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Abstract

The Bateman–Horn conjecture is a far-reaching statement about the distribution of the prime
umbers. It implies many known results, such as the prime number theorem and the Green–Tao
heorem, along with many famous conjectures, such the twin prime conjecture and Landau’s
onjecture. We discuss the Bateman–Horn conjecture, its applications, and its origins.
c 2019 Elsevier GmbH. All rights reserved.
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1. Introduction

Given a collection of polynomials with integer coefficients, how often should we
xpect their values at integer arguments to be simultaneously prime? This general
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question subsumes a large number of different directions and investigations in analytic
number theory. A comprehensive answer is proposed by the famous Bateman–Horn
conjecture, first formulated by Paul T. Bateman and Roger A. Horn in 1962 [4,5]. This
conjecture is a far-reaching statement about the distribution of the prime numbers. Many
well-known theorems, such as the prime number theorem and the Green–Tao theorem,
follow from it. The conjecture also implies a variety of unproven conjectures, such as
the twin prime conjecture and Landau’s conjecture. We hope to convince the reader that
the Bateman–Horn conjecture deserves to be ranked among the Riemann hypothesis and

bc-conjecture as one of the most important unproven conjectures in number theory.
The amount of literature related to the Bateman–Horn conjecture is large: MathSciNet,

for example, shows over 100 citations to the original Bateman–Horn papers in which
the conjecture was formulated. Somewhat surprisingly, however, we did not find many
expository accounts besides a short note by Serge Lang [51] with just a quick overview of
the conjecture. It is a goal of this paper to provide a detailed exposition of the conjecture
and some of its ramifications. We assume no knowledge beyond elementary undergrad-
uate number theory. We introduce the necessary algebraic and analytic prerequisites as
need arises. We do not attempt a comprehensive survey of all the literature related to
the Bateman–Horn conjecture. For example, recent variations of the conjecture, say to
multivariate polynomials [18,61] or to polynomial rings over finite fields [12,13], are not
treated here.

The organization of this paper is as follows. Section 2 introduces asymptotic equiv-
alence, the logarithmic integral, and the prime number theorem. In Section 3, we go
through a careful heuristic argument based upon the Cramér model that explains most of
the key restrictions and predictions of the Bateman–Horn conjecture. Before proceeding
to various examples and applications of the conjecture, Section 4 revisits some of the
historical background. In particular, we include many personal recollections of Roger
Horn that have never before been published.

One of the main features of the Bateman–Horn conjecture is an explicit constant in the
main term of the asymptotic formula for the number of integers below a given threshold
at which a collection of polynomials simultaneously assume prime values. The expression
for this constant, however, is complicated and involves an infinite product. It is nontrivial
to see that this product converges and we are not aware of a detailed proof of this fact
anywhere in the literature. The original Bateman–Horn paper sketches the main idea
of this proof, but omits almost all of the details. We present this argument in detail in
Section 5.

Section 6 is devoted to a number of important instances and consequences of the single
polynomial case of the conjecture, while ramifications of the multiple polynomial case
are discussed in Section 7. Finally, we discuss some limitations of the Bateman–Horn
conjecture in Section 8. With this brief introduction, we are now ready to proceed.

2. Preliminaries

We will often need to compare the rate of growth of two real-valued functions of a
real variable as their arguments tend to infinity. To this end, we require a bit of notation.
Readers familiar with asymptotic equivalence, Big-O and little-o notation, and the prime

umber theorem should proceed to Section 3. A good source of information on classical
nalytic number theory is [17].
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2.1. Asymptotic equivalence

In what follows, we assume that f (x) and g(x) are continuous, real-valued functions
that are defined and nonzero for sufficiently large x . We write f ∼ g to mean that

lim
x→∞

f (x)
g(x)

= 1. (2.1.1)

We say that f and g are asymptotically equivalent when this occurs. The limit laws from
alculus show that ∼ is an equivalence relation; we use this fact freely.

Two polynomials are asymptotically equivalent if and only if they have the same
egree and the same leading coefficient. For example, 2x2

∼ 2x2
+ x + 1 since

lim
x→∞

2x2
+ x + 1
2x2 = lim

x→∞

(
1 +

1
x

+
1
x2

)
= 1.

t is important to note, however, that asymptotic equivalence does not necessarily mean
hat “ f and g are close together” in the sense that f − g is small. Although 2x2

∼

x2
+ x + 1, their difference (2x2

+ x + 1) − 2x2
= x + 1 is unbounded.

.2. Big-O and little-o notation

When we write f (x) = O(g(x)), we mean that there is a constant C such that
f (x)| ≤ C |g(x)| for sufficiently large x . For example,

4x2
+ 7x log x = O(x2) and sin x = O(1).

hat is the relationship between Big-O notation and asymptotic equivalence? If f ∼ g,
hen f (x) = O(g(x)) and g(x) = O( f (x)). Indeed, (2.1.1) and the definition of limits
nsure that | f (x)| ≤ 2|g(x)| and |g(x)| ≤ 2| f (x)| for sufficiently large x (the number 2
n the preceding inequalities can be replaced by any constant greater than 1). On the other
and, 2x = O(x) and x = O(2x), although x and 2x are not asymptotically equivalent.
ence the statement “ f ∼ g” is stronger than the statement “ f (x) = O(g(x)) and

g(x) = O( f (x))”, but both of these statements are asymptotic in their nature.
We say f (x) = o(g(x)) if

lim
x→∞

f (x)
g(x)

= 0.

For instance, x = o(x2) as x → ∞. Notice that if f ∼ g, then

1 = lim
x→∞

f (x)
g(x)

= lim
x→∞

f (x) − g(x) + g(x)
g(x)

= lim
x→∞

f (x) − g(x)
g(x)

+ 1,

nd so limx→∞
f (x)−g(x)

g(x) = 0. Thus, the error term satisfies | f (x) − g(x)| = o(g(x)). On
the other hand, the assertion that f (x) = O(g(x)) and g(x) = O( f (x)) does not guarantee

smaller order error term. Indeed, x = O(2x) and 2x = O(x), but |x − 2x | = |x | is not
(x) or o(2x).
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Fig. 1. The functions
∫ x

2
dt

(log t)k for k = 1, 2, 3, 4 and x ≥ 2.

.3. The logarithmic integral

In the theory of prime numbers the offset logarithmic integral3

Li(x) =

∫ x

2

dt
log t

(2.3.1)

and its close relatives frequently arise. Here log t denotes the natural logarithm4 of t .
Unfortunately, the integral (2.3.1) cannot be evaluated in closed form. As a consequence,
it is convenient to replace Li(x) and its relatives (see Fig. 1) with simpler functions that
are asymptotically equivalent.

Lemma 2.3.2.
∫ x

2

dt
(log t)k

∼
x

(log x)k
for k = 1, 2, . . ..

roof. L’Hôpital’s rule and the fundamental theorem of calculus imply that

lim
x→∞

∫ x
2

dt
(log t)k

x/(log x)k
L
= lim

x→∞

1/(log x)k

1/(log x)k − k/(log x)k+1 = lim
x→∞

1
1 − k/ log x

= 1. □

One can be a little more precise than Lemma 2.3.2. Integration by parts provides:

Li(x) =
x

log x
+ O

(
x

(log x)2

)
nd ∫ x

2

dt
(log t)k

=
x

(log x)k
+ O

(
x

(log x)k+1

)
.

3 The function (2.3.1) is a close relative of the standard logarithmic integral li(x), in which the lower
imit of integration in (2.3.1) is 0 and the singularity at x = 1 is avoided by using a Cauchy principal value.
ince we are interested in large x , we use (2.3.1) instead.
4 The notation ln t may be more familiar to calculus students.
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Fig. 2. Graphs of Li(x) versus π (x) on various scales.

.4. Prime number theorem

The first signpost toward the Bateman–Horn conjecture is the prime number theorem,
hich describes the gross distribution of the primes. Let π (x) denote the number of
rimes at most x . For example, π (10.5) = 4 since 2, 3, 5, 7 ≤ 10.5. The following result
as proved independently by Hadamard and de la Vallée Poussin in 1896; see Fig. 2.

heorem 2.4.1 (Prime Number Theorem). π (x) ∼ Li(x).

Although Li(x) ∼ x/ log x , the logarithmic integral provides a more accurate
pproximation to π (x); see Table 1. For simplicity, we work now with the approximation
(x) ∼ x/ log x and develop a probabilistic model of the prime numbers that will guide
ur progress toward the Bateman–Horn conjecture [78].

For fixed c > 0 and large x , the prime number theorem tells us to expect about

x + cx
log(x + cx)

−
x − cx

log(x − cx)
∼

2cx
log x

primes in the interval [x − cx, x + cx]. Dividing by the length 2cx of the interval, it
follows that the probability that a natural number in the vicinity of x is prime is roughly
1/ log x . We use this repeatedly as a guide in our heuristic arguments.
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Table 1
The logarithmic integral Li(x) is a better approximation to the prime counting function
π (x) than is x/ log x . The entries in the table have been rounded to the nearest integer.

x π (x) Li(x) x/ log x

1 000 168 177 145
10,000 1,229 1,245 1,086

100,000 9,592 9,629 8,686
1,000,000 78,498 78,627 72,382

10,000,000 664,579 664,917 620,421
100,000,000 5,761,455 5,762,208 5,428,681

1,000,000,000 50,847,534 50,849,234 48,254,942
10,000,000,000 455,052,511 455,055,614 434,294,482

100,000,000,000 4,118,054,813 4,118,066,400 3,948,131,654
1,000,000,000,000 37,607,912,018 37,607,950,280 36,191,206,825

3. A heuristic argument

Now that we know about the gross distribution of the primes, it is natural to ask about
he distribution of primes of certain forms. For example, are there infinitely many primes
f the form n2

+1? This was asked at the 1912 International Congress of Mathematicians
y Edmund Landau (1877–1938) and remains open today.5

.1. A single polynomial

We let Z[x] denote the set of polynomials in x with coefficients in Z, the set of
ntegers. We denote by N the set {1, 2, . . .} of natural numbers. For f ∈ Z[x], we define

Q( f ; x) = #{n ≤ x : f (n) is prime},

n which #S denotes the number of elements of a set S. We investigate some conditions
hat f must satisfy if it is to generate infinitely many distinct primes. To avoid trivialities,
uppose that f is nonconstant and that Q( f ; x) → ∞.

Leading coefficient. The degree of f , denoted deg f , must be at least one. Moreover,
the leading coefficient of f must be positive.

Irreducible. We claim that f is irreducible; that is, it cannot be factored as a product
of two polynomials in Z[x], neither of which is ±1.6 Suppose that f = gh, in which
g, h ∈ Z[x]. Without loss of generality, we may assume that the leading coefficients
of g and h are positive. Then g(n) = 1 or h(n) = 1 for infinitely many n since f
assumes prime values infinitely often. Consequently, g − 1 or h − 1 is a polynomial
with infinitely many roots and hence g or h is identically 1. Thus, f is irreducible.

5 Although commonly known as Landau’s conjecture, its first appearance is in a 1752 letter from Leonhard
Euler (1707–1783) to Christian Goldbach (1690–1764) [22, p. 2–3].

6 Gauss’ lemma ensures that a primitive f ∈ Z[x] is irreducible in Z[x] if and only if it is irreducible
n Q[x], the ring of polynomials with rational coefficients [21, Prop. 5, p. 303].



436 S.L. Aletheia-Zomlefer, L. Fukshansky and S.R. Garcia / Expo. Math. 38 (2020) 430–479

3

m
c
p

i
t

• Nonvanishing modulo every prime. A nonconstant f ∈ Z[x] may be irreducible, yet
fail to be prime infinitely often. For example, f (x) = x2

+ x + 2 is irreducible, but
f (n) is divisible by 2 for all n ∈ Z. Similarly, f (x) = x3

− x + 3 is irreducible and

x3
− x + 3 ≡ x3

− x ≡ x(x − 1)(x + 1) ≡ 0 (mod 3),

so f (n) is divisible by 3 for all n ∈ Z. Thus, we must insist that f does not vanish
identically modulo any prime.

.2. Effect of the degree.

Suppose that f ∈ Z[x] is nonconstant, irreducible, and does not vanish identically
odulo any prime. Let d = deg f and suppose that f has a positive leading coefficient,

. Then f (x) ∼ cxd and our heuristic from the prime number theorem suggest that the
robability f (n) is prime is about

1
log f (n)

∼
1

log(cxd )
=

1
d log x + log c

∼
1

d log x
. (3.2.1)

This suggests that

Q( f ; x) ∼

⌊x⌋∑
n=2

1
d log x

∼
1

deg f

∫ x

2

dt
log t

. (3.2.2)

Is this correct? We should do some computations to see whether this pans out.

3.3. A sanity check

Consider the polynomial

f (x) = x2
+ 1,

which is nonconstant, irreducible, and has a positive leading coefficient. Since f (0) = 1,
t follows that f does not vanish identically modulo any prime. Landau’s conjecture is
hat f assumes infinitely many prime values; that is, Q( f ; x) → ∞.

According to (3.2.2)

Q( f ; N ) ∼
1
2

Li(N ). (3.3.1)

However, the numerical evidence disagrees; see Table 2. On the positive side, the loss is
not total since it appears that our estimate is only off by a constant factor. What is this
constant factor and where does it come from?

3.4. Making a correction

We were too quick to celebrate the fact that f does not vanish identically modulo any
prime. Our prediction needs to take into account how likely it is that f (n) ≡ 0 (mod p).
For example, f (n) ≡ n + 1 (mod 2) and hence f (n) is even with probability 1 .
2
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Table 2
The estimate (3.3.1) is clearly incorrect. However, the ratio between the correct
answer and our prediction appears to converge slowly to a constant (the value of
1
2 Li(N ) is rounded to the nearest integer for display purposes).

N Q( f ; N ) 1
2 Li(N ) Q( f ; N )/ 1

2 Li(N )

100 19 15 1.3067
1,000 112 88 1.26866

10,000 841 623 1.3509
100,000 6,656 4,814 1.38252

1,000,000 54,110 39,313 1.37638
10,000,000 456,362 332,459 1.37269

100,000,000 3,954,181 2,881,104 1.37245
1,000,000,000 34,900,213 25,424,617 1.37269

If we assume for the sake of our heuristic argument that divisibility by distinct primes
p and q are independent events, then we should weight our prediction by7∏

p

(
1 −

ω f (p)
p

)
, (3.4.1)

in which ω f (p) is the number of solutions to f (x) ≡ 0 (mod p).
However, there is a problem. The constant factor suggested by Table 2, approximately

1.372, is greater than one, whereas (3.4.1) is not. Therefore, the preceding analysis cannot
be correct. More seriously, there are convergence issues with (3.4.1); see Section 5.1 for
information about infinite products.

We need to weight the factors in (3.4.1) against the probabilities that randomly selected
integers are not divisible by p. This suggests that we adjust (3.3.1) by

C( f ) =

∏
p

(
1 −

1
p

)−1 (
1 −

ω f (p)
p

)
=

∏
p

p − ω f (p)
p − 1

. (3.4.2)

Does this agree with our numerical computations? To compute ω f (p), we need to count
the number of solutions to x2

+ 1 ≡ 0 (mod p). Since −1 is a square modulo p if and
only if p = 2 or p ≡ 1 (mod 4) [62],

ω f (p) =

⎧⎪⎨⎪⎩
1 if p = 2,
2 if p ≡ 1 (mod 4),
0 if p ≡ 3 (mod 4).

The hundred millionth partial product of (3.4.2) yields

C( f ) ≈ 1.37281,

which agrees with the data in Table 2. In particular, this suggests an affirmative answer
to Landau’s problem.

7 An important convention we adhere to throughout this paper is that the letter p always denotes a prime
umber. A product or sum indexed by p indicates that product or sum runs over all prime numbers.
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Let us pause to summarize the discussion so far. For a single polynomial f , we suspect
hat

Q( f ; x) ∼
C( f )
deg f

∫ x

2

dt
log t

,

in which

C( f ) =

∏
p

(
1 −

1
p

)−1 (
1 −

ω f (p)
p

)
. (3.4.3)

This is the Bateman–Horn conjecture for a single polynomial. What about families of
multiple polynomials?

3.5. More than one polynomial

Suppose that f1, f2, . . . , fk ∈ Z[x] are distinct irreducible polynomials with positive
leading coefficients. The same reasoning in (3.2.1) tells us the probability that all of the
fi (n) are prime is

k∏
i=1

1
log fi (n)

∼

k∏
i=1

1
di log n

=
1

(
∏k

i=1 deg fi )(log n)k
.

Thus, the expected number of n at most x for which f1(n), f2(n), . . . , fk(n) are simul-
aneously prime is around∫ x

2

1

(
∏k

i=1 deg fi )(log n)k
=

1∏k
i=1 deg fi

∫ x

2

dt
(log t)k

.

As before, we must amend this with a suitable correction factor.
Although perhaps no single fi vanishes identically modulo a prime, these polynomials

ight conspire to make

f = f1 f2 · · · fk (3.5.1)

vanish identically modulo some prime. For example, neither f1(x) = x nor f2(x) = x −1
anish identically modulo a prime, although their product f (x) = x(x − 1) vanishes
dentically modulo 2. This “congruence obstruction” prevents n and n + 1 from being
imultaneously prime infinitely often. Consequently, we must require that f does not
anish identically modulo any prime.

With f as in (3.5.1), one final adjustment to (3.4.3) is necessary. Instead of dividing
y 1−1/p in (3.4.3), we must now divide by (1−1/p)k , the probability that a randomly
elected k-tuple of integers has no element divisible by p.

.6. The Bateman–Horn conjecture

The preceding heuristic deductions make a compelling argument in favor of the
ollowing conjecture.
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Bateman–Horn Conjecture. Let f1, f2, . . . , fk ∈ Z[x] be distinct irreducible
polynomials with positive leading coefficients, and let

Q( f1, f2, . . . , fk; x) = #{n ≤ x : f1(n), f2(n), . . . , fk(n) are prime}. (3.6.1)

Suppose that f = f1 f2 · · · fk does not vanish identically modulo any prime. Then

Q( f1, f2, . . . , fk; x) ∼
C( f1, f2, . . . , fk)∏k

i=1 deg fi

∫ x

2

dt
(log t)k

, (3.6.2)

in which

C( f1, f2, . . . , fk) =

∏
p

(
1 −

1
p

)−k (
1 −

ω f (p)
p

)
(3.6.3)

and ω f (p) is the number of solutions to f (x) ≡ 0 (mod p).

Under the hypotheses of the Bateman–Horn conjecture, the infinite product (3.6.3)
lways converges. However, the proof is delicate and nontrivial; see Section 5 for the
etails.

The only case of the Bateman–Horn conjecture that has been proven is the prime
umber theorem for arithmetic progressions (Theorem 6.1.1). However, an upper bound
imilar to (3.6.2) is known to be true. The Brun sieve provides a constant B that depends
nly on k and the degrees of the polynomials involved such that

Q( f1, f2, . . . , fk; x) ≤
B C( f1, f2, . . . , fk)∏k

i=1 deg fi

∫ x

2

dt
(log t)k

or sufficiently large x [81, Thm. 3, Sect. I.4.2]. Thus, the prediction afforded by the
ateman–Horn conjecture is not unreasonably large.

. Historical background

Before proceeding to applications and examples of the Bateman–Horn conjecture, we
rst discuss its historical context. In particular, we briefly examine several important
ntecedents that the conjecture generalizes. We are fortunate to have available the
ersonal recollections of Roger A. Horn, who was kind enough to provide his account
f the events leading up to the formulation of the conjecture.

.1. Predecessors of the conjecture

The Bateman–Horn conjecture is the culmination of hundreds of years of theorems and
onjectures about the large-scale distribution of the prime numbers [32]. In Section 3 we
rrived at the conjecture from the prime number theorem and heuristic reasoning based
pon the Cramér probabilistic model of the primes (see [30] for a nice exposition of this
odel). Although this is easy to do in hindsight, in reality the Bateman–Horn conjecture
volved naturally from a family of interrelated conjectures, all of which remain open.
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We state these conjectures in modern terminology and with our present notation for the
sake of uniformity and clarity.

Bunyakovsky conjecture [9] (1854): Suppose that f ∈ Z[x] is irreducible, deg f ≥ 1,
he leading coefficient of f is positive, and the sequence f (1), f (2), . . . is relatively
rime. Then f (n) is prime infinitely often.

This conjecture, which concerns prime values assumed by a single polynomial, was
roposed by Viktor Yakovlevich Bunyakovsky (1804–1889). It implies, for example,
andau’s conjecture on the infinitude of primes of the form n2

+ 1. The condition
hat f (1), f (2), . . . is relatively prime is equivalent to the assumption that f does not
anish identically modulo any prime, which appears in the Bateman–Horn conjecture.
irichlet’s theorem on primes in arithmetic progressions (1837) is the degree-one case
f the Bunyakovsky conjecture.

ickson’s conjecture [20] (1904): If f1, f2, . . . , fk ∈ Z[x] are of the form fi (x) =

i x + bi , in which each ai is positive, and there is no congruence obstruction, then
f1(n), f2(n), . . . , fk(n) are simultaneously prime infinitely often.

This was conjectured by Leonard Eugene Dickson (1874–1954) as an extension of
irichlet’s theorem. By a “congruence obstruction” we mean that the f1, f2, . . . , fk

re not prevented from assuming infinitely many prime values by some combination
f congruences. For example, f1(x) = x + 3, f2(x) = x + 7, and f3(x) = x − 1 are
ongruent modulo 3 to x , x + 1, and x + 2, respectively. For each n ∈ N, at least one
f f1(n), f2(n), f3(n) is divisible by three. Since these polynomials are nonconstant, this
revents them from being simultaneously prime infinitely often.

irst Hardy–Littlewood Conjecture [33] (1923): Let 0 < m1 < m2 < · · · < mk .
nless there is a congruence obstruction, the number of primes q ≤ x such that
+ 2m1, q + 2m2, . . . , q + 2mk are prime is asymptotic to

2k
∏

p odd

(
1 −

1
p

)−(k+1) (
1 −

w(p; m1,m2, . . . ,mk)
p

) ∫ x

2

dt
(log t)k+1 ,

n which w(p; m1,m2, . . . ,mk) is the number of distinct residues of 0,m1,m2, . . . ,mk

odulo p.

Unlike the conjectures of Bunyakovsky and Dickson, the first Hardy–Littlewood
onjecture provides an asymptotic expression for the number of primes of a given form.
t is a special case of the Bateman–Horn conjecture with

f1(x) = x, f2(x) = x + 2m1, . . . , fk+1(x) = x + 2mk .

here are k + 1 polynomials involved, which accounts for the power k + 1 that appears
in the product and the integrand.

The classic paper [33] of Hardy and Littlewood is full of conjectures, labeled
“Conjecture A” through “Conjecture P”. Most of these are subsumed under what is now
known as the First Hardy–Littlewood conjecture, which we have just stated. Hardy and
Littlewood end their paper with the remark:
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Fig. 3. Paul T. Bateman (1919–2012).

We trust that it will not be supposed that we attach any exaggerated importance to
the speculations which we have set out in this last section. We have not forgotten
that in pure mathematics, and in the Theory of Numbers in particular, ‘it is only
proof that counts’. It is quite possible, in the light of the history of the subject,
that the whole of our speculations may be ill-founded. Such evidence as there is
points, for what it is worth, in the opposite direction. In any case it may be useful
that, finding ourselves in possession of an apparently fruitful method, we should
develop some of its consequences to the full, even where accurate investigation is
beyond our powers.

At least one of their conjectures is “ill-founded”. The second Hardy–Littlewood conjec-
ture asserts that π (x + y) ≤ π (x) + π (y) for x ≥ 2. In 1974, Douglas Hensley and
Ian Richards proved that the second conjecture is incompatible with the first; see [38],
as well as [37,68]. It is not known which of the two conjectures is true, although most
number theorists favor the first.

Schinzel’s Hypothesis H [71] (1958): Let f1, f2, . . . , fk be distinct irreducible, integer-
valued polynomials that have positive leading coefficients. If for each prime p there exists
an m ∈ N such that none of the values f1(m), f2(m), . . . , fk(m) are divisible by p, then
there are infinitely many n ∈ N such that f1(n), f2(n), . . . , fk(n) are prime.

This general qualitative predecessor of the Bateman–Horn conjecture was formulated
y Andrzej Schinzel (1937–) in 1958. At that time, Schinzel was a student of Wacław
ierpiński (1882–1969) at Warsaw University, and the hypothesis was first stated in its
eneral form in their joint paper [71]. In fact, Schinzel wrote the reviews of the two papers
f Bateman and Horn [4,5] for Mathematical Reviews and Zentralblatt MATH, the main
eviewing services of the American and European Mathematical Societies, respectively.
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The Bateman–Horn conjecture is a quantitative version of Hypothesis H. The hypothe-
es of both conjectures are essentially the same. The condition that for each prime p there

exists an integer m such that none of the values f1(m), f2(m), . . . , fk(m) are divisible by
p is equivalent to the condition that the product f1 f2 · · · fk does not vanish identically

odulo any prime.
The Bateman–Horn conjecture unifies all of the conjectures above in one bold

rediction. It provides an asymptotic expression for the relevant counting function and,
oreover, its predictions agree well with numerical computation. We will chronicle many

onsequences of the conjecture in Sections 6 and 7.

.2. Bateman, Horn, and the ILLIAC

Paul T. Bateman (1919–2012) earned his Ph.D. in 1946 under Hans Rademacher
1892–1969) at the University of Pennsylvania (Fig. 3). He joined the mathematics
epartment of the University of Illinois, Urbana–Champaign in 1950 and stayed there
ntil his retirement in 1989, after which he was Professor Emeritus. He was department
ead from 1965 until 1980 and is credited by many for his leadership, incredible memory,
nd work ethic. Harold G. Diamond [19] tells us

Paul is perhaps best known to the number theory community for the Bateman–Horn
conjectural asymptotic formula for the number of k-tuples of primes generated by
systems of polynomials. . . Their formula extended and quantified several famous
conjectures of Hardy and J.E. Littlewood, and of Andrzej Schinzel, and they
illustrated its quality with calculations. This topic has been treated in dozens of
subsequent papers.

ugh Montgomery adds

Bateman not only organized an active number theory group in Urbana, with such
people as John Selfridge, Walter Philipp, Harold Diamond, and Heini Halberstam,
but he also did a lot to promote number theory around the country, and also he did
a huge amount of service to the AMS. Later, when Bateman died, he didn’t get
all the honor and credit he deserved. He had lived so long, that the (comparatively
young) editor of the AMS Notices had no idea who Bateman had been. He insisted
on just a very short (1 page or so) obituary, so many of the reminiscences never
saw the light of day. Harold Diamond may still have drafts of what we wanted to
publish [58].

ortunately, it appears that Diamond was able to publish much of the desired memorial
ribute online [19].

Roger A. Horn (1942–) received his Ph.D. from Stanford in 1967, under the direction
f Donald Spencer (1912–2001) and Charles Loewner (1893–1968); see Fig. 4. He
orked briefly at Santa Clara University before moving to Johns Hopkins in 1968, where
e founded the Department of Mathematical Sciences (now the Department of Applied
athematics and Statistics in 1972) He remained at Johns Hopkins until 1992, when he
oved to the University of Utah as Research Professor. He retired in 2015 and currently

esides in Tampa.
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Fig. 4. Photographs provided courtesy of Roger A. Horn.

Horn is known best for his long and storied career in matrix analysis. Among his chief
publications are the classic texts Matrix Analysis [42] and Topics in Matrix Analysis [41],

oth coauthored with Charles Johnson. Of his many papers, only two are on number
heory; both of these date from the early 1960s and concern the Bateman–Horn con-
ecture [4,5]. Consequently, many of his close colleagues are unaware of his connection
o a famous conjecture in number theory.8 For example, the third named author wrote

linear algebra textbook [26] with Roger Horn before he learned, in the course of a
umber theory project [27,28], that Roger was “the” Horn from Bateman–Horn!

How did Roger Horn co-propose an important conjecture in a field so far from his
wn? We are fortunate to have access to his detailed recollections [39].

In the early 1960s, the National Science Foundation funded several
summer programs intended to introduce college mathematics students to
computing. In 1962 I applied to, and was accepted into, one of those
programs, which was hosted by the Computing Center at the University of
Illinois in Urbana–Champaign.

There were about 10 participants, from all over the country. We were
housed in university dorm rooms, attended classes in the Computing Center,

8 A common misconception is that Roger Horn is the “Horn” from the famed Horn conjecture about the
eigenvalues of a sum of two Hermitian matrices, settled in 1999 by Knutson–Tao [49] and Klyachko [47].
That distinction belongs to Alfred Horn (1918–2001), who made the conjecture in 1962 [40], the same year
in which the Bateman–Horn conjecture appeared [4].
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Fig. 5. The ILLIAC I computer around 1952. Courtesy of the University of Illinois Archives.

and had unlimited access to the hottest computer on campus, the ILLIAC,
which later was known as the ILLIAC I when its successor, the ILLIAC II
was built.

The ILLIAC (Illinois Automatic Computer), which powered up on September 22,
952, was the first computer to be built and owned by a United States academic
nstitution; see Fig. 5. It was the second of two identical computers, the first of which
as the ORDVAC (Ordnance Discrete Variable Automatic Computer), built by the
niversity of Illinois for the government’s Ballistics Research Laboratory. The two
achines employed the architecture proposed by John von Neumann in 1945.

In those days, universities built their own computers: IBM hardware was of the
punch-card variety, for which businesses were the primary customers; they were
not well suited for scientific work. It was the size of a small house and it consumed
a prodigious amount of electric power. It stopped working frequently when one of
its thousands of vacuum tubes died. We programmed it in hexadecimal machine
code; no high-level user language (BASIC or FORTRAN, for example) was ever
written for it.

According to the archives of the University of Illinois, the ILLIAC weighed two tons,
easured 10×2×8.5 feet,9 and required approximately 2800 vacuum tubes to operate [1].
later survey, published in 1961 and based upon observations made in 1959, gives quite

9 Horn says “this was only the console, the big box visible in Fig. 5. All this stuff, and a huge power
supply, was in a big adjoining room (the size of a small house)”.
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different figures: 4427 vacuum tubes of twenty-seven different types [83]. It is likely that
the system was somewhat expanded and upgraded in the period since its construction in
1951 and the latter figure perhaps more closely approximates the system that Bateman
and Horn used.

Some classes were organized for us. One was on Boolean logic and
circuit design, taught by one of the engineers who was working on the design
of ILLIAC II. Another was on numerical analysis, taught by Herb Wilf, who
was a young assistant professor and author (with Anthony Ralston) of a new
numerical analysis textbook [Mathematical Methods for Digital Computers].
I first learned about interpolation and orthogonal polynomials in that class.

Initially, we were given small problems to program for the ILLIAC to
develop our programming skills. Programs were typed onto paper tape with
the same Teletype machines used by Western Union. Noisy! We submitted
our tapes to the ILLIAC operator, who fed them into the machine. We did
that a lot because most of the time our programs crashed. The ILLIAC had
a small speaker hooked up to a bit in its accumulator register, and gave out
a high-pitched whine when it went into a loop. The operator had to flip a
“kill” switch to stop it, and that was embarrassing.

The ILLIAC could read punched paper tape at a rate of 300 characters per second.
Moreover, “five hole teletype tape is used. Numerical data are read with a 4-hole code.
Alphanumerical data employs a 5-hole code and a special instruction” [83]. Output
appeared on paper tape at 60 characters per second, or on a page printer at a sluggish 10
characters per second.

After a couple of weeks we started work on some projects. The organizers had
lined up some faculty who were willing to mentor us and supervise projects. I
chose two: One was as part of a team of three supervised by Herb Wilf. We did a
lot of calculations in an attempt to find a counterexample to the Pólya–Schoenberg
conjecture (if two normalized univalent analytic functions on the unit disk have the
property that each maps the unit disk onto a convex domain, then their Hadamard
product has the same property). Part of the computation required testing some very
large Hermitian matrices for positive definiteness, so I learned something about that
topic. All of our runs produced negative results. . . no counterexamples found. This
was a good thing, because about 10 years later the conjecture became a theorem.

The conjecture, stated in 1958 by George Pólya (1887–1985) and Isaac Schoen-
berg (1903–1990) [66], became a theorem in 1973 when it was proved by Stephan
Ruscheweyh and Terence Sheil-Small [70]. Although we do not wish to drift too far
afield, there are a few tangential remarks of mild historical interest that are worth making.
First, Herbert Saul Wilf (1931–2012) was at Illinois from 1959 to 1962, after which
he moved to the University of Pennsylvania. Thus, Horn must have worked with Wilf
just before his departure. Wilf’s 1963 paper on the Pólya–Schoenberg conjecture also
mentions Horn’s contribution and identifies several other participants of the 1962 summer
research program:
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The machine program was planned and executed by Messrs. Roger A. Horn
(Cornell University), Forrest R. Miller Jr. (University of Oklahoma) and Gerald
Shapiro (Massachusetts Institute of Technology) who visited the Digital Computer
Laboratory at Illinois during a summer program for undergraduates in Applied
Mathematics sponsored by the National Science Foundation. These calculations
were made possible largely by their dedication and enthusiasm [84].

Now back to number theory and Roger Horn’s account of the origins of the Bateman–
orn conjecture [39].

My other project was a lone effort supervised by Paul T. Bateman, a famous
analytical number theorist; I think he was chair of the math department at the time.
His Ph.D. advisor was Hans Rademacher. He had me read some papers that dealt
with a variety of number-theoretic conjectures (there were then, and still are now,
a LOT of them!) with the goal of choosing something that might be amenable to
experimental computation. Eventually, we settled on the problem reported on in our
1962 Math. Comp. paper. I burned up about 7 h of ILLIAC time, but the results
were very interesting and gave increased confidence in the conjectures.

The UIUC mathematics department website and two short biographies of Bateman
ssert that he was department head (not chair) from 1965 until 1980 [19,64]. Hugh
ontgomery tells us that “Bateman was not the chair of the math dept when I arrived

s a freshman in 1962. The chair at that time was M.M. Day. But during my sophomore
ear, Day became ill with an ulcer, and Bateman was then asked to take over. He was
robably chair first, and then head later” [58].10

Of greater interest to us are the computations mentioned above. The paper [4], in
hich the Bateman–Horn conjecture is stated, says the following.

The second-named author [Roger Horn] used the ILLIAC to prepare a list of the
776 primes of the form p2

+ p+1 with p a prime less than 113,000. (The program
used was a straightforward one, and the running time was about 400 min.) The first
209 of these primes are listed by Bateman and Stemmler who considered primes
of the form p2

+ p + 1 in connection with a problem in algebraic number theory.

The “Stemmler” mentioned above is Rosemarie M.S. Stemmler, a student of Bateman
ho received her Ph.D. in 1959 [6]. Bateman and Horn computed Q( f1, f2; x) for various

x ≤ 113,000 with f1(t) = t and f2(t) = t2
+ t +1. On the third named author’s late-2013

Mac, the same computation takes only a tenth of a second!

10 Montgomery also remarks “I was interested in number theory already when I was in high school. At
Illinois I started taking their honors math courses. I got to know Bateman during the second half of my
sophomore year, when I took his graduate-level problem-solving class. I worked around 40 h per week on
that one class, while carrying a full load of other courses, but it was worth it. During the summer after my
junior year, he had me stay in Urbana and do a research project, probably on the same grant that Horn had
been on. It was sort of a precursor of REU”.
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Although the summer drew to a close, Horn continued to work on the project:

When the summer was over, I went back to Cornell for my senior year and found
that they had taken delivery of a brand new CDC [Control Data Corporation] 1604
computer. It took a while for folks to discover that it was in operation and move
their work to a new programming environment, so I was able to get quite a lot
of overnight time on the machine, which was much faster than the ILLIAC and
a lot more reliable. It had FORTRAN, too! I ran a lot of additional experiments
that were reported in our 1965 Symposia in Pure Math VIII paper [5]. And then
I graduated, went to graduate school, took other directions in my research, and
haven’t thought about these number theory issues since 1963.

We wrap things up with a humorous anecdote connected to the Bateman–Horn
conjecture. Serge Lang (1927–2005), in his book Math Talks for Undergraduates provides

ne of the few expositions of the conjecture [52]. In the introduction, he claims that his
one was too conversational and informal for certain editors:

[Paul] Halmos once characterized this style as “vulgar”, and obstructed publication
of excerpts in the Math Monthly. A decade later, in the 1990s, the present talk was
offered for publication again in the Math Monthly, and was turned down by the
editor (Roger Horn, this time) because of the spoken style. Well, I like the spoken
style, and I find it effective. Go figure. [52, p. 1]

There is a remarkable confluence here. Paul Halmos, the academic grandfather of the
third named author, was editor(-in-chief) of the American Mathematical Monthly from

982 to 1986. Herbert S. Wilf, who we met above in connection to the Pólya–Schoenberg
onjecture, was the editor from 1987 to 1991. Roger Horn was editor from 1997 to 2001!

Horn recalls that he “had a memorable bad experience once with Lang, while I was
ditor of the Monthly”. Although he has no recollection of a submission related to the
ateman–Horn conjecture, he does remember several submissions on other topics. He
lso vividly remembers a phone call in which “[Lang] shouted at me for ten minutes or
o, and then hung up”.

. Why does the product converge?

We now discuss the convergence of the product (3.6.3) that defines the Bateman–Horn
onstant C( f1, f2, . . . , fk). This is a delicate argument that requires elements of both
lgebraic and analytic number theory, along with a few tricks to deal with conditionally
onvergent infinite products. In [17, p. 36], the authors state:

It is not even clear that in formula (2.18) the expression C( f1, f2, . . . , fk) repre-
sents a product which converges to a positive limit.

We wish to provide a thorough account here since most of these details are suppressed
n the original source [4].
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5.1. Infinite products

Before we can proceed with the proof that the product (3.6.3) that defines the
ateman–Horn constant converges, we require a few general words about infinite
roducts.

The only way that a zero factor can appear in the evaluation of C( f1, f2, . . . , fk) is
f ω f (p) = p for some prime p; that is, if f vanishes identically modulo p. This is
rohibited by the hypotheses of the Bateman–Horn conjecture, so we can safely ignore
his possibility. Let an be a sequence in C\{−1}. Fix a branch of log z the logarithm with
og 1 = 0 and for which log(1 + an) is defined.

We say that
∏

∞

n=1(1+an) converges to L ̸= 0 if and only if
∑

∞

n=1 log(1+an) converges
to log L . Otherwise the infinite product diverges.

If an is a sequence of real numbers and
∑

∞

n=1 log(1+an) diverges to −∞, then we say
that

∏
∞

n=1(1 + an) diverges to zero. In particular, this means that the partial products∏N
n=1(1 + an) tend to zero as N → ∞.

It turns out that the infinite products that arise in the Bateman–Horn conjecture are
ften rather finicky. To handle them, we require the following convergence criterion.
lthough it is well known in analysis circles as a folk theorem, we are unable to find
reference that contains a proof. For the sake of completeness, we provide the proof

elow.

emma 5.1.1. Let an be a sequence in C\{−1}. If
∑

∞

n=1 |an|
2 < ∞, then

∑
∞

n=1 an
nd

∏
∞

n=1(1 + an) converge or diverge together.

roof. For |z| ≤
1
2 ,

log(1+z) =

∞∑
n=1

(−1)n−1zn

n
= z+

(
−

1
2

+
z
3

−
z2

4
+ · · ·

)
z2

= z+z2L(z), (5.1.2)

in which

|L(z)| ≤

∞∑
n=0

1
(n + 2)2n

= −2 + log 16 = 0.77258 . . . < 1.

f
∑

∞

n=1 |an|
2 < ∞, then there is an N such that |an| ≤

1
2 for n ≥ N . Therefore,

∞∑
n=N

log(1 + an) =

∞∑
n=N

an +

∞∑
n=N

a2
n L(an),

n which the second series on the right-hand side converges absolutely by the comparison
est. Thus,

∞∑
n=1

an converges ⇐⇒

∞∑
n=1

log(1 + an) converges

⇐⇒

∞∏
n=1

(1 + an) converges. □
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Example 5.1.3. The hypothesis
∑

∞

n=1 |an|
2 < ∞ is necessary in Lemma 5.1.1. If

an =
(−1)n√
n log n

for n ≥ 2, then
∞∑

n=2

|an|
2

=

∞∑
n=2

1
n log n

(5.1.4)

diverges by the integral test. However,
∑

∞

n=2 an converges by the alternating series test
while the second series on the right-hand side of

∞∑
n=4

log(1 + an) =

∞∑
n=4

an +

∞∑
n=4

L(an)
n log n

iverges by the limit comparison test against (5.1.4) since L(an) → −
1
2 by (5.1.2).11

The infinite product
∏

∞

n=1(1 + an) converges absolutely if
∏

∞

n=1(1 + |an|) converges;
his is equivalent to the convergence of

∑
∞

n=1 |an|. An infinite product that converges but
oes not converge absolutely is conditionally convergent.

.2. Algebraic prerequisites

Let K be a number field; that is, a finite algebraic extension of Q. This implies that
ach element of K is algebraic over Q and that the dimension of K as a Q-vector space
s finite. This dimension is called the degree of K over Q and denoted by [K : Q].

For each α ∈ K, there is a unique irreducible polynomial mα(x) ∈ Z[x] with relatively
prime coefficients and positive leading coefficient such that mα(α) = 0. This is the
minimal polynomial of α. The degree of α, denoted by degα, is the degree of the
polynomial mα , which is at most [K : Q]. One can show that

OK := {α ∈ K : mα(x) is monic}

is a subring of K (see, for instance, Theorem 2.9 of [77] or p.16 of [54]); it is the ring
of algebraic integers of K. Since mn(x) = x − n is irreducible for each n ∈ Z, it follows
that Z ⊆ OK.

For α ∈ K, let Q(α) denote the smallest (with respect to inclusion) subfield of K that
contains Q and α. The following important theorem asserts that every number field is
generated by a single algebraic integer [77, Thm. 2.2 & Cor. 2.12].

Theorem 5.2.1 (Primitive Element Theorem). If K is a number field, then there is a
θ ∈ OK such that K = Q(θ ).

If K = Q(θ ), then we have the field isomorphism

K ∼= Q[x]/⟨mθ (x)⟩,

11 To use (5.1.4) we require |a | ≤
1 . Note that |a | > 1 and |a | ≤

1 for n ≥ 4.
n 2 3 2 n 2
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in which ⟨mθ (x)⟩ is the (maximal) ideal in Q[x] generated by the irreducible polynomial
θ (x). In this case, [K : Q] = deg θ . Observe that Z[θ ], the set of integral linear

ombinations of powers of θ , is a subring of OK and hence OK is a ring extension
f Z[θ ]. The index of Z[θ ] inside OK (as abelian groups), which is finite, is denoted
OK : Z[θ ]].

We say that p is a rational prime if it is a prime in the ring Z; that is, if p is prime in
he traditional sense. For each rational prime p, the set pOK is an ideal in OK. Although
his ideal might not be a prime ideal in OK, it can be factored as a product of prime
deals [77, Thm. 5.6]. Thus, for each rational prime p there exist distinct prime ideals
1, p2, . . . , pk ⊂ OK and positive integers e1, e2, . . . , ek such that

pOK = p
e1
1 p

e2
2 · · · p

ek
k . (5.2.2)

his factorization is unique up to permutation of factors. Each prime ideal p ⊂ OK can
e present in the factorization for only one rational prime [77, Thm. 5.14c].

If ei > 1 for some i in (5.2.2), then p ramifies in K; the exponents e1, e2, . . . , ek are
alled ramification indices. There are only finitely many rational primes p that ramify
n a given number field [54, Cor. 2, p. 73]. Since prime ideals in OK are maximal
77, Thm. 5.3d], it follows that OK/pi is a field for each pi in the factorization (5.2.2).
n fact, it is a finite field of characteristic p [54, p. 56] and hence its cardinality is p fi

or some fi , which is called the inertia degree of p at pi (the notation fi is standard
nd should not be confused with the polynomials in the statement of the Bateman–Horn
onjecture). The norm of the ideal pi is

N (pi ) = |OK/pi | = p fi (5.2.3)

nd there are only finitely many prime ideals in OK of a given norm [77, Thm. 5.17c]. The
actorization (5.2.2) is related to the factorization of mθ (x) modulo p. This connection
s given by the Dedekind factorization criterion (see [52, Prop. 25, p. 27]).

heorem 5.2.4 (Dedekind Factorization Criterion). Let K = Q(θ ), in which θ ∈ OK,
nd let p a rational prime whose ideal pOK factors as in (5.2.2). If p ∤ [OK : Z[θ ]],
hen there is a factorization

mθ (x) ≡ g1(x)e1 g2(x)e2 · · · gk(x)ek (mod p)

nto powers of irreducible polynomials gi (x) modulo p, in which deg gi (x) = fi , the
nertia degree of p at the corresponding prime ideal pi .

One immediate and important implication of this theorem is that

deg θ =

k∑
i=1

ei fi .

bserve also that mθ (a) ≡ 0 (mod p) for some a ∈ Z if and only if (x − a) | mθ (x)
odulo p. This occurs if and only if gi (x) = x − a for some i , in which case

fi = deg gi = 1 and (5.2.3) tells us that the corresponding prime ideal pi in the
actorization (5.2.2) has norm p. Since there are only finitely many primes that divide
he index [OK : Z[θ ]], we have the following corollary.
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Corollary 5.2.5. Let g(x) ∈ Z[x] be a monic irreducible polynomial with root θ and
let K = Q(θ ). For all but finitely many rational primes p, the number ωg(p) of solutions
to g(x) ≡ 0 (mod p) equals the number of prime ideals of norm p in the prime ideal
factorization of pOK.

5.3. Analytic prerequisites

Later on we will need the following theorem of Leonhard Euler. We present a proof
due to Clarkson [11]; see [82] for a survey of various proofs.

Theorem 5.3.1 (L. Euler, 1737).
∑

p
1
p diverges.

Proof. Let pn denote the nth prime number and suppose toward a contradiction that
∞

n=1
1
pn

converges. Since the tail end of a convergent series tends to zero, let K be so
arge that

∞∑
j=K+1

1
p j

<
1
2
.

Let Q = p1 p2 · · · pK and note that none of the numbers

Q + 1, 2Q + 1, 3Q + 1, . . .

s divisible by any of the primes p1, p2, . . . , pK . Now observe that
N∑

n=1

1
nQ + 1

≤

∞∑
m=1

( ∞∑
j=K+1

1
p j

)m

<

∞∑
m=1

(
1
2

)m

= 1

for N ≥ 1; the reason for the first inequality is the fact that the sum in the middle, when
expanded term-by-term, includes every term on the left-hand side (and with a coefficient
greater than or equal to 1). This is a contradiction, since

∑
∞

n=1
1

nQ+1 diverges by the
ntegral test. □

A more precise version of the preceding lemma was obtained by Franz Mertens
1840–1927). Since the proof of Mertens’ theorem would draw us too far afield, we
efer the reader to Terence Tao’s exposition for details [79].

heorem 5.3.2 (Mertens, 1874).∑
p≤x

1
p

= log log x + B + O
(

1
log x

)
in which B = 0.2614972128476 . . . is the Meissel–Mertens constant.

Much of the analytic theory of prime numbers goes through to prime ideals, mutatis
mutandis. Define

π (x) = |{p ⊂ O : p is a prime ideal and N (p) ≤ x}| ,
K K
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which is a generalization of the usual prime counting function π (x) = πQ(x). The prime
umber theorem asserts that π (x) ∼ x/ log x . This is a special case of Landau’s prime
deal theorem [50], [59, p. 194, p. 267].

heorem 5.3.3 (Prime Ideal Theorem). If K is a number field, then πK(x) ∼ Li(x).

Thus, the asymptotic distribution of prime ideals (by norm) in a number field
irrors that of the prime numbers in the integers. Therefore, it is not surprising to
nd an analogue of Mertens’ theorem (Theorem 5.3.2) that holds for prime ideals
69, Lemma 2.4] or [53, Prop. 2].

heorem 5.3.4 (Mertens Theorem for Number Fields). If K is an algebraic number field,
hen there is a constant C such that∑

N (p)≤x

1
N (p)

= log log x + C + O
(

1
log x

)
,

in which the sum runs over all nonzero prime ideals p in OK of norm at most x.

We are now in a position to prove the following convergence result (recall that p
lways denotes a prime number and that

∑
p means that we sum over all primes).

emma 5.3.5. Let g(x) ∈ Z[x] be monic and irreducible. For each rational prime p,
et ω(p) denote the number of solutions to g(x) ≡ 0 (mod p). Then∑

p

ω(p) − 1
p

converges.

Proof. Let K = Q(θ ), in which θ is a root of g. Then Corollary 5.2.5 implies that∑
p≤x

ω(p)
p

=

∑
N (p)≤x

1
N (p)

+ A,

n which the constant A arises from the finitely many rational primes p that are excluded
from Corollary 5.2.5. Theorems 5.3.2 and 5.3.4 imply that∑

p≤x

ω(p) − 1
p

=

∑
N (p)≤x

1
N (p)

−

∑
p≤x

1
p

+ A

=

[
log log x + C + O

(
1

log x

)]
−

[
log log x + B + O

(
1

log x

)]
+ A

= A − B + C + O
(

1
log x

)
onverges to A − B + C as x → ∞. □
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5.4. Convergence of the product

We are now ready to prove the convergence of the product (3.6.3) that defines the
Bateman–Horn constant. Let f1, f2, . . . , fk ∈ Z[x] be irreducible and define f =

f1 f2 · · · fk . Let ωi (p) and ω(p) denote the number of solutions in Z/pZ to fi (x) ≡

0 (mod p) and f (x) ≡ 0 (mod p), respectively.

Lemma 5.4.1. For all but finitely many primes p,

ω(p) = ω1(p) + · · · + ωk(p). (5.4.2)

Proof. Since p is prime, each zero of f in Z/pZ is a zero of some fi . Thus,

ω(p) ≤ ω1(p) + · · · + ωk(p).

On the other hand, every zero of each fi in Z/pZ is a zero of f . Hence it suffices to
show that fi and f j have no common zeros in Z/pZ if p is sufficiently large. Since
the polynomials fi (x) are irreducible in Z[x] they are irreducible in Q[x]. If i ̸= j then
gcd( fi , f j ) = 1 in Q[x], which is a Euclidean domain. Hence there exist polynomials
ui j (x) and vi j (x) in Q[x] such that

ui j (x) fi (x) + vi j (x) f j (x) = 1.

et di j be the least common denominator of the coefficients of ui j (x) and vi j (x), then
gi j (x) = di j ui j (x) and hi j (x) = di jvi j (x) are in Z[x], and we have:

gi j (x) fi (x) + hi j (x) f j (x) = di j .

Suppose that fi (x) mod p and f j (x) mod p have a common root r ∈ Z/pZ for some
prime p. Substituting r for x in the equation above and reducing modulo p yields

di j ≡ 0 (mod p),

eaning that p divides di j , which is only possible for finitely many primes p since p
has to be smaller than di j . Hence for all sufficiently large primes p the polynomials fi
and f j have no common zeros in Z/pZ. This completes proof. □

The product that defines the Bateman–Horn constant need not converge absolutely.
Consequently, we must take care to justify its convergence. We are now ready to prove
the main result of this section.

Theorem 5.4.3. The product that defines C( f1, f2, . . . , fk) converges.

Proof. Lemma 5.4.1 implies that∑
p≤x

ω(p) − k
p

=

k∑
i=1

∑
p≤x

ωi (p) − 1
p

+ D

or all x ≥ 0; the constant D arises because of the finitely many exceptions to (5.4.2).
he preceding lemma and Lemma 5.3.5 ensure that∑ k − ω(p)

p
converges. (5.4.4)
p
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Then a binomial expansion yields(
1 −

1
p

)−k (
1 −

ω(p)
p

)
= 1 +

k − ω(p)
p

+
B(p)

p2 ,

in which

B(p) =
k(k − 1)

2
− ω(p) + O

(
1
p

)
is uniformly bounded because |ω(p)| ≤ deg f . Let

ap =
k − ω(p)

p
+

B(p)
p2

nd observe that∑
p

ap =

∑
p

k − ω(p)
p

+

∑
p

B(p)
p2

onverges by (5.4.4) and the comparison test. Since

|ap|
2

=

(
k − ω(p)

p
+

B(p)
p2

)2

=
(k − ω(p))2

p2 +
2B(p)(k − ω(p))

p3 +
B(p)2

p4 ,

the comparison test ensures that
∑

p |ap|
2 converges. Consequently, Lemma 5.1.1 tells

s that
∏

p(1 + ap), the product that defines C( f1, f2, . . . , fk), converges. □

The preceding argument, first envisioned in its general form by Bateman and Horn
but also in some special cases by Nagell (1921), Rademacher (1924) and Ricci (1937);
ee [15] for a discussion), shows that the constant C( f1, f2, . . . , fk) is well defined.
owever it is still hard to compute due to the fact that the convergence of the product in
uestion is not necessarily absolute or rapid. This consideration leaves an open problem:
xpress the constant C( f1, f2, . . . , fk) in terms of an absolutely convergent product. This
as done in some special cases in a subsequent paper [5] of Bateman and Horn, and then
enerally by Davenport and Schinzel [15]. Several methods to accelerate the convergence
ate of infinite products for approximation purposes use L-functions; see [43,60].

. Single polynomials

The Bateman–Horn conjecture implies a wide range of known theorems and unproved
onjectures. In this section we examine several such results in the case of a single
olynomial. This provides us with some practical experience computing Bateman–
orn constants and it also highlights some delicate convergence issues. Applications of

he Bateman–Horn conjecture to families of two or more polynomials are studied in
ection 7.

.1. Prime number theorem for arithmetic progressions

In 1837, Peter Gustav Lejeune Dirichlet (1805–1859) proved that if a and b are

elatively prime natural numbers, then there are infinitely many primes of the form at+b,
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in which t ∈ N. For example, there are infinitely many primes that end in 123,456,789.
To see this, apply Dirichlet’s result with a = 10,000,000 and b = 123,456,789.12

Let πa,b(x) denote the number of primes at most x that are of the form at + b. The
complex-variables proof of the prime number theorem can be modified to provide the
following asymptotic formulation of Dirichlet’s result [80] (see [73] and the discussion
on [65, p. 236] for information about elementary approaches).

Theorem 6.1.1 (Prime Number Theorem for Arithmetic Progressions). If a and b are
relatively prime natural numbers, then

πa,b(x) ∼
1
φ(a)

Li(x). (6.1.2)

Here

φ(n) = #
{
k ∈ {1, 2, . . . , n} : gcd(k, n) = 1

}
enotes the Euler totient function. Its value equals the order of the group (Z/nZ)× of
nits in Z/nZ. The totient function is multiplicative, in the sense that φ(mn) = φ(m)φ(n)
henever gcd(m, n) = 1. It enjoys the product decomposition

φ(n) = n
∏
p|n

(
1 −

1
p

)
, (6.1.3)

in which the expression p|n denotes that the product is taken over all primes p that
divide n. For example, φ(6) = 2 since only 1 and 5 are in the range {1, 2, . . . , 6} and
elatively prime to 6. The product formulation (6.1.3) tells us the same thing:

φ(6) = 6(1 − 1/2)(1 − 1/3) = 6( 1
2 )( 2

3 ) = 2.

What is the intuitive explanation behind the prime number theorem for arithmetic
progressions? If gcd(a, b) ̸= 1, then a and b share a common factor and hence at + b
s prime for at most one t . Thus, gcd(a, b) = 1 is a necessary condition for the
olynomial at + b to generate infinitely many primes. For each fixed a, this yields
xactly φ(a) admissible values of b (mod a). Since the prime number theorem tells us
hat π (x) ∼ Li(x), (6.1.2) tells us that each of the φ(a) admissible congruence classes

odulo a receives an approximately equal share of primes.
The prime number theorem for arithmetic progressions (Theorem 6.1.1) is a straight-

orward consequence of the Bateman–Horn conjecture. Let f (t) = at + b, in which
cd(a, b) = 1. Then

f (t) ≡ 0 (mod p) ⇐⇒ at ≡ −b (mod p). (6.1.4)

f p ∤ a, then a is invertible modulo p and the preceding congruence has a unique
olution. If p|a, then (6.1.4) has no solutions since gcd(a, b) = 1. Therefore,

ω f (p) =

{
1 if p ∤ a,
0 if p|a,

12 The values of t ≤ 100 for which at + b is prime are 11, 29, 43, 50, 59, 64, 68, 73, 97, 98.



456 S.L. Aletheia-Zomlefer, L. Fukshansky and S.R. Garcia / Expo. Math. 38 (2020) 430–479

w

s
t
p

6

a
F

i
d

and hence

C( f ; p) =

∏
p

(
1 −

1
p

)−1 (
1 −

ω f (p)
p

)
=

∏
p|a

(
1 −

1
p

)−1

=
a
φ(a)

by (6.1.3). In particular, the potentially infinite product reduces to a finite product indexed
only over the prime divisors of a. Since

at + b ≤ x ⇐⇒ t ≤
x − b

a
,

we have

πa,b(x) = Q
(

f ;
x − b

a

)
∼

a
φ(a)

·
(x − b)/a

log((x − b)/a)

=
a
φ(a)

·
(x/a) − (b/a)

log(x − b) − log a

∼
a
φ(a)

·
x/a

log(x − b)

∼
x

φ(a) log x
∼

1
φ(a)

Li(x),

hich is the desired result.
The weaker statement about simply the infinitude of primes in an arithmetic progres-

ion is a special case of the Bunyakovsky conjecture and is currently the only case of
hat conjecture which has been settled. The conjecture is open for quadratic and cubic
olynomials, as we discuss next.

.2. Landau’s conjecture and its relatives

In our heuristic argument (Section 3), we explained how Landau’s conjecture (there
re infinitely many primes of the form n2

+1) follows from the Bateman–Horn conjecture.
or f (t) = t2

+ 1, we showed that

Q( f ; x) ∼ (0.68640 . . .) Li(x);

n particular, the conjecture suggests that Landau’s intuition was correct. Let πLandau(x)
enote the number of primes of the form n2

+ 1 that are at most x . Since

t2
+ 1 ≤ x ⇐⇒ t ≤

√
x − 1,

it follows that

πLandau(x) = Q( f ;
√

x − 1) ∼ (0.68640 . . .) Li(
√

x − 1)

∼ (0.68640 . . .)
√

x − 1

log(
√

x − 1)

∼ (1.3728 . . .)
√

x
log x

.

Thus, π (x) grows like a constant times π (x)/
√

x .
Landau
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The Bateman–Horn conjecture also implies important variants of Landau’s conjecture.
For example, Friedlander and Iwaniec proved that there are infinitely many primes of
the form x2

+ y4 (they also provided asymptotics for the counting function of such
primes) [24]. For each fixed y ≥ 1, the Bateman–Horn conjecture suggests that there
are infinitely many primes of the form x2

+ y4. A result of Heath-Brown [35] guarantees
he existence of infinitely many primes (with an asymptotic formula for the growth of
heir number) of the form x3

+ 2y3, thereby confirming the conjecture of Hardy and
ittlewood on the infinitude of primes expressible as a sum of three cubes. These are

esults in the interesting and promising direction of representing primes by multivariate
olynomials, see the survey [61] and the recent preprint [18].

Let us briefly turn to cubic polynomials in one variable. A result of [23] states, roughly
peaking, that on the average polynomials of the form t3

+k for squarefree k > 1 assume
nfinitely many prime values at integer points, in some well-defined sense. We are not
ware of a definitive published result on any specific example of such a polynomial:
n existence of an infinitude of prime values of a cubic polynomial is a special case
f the Bunyakovsky conjecture that is sometimes called the “cubic primes conjecture”.
or example, f (t) = t3

− 2 is irreducible and does not vanish identically modulo any
rime. The Bateman–Horn conjecture predicts that this polynomial assumes prime values
nfinitely often.

.3. Tricking Bateman–Horn?

What happens if we replace n2
+ 1 with n2

− 1 = (n − 1)(n + 1)? The only prime of
his form is 3. Of course, the polynomial in question is reducible and hence is not even

permissible candidate for the conjecture. Does the Bateman–Horn conjecture “detect
his” attempted fraud, or does it just plow ahead and suggest to the unwary that there are
nfinitely many primes of this form? For the sake of curiosity, let us try it and see what
appens.

If f (n) = n2
− 1, then f (n) ≡ 0 (mod p) becomes n2

≡ 1 (mod p) and hence

ω f (p) =

{
1 if p = 2,
2 otherwise.

hus,

C( f ) =

∏
p≥3

p − 2
p − 1

=

∏
p≥3

(
1 −

1
p − 1

)
. (6.3.1)

Let Pn denote the set of the first n odd primes. For example, P1 = {3}, P2 = {3, 5},
P3 = {3, 5, 7}, and so forth. Numerical evidence (Table 3) suggests that

lim
n→∞

∏
p∈Pn

(
1 −

1
p − 1

)
= 0; (6.3.2)

that is, the product that defines C( f ) diverges to zero (this is the case). If this application
of the Bateman–Horn conjecture were admissible (it is not since f is reducible), we
would expect no primes of the form n2

− 1. This is not too far from the truth: we were
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Table 3
The partial products

∏
p∈Pn

(
1 −

1
p−1

)
appear to diverge to zero.

n
∏

p∈Pn

(
1 −

1
p−1

)
10 0.210114

100 0.117208
1,000 0.0824772

10,000 0.0641136
100,000 0.0526554

1,000,000 0.044777
10,000,000 0.0390052

off by only one. The Bateman–Horn conjecture is surprisingly robust; in some sense, it
detected our trickery and rejected it.

Why does (6.3.1) diverge to zero? Euler’s result (Theorem 5.3.1) ensures that∑
p∈Pn

1
p − 1

>
∑
p∈Pn

1
p
,

which diverges as n → ∞. An application of Lemma 5.1.1 implies that (6.3.1) diverges
(to zero); that is, C( f ) = 0. Thus, the Bateman–Horn conjecture detected, in a subtle way,
the difference between the polynomials n2

+ 1 (which is believed to generate infinitely
many prime values) and n2

− 1, which is prime exactly once.

.4. Prime-generating polynomials

Euler observed in 1772 that the polynomial f (t) = t2
+ t + 41 assumes prime values

or t = 0, 1, . . . , 39. However, f (40) = 1681 = 412 is composite. Is there a nonconstant
olynomial that assumes only prime values?

heorem 6.4.1. Let f ∈ Z[x]. If f (n) is prime for all n ≥ 0, then f is constant.

roof. Let p = f (0), which is prime by assumption. For each n ≥ 0, the prime f (pn)
s divisible by p. Then f (pn) = p for n ≥ 0 and hence f (pn) − p has infinitely many

roots and is therefore zero. Thus, f is the constant polynomial p. □

This shows that no single-variable polynomial can assume only prime values for all
natural arguments. Surprisingly, there is a polynomial of degree twenty-five in twenty-
six variables whose positive integral range is precisely the set of prime numbers [45].
This startling fact is related to Matiyasevich’s solution to Hilbert’s tenth problem [55]
and the work of Davis–Putnam–Robinson [16]. It is not known what is the smallest
number of variables a prime-generating polynomial must have, but it is definitely less
than twenty-six: a polynomial with this property in twelve variables is also known; see
[17, Sect. 2.1].

What is so special about 41? Suppose that f (t) = t2
+ t + k generates primes for the

first few nonnegative integral values of t . Then k = f (0) is prime. In 1913, Georg Yuri
Rainich (1886–1968) proved if p is prime, then n2

+n+ p is prime for n = 0, 1, . . . , p−2
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if and only if the imaginary quadratic field Q(
√

1 − 4p) has class number one [67]13; for
our purposes it suffices to say that this means that Q(

√
1 − 4p) is a unique factorization

domain. The Baker–Heegner–Stark theorem ensures that there are only finitely many
primes p with this property [3,36,75,76]. The largest of these, p = 41, corresponds to
the quadratic field Q(

√
−163). Thus, we cannot beat Euler at his own game.

Perhaps we can beat Euler on average. Can we find an Euler-type polynomial that
roduces an asymptotically greater number of primes than Euler’s polynomial? Let us
rst examine what the Bateman–Horn conjecture says about f (t) = t2

+ t + 41.
Since f (t) is identically 1 modulo 2, ω f (2) = 0. In what follows we use the

completing the square” identity

4a(at2
+ bt + c) = (2at + b)2

− (b2
− 4ac). (6.4.2)

or p ≥ 3, this ensures that

t2
+ t + 41 ≡ 0 (mod p) ⇐⇒ (2t + 1)2

≡ −163 (mod p).

hus, everything boils down to whether −163 is a quadratic residue or nonresidue modulo
he odd prime p:

ω f (p) = 1 +

(
−163

p

)
.

Here (−163
p ) is a Legendre symbol, defined by

(
ℓ

p

)
=

⎧⎪⎨⎪⎩
0 if p|ℓ,

1 if ℓ is a quadratic residue modulo p,
−1 if ℓ is a quadratic nonresidue modulo p.

Numerical computation confirms that −163 is a quadratic nonresidue modulo

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, (6.4.3)

the first eleven odd primes. Thus, ω f (p) = 0 for these primes and hence

C(t2
+ t + 41) =

∏
p

(
1 −

1
p

)−1 (
1 −

ω f (p)
p

)
= 2

∏
3≤p≤37

p
p − 1

∏
p≥41

(
1 +

1 − ω f (p)
p − 1

)
(6.4.4)

≈ 2 · 3.31993 = 6.63985. (6.4.5)

The factors corresponding to p = 2, 3, . . . , 37 are each greater than one, which drives
( f ) up. We have little control over the second product, although we may hope that

13 Rainich published [67] under his original birth name, Rabinowitsch. According to [63], “Rainich was
giving a lecture in which he made use of a clever trick which he had discovered. Someone in the audience
indignantly interrupted him pointing out that this was the famous Rabinowitsch trick and berating Rainich
for claiming to have discovered it. Without a word Rainich turned to the blackboard, picked up the chalk,
and wrote ‘RABINOWITSCH.’ He then put down the chalk, picked up an eraser and began erasing letters.
When he was done what remained was ‘RA IN I CH.’ He then went on with his lecture”.
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1 − ω f (p) changes sign regularly enough to keep it in check. Although it is not clear
t first glance that the second product in (6.4.4) converges, the product that defines the
ateman–Horn constant is guaranteed to converge (see Section 5) and thus the second
roduct must as well.

The Bateman–Horn conjecture suggests that

Q(t2
+ t + 41; x) ∼ (3.31993 . . .) Li(x). (6.4.6)

Can we find a second-degree polynomial f (t) for which Q( f ; x) exceeds this amount
symptotically? To this end, we want each factor in the product (3.6.3) to be as large
s possible. Unfortunately, we cannot arrange for ω f (p) = 0 for all primes p since the
orresponding infinite product∏

p

(
1 −

1
p

)−1

=

∏
p

p
p − 1

=

∏
p

(
1 +

1
p − 1

)
ould diverge by Lemma 5.1.1 and Theorem 5.3.1. However, this would contradict
heorem 5.4.3.

In fairness to Euler, we should try to beat him with a polynomial of the same type.
hus, we search for an integer k such that the polynomial f (t) = t2

+ t + k satisfies
f (p) = 0 for the first several dozen or so primes. We first need k ≡ 1 (mod 2) such

hat ω f (2) = 0. The identity (6.4.2) shows that for odd p,

f (t) ≡ 0 (mod p) ⇐⇒ (2t + 1)2
≡ 1 − 4k (mod p).

Consequently, we need to choose an odd k such that 1 − 4k is a quadratic nonresidue
modulo p for a long initial string of odd primes.

Let Pn denote the set of odd primes at most n. For each p ∈ Pn , let rp be a
quadratic nonresidue modulo p. The Chinese Remainder Theorem provides an odd kn ,
unique modulo 2

∏
p∈Pn

p, such that kn ≡ 4−1(1 − rp) (mod p) for each p ∈ Pn . Then
− 4kn ≡ rp (mod p) is a quadratic nonresidue and hence ωp( f ) = 0 for each p ∈ Pn .
he corresponding Bateman–Horn constant is

C(t2
+ t + kn) = 2

∏
3≤p≤n

p
p − 1

∏
p>n

p − ω f (p)
p − 1

.

f n = 547, the hundredth odd prime, and we let rp equal the least primitive root of p,
the corresponding constant

C(t2
+ t + k100) ≈ 2 · (5.4972 . . .) = 10.9945

asily beats the constant (6.4.5) corresponding to Euler’s polynomial. Unfortunately, k100

s not as easily remembered as Euler’s 41:

3682528442873462645493394982418837604455310384084190749577

5453041420103519734083583186615204669729662489042369819157

7358565650719425670030967384568941667322171286195075149379

680113340447535104953498545635385597443028681.
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It is conceivable that other choices of rp might lead to a smaller constant, although we
have not looked into the matter.14 The Bateman–Horn conjecture suggests that

Q(t2
+ t + k100; x) ∼ (5.4972 . . .) Li(x),

which is asymptotically larger than the corresponding prediction (6.4.6) for Euler’s
polynomial.

Before we pat ourselves on the back for beating Euler, we should point out that
the search for prime-producing polynomials using these sorts of arguments has a long
history [7,25,43]. Moreover, without the Bateman–Horn conjecture or one of its weaker
relatives (Section 4.1), we do not even know if any quadratic polynomial produces
infinitely many primes. Thus, this is all speculative.

6.5. A conjecture of Hardy and Littlewood

A general conjecture about the asymptotic distribution of prime values assumed
by quadratic polynomials is due to G.H. Hardy (1877–1947) and John E. Littlewood
(1885–1977) [33, p. 48] (see also [34, p. 19]). The more convenient formulation below
is from [43, p. 499].

Hardy–Littlewood Conjecture (F). If a, b, c are relatively prime integers, a is positive,
+ b and c are not both even, and b2

− 4ac is not a perfect square, then there are
infinitely many primes of the form f (t) = at2

+ bt + c. The number of such primes at
most x is asymptotic to

ϵ
∏
p≥3

p| gcd(a,b)

p
p − 1

∏
p≥3
p∤a

(
1 −

(∆/p)
p − 1

)
Li(x), (6.5.1)

n which

ϵ =

⎧⎨⎩
1
2

if 2 ∤ (a + b),

1 otherwise.

This is a consequence of the Bateman–Horn conjecture. Let us see why, paying
areful attention to the relevance of Hardy and Littlewood’s hypotheses. Suppose that
f (t) = at2

+ bt + c, in which a > 0. What conditions on a, b, c are necessary for f to
e prime infinitely often? Since

at2
+ bt + c ≡

{
c if t ≡ 0 (mod 2),
a + b + c if t ≡ 1 (mod 2),

e want either a + b or c (or both) to be odd. Consequently,

ω f (2) =

⎧⎪⎨⎪⎩
0 if a + b is even and c is odd,
1 if a + b is odd and c is odd,
1 if a + b is odd and c is even.

(6.5.2)

14 If we choose the least primitive roots 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2 of the primes (6.4.3), respectively, and
pply the algorithm above we obtain k = 1,448,243,016,041.
37
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Suppose that p is an odd prime. There are two cases.

If p|a, then f (t) ≡ bt + c (mod p). Since gcd(a, b, c) = 1, we conclude that

ω f (p) =

{
0 if p|b,
1 if p ∤ b.

If p ∤ a, then (6.4.2) ensures that

f (t) ≡ 0 (mod p) ⇐⇒ (2at + b)2
≡ ∆ (mod p),

in which ∆ = b2
− 4ac is the discriminant of f . Thus,

ω f (p) = 1 +

(
∆

p

)
.

Thus, the Bateman–Horn constant (3.6.3) is

C( f ) =
(
2 − ω f (2)

) ∏
p≥3, p|a

p|b

p − 0
p − 1

∏
p≥3, p|a

p∤b

p − 1
p − 1

∏
p≥3
p∤a

p − (1 + (∆/p))
p − 1

= 2ϵ
∏
p≥3

p| gcd(a,b)

p
p − 1

∏
p≥3
p∤a

(
1 −

(∆/p)
p − 1

)
. (6.5.3)

There is a subtle point here that we wish to highlight. If ∆ is a perfect square, then
∆/p) = 1 and the second factor in (6.5.3) diverges (to zero) by Lemma 5.1.1 and
heorem 5.3.1. This does not contradict the Bateman–Horn conjecture, since f is not

rreducible in this case. If ∆ is a perfect square, then the two roots

−b +
√
∆

2a
and

−b −
√
∆

2a
of f belong to Q. Then f would be reducible over Q and hence, by Gauss’ lemma
[21, Prop. 5, p. 303], reducible over Z. Thus, ∆ cannot be a perfect square if f is
to be prime infinitely often: this is why Hardy and Littlewood assume that b2

− 4ac
is not a perfect square. If ∆ is not a perfect square, then the prediction (3.6.1) of the
Bateman–Horn conjecture provides the asymptotic formula (6.5.1) proposed by Hardy
and Littlewood.

6.6. Ulam’s spiral

In 1963, Stanisław Ulam (1909–1984) discovered a startling pattern in the primes,
allegedly while doodling at a scientific meeting; see Fig. 6. The story was popular-
ized by Martin Gardner (1914–2010) in his much-loved Scientific American column
“Mathematical Games” [29]:

Last fall Stanislaw M. Ulam of the Los Alamos Scientific Laboratory, attended
a scientific meeting at which he found himself listening to what he describes as

a “long and very boring paper”. To pass the time he doodled a grid of horizontal
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Fig. 6. The natural numbers spiral outward counterclockwise from the origin. A colored box is placed over
ach prime.

and vertical lines on a sheet of paper. His first impulse was to compose some chess
problems, then he changed his mind and began to number the intersections, starting
near the center with 1 and moving out in a counterclockwise spiral. With no special
end in view, he began circling all the prime numbers. To his surprise the primes
seemed to have an uncanny tendency to crowd into straight lines.

The patterns observed by Ulam are evident in Fig. 7. There are certain diagonals that
he primes prefer and others that they eschew. Less prominent, but still noticeable, are
he scarcity or abundance of primes on some horizontal or vertical lines. Others seem
o have more than their fair share of primes. The primes, which are often assumed to
e “random” in their overall distribution (Section 2.4), manage to conspire over great
istances to form these intriguing patterns. What is the explanation for this behavior?

In what follows, it is more fruitful to consider “rays” in the Ulam spiral instead of
lines”. This is no loss of generality since each line is the union of two rays.

xample 6.6.1. Consider Fig. 8, in which the horizontal ray

8, 9, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, . . . (6.6.2)

in the Ulam spiral appears devoid of primes. Why does this occur? Let us truncate our
sequence slightly to avoid the short stretch of consecutive integers at the beginning. This
yields the sequence

10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, . . . . (6.6.3)

To pass from 10 to 27, we walk around the exterior of the 3 × 3 square

5 4 3
6 1 2

7 8 9
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Fig. 7. Plots of the Ulam spiral on grids of several sizes. There are certain diagonals that the primes (black)
refer and others that they eschew. Less prominent, but still noticeable, are the scarcity or abundance
f primes on some horizontal or vertical lines. The existence of these patterns is a consequence of the
ateman–Horn conjecture.

nd take one more step; this requires 4 · 4 + 1 = 17 total steps. Similarly, to pass from
7 to 52 we must traverse the exterior of a 5 × 5 square and take an additional step; this
equires 4 × 6 + 1 = 25 total steps. Let f (n) denote the nth number on the list (6.6.3).
hen induction confirms that

f (n) − f (n − 1) = 8n + 1,

nd hence

f (n) =

n∑
i=2

(
f (i) − f (i − 1)

)
+ f (1)

= 10 +

n∑
i=2

(8i + 1)

= 10 + (n − 1) + 8
n∑

i=2

i

= n + 9 + 8
(

n(n + 1)
2

− 1
)

= 4n2
+ 5n + 1

= (4n + 1)(n + 1). (6.6.4)

This ensures that none of the numbers on the horizontal ray (6.6.2) is prime.
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Fig. 8. The horizontal ray depicted in yellow is prime free. If we ignore the initial 8 and 9, and start
with f (1) = 10, then the nth element on this list is f (n) = (4n + 1)(n + 1), which is composite (see
Example 6.6.1). Similarly, the diagonal ray depicted in orange is prime free. The nth number on this ray
is 4n2

+ 12n + 5 = (2n + 1)(2n + 5) (see Example 6.6.5) .

Example 6.6.5. The diagonal ray 21, 45, 77, 117, 165, 221, 285, 357, 437, 525, 621, . . .
in Fig. 8 is similarly devoid of primes. An argument similar to that used in Example 6.6.1
confirms that the nth number on this list is 4n2

+ 12n + 5 = (2n + 1)(2n + 5).

The prime-free rays of Examples 6.6.1 and 6.6.5 (see Fig. 8) are governed by a
reducible quadratic polynomial. What about prime-rich rays?

Example 6.6.6. Consider Fig. 9a, in which the particularly prime-rich diagonal that
includes the primes 7, 19, 23, 47, 67, 79, 103, 167, 199, 223 stands out. As before, it
is more convenient to consider a single ray, in which the first differences increase
monotonically. We therefore study the ray

7, 23, 47, 79, 119, 167, 223, . . . . (6.6.7)
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Fig. 9. The relative number of primes on diagonal rays is governed by the Bateman–Horn conjecture .

Of these numbers only 119 is composite. If f (n) denotes the nth number on the list
(6.6.7), then an argument similar to that of Example 6.6.1 shows that

f (n) − f (n − 1) = 8n

nd hence

f (n) =

n∑
i=2

(
f (i) − f (i − 1)

)
+ f (1)

= 7 +

n∑
i=2

8i

= 8
(

n(n + 1)
2

− 1
)

+ 7

= 4n2
+ 4n − 1. (6.6.8)

nlike (6.6.4), this polynomial is irreducible. Since it has at most two roots modulo
ny prime and it does not vanish identically modulo 2, it does not vanish identically
odulo any prime. Consequently, the Bateman–Horn conjecture suggests that it assumes

nfinitely many prime values. Since the discriminant of the polynomial (6.6.8) is 32, the
eneral computation (6.5.3) tells us that

Q( f ; x) ∼
1

C( f ) Li(x),

2
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in which

C( f ) = 2
∏
p≥3

(
1 −

(32/p)
p − 1

)
.

Among the odd primes at most 67 we have(
32
p

)
=

{
1 if p = 7, 17, 23, 31, 41, 47,
−1 if p = 3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67.

This substantial imbalance among the first few odd primes makes C( f ) unusually large
and explains the particularly prime-rich diagonal that corresponds to this polynomial. In
particular, numerical computations suggest that 1

2 C( f ) ≈ 3.70.

xample 6.6.9. Consider the diagonal ray 5, 15, 33, 59, 93, 135, 185, . . .; see Fig. 9b.
Although it contains some primes, it does not appear as prime rich as the ray from
Example 6.6.6. Its values correspond to f (t) = 4t2

− 2t + 3, which has discriminant
−44. Since (−44/3) = (−44/5) = 1, the primes 3 and 5 conspire to make C( f )
maller; see (6.5.3). The coefficient of Li(x) provided by the Bateman–Horn conjecture
s approximately 1.02. This is substantially lower than in the previous example.

In summary, the patterns that Ulam observed can be explained as follows. If we agree
o omit the first several consecutive terms on a given ray, then there are integers b and c
uch that the nth number on the ray is

f (n) = 4n2
+ bn + c.

f b is even, then the ray is diagonal. If b is odd, then the ray is horizontal or vertical.
ertain combinations of b and c yield reducible polynomials; in these cases the ray
ontains at most one prime. Other combinations of b and c yield irreducible polynomials;
he Bateman–Horn conjecture predicts the relative number of primes along each such ray.

. Multiple polynomials

We are now ready to apply the Bateman–Horn conjecture to families of irreducible
olynomials f1, f2, . . . , fk ∈ Z[x] with positive leading coefficients, no two of which
re multiples of each other. Recall that the product f = f1 f2 · · · fk should not vanish
odulo any prime. Then the conjecture predicts that the number Q( f1, f2, . . . , fk; x) of
≤ x for which f1(n), f2(n), . . . , fk(n) are simultaneously prime is asymptotic to

C( f1, f2, . . . , fk)∏k
i=1 deg fi

∫ x

2

dt
(log t)k

,

in which

C( f1, f2, . . . , fk) =

∏
p

(
1 −

1
p

)−k (
1 −

ω f (p)
p

)
.

In particular, observe that the number k of polynomials involved appears in the exponents
that occur in the integrand and the product that defines the Bateman–Horn constant.
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7.1. Twin prime conjecture

If p and p + 2 are prime, then p and p + 2 are twin primes. The long-standing twin
prime conjecture asserts that there are infinitely many twin primes. Although this question
likely puzzled thinkers since Euclid’s time, the earliest extant record of the conjecture
(in a more general form, see Section 7.2) is from Alphonse de Polignac (1826–63) in
1849. While it remains unproven, recent years have seen an explosion of closely-related
work [10,56,86].

In 1919, Viggo Brun (1885–1978) proved that the sum(
1
3

+
1
5

)
+

(
1
5

+
1
7

)
+

(
1

11
+

1
13

)
+

(
1

17
+

1
19

)
+ · · · (7.1.1)

of the reciprocals of the twin primes converges. This stands in stark contrast to Euler’s
discovery that

∑
p 1/p diverges (Theorem 5.3.1). Thus, the twin primes must be far

parser, in the sense of reciprocal sums, than the primes themselves. The sum (7.1.1),
hich is now known as Brun’s constant, is greater than 1.83 and less than 2.347 [48]

(numerical evidence suggests a value of approximately 1.9).
What does the Bateman–Horn conjecture have to say about twin primes? Let f1(t) = t

nd f2(t) = t + 2. Then f1(t) and f2(t) are simultaneously prime if and only if t is the
esser element of a twin-prime pair. Let f = f1 f2. Then

f (t) ≡ 0 (mod p) ⇐⇒ t(t + 2) ≡ 0 (mod p),

nd hence

ω f (p) =

{
1 if p = 2,
2 if p ≥ 3.

he corresponding Bateman–Horn constant is

C( f1, f2) =

∏
p

(
1 −

1
p

)−2 (
1 −

ω f (p)
p

)
= 2

∏
p≥3

p2

(p − 1)2 ·
p − 2

p

= 2
∏
p≥3

p(p − 2)
(p − 1)2

= 2C2,

n which

C2 =

∏
p≥3

p(p − 2)
(p − 1)2 ≈ 0.660161815

is the twin primes constant. The Bateman–Horn conjecture predicts that

Q( f1, f2; x) ∼ 2C2

∫ x dt
2 .
2 (log t)



S.L. Aletheia-Zomlefer, L. Fukshansky and S.R. Garcia / Expo. Math. 38 (2020) 430–479 469

c
e

I
L
π

s

p
a
k

i
c
r
P
f

i
a
f

Fig. 10. Graph of π2(x) (orange) versus 2C2
∫ x

2 (log t)−2 dt (blue) and 2C2x/(log x)2 (green). The more
omplicated integral expression apparently provides a much better approximation than does the simpler
xpression .

t is more traditional to express this in terms of the twin prime counting function.
et π2(x) denote the number of primes p at most x for which p + 2 is prime. Then
2(x) = Q( f1, f2; x) and (by Lemma 2.3.2)

π2(x) ∼ 2C2

∫ x

2

dt
(log t)2 ∼

2C2x
(log x)2 ;

ee Fig. 10. This asymptotic estimate for π2(x) was first postulated by Hardy and
Littlewood [33].

7.2. Cousin primes, sexy primes, and more

If p and p + 4 are prime, then p and p + 4 are cousin primes. If p and p + 6 are
rime, then p and p + 6 are sexy primes. Thankfully the nomenclature appears to expire
fter this point, although it is still fruitful to consider prime pairs p, p + k, in which
≥ 2 is even.
Alphonse de Polignac conjectured in 1849 that for each even number k, there are

nfinitely many prime pairs p, p + k. This is now known as Polignac’s conjecture. The
ase k = 2 of Polignac’s conjecture is the twin prime conjecture (Section 7.1), which
emains unproven. In light of the work of Yitang Zhang (1955–) [86] and the Polymath8b
roject [10] on bounded gaps between primes, we know that there is an even k ≤ 246
or which infinitely many prime pairs p, p + k exist. Unfortunately, we do not know a

specific value of k for which this occurs.
The Bateman–Horn conjecture goes much further than even Polignac’s conjecture. It

mplies the existence of infinitely many pairs p, p + k of primes for each even k and
lso supplies asymptotic predictions that are backed up by numerical computations. The
ollowing calculations were worked out in [28]. Let f1(t) = t and f2(t) = t + k, and let
f = f1 f2. Then

f (t) ≡ 0 (mod p) ⇐⇒ t(t + k) ≡ 0 (mod p),
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and hence

ω f (p) =

{
1 if p|k,
2 if p ∤ k.

he Bateman–Horn constant is

C( f1, f2; x) =

∏
p

(
1 −

1
p

)−2 (
1 −

ω f (p)
p

)

=

∏
p|k

(
1 −

1
p

)−1 ∏
p∤k

(
1 −

1
p

)−2 (
1 −

2
p

)
=

∏
p|k

p
p − 1

∏
p∤k

p(p − 2)
(p − 1)2 . (7.2.1)

To highlight the dependence on k and match the historically established notation in the
twin prime setting (Section 7.1), we denote the preceding constant by 2Ck ; that is,

Ck =

∏
p|k
p≥3

p
p − 1

∏
p∤k

p(p − 2)
(p − 1)2 . (7.2.2)

We do not define Ck for odd k; this would be pointless since for each odd k there is at
most one prime pair p, p + k. Since

∑
p 1/p2 converges, the infinite product (7.2.2) that

defines Ck converges absolutely since
p(p − 2)
(p − 1)2 = 1 −

1
(p − 1)2 . (7.2.3)

umerical approximations for C2,C4, . . . ,C150 are given in Table 4. If πk(x) denotes the
umber of primes p ≤ x for which p + k is prime, then the Bateman–Horn conjecture
redicts that

πk(x) ∼ 2Ck

∫ x

2

dt
(log t)2 ∼

2Ck x
(log x)2 .

There are several important observations to make.

The conjectured rate of growth in πk depends only upon the constant Ck . Furthermore,
Ck depends only upon the primes that divide k.

In light of (7.2.3), an examination of (7.2.1) reveals that Ck is minimized when k is a
power of two, in which case C2 = C4 = C8 = C16 = · · · ≈ 0.660162.

limp→∞ C2p = C2. That is, Ck can be made arbitrarily close to the twin primes
constant C2 by letting k = 2p, in which p is a sufficiently large prime.

Ck can be made arbitrarily large by selecting k to have sufficiently many small prime
factors. The first factor in (7.2.1) is∏

p|k

p
p − 1

=

∏
p|k

(
1 +

1
p − 1

)
.

p≥3 p≥3
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Table 4
Numerical approximations of the constants Ck based upon the first 1,000,000 terms of the product (7.2.1).

k Ck k Ck k Ck k Ck k Ck

2 0.660162 32 0.660162 62 0.682926 92 0.691598 122 0.671351
4 0.660162 34 0.704173 64 0.660162 94 0.674832 124 0.682926
6 1.32032 36 1.32032 66 1.46703 96 1.32032 126 1.58439
8 0.660162 38 0.698995 68 0.704173 98 0.792194 128 0.660162

10 0.880216 40 0.880216 70 1.05626 100 0.880216 130 0.960235
12 1.32032 42 1.58439 72 1.32032 102 1.40835 132 1.46703
14 0.792194 44 0.733513 74 0.679024 104 0.720177 134 0.670318
16 0.660162 46 0.691598 76 0.698995 106 0.673106 136 0.704173
18 1.32032 48 1.32032 78 1.44035 108 1.32032 138 1.3832
20 0.880216 50 0.880216 80 0.880216 110 0.978018 140 1.05626
22 0.733513 52 0.720177 82 0.677089 112 0.792194 142 0.669729
24 1.32032 54 1.32032 84 1.58439 114 1.39799 144 1.32032
26 0.720177 56 0.792194 86 0.676263 116 0.684612 146 0.66946
28 0.792194 58 0.684612 88 0.733513 118 0.671744 148 0.679024
30 1.76043 60 1.76043 90 1.76043 120 1.76043 150 1.76043

Table 5
Values of the counting functions πk (x) at p10n , the 10n th prime. The asymptotic predictions of the Bateman–

orn conjecture are identical for π2, π4, and π8 (blue), and for π6 and π12 (green). The computations appear
to corroborate this.

If k is the product of the first n primes (that is, k is the nth primorial pn#), then the
preceding diverges as n → ∞.

The patterns predicted by the Bateman–Horn conjecture are evident in Table 5, which
provides the numerical values of πk(10n) for several k and n = 2, 3, . . . , 8. For example,

able 4 suggests that primes p for which p + 30 is prime should be about

1.76043
0.660162

≈ 2.6667

times more numerous than twin primes. Among the first 108 primes, Table 5 gives the
roportion

17,331,689
6,497,407

≈ 2.66748.

The agreement is remarkable.
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7.3. Sophie Germain primes

A prime number p is a Sophie Germain prime if 2p + 1 is also a prime. Such primes
were first introduced and investigated by the legendary French mathematician, physicist,
and philosopher Marie-Sophie Germain (1776–1831) in the course of her work on some
early cases of Fermat’s Last Theorem; see [74, Sect.5.5.5] for further information.

If p is a Sophie Germain prime, then 2p + 1 is the corresponding safe prime. This
terminology reflects the usefulness of such primes in cryptography. Specifically, the
famous RSA (Rivest–Shamir–Adleman) cryptosystem is an asymmetric cryptoscheme
using a public key to encrypt a message and a private key to decrypt it [46]. The public
key is a product of two large prime numbers (for example, a product of two safe primes)
and the hardness of a hostile attack is based on the difficulty of factoring such a product.
Factorization is especially difficult if the primes in question are of comparable size.
Cryptographic applications provide a strong modern motivation for studying such prime
numbers, and it is conjectured that there are infinitely many Sophie Germain (and hence
safe) primes. This conjecture is currently open, and the largest Sophie Germain prime
known has 51 780 digits [44].

The search for Sophie Germain primes can be rephrased in the language of the
Bateman–Horn conjecture. Let f1(t) = t and f2(t) = 2t +1. Then p is a Sophie Germain
prime if and only if f1(p) and f2(p) are simultaneously prime. The infinitude of these
primes follows from the Bateman–Horn conjecture, which also provides an asymptotic
estimate on their counting function. The polynomial

f (t) = f1(t) f2(t) = t(2t + 1)

does not vanish identically modulo any prime since f (1) ≡ 1 (mod 2) and f has at most
two roots modulo any odd prime. Since f vanishes at 0 and (p − 1)/2 for every odd
prime p, we deduce that

ω f (p) =

{
1 if p = 2,
2 if p is odd.

hus,

C( f1, f2) = 2
∏
p ̸=2

(
1 −

1
p

)−2 (
1 −

2
p

)
= 2

∏
p ̸=2

p(p − 2)
(p − 1)2 ≈ 1.32032 . . . .

Since deg f1 = deg f2 = 1, we obtain the estimate

Q( f1, f1; x) ∼ (1.32032 . . .)
∫ x

2

dt
(log t)2 .

his is the same asymptotic prediction as in the twin-prime case (Section 7.1).

.4. Cunningham chains

A sequence p1, p2, . . . , pn of primes is a Cunningham chain of the first kind if
pi+1 = 2pi + 1 for each 1 ≤ i ≤ n − 1 and of the second kind if pi+1 = 2pi − 1. That
is, every p in a Cunningham chain of the first kind, except for p , is a Sophie Germain
i n
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prime and every pi , except for p1, is a safe prime. Cunningham chains are named after
he British mathematician Allan Joseph Champneys Cunningham (1842–1928) who first
ntroduced and studied them [14]. Here are a few examples of Cunningham chains of the
rst kind

(2, 5, 11, 23, 47), (3, 7), (89, 179, 359, 719, 1439, 2879),

and of the second kind

(2, 3, 5), (7, 13), (19, 37, 73).

The longest known Cunningham chains have length 19 [2].
The existence of arbitrary long Cunningham chains follows from the first

Hardy–Littlewood conjecture, and hence from the Bateman–Horn conjecture. Indeed, let

f1(t) = t, f2(t) = 2 f1(t) ± 1, . . . , fk(t) = 2 fk−1(t) ± 1.

We need these all to be prime simultaneously. Bateman–Horn guarantees the existence
of infinitely many such k-tuples and even gives an asymptotic estimate on the growth of
their number that is analogous to the argument above for Sophie Germain primes. On the
other hand, it has been proved that a Cunningham chain of infinite length cannot exist.
Indeed, suppose for instance that odd primes p1, p2, . . . form a Cunningham chain of
the first kind. Then

pi+1 = 2pi + 1 = 2(2pi−1 + 1) + 1 = · · · = 2i p1 +

i−1∑
j=0

2 j
= 2i p1 + (2i

− 1)

nd hence pi+1 ≡ 2i
− 1 (mod p1). On the other hand, Fermat’s little theorem implies

hat

2p1−1
− 1 ≡ 0 (mod p1),

eaning that pp1 would be divisible by p1, and so cannot be prime. This implies that, in
act, a Cunningham chain starting with an odd prime p1 cannot have more than p1 − 1
erms in it. If p1 = 2, then the same argument can be applied to the chain p2, p3, . . . .
urther information about Cunningham chains and their use in cryptography can be found

n [85].

.5. Green–Tao theorem

One of the most spectacular results in twenty-first century number theory is the
reen–Tao theorem [31], which asserts that the primes contain arbitrarily long arithmetic
rogressions. That is, given k ≥ 1 there is a k-term arithmetic progression

b, b + a, b + 2a, . . . , b + (k − 1)a

f prime numbers. For example, 5, 11, 17, 23, 29 is a 5-term arithmetic progression of
rimes with b = 5 and a = 6.

Consider the k linear polynomials

f (t) = t, f (t) = t + a, . . . , f (t) = t + (k − 1)a,
1 2 k
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each of which is obviously irreducible. Let f = f1 f2 · · · fk denote their product. The
ongruence f (t) ≡ 0 (mod p) is

t(t + a)(t + 2a) · · ·
(
t + (k − 1)a

)
≡ 0 (mod p).

hus,

ω f (p) =

{
1 if p|a,
min{k, p} if p ∤ a.

f p ≤ k and p ∤ a, then f vanishes identically modulo p. Consequently, we require that
p|a for all primes p ≤ k. This suggests that we take a = pk#, the product of the first k
rime numbers. Then

Q( f1, f2, . . . , fk; x) ∼ C( f1, f2, . . . , fk)
∫ x

2

dt
(log t)k

,

n which

C( f1, f2, . . . , fk) =

k∏
n=1

(
1 −

1
pn

)−k+1 ∞∏
n=k+1

(
1 −

1
p

)−k (
1 −

k
p

)
is a nonzero constant. This yields the following famous result [31, Thm. 1.1].

Theorem 7.5.1 (Green–Tao, 2004). For each positive integer k, the prime numbers
contain infinitely many arithmetic progressions of length k.

8. Limitations of the Bateman–Horn conjecture

Although we have touted the Bateman–Horn conjecture as “one conjecture to rule
them all”, it has its limitations. We briefly discuss a number of topics in number theory
that the conjecture does not appear to address.

First of all, the Bateman–Horn conjecture is a statement about the overall distribution
of prime numbers. It says little about what happens on small scales. For example, it does
not appear to resolve Legendre’s conjecture (for each n there is a prime between n2 and
(n + 1)2). Bateman–Horn also does not tell us much about the additive properties of the
prime numbers. For instance, it does not seem to imply the Goldbach conjecture (every
even number greater than 4 is the sum of two odd prime numbers).

The Bateman–Horn conjecture does an excellent job predicting the asymptotic distri-
bution of primes generated by families of polynomials. However, it does not tell us much
about primes generated by non-polynomial functions. For example, it has nothing to say
about the number of primes of the form 22n

+ 1 (Fermat primes) or 2n
− 1 (Mersenne

primes).
The conjecture has little to say about diophantine equations, such as the Fermat

equation xn
+ yn

= zn [77] or the Catalan equation xn
− ym

= 1 [57]. For example,
the Bateman–Horn conjecture appears to have little overlap with the abc-conjecture and
its applications; see [17, Ch. 11] or [8, Ch. 12] for a detailed overview of the far-reaching

bc-conjecture and its numerous connections.
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The Bateman–Horn conjecture provides asymptotics for counting functions related to
primes, but does not bound the size of the error terms. For example, it implies the prime
number theorem (Theorem 2.4.1), which asserts that π (x) ∼ li(x). However, BH does not
ell us about |π (x) − li(x)|. On the other hand, Schoenfeld [72] proved that the Riemann
ypothesis yields

|π (x) − li(x)| <
1

8π
√

x log x, x ≥ 2657.

Thus, the Riemann hypothesis implies the prime number theorem with a well-controlled
error term. Serge Lang says:

I regard it as a major problem to give an estimate for the error term in the
Bateman–Horn conjecture similar to the Riemann hypothesis. This could possibly
lead to a vast reconsideration of the context for Riemann’s explicit formulas.
[52, p. 11].

Number theory is one of the central branches of mathematics and connects with
analysis, algebra, combinatorics, and many other fields. It has enjoyed a great number
of exciting advances and breakthroughs in recent years, several of which have led to
Fields medals and other prestigious awards. It also contains a great number of difficult
and deep open problems and conjectures. To a large extent these influence the course of
modern mathematics. Some problems, like the Riemann hypothesis, the abc-conjecture,
he twin prime conjecture, or the Goldbach conjecture are well known and rightfully
elebrated by the mathematical community. Others, like the Bateman–Horn conjecture,
lthough of equally great stature, are not as well known. The goal of this paper was to
resent an overview of this important problem, its connections, and its consequences.
t is our hope that we have convinced the reader that the Bateman–Horn conjecture
eserves to be ranked among the most pivotal unproven conjectures in the theory of
umbers.
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