermat primes) or 2" — 1 (Mersenne
primes).

The conjecture has little to say about diophantine equations, such as the Fermat
equation x" + y" = 7" [77] or the Catalan equation x" — y™ = 1 [57]. For example,
the Bateman—Horn conjecture appears to have little overlap with the abc-conjecture and
its applications; see [17, Ch. 11] or [8, Ch. 12] for a detailed overview of the far-reaching
abc-conjecture and its numerous connections.



S.L. Aletheia-Zomlefer, L. Fukshansky and S.R. Garcia / Expo. Math. 38 (2020) 430-479 475

The Bateman—Horn conjecture provides asymptotics for counting functions related to
primes, but does not bound the size of the error terms. For example, it implies the prime
number theorem (Theorem 2.4.1), which asserts that 77 (x) ~ li(x). However, BH does not
tell us about | (x) — li(x)|. On the other hand, Schoenfeld [72] proved that the Riemann
hypothesis yields

1
7 (x) — li(x)| < 8—ﬁlogx, x > 2657.
T

Thus, the Riemann hypothesis implies the prime number theorem with a well-controlled
error term. Serge Lang says:

I regard it as a major problem to give an estimate for the error term in the
Bateman—Horn conjecture similar to the Riemann hypothesis. This could possibly
lead to a vast reconsideration of the context for Riemann’s explicit formulas.
[52, p. 11].

Number theory is one of the central branches of mathematics and connects with
analysis, algebra, combinatorics, and many other fields. It has enjoyed a great number
of exciting advances and breakthroughs in recent years, several of which have led to
Fields medals and other prestigious awards. It also contains a great number of difficult
and deep open problems and conjectures. To a large extent these influence the course of
modern mathematics. Some problems, like the Riemann hypothesis, the abc-conjecture,
the twin prime conjecture, or the Goldbach conjecture are well known and rightfully
celebrated by the mathematical community. Others, like the Bateman—Horn conjecture,
although of equally great stature, are not as well known. The goal of this paper was to
present an overview of this important problem, its connections, and its consequences.
It is our hope that we have convinced the reader that the Bateman—Horn conjecture
deserves to be ranked among the most pivotal unproven conjectures in the theory of
numbers.

Acknowledgments

We thank Keith Conrad for many technical corrections, Harold G. Diamond for
permitting us to use two photographs of Paul Bateman, Jeff Lagarias for several
suggestions about the exposition, Florian Luca for introducing us to the Bateman—Horn
conjecture, and Hugh Montgomery for his remarks about Bateman. We especially thank
Roger A. Horn for supplying us with his extensive recollections and several photographs,
and for many comments on an initial draft of this paper. Special thanks goes to the
anonymous referee for suggesting dozens of improvements to the exposition.

Disclaimer

This paper originally appeared on the arXiv under the title “One conjecture to rule
them all: Bateman—Horn” (https://arxiv.org/abs/1807.08899).


https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899
https://arxiv.org/abs/1807.08899

476

S.L. Aletheia-Zomlefer, L. Fukshansky and S.R. Garcia / Expo. Math. 38 (2020) 430-479

References

(1

(2]
(3]

(4]

[3]

(6]
(71
(8]
[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]
[24]

[25]

[26]

Bethany Anderson, The Birth of the Computer Age at Illinois, University of Illinois Archives, https:/
/archives.library.illinois.edu/blog/birth-of-the-computer-age/.

D. Augustin, Cunningham Chain records, http://primerecords.dk/Cunningham_Chain_records.htm.

A. Baker, Linear forms in the logarithms of algebraic numbers. I, II, III, Mathematika 13 (1966)
204-216; Mathematika 14 (1967) 102-107;  Mathematika 14 (1967) 220-228, MR 0220680.
Paul T. Bateman, Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime
numbers, Math. Comp. 16 (1962) 363-367, MR 0148632.

Paul T. Bateman, Roger A. Horn, Primes represented by irreducible polynomials in one variable,
in: Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 119-132,
MR 0176966.

Paul T. Bateman, Rosemarie M. Stemmler, Waring’s problem for algebraic number fields and primes
of the form (p” — 1)/(p? — 1), Tlinois J. Math. 6 (1962) 142-156, MR 0138616.

N.G.W.H. Beeger, Report on some calculations of prime numbers, Nieuw Arch. Wiskde. 20 (1939)
48-50, MR 0000393.

E. Bombieri, W. Gubler, Heights in Diophantine Geometry, in: New Mathematical Monographs, vol.
4, Cambridge University Press, Cambridge, 2006, p. 652.

V.Y. Bouniakowsky, Nouveaux théoremes relatifs a la distinction des nombres premiers et a la
décomposition des entiers en facteurs, Mém. Acad. Sci. St. Pétersbourg (6) (1857) 305-329.

Wouter Castryck, Etienne Fouvry, Gergely Harcos, Emmanuel Kowalski, Philippe Michel, Paul Nelson,
Eytan Paldi, Janos Pintz, Andrew V. Sutherland, Terence Tao, Xiao-Feng Xie, New equidistribution
estimates of Zhang type, Algebra Number Theory 8 (9) (2014) 2067-2199, MR 3294387.

James A. Clarkson, On the series of prime reciprocals, Proc. Amer. Math. Soc. 17 (1966) 541, MR
0188132.

Keith Conrad, Irreducible values of polynomials: a non-analogy, in: Number Fields and Function
Fields—Two Parallel Worlds, in: Progr. Math., vol. 239, Birkhduser Boston, Boston, MA, 2005, pp.
71-85, MR 2176587.

Brian Conrad, Keith Conrad, Robert Gross, Prime specialization in genus 0, Trans. Amer. Math. Soc.
360 (6) (2008) 2867-2908, MR 2379779.

A.J.C. Cunningham, On hyper-even numbers and on Fermat’s numbers, Proc. London Math. Soc. (2)
5 (1907) 237-274.

H. Davenport, A. Schinzel, A note on certain arithmetical constants, Illinois J. Math. 10 (1966)
181-185.

Martin Davis, Hilary Putnam, Julia Robinson, The decision problem for exponential diophantine
equations, Ann. of Math. (2) 74 (1961) 425-436, MR 0133227.

J.-M. De Koninck, F. Luca, Analytic Number Theory. Exploring the Anatomy of Integers, Graduate
Studies in Mathematics, vol. 134, American Mathematical Society, Providence, RI, 2012, p. 414.
Kevin Destagnol, Efthymios Sofos, Prime and square-free values of polynomials in moderately many
variables, https://arxiv.org/abs/1801.03082.

Harold G. Diamond, Paul T. Bateman, Celebratio Mathematica, http://celebratio.org/Bateman_PT/cove
1/323/, 2015.

Leonard Eugene Dickson, A new extension of Dirichlet’s theorem on prime numbers, Messenger Math.
33 (1904) 155-161.

D.S. Dummit, R.M. Foote, Abstract Algebra, third ed., John Wiley & Sons, Inc., 2004, p. 944.
Leonhard Euler, Lettre CXLIX (Euler a Goldbach), The Euler Archive, http://eulerarchive.maa.org/co
rrespondence/letters/O00877.pdf.

T. Foo, L. Zhao, On primes represented by cubic polynomials, Math. Z. 274 (1-2) (2013) 323-340.
John Friedlander, Henryk Iwaniec, The polynomial X? 4 Y* captures its primes, Ann. of Math. (2)
148 (3) (1998) 945-1040, MR 1670065.

G.W. Fung, H.C. Williams, Quadratic polynomials which have a high density of prime values, Math.
Comp. 55 (191) (1990) 345-353, MR 1023759.

Stephan Ramon Garcia, Roger A. Horn, A Second Course in Linear Algebra, Cambridge Mathematical
Textbooks, Cambridge University Press, 2017.


https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
https://archives.library.illinois.edu/blog/birth-of-the-computer-age/
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://primerecords.dk/Cunningham_Chain_records.htm
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb3
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb3
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb3
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb3
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb3
http://www.ams.org/mathscinet-getitem?mr=0220680
http://www.ams.org/mathscinet-getitem?mr=0220680
http://www.ams.org/mathscinet-getitem?mr=0220680
http://www.ams.org/mathscinet-getitem?mr=0220680
http://www.ams.org/mathscinet-getitem?mr=0220680
http://www.ams.org/mathscinet-getitem?mr=0220680
http://www.ams.org/mathscinet-getitem?mr=0220680
http://www.ams.org/mathscinet-getitem?mr=0148632
http://www.ams.org/mathscinet-getitem?mr=0148632
http://www.ams.org/mathscinet-getitem?mr=0148632
http://www.ams.org/mathscinet-getitem?mr=0148632
http://www.ams.org/mathscinet-getitem?mr=0148632
http://www.ams.org/mathscinet-getitem?mr=0148632
http://www.ams.org/mathscinet-getitem?mr=0148632
http://www.ams.org/mathscinet-getitem?mr=0176966
http://www.ams.org/mathscinet-getitem?mr=0176966
http://www.ams.org/mathscinet-getitem?mr=0176966
http://www.ams.org/mathscinet-getitem?mr=0176966
http://www.ams.org/mathscinet-getitem?mr=0176966
http://www.ams.org/mathscinet-getitem?mr=0176966
http://www.ams.org/mathscinet-getitem?mr=0176966
http://www.ams.org/mathscinet-getitem?mr=0138616
http://www.ams.org/mathscinet-getitem?mr=0138616
http://www.ams.org/mathscinet-getitem?mr=0138616
http://www.ams.org/mathscinet-getitem?mr=0138616
http://www.ams.org/mathscinet-getitem?mr=0138616
http://www.ams.org/mathscinet-getitem?mr=0138616
http://www.ams.org/mathscinet-getitem?mr=0138616
http://www.ams.org/mathscinet-getitem?mr=0000393
http://www.ams.org/mathscinet-getitem?mr=0000393
http://www.ams.org/mathscinet-getitem?mr=0000393
http://www.ams.org/mathscinet-getitem?mr=0000393
http://www.ams.org/mathscinet-getitem?mr=0000393
http://www.ams.org/mathscinet-getitem?mr=0000393
http://www.ams.org/mathscinet-getitem?mr=0000393
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb8
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb8
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb8
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb9
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb9
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb9
http://www.ams.org/mathscinet-getitem?mr=3294387
http://www.ams.org/mathscinet-getitem?mr=3294387
http://www.ams.org/mathscinet-getitem?mr=3294387
http://www.ams.org/mathscinet-getitem?mr=3294387
http://www.ams.org/mathscinet-getitem?mr=3294387
http://www.ams.org/mathscinet-getitem?mr=3294387
http://www.ams.org/mathscinet-getitem?mr=3294387
http://www.ams.org/mathscinet-getitem?mr=0188132
http://www.ams.org/mathscinet-getitem?mr=0188132
http://www.ams.org/mathscinet-getitem?mr=0188132
http://www.ams.org/mathscinet-getitem?mr=0188132
http://www.ams.org/mathscinet-getitem?mr=0188132
http://www.ams.org/mathscinet-getitem?mr=0188132
http://www.ams.org/mathscinet-getitem?mr=0188132
http://www.ams.org/mathscinet-getitem?mr=2176587
http://www.ams.org/mathscinet-getitem?mr=2176587
http://www.ams.org/mathscinet-getitem?mr=2176587
http://www.ams.org/mathscinet-getitem?mr=2176587
http://www.ams.org/mathscinet-getitem?mr=2176587
http://www.ams.org/mathscinet-getitem?mr=2176587
http://www.ams.org/mathscinet-getitem?mr=2176587
http://www.ams.org/mathscinet-getitem?mr=2379779
http://www.ams.org/mathscinet-getitem?mr=2379779
http://www.ams.org/mathscinet-getitem?mr=2379779
http://www.ams.org/mathscinet-getitem?mr=2379779
http://www.ams.org/mathscinet-getitem?mr=2379779
http://www.ams.org/mathscinet-getitem?mr=2379779
http://www.ams.org/mathscinet-getitem?mr=2379779
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb14
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb14
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb14
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb15
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb15
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb15
http://www.ams.org/mathscinet-getitem?mr=0133227
http://www.ams.org/mathscinet-getitem?mr=0133227
http://www.ams.org/mathscinet-getitem?mr=0133227
http://www.ams.org/mathscinet-getitem?mr=0133227
http://www.ams.org/mathscinet-getitem?mr=0133227
http://www.ams.org/mathscinet-getitem?mr=0133227
http://www.ams.org/mathscinet-getitem?mr=0133227
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb17
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb17
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb17
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
https://arxiv.org/abs/1801.03082
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://celebratio.org/Bateman_PT/cover/323/
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb20
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb20
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb20
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb21
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb23
http://www.ams.org/mathscinet-getitem?mr=1670065
http://www.ams.org/mathscinet-getitem?mr=1670065
http://www.ams.org/mathscinet-getitem?mr=1670065
http://www.ams.org/mathscinet-getitem?mr=1670065
http://www.ams.org/mathscinet-getitem?mr=1670065
http://www.ams.org/mathscinet-getitem?mr=1670065
http://www.ams.org/mathscinet-getitem?mr=1670065
http://www.ams.org/mathscinet-getitem?mr=1023759
http://www.ams.org/mathscinet-getitem?mr=1023759
http://www.ams.org/mathscinet-getitem?mr=1023759
http://www.ams.org/mathscinet-getitem?mr=1023759
http://www.ams.org/mathscinet-getitem?mr=1023759
http://www.ams.org/mathscinet-getitem?mr=1023759
http://www.ams.org/mathscinet-getitem?mr=1023759
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb26
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb26
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb26

[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]

[51]
[52]

[53]

[54]

S.L. Aletheia-Zomlefer, L. Fukshansky and S.R. Garcia / Expo. Math. 38 (2020) 430-479 477

Stephan Ramon Garcia, Elvis Kahoro, Florian Luca, Primitive root bias for twin primes, Experiment.
Math. 28 (2) (2019) 151-160, https://doi.org/10.1080/10586458.2017.1360809.

Stephan Ramon Garcia, Florian Luca, Timothy Schaaff, Primitive root biases for prime pairs I:
Existence and non-totality of biases, J. Number Theory 185 (2018) 93-120, MR 3734344,

Martin Gardner, Mathematical games: The remarkable lore of the prime numbers, Sci. Am. 210 (1964)
120-128.

A. Granville, Harald Cramér and the distribution of prime numbers. Harald Cramér Symposium
(Stockholm, 1993), Scand. Actuar. J. 1 (1995) 12-28.

Ben Green, Terence Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math.
(2) 167 (2) (2008) 481-547, MR 2415379.

Richard K. Guy, Unsolved problems in number theory, third ed., Problem Books in Mathematics,
Springer-Verlag, New York, 2004, p. xviii+437, MR 2076335.

G.H. Hardy, J.E. Littlewood, Some problems of ‘partitio numerorum’; III: On the expression of a
number as a sum of primes, Acta Math. 114 (3) (1923) 215-273, MR 1555183.

G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, sixth ed., Oxford University Press,
Oxford, 2008, p. xxii+621, Revised by D.R. Heath-Brown and J. H. Silverman, With a foreword by
Andrew Wiles, MR 2445243,

D.R. Heath-Brown, Primes represented by x> 4 2y3, Acta Math. 186 (1) (2001) 1-84.

Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952) 227-253, MR
0053135.

D. Hensley, I. Richards, On the incompatibility of two conjectures concerning primes, in: Analytic
Number Theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), Amer.
Math. Soc., Providence, R.I, 1973, pp. 123-127.

D. Hensley, I. Richards, Primes in intervals, Acta Arith. 25 (1973/74) 375-391.

Roger A. Horn, personal communication.

Alfred Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962) 225-241,
MR 0140521.

Roger A. Horn, Charles R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge,
1994, p. viii+607, Corrected reprint of the 1991 original, MR 1288752 (95¢:15001).

Roger A. Horn, Charles R. Johnson, Matrix analysis, second ed., Cambridge University Press,
Cambridge, 2013, p. xviii+643, MR 2978290.

Michael J. Jacobson Jr., Hugh C. Williams, New quadratic polynomials with high densities of prime
values, Math. Comp. 72 (241) (2003) 499-519, MR 1933834.

Jarai, et al., The Prime Database: 1372119412921952171960-1, http://primes.utm.edu/primes/page.php
?1d=77705.

James P. Jones, Daihachiro Sato, Hideo Wada, Douglas Wiens, Diophantine representation of the set
of prime numbers, Amer. Math. Monthly 83 (6) (1976) 449-464, MR 0414514.

J. Katz, Y. Lindell, Introduction to Modern Cryptography, second ed., Chapman and Hall/CRC, 2014,
p. 603.

Alexander A. Klyachko, Stable bundles, representation theory and Hermitian operators, Sel. Math.
(N.S.) 4 (3) (1998) 419-445, MR 1654578.

Dominic Klyve, Explicit bounds on twin primes and Brun’s Constant, ProQuest LLC, Ann Arbor, MI,
2007, p. 226, Thesis (Ph.D.)-Dartmouth College, MR 2712414.

Allen Knutson, Terence Tao, The honeycomb model of GL,(C) tensor products. i. proof of the
saturation conjecture, J. Amer. Math. Soc. 12 (4) (1999) 1055-1090, MR 1671451.

Edmund Landau, Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes, Math. Ann. 56
(4) (1903) 645-670, MR 1511191.

S. Lang, La conjecture de Bateman-Horn, Gaz. Math. 67 (1996) 82-84.

Serge Lang, Math talks for undergraduates, Springer-Verlag, New York, 1999, p. x+121, MR
1697559.

Philippe Lebacque, Generalized Mertens and Brauer-Siegel theorems, Acta Arith. 130 (4) (2007)
333-350.

Daniel A. Marcus, Number fields, Springer-Verlag, New York-Heidelberg, 1977, p. viii+279,
Universitext, MR 0457396.


https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
https://doi.org/10.1080/10586458.2017.1360809
http://www.ams.org/mathscinet-getitem?mr=3734344
http://www.ams.org/mathscinet-getitem?mr=3734344
http://www.ams.org/mathscinet-getitem?mr=3734344
http://www.ams.org/mathscinet-getitem?mr=3734344
http://www.ams.org/mathscinet-getitem?mr=3734344
http://www.ams.org/mathscinet-getitem?mr=3734344
http://www.ams.org/mathscinet-getitem?mr=3734344
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb29
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb29
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb29
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb30
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb30
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb30
http://www.ams.org/mathscinet-getitem?mr=2415379
http://www.ams.org/mathscinet-getitem?mr=2415379
http://www.ams.org/mathscinet-getitem?mr=2415379
http://www.ams.org/mathscinet-getitem?mr=2415379
http://www.ams.org/mathscinet-getitem?mr=2415379
http://www.ams.org/mathscinet-getitem?mr=2415379
http://www.ams.org/mathscinet-getitem?mr=2415379
http://www.ams.org/mathscinet-getitem?mr=2076335
http://www.ams.org/mathscinet-getitem?mr=2076335
http://www.ams.org/mathscinet-getitem?mr=2076335
http://www.ams.org/mathscinet-getitem?mr=2076335
http://www.ams.org/mathscinet-getitem?mr=2076335
http://www.ams.org/mathscinet-getitem?mr=2076335
http://www.ams.org/mathscinet-getitem?mr=2076335
http://www.ams.org/mathscinet-getitem?mr=1555183
http://www.ams.org/mathscinet-getitem?mr=1555183
http://www.ams.org/mathscinet-getitem?mr=1555183
http://www.ams.org/mathscinet-getitem?mr=1555183
http://www.ams.org/mathscinet-getitem?mr=1555183
http://www.ams.org/mathscinet-getitem?mr=1555183
http://www.ams.org/mathscinet-getitem?mr=1555183
http://www.ams.org/mathscinet-getitem?mr=2445243
http://www.ams.org/mathscinet-getitem?mr=2445243
http://www.ams.org/mathscinet-getitem?mr=2445243
http://www.ams.org/mathscinet-getitem?mr=2445243
http://www.ams.org/mathscinet-getitem?mr=2445243
http://www.ams.org/mathscinet-getitem?mr=2445243
http://www.ams.org/mathscinet-getitem?mr=2445243
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb35
http://www.ams.org/mathscinet-getitem?mr=0053135
http://www.ams.org/mathscinet-getitem?mr=0053135
http://www.ams.org/mathscinet-getitem?mr=0053135
http://www.ams.org/mathscinet-getitem?mr=0053135
http://www.ams.org/mathscinet-getitem?mr=0053135
http://www.ams.org/mathscinet-getitem?mr=0053135
http://www.ams.org/mathscinet-getitem?mr=0053135
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb37
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb37
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb37
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb37
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb37
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb38
http://www.ams.org/mathscinet-getitem?mr=0140521
http://www.ams.org/mathscinet-getitem?mr=0140521
http://www.ams.org/mathscinet-getitem?mr=0140521
http://www.ams.org/mathscinet-getitem?mr=0140521
http://www.ams.org/mathscinet-getitem?mr=0140521
http://www.ams.org/mathscinet-getitem?mr=0140521
http://www.ams.org/mathscinet-getitem?mr=0140521
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=1288752(95c:15001)
http://www.ams.org/mathscinet-getitem?mr=2978290
http://www.ams.org/mathscinet-getitem?mr=2978290
http://www.ams.org/mathscinet-getitem?mr=2978290
http://www.ams.org/mathscinet-getitem?mr=2978290
http://www.ams.org/mathscinet-getitem?mr=2978290
http://www.ams.org/mathscinet-getitem?mr=2978290
http://www.ams.org/mathscinet-getitem?mr=2978290
http://www.ams.org/mathscinet-getitem?mr=1933834
http://www.ams.org/mathscinet-getitem?mr=1933834
http://www.ams.org/mathscinet-getitem?mr=1933834
http://www.ams.org/mathscinet-getitem?mr=1933834
http://www.ams.org/mathscinet-getitem?mr=1933834
http://www.ams.org/mathscinet-getitem?mr=1933834
http://www.ams.org/mathscinet-getitem?mr=1933834
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://primes.utm.edu/primes/page.php?id=77705
http://www.ams.org/mathscinet-getitem?mr=0414514
http://www.ams.org/mathscinet-getitem?mr=0414514
http://www.ams.org/mathscinet-getitem?mr=0414514
http://www.ams.org/mathscinet-getitem?mr=0414514
http://www.ams.org/mathscinet-getitem?mr=0414514
http://www.ams.org/mathscinet-getitem?mr=0414514
http://www.ams.org/mathscinet-getitem?mr=0414514
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb46
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb46
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb46
http://www.ams.org/mathscinet-getitem?mr=1654578
http://www.ams.org/mathscinet-getitem?mr=1654578
http://www.ams.org/mathscinet-getitem?mr=1654578
http://www.ams.org/mathscinet-getitem?mr=1654578
http://www.ams.org/mathscinet-getitem?mr=1654578
http://www.ams.org/mathscinet-getitem?mr=1654578
http://www.ams.org/mathscinet-getitem?mr=1654578
http://www.ams.org/mathscinet-getitem?mr=2712414
http://www.ams.org/mathscinet-getitem?mr=2712414
http://www.ams.org/mathscinet-getitem?mr=2712414
http://www.ams.org/mathscinet-getitem?mr=2712414
http://www.ams.org/mathscinet-getitem?mr=2712414
http://www.ams.org/mathscinet-getitem?mr=2712414
http://www.ams.org/mathscinet-getitem?mr=2712414
http://www.ams.org/mathscinet-getitem?mr=1671451
http://www.ams.org/mathscinet-getitem?mr=1671451
http://www.ams.org/mathscinet-getitem?mr=1671451
http://www.ams.org/mathscinet-getitem?mr=1671451
http://www.ams.org/mathscinet-getitem?mr=1671451
http://www.ams.org/mathscinet-getitem?mr=1671451
http://www.ams.org/mathscinet-getitem?mr=1671451
http://www.ams.org/mathscinet-getitem?mr=1511191
http://www.ams.org/mathscinet-getitem?mr=1511191
http://www.ams.org/mathscinet-getitem?mr=1511191
http://www.ams.org/mathscinet-getitem?mr=1511191
http://www.ams.org/mathscinet-getitem?mr=1511191
http://www.ams.org/mathscinet-getitem?mr=1511191
http://www.ams.org/mathscinet-getitem?mr=1511191
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb51
http://www.ams.org/mathscinet-getitem?mr=1697559
http://www.ams.org/mathscinet-getitem?mr=1697559
http://www.ams.org/mathscinet-getitem?mr=1697559
http://www.ams.org/mathscinet-getitem?mr=1697559
http://www.ams.org/mathscinet-getitem?mr=1697559
http://www.ams.org/mathscinet-getitem?mr=1697559
http://www.ams.org/mathscinet-getitem?mr=1697559
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb53
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb53
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb53
http://www.ams.org/mathscinet-getitem?mr=0457396
http://www.ams.org/mathscinet-getitem?mr=0457396
http://www.ams.org/mathscinet-getitem?mr=0457396
http://www.ams.org/mathscinet-getitem?mr=0457396
http://www.ams.org/mathscinet-getitem?mr=0457396
http://www.ams.org/mathscinet-getitem?mr=0457396
http://www.ams.org/mathscinet-getitem?mr=0457396

478

[55]
[56]
[57]

[58]
[59]

[60]
[61]

[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]

[76]
[77]

[78]
[79]
[80]

[81]

[82]

[83]

S.L. Aletheia-Zomlefer, L. Fukshansky and S.R. Garcia / Expo. Math. 38 (2020) 430-479

Ju. V. Matijasevi¢, The diophantineness of enumerable sets, Dokl. Akad. Nauk SSSR 191 (1970)
279-282, MR 0258744.

James Maynard, Small gaps between primes, Ann. of Math. (2) 181 (1) (2015) 383-413, MR
3272929.

Preda Mihailescu, Primary cyclotomic units and a proof of catalan’s conjecture, J. Reine Angew. Math.
572 (2004) 167-195, MR 2076124.

Hugh L. Montgomery, personal communication.

H.L. Montgomery, R.C. Vaughan, Multiplicative Number Theory I: Classical Theory, Reprint,
Cambridge Studies in Advanced Mathematics (Book 97), 2012, p. 572.

P. Moree, Approximation of singular series and automata, Manuscripta Math. 101 (2000) 385-399.
B. Z. Moroz, On the representation of primes by polynomials: a survey of some recent results, Preprints
of the Max-Planck-Institut fiir Mathematik, Bonn 21 (2008).

Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery, An introduction to the theory of numbers,
Fifth, John Wiley & Sons, Inc., New York, 1991, p. xiv+529, MR 1083765.

Bruce P. Palka, Editor’s endnotes, Amer. Math. Monthly 111 (5) (2004) 456-460.

T. Paul, Bateman—biography, Int. J. Number Theory 11 (5) (2015) xv—xviii, MR 3376239.

Paul Pollack, Not Always Buried Deep: A Second Course in Elementary Number Theory, American
Mathematical Society, Providence, RI, 2009, p. xvi+303, MR 2555430 (2010i:11003).

G. Pdlya, 1.J. Schoenberg, Remarks on de la Vallée Poussin means and convex conformal maps of
the circle, Pacific J. Math. 8 (1958) 295-334, MR 0100753.

Georg Rabinowitsch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkorpern,
J. Reine Angew. Math. 142 (1913) 153-164, MR 1580865.

Tan Richards, On the incompatibility of two conjectures concerning primes; a discussion of the use of
computers in attacking a theoretical problem, Bull. Amer. Math. Soc. 80 (1974) 419-438, MR 03378
32.

Michael Rosen, A generalization of Mertens’ theorem, J. Ramanujan Math. Soc. 14 (1) (1999) 1-19.
St. Ruscheweyh, T. Sheil-Small, Hadamard products of Schlicht functions and the Pdlya-Schoenberg
conjecture, Comment. Math. Helv. 48 (1973) 119-135, MR 0328051.

A. Schinzel, W. Sierpifiski, Sur certaines hypothéses concernant les nombres premiers, Acta Arith. 4
(1958) 185-208;  erratum 5 (1958) 259, MR 0106202.

Lowell Schoenfeld, Sharper bounds for the Chebyshev functions 6(x) and v (x). II, Math. Comp. 30
(134) (1976) 337-360, MR 0457374.

Atle Selberg, An elementary proof of the prime-number theorem for arithmetic progressions, Canad.
J. Math. 2 (1950) 66-78, MR 0033306.

V. Shoup, A Computational Introduction to Number Theory and Algebra, second ed., Cambridge
University Press, 2009, p. 600.

H.M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan
Math. J. 14 (1967) 1-27, MR 0222050.

H.M. Stark, On the “gap” in a theorem of heegner, J. Number Theory 1 (1969) 16-27, MR 0241384.
Tan Stewart, David Tall, Algebraic number theory and Fermat’s last theorem, Fourth, CRC Press, Boca
Raton, FL, 2016, p. xix+322, MR 3443702.

Terence Tao, 254A, Supplement 4: Probabilistic models and heuristics for the primes (optional), http
s://terrytao.wordpress.com/tag/cramers-random-model/.

Terence Tao, Mertens’ theorems, https://terrytao.wordpress.com/2013/12/11/mertens-theorems/.
Terence Tao, The prime number theorem in arithmetic progressions, and dueling conspira-
cies, https:/terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-a
nd-dueling-conspiracies/.

Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, third ed., Graduate
Studies in Mathematics, vol. 163, American Mathematical Society, Providence, RI, 2015, p. xxiv+629,
Translated from the 2008 French edition by Patrick D. F. Ion, MR 3363366.

Charles Vanden Eynden, Proofs that > 1/p diverges, Amer. Math. Monthly 87 (5) (1980) 394-397,
MR 567727.

Martin H. Weik, ILLIAC, A Third Survey of Domestic Electronic Digital Computing Systems, http://
www.ed-thelen.org/comp-hist/BRL61-ibm7070.htmI#ILLIAC, 1961.


http://www.ams.org/mathscinet-getitem?mr=0258744
http://www.ams.org/mathscinet-getitem?mr=0258744
http://www.ams.org/mathscinet-getitem?mr=0258744
http://www.ams.org/mathscinet-getitem?mr=0258744
http://www.ams.org/mathscinet-getitem?mr=0258744
http://www.ams.org/mathscinet-getitem?mr=0258744
http://www.ams.org/mathscinet-getitem?mr=0258744
http://www.ams.org/mathscinet-getitem?mr=3272929
http://www.ams.org/mathscinet-getitem?mr=3272929
http://www.ams.org/mathscinet-getitem?mr=3272929
http://www.ams.org/mathscinet-getitem?mr=3272929
http://www.ams.org/mathscinet-getitem?mr=3272929
http://www.ams.org/mathscinet-getitem?mr=3272929
http://www.ams.org/mathscinet-getitem?mr=3272929
http://www.ams.org/mathscinet-getitem?mr=2076124
http://www.ams.org/mathscinet-getitem?mr=2076124
http://www.ams.org/mathscinet-getitem?mr=2076124
http://www.ams.org/mathscinet-getitem?mr=2076124
http://www.ams.org/mathscinet-getitem?mr=2076124
http://www.ams.org/mathscinet-getitem?mr=2076124
http://www.ams.org/mathscinet-getitem?mr=2076124
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb59
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb59
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb59
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb60
http://www.ams.org/mathscinet-getitem?mr=1083765
http://www.ams.org/mathscinet-getitem?mr=1083765
http://www.ams.org/mathscinet-getitem?mr=1083765
http://www.ams.org/mathscinet-getitem?mr=1083765
http://www.ams.org/mathscinet-getitem?mr=1083765
http://www.ams.org/mathscinet-getitem?mr=1083765
http://www.ams.org/mathscinet-getitem?mr=1083765
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb63
http://www.ams.org/mathscinet-getitem?mr=3376239
http://www.ams.org/mathscinet-getitem?mr=3376239
http://www.ams.org/mathscinet-getitem?mr=3376239
http://www.ams.org/mathscinet-getitem?mr=3376239
http://www.ams.org/mathscinet-getitem?mr=3376239
http://www.ams.org/mathscinet-getitem?mr=3376239
http://www.ams.org/mathscinet-getitem?mr=3376239
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=2555430(2010i:11003)
http://www.ams.org/mathscinet-getitem?mr=0100753
http://www.ams.org/mathscinet-getitem?mr=0100753
http://www.ams.org/mathscinet-getitem?mr=0100753
http://www.ams.org/mathscinet-getitem?mr=0100753
http://www.ams.org/mathscinet-getitem?mr=0100753
http://www.ams.org/mathscinet-getitem?mr=0100753
http://www.ams.org/mathscinet-getitem?mr=0100753
http://www.ams.org/mathscinet-getitem?mr=1580865
http://www.ams.org/mathscinet-getitem?mr=1580865
http://www.ams.org/mathscinet-getitem?mr=1580865
http://www.ams.org/mathscinet-getitem?mr=1580865
http://www.ams.org/mathscinet-getitem?mr=1580865
http://www.ams.org/mathscinet-getitem?mr=1580865
http://www.ams.org/mathscinet-getitem?mr=1580865
http://www.ams.org/mathscinet-getitem?mr=0337832
http://www.ams.org/mathscinet-getitem?mr=0337832
http://www.ams.org/mathscinet-getitem?mr=0337832
http://www.ams.org/mathscinet-getitem?mr=0337832
http://www.ams.org/mathscinet-getitem?mr=0337832
http://www.ams.org/mathscinet-getitem?mr=0337832
http://www.ams.org/mathscinet-getitem?mr=0337832
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb69
http://www.ams.org/mathscinet-getitem?mr=0328051
http://www.ams.org/mathscinet-getitem?mr=0328051
http://www.ams.org/mathscinet-getitem?mr=0328051
http://www.ams.org/mathscinet-getitem?mr=0328051
http://www.ams.org/mathscinet-getitem?mr=0328051
http://www.ams.org/mathscinet-getitem?mr=0328051
http://www.ams.org/mathscinet-getitem?mr=0328051
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb71
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb71
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb71
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb71
http://www.ams.org/mathscinet-getitem?mr=0106202
http://www.ams.org/mathscinet-getitem?mr=0106202
http://www.ams.org/mathscinet-getitem?mr=0106202
http://www.ams.org/mathscinet-getitem?mr=0106202
http://www.ams.org/mathscinet-getitem?mr=0106202
http://www.ams.org/mathscinet-getitem?mr=0106202
http://www.ams.org/mathscinet-getitem?mr=0106202
http://www.ams.org/mathscinet-getitem?mr=0457374
http://www.ams.org/mathscinet-getitem?mr=0457374
http://www.ams.org/mathscinet-getitem?mr=0457374
http://www.ams.org/mathscinet-getitem?mr=0457374
http://www.ams.org/mathscinet-getitem?mr=0457374
http://www.ams.org/mathscinet-getitem?mr=0457374
http://www.ams.org/mathscinet-getitem?mr=0457374
http://www.ams.org/mathscinet-getitem?mr=0033306
http://www.ams.org/mathscinet-getitem?mr=0033306
http://www.ams.org/mathscinet-getitem?mr=0033306
http://www.ams.org/mathscinet-getitem?mr=0033306
http://www.ams.org/mathscinet-getitem?mr=0033306
http://www.ams.org/mathscinet-getitem?mr=0033306
http://www.ams.org/mathscinet-getitem?mr=0033306
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb74
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb74
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb74
http://www.ams.org/mathscinet-getitem?mr=0222050
http://www.ams.org/mathscinet-getitem?mr=0222050
http://www.ams.org/mathscinet-getitem?mr=0222050
http://www.ams.org/mathscinet-getitem?mr=0222050
http://www.ams.org/mathscinet-getitem?mr=0222050
http://www.ams.org/mathscinet-getitem?mr=0222050
http://www.ams.org/mathscinet-getitem?mr=0222050
http://www.ams.org/mathscinet-getitem?mr=0241384
http://www.ams.org/mathscinet-getitem?mr=0241384
http://www.ams.org/mathscinet-getitem?mr=0241384
http://www.ams.org/mathscinet-getitem?mr=0241384
http://www.ams.org/mathscinet-getitem?mr=0241384
http://www.ams.org/mathscinet-getitem?mr=0241384
http://www.ams.org/mathscinet-getitem?mr=0241384
http://www.ams.org/mathscinet-getitem?mr=3443702
http://www.ams.org/mathscinet-getitem?mr=3443702
http://www.ams.org/mathscinet-getitem?mr=3443702
http://www.ams.org/mathscinet-getitem?mr=3443702
http://www.ams.org/mathscinet-getitem?mr=3443702
http://www.ams.org/mathscinet-getitem?mr=3443702
http://www.ams.org/mathscinet-getitem?mr=3443702
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/tag/cramers-random-model/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2013/12/11/mertens-theorems/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
http://www.ams.org/mathscinet-getitem?mr=3363366
http://www.ams.org/mathscinet-getitem?mr=3363366
http://www.ams.org/mathscinet-getitem?mr=3363366
http://www.ams.org/mathscinet-getitem?mr=3363366
http://www.ams.org/mathscinet-getitem?mr=3363366
http://www.ams.org/mathscinet-getitem?mr=3363366
http://www.ams.org/mathscinet-getitem?mr=3363366
http://www.ams.org/mathscinet-getitem?mr=567727
http://www.ams.org/mathscinet-getitem?mr=567727
http://www.ams.org/mathscinet-getitem?mr=567727
http://www.ams.org/mathscinet-getitem?mr=567727
http://www.ams.org/mathscinet-getitem?mr=567727
http://www.ams.org/mathscinet-getitem?mr=567727
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC
http://www.ed-thelen.org/comp-hist/BRL61-ibm7070.html#ILLIAC

S.L. Aletheia-Zomlefer, L. Fukshansky and S.R. Garcia / Expo. Math. 38 (2020) 430-479 479

[84] Herbert S. Wilf, CaLculations relating to a conjecture of Pdlya and Schoenberg, Math. Comp. 17
(1963) 200-201, MR 0160892.

[85] A. Young, M. Yung, Finding length-3 positive cunningham chains and their cryptographic significance,
in: Algorithmic Number Theory: Third International Symposium, ANTS-III, Springer, New York, 1998,
pp. 289-298.

[86] Yitang Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (3) (2014) 1121-1174, MR

3171761.


http://www.ams.org/mathscinet-getitem?mr=0160892
http://www.ams.org/mathscinet-getitem?mr=0160892
http://www.ams.org/mathscinet-getitem?mr=0160892
http://www.ams.org/mathscinet-getitem?mr=0160892
http://www.ams.org/mathscinet-getitem?mr=0160892
http://www.ams.org/mathscinet-getitem?mr=0160892
http://www.ams.org/mathscinet-getitem?mr=0160892
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb85
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb85
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb85
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb85
http://refhub.elsevier.com/S0723-0869(18)30117-8/sb85
http://www.ams.org/mathscinet-getitem?mr=3171761
http://www.ams.org/mathscinet-getitem?mr=3171761
http://www.ams.org/mathscinet-getitem?mr=3171761
http://www.ams.org/mathscinet-getitem?mr=3171761
http://www.ams.org/mathscinet-getitem?mr=3171761
http://www.ams.org/mathscinet-getitem?mr=3171761
http://www.ams.org/mathscinet-getitem?mr=3171761

	The Bateman–Horn conjecture: Heuristic, history, and applications
	Introduction
	Preliminaries
	Asymptotic equivalence
	Big-O and little-o notation
	The logarithmic integral
	Prime number theorem

	A heuristic argument
	A single polynomial
	Effect of the degree.
	A sanity check
	Making a correction
	More than one polynomial
	The Bateman–Horn conjecture

	Historical background
	Predecessors of the conjecture
	Bateman, Horn, and the ILLIAC

	Why does the product converge?
	Infinite products
	Algebraic prerequisites
	Analytic prerequisites
	Convergence of the product

	Single polynomials
	Prime number theorem for arithmetic progressions
	Landau's conjecture and its relatives
	Tricking Bateman–Horn?
	Prime-generating polynomials
	A conjecture of Hardy and Littlewood
	Ulam's spiral

	Multiple polynomials
	Twin prime conjecture
	Cousin primes, sexy primes, and more
	Sophie Germain primes
	Cunningham chains
	Green–Tao theorem

	Limitations of the Bateman–Horn conjecture
	Acknowledgments
	Disclaimer

	References


