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1. Introduction

Our aim is to generalize recent results on the behavior of certain multiplicative func-
tions near twin-prime arguments and also several related theorems of Schinzel undertaken
without primality assumptions. In particular, we obtain multidimensional Schinzel-type
results for more general multiplicative functions, in which prime pairs are replaced with
prime tuples and the additive offsets from the prime arguments are essentially arbitrary.
Consequently, the present work subsumes and generalizes many results from [8,10,11].

Despite a flurry of recent activity [12-14,22], the existence of infinitely many twin
primes is still conjectural. Consequently, results involving twin primes and, more gener-
ally, prime tuples, must rely on unproven conjectures. Dickson’s conjecture is one of the
weakest widely-believed conjectures that implies the twin prime conjecture [1,5,15]. It is
far weaker than the celebrated Bateman—Horn conjecture, which concerns polynomials
of arbitrary degree and makes asymptotic predictions [1-3].

Dickson’s Conjecture. If f1, fo,..., fx € Z[t] are linear polynomials with positive lead-
ing coefficients and f = f1fo--- fi does not vanish identically modulo any prime, then
f1@), f2(t), ..., fu(t) are simultaneously prime infinitely often.

Before stating our main results, we briefly survey some of the relevant literature. In
what follows, ¢ denotes the Euler totient function. In 2017, Garcia, Kahoro, and Luca
showed that the Bateman—Horn conjecture implies p(p — 1) > ¢(p + 1) for a majority
of twin-primes pairs p,p + 2 and that the reverse inequality holds for a small positive
proportion of the twin primes [8]. This bias disappears if only p is assumed to be prime
[9]. Analogues for prime pairs were obtained in 2018 by Garcia, Luca, and Schaaff [10].
Although preliminary numerical evidence suggested that p(p+1)/¢(p— 1) might remain
bounded as p, p + 2 runs over the twin primes, Garcia, Luca, Shi, and Udell proved that
Dickson’s conjecture implies that these quotients are dense in [0, 00) [11].

The motivation for multidimensional generalizations of these results goes back to
Schinzel, who obtained many similar results without primality restrictions. For example,
[18, Thm. 1] ensures that

p(n+1) p(n+2) o(n +d) - - donse i 10, oo
{< p(n) ’w(n+1)""’go(n+d—1))' EN} d [0,00)%  (1.1)

The same result holds with the sum-of-divisors function o in place of ¢ (Schinzel quips
“Theorem 2 is obtained from Theorem 1 by replacing the letter ¢ with ¢”). The seminal
result in this direction is Schinzel’s 1954 observation that

{M

:n=1,2,...7 is dense in [0, >0), 1.2
ot } 0.%0) (1.2

a variant of an obscure result of Somayajulu [21]. This density result inspired later work
of Schinzel, Sierpinski, Erdés, and others [6,7,17-20] (see also [16, Ch. 1]).
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Before stating our main result, we require a few words about notation. In what follows,
N ={1,2,...} denotes the set of natural numbers, Z the set of integers, and R the set of
real numbers. We let P = {2,3,5,7,11, ...} denote the set of prime numbers; the symbol
p always refers to a prime number. An m-tuple (a1, as,..., ) € Z is admissible if
there does not exist a p € P such that ai,aq,...,q, form a complete residue system
modulo p. This ensures that no congruence obstruction prevents the linear polynomials
T —Q1,T—Qg,...,T — Qp from being simultaneously prime infinitely often.

Our main theorem is both a broad multidimensional generalization of the results of
[11] and a version of Schinzel’s theorem (1.1) with primality restrictions.

Theorem 1. Let f be a positive multiplicative function such that

(a) lim, o f(p) =1, and
(b) Tl,ep f(p) is not absolutely convergent,

let

1
lim M

A = =k € (0,00),

and let g = fh. For any distinct a1, az,...,aq € Z and admissible (81, P2, . .., Bm) with
a; # B for 1 <i<d and 1 < j < m, Dickson’s conjecture implies both

{(9(”4'052) g(n + as) g(n + aq)

oo St S s ay) S P Bt B P (19

and

{(9(n+a1) gn+as)  gln+aa)

oo ot G tag ) Bun et € P (10

are dense in [0,00)77 1,

Theorem 1 also holds for m = 0; that is, without primality restrictions. To see this,
choose (8 such that «; # B for each 1 < ¢ < d and observe that if tuples of ratios
of functions of n are dense in [0,00)%~! when n + f3 is prime, these ratios will still be
dense in [0, 00)?~! without primality assumptions. However, our proof relies on Dickson’s
conjecture and does not adapt to the m = 0 case unconditionally. It is a nontrivial task
to remove this assumption, and we do not attempt to do so here.

The main ingredient in the proof of Theorem 1 is the following result, which is of
independent interest (despite its more technical statement) since it generalizes several
results from [11] that do not fall under the umbrella of Theorem 1.
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Theorem 2. Let f be a positive multiplicative function such that

(a) im0 f(p) =1, and
(b) for some infinite subset S C P, HpGS f(p) diverges to 0.

For distinct o, g, ...,aq € Z and an admissible (81, Ba, ..., Bm) € Z™ with o; # B;
for all i, j, Dickson’s conjecture implies that

{(f(n+a1),f(n+a2)7...,f(n+ad)) :n+ﬂ1,n+ﬁ23"',n+5m EP}
is dense in [0,7]%, in which

w(m+d

)
r—min{f( H pjj>:0<xj<Uog2dJ+1}. (1.5)
j=1

Here m(x) =3 <, 1 denotes the prime-counting function.

This paper is organized as follows. In Section 2 we present a wide array of examples
and applications of Theorems 1 and 2. We present several necessary lemmas in Section 3
before proceeding to Section 4, which concerns the proof of Theorem 2. The proof of The-
orem 1 is contained in Section 5. We conclude with several remarks and open problems
in Section 6.

2. Examples and applications

We demonstrate that a wide variety of known and novel results follow from Theo-
rems 1 and 2. Since there are so many consequences of these theorems, we split the
following list of examples into one-dimensional and multidimensional categories. In par-
ticular, we highlight some striking numerical examples which illustrate that our method
of proof narrows down the search for suitable prime tuples to the extent that the relevant
computations are feasible on a standard laptop computer.

2.1. One-dimensional results

Before we recover all of the main one-dimensional results from [11], we first direct the
reader to Table 1, which contains a few curious examples. As usual, we assume the truth
of Dickson’s conjecture.

Example 3. Theorem 1 with f(n) = ¢(n)/n, h(n) =n, a1 = -1, ap =1, 1 = 0, and
B2 = 2, implies [11, Thm. 1]:

{M

:p,p+2€P} is dense in [0, 00).
e(p—1) 0 00)
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Table 1

Here p,p+6,p + 12, p 4+ 18 are prime and ¢(p + a2)/¢(p + a1) closely approximates a
fundamental mathematical constant. Underlined digits agree with those of the constant
in question.

¢ ana p Soted

vy —1,1 95674157816864951038010948990752780001  0.577215664901530. . .
T 5,16 12029840180666026511494250079901 3.14159265355768. . .
e 11,16  106784808714334981809995191 2.71828182788915. ..

Example 4. Apply Theorem 1 to f(n) = o(n)/n, in which o(n) =3_,,, d, with the same
h, a;, and §;, as in the previous example, and obtain [11, Thm. 4a]:

1
) ip,p+2€ ]P’} is dense in [0, 00).

Example 5. Since limsup,, ., ¢(p + 1)/¢(p) = 1, we do not expect a straightforward
prime version of Schinzel’s result (1.2) (it is known unconditionally that {¢(p+1)/(p) :
p € P} is dense in [0, 3] [11, Thm. 2]). However, we can obtain shifted Schinzel-type

results with primality restrictions, such as

{M

n+7,n+9¢ ]P’} is dense in [0, c0).
p(n)

Example 6. Let f(n) = ¢(n)/n in Theorem 2 with oy = 1, 81 = 0, and B2 = 2. Then
m+d =3, 7(m+d) =2, and |log,d] +1 = 1. Since

r:min{‘p@'?’) p(2) ¢B3) }} 1
2-3 7 27 371

Theorem 2 implies {¢(p+1)/(p+1) : p,p+2 € P} is dense in [0, 1] and hence we recover

3]
[11, Thm. 3]:

{WH)

:p,pt+2€ ]P’} is dense in [0, 1].
¢(p) °

Example 7. Let f (n) =n/ 0( ) and use the same parameters as in the previous example.

Since r = min{ -5, -2 11 = L Theorem 2 implies { :p,p+2 € P} is dense

a(6)’ a(2)° 0(3 Y01

in [0, 1] and we recover [11, Thm. 40]

p+1)

{M ‘pp+2€ ]P’} is dense in [2, 00).
o(p)
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Table 2
Here p+B1,p+ B2, ... are prime and (igizt; , ;EZiZ‘:; ) closely approximates (£1,&2). Underlined

digits agree with those of the constants in question. Note that 43, 67, and 163 are the largest
Heegner numbers; 5, 8, and 13 are Fibonacci numbers; 561, 1105, and 1729 are the first three
Carmichael numbers; and 196884 is the coefficient of ¢ in the Fourier expansion of the j-invariant
(as in Monstrous Moonshine).

&1 &2 B1, B2, ... ai,az, a3 p eleteu) letaa)
V2 V3 0,2 43, 67, 751184478449  1.4142135  1.7320508
163 416099048649 623730950 075688772
570893527818 488016888 935283112
494096598933  50439...  31013...
189697746350
453399017762
020065304443
6211
V5i1L /51 0,2 5,8,13 130084391444  1.6180339  0.6180339
506326722340 88749894 88749894
792832995109  B70. .. 8557. ..
955572053763
06391
[fadz [} L de 0,10,12,64, 561, 1105, 918845569650  0.7834305  1.291285
88 1729 372195012106 107121345 99706266
105368325979  08863... 35404396
588394815789 9...
872234894985
9809
e/10 /10 0,2,56,8), 314,159, 961359758712  0.2718281  0.3141592
196884 265 644806513809 831735333 658358261
803026043276  2418... 2337...
8517

2.2. Higher-dimensional generalizations

Theorem 1 permits higher-dimensional generalizations of the key results of [11]. These
are prime analogues of Schinzel’s seminal result (1.1). Table 2 displays a variety of
appealing examples. In what follows, we assume the truth of Dickson’s conjecture.

Example 8. Apply Theorem 1 to f(n) = ¢(n)/n and deduce that both

{(ﬂn+m)¢m+aﬁ.“ ﬂn+awﬁ>:n+&7pwﬁu.n+ﬁ eP}

p(n+az) pn+az) 7 p(n+ag)
and
e(n+az) o(n+as) ﬂn+a@> }
, ey n+Bi,n+ P ...,n+ By €P
T Re e e s ) RARER ’
are dense in [0, 00)%~! for any distinct ay, as, ..., € Z and admissible (51, B2, - . ., Bm)

with a; # B; for 1 < i < dand 1 < j < m. These are prime analogues of Schinzel’s
theorem (1.1). In a similar manner, these results hold for o as well.
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Example 9. Let

) =exp (3 )
peP p
and h(n) = 1, in which v, is the p-adic valuation. Then f(p) = /P — 1 and
1 1
17w =]]ex» (—) —eXp<Z—)
peP pelP P peP b

diverges. Then Theorem 1 implies

fn+a1) fln+as) fn+aa 1)\
{(f(”+042)’f(n+a3)’---v F(n + ) ) .n+51,n+ﬂg,...,n+ﬁmgp}
and
fn+a2) f(n+as) fn+aq)\
{(f(nJral),f(”+0!1)""’f(n+a1)> .n+51,n+ﬁ2,...,n+ﬁmep}
are dense in [0, 00)?~1 for any distinct oy, @, ..., aq € Z and admissible (81, B2, - - -, Bm)

with a; # B for L <i<dand 1 <j<m.
3. Preliminaries

The following lemma is essentially due to Schinzel [18, Lem. 1], except that here we
insist upon the extra condition ¢; > nj; and we consider 0 < C < 1 instead of C' > 1.
We provide the proof here because of these modifications.

Lemma 10. Let u,, denote an infinite sequence of real numbers such that

. . Un+1
lim u, =0 and lim 2t — 1.
n—oo n—00 Uy

For each 0 < C < 1 and strictly increasing sequence ny in N, there exists {, € N such
that

by >ng fork=1,23... and lim 2 — ¢,

k—»00 U,

Proof. For k € N, let £, > nj be the least natural number such that

Uy,

<C.
Uny
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Such a number exists because lim,,_,o u,, = 0. Furthermore, ¢, > n; because C' <
Un,, [Un, = 1 by assumption. The minimality of 5 ensures that

Upy—1

C < (3.1)
Un,
and hence
ot —(C’un"' )uek<wk<c
Upy—1 Upy—1) Uny  Uny
Thus,
i
lim —% =C. O
k— o0 Un,,

The next lemma is a generalization of [11, Lem. 5] (see also [4, Prop. 8.8]).

Lemma 11. Let f be a positive multiplicative function such that lim, . f(p) = 1 and
HpES f(p) diverges to zero for some S C P. For any finite subset P’ C P,

{f(n) : n squarefree, ptn for allp € P’} is dense in [0, 1].

Proof. Let g; denote the ith smallest prime in the infinite set S\IP’. Define

n

=1

which tends to zero as n — oo and satisfies

u
lim — = lm f(gny1) = 1.
n—00 Uy, n—oo

Let ny be an increasing sequence in N and 0 < C' < 1. Lemma 10 provides a sequence
¢, in N such that

by >mng fork=1,2,... and lim & — ¢,

k—oc0 Un,,

Then wy = Hf‘:nk 41 ¢ s squarefree, not divisible by any element of P/, and satisfies

L
f(wk)—f< II ) H flai) = H E%;—Z?AC. O

1=nr+1 i=nr+1

Lemma 12. Let f be a positive multiplicative function such that lim, . f(p) = 1 and
[I,es f(p) diverges to zero for some S C P. For any finite P' C P, the set of d-tuples

(f(wr), f(wa), ..., f(wq)) such that
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(a) wy,ws,...,wg €N are squarefree and pairwise relatively prime, and
(b) ptw; forpe P’ and 1 < <d,

is dense in [0,1]%

Proof. We proceed by induction on d. If I; C [0, 1] is an open interval, Lemma 11 provides
a squarefree w; such that f(wy) € I} and p t wy for all p € P’. Let I, Is,...,Iq C
[0, 1] be open intervals and suppose that there are squarefree, pairwise relatively prime
w1, Ws, ..., w4—1 such that p t w; for all p € P’ and f(w;) € I; for 1 < i < d— 1. Let
P” be the union of P’ with the set of divisors of w1, ws, ..., wy_1. Lemma 11 provides a
squarefree wg, coprime to wi,wy, ..., wq—1, such that (f(w1), f(wsa),..., f(wg)) € I X
Iy x -+ x Iy and p { wy for each p € P” O P’. This concludes the induction. O

The next lemma provides a simple method to pass between results about sets of the
form (1.4) and (1.3).

Lemma 13. The function ® : (0,00)%"! — (0,00)4"1 defined by

1 y1 w2 d—2
¢<y1,y27"'ayd71) = (_7 y_a y_a"'a Y
Yr Y2 Y3 Yd—1

is a homeomorphism.

Proof. Since ® is continuous, it suffices to observe that the continuous function ¥ :
(0,00)471 — (0, 00)4"!

1 1 1 1
\IJ(.’L‘l,l‘g,...,l‘d_l): <— ey 1 )

b b b d7
T1 X1T2 T1T2X3 |

inverts ®. O
4. Proof of Theorem 2

We break the proof of Theorem 2 into a number of subsections for clarity. This orga-
nization highlights the particular parameters involved at each stage.

4.1. Initial setup and outline

Suppose f is a positive multiplicative function satisfying hypotheses (a) and (b) of
Theorem 2. Let ay,qq,...aq € Z be distinct, let (81, fa,...,Fm) be an admissible m-
tuple with a; # f; for 1 <i < dand 1 < j < m. Define L = w(m +d) and let r be given
by (1.5).
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It suffices to show that for each ¢ > 0 and ¢ = (&1,&a,...,&) € [0,7]9, there is an
n € N such that n + §; is prime for 1 < j <mand f(n+ ;) € (§(1 —¢),&(1 +¢)) for
each 1 <17 <d.
4.2. The integers by, ba, ..., br,

Since (81, B2, - .., Bm) is an admissible m-tuple,

P(t)=(t+p1)(t+ B2) - (t+ Bm)

does not vanish identically modulo any prime. Consequently, for each p; with j =
1,2,..., L, there is some b; € Z such that P(b;) # 0 (mod p;) and hence

pjtbi+ B forl<i<m. (4.1)
4.8. The exponents x; ;
Let
s = |logyd] +1

and observe that pj > 2° > d for each j € N. Since there are precisely p? multiples of p;
modulo p;"'l, there is an e; € Z such that

a; +ejp; +b; 0 (modpjf‘H) for 1 <i<d.
Define
zij =max {y : p¥|oi + e;p; +b;} (4.2)
and observe that x; ; <sfor 1 <i<dand 1<y <L
4.4. The intervals I, 1o, ..., I

Fori=1,2,...,d, define

1—¢ 1+¢
L=|& — & — | n(0,1). 4.3)
( FITo ™) f(Hf_lpm> ) (

Since & € [0,7] and 0 < 7 < f(l_[fz1 p;"7), it follows that each I; is nonempty.
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4.5. The natural numbers wy,ws, ..., wq
Define
d
P’{pl,pg,...,pL}U{p p|<HO¢Z)( H (Olzﬂ])>( H (Oéi()lj)>}. (44)
i=1 1<i<d 1<i<j<d
1<ism
Lemma 12 provides pairwise relatively prime wq,ws, ..., wg € N such that f(w;) € I;
and ptw; forall p e P and 1 <i < d.
4.6. The natural number c
Since p1,p2,...,pL,w1,...,wy are pairwise relatively prime, the Chinese remainder
theorem yields ¢ € N such that
c=e;jp;+b; (modp§+1) for1<j <L, (4.5
¢ = w; — a; (mod w?) for1 <i<d. (4.6)

4.7. The polynomials

Define

d L
ho(t) = (wa) <Hp;+1>t+c (4.7)

j=1 j=1

and
hl(t) = ho(t) + B; for 1 <i < m, (48)
ho(t i .

gi(t) = M for 1 < <d. (4.9)

L i,§
Wi Hj:l p;ﬁ K
4.8. Integer coefficients

By construction, hy, ha, ..., hy, € Z[t]. Let us verify that g1,¢2,...,94 € Z[t]. From
(4.7) and (4.9), we have

d L s
(Hj:l w?)(njzlpj_'_l)t n c+ q;

L Zij L Tij "
w; Hj:l p; w; Hj:l p;

gi(t) =

(4.10)

The coefficient of ¢ is an integer since z;; < s for 1 <¢ < dand 1 < j < L. For the
constant term, first observe that each w; | ¢ + o; by (4.6). The definition (4.2) of z;
ensures that p;™’ | a; + e;p; + b; and (4.5) implies
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a; +ejpj+bi =0 +c¢ (modpj“). (4.11)
Consequently, Hle p;c"’"' | ¢+ «;. Since p1,p2,...,pL,w1,...,wy are pairwise relatively
prime, the constant term in (4.10) is an integer. Thus, g1, g2, ..., 94 € Z[t].

4.9. Nonwvanishing modulo small primes

Consider

F(t) = (f[lhi(t)) <f[lgi(t)> € Z[t] (4.12)

(the first product excludes hg) and observe that deg F' = m + d. We claim that F does
not vanish modulo any of pi,p2,...,pr. Since x; ¢ < s,

d L
() (057
w; Hf:l P

and hence ho(t) = ¢ (modpg) by (4.7). The definition (4.2) of z; , and (4.11) imply

Pe

z; 0 =max{y : pJ|(c+a;)}

and therefore the constant term in (4.10) is not divisible by p,. Thus,

ho(t) + a; c+ oy
9i(t) = (2 T o L i # 0 (modpy).
Wi Hj:lpj wj Hj:1 ;"

Since (4.5) implies that ¢ = by (mod py), it follows from (4.1) that
hi(t) = ho(t) + Bi = ¢+ Bi = be + B; Z 0 (mod py).

Consequently, F' does not vanish modulo any of p1,p2,...,pr-
4.10. Nonvanishing modulo large primes

Suppose toward a contradiction that F vanishes identically modulo some prime p ¢
{p1,p2,...,pr}. Observe that p > m+d = deg F since L = 7(m +d). The fully-factored
presentation (4.12) ensures that some linear factor of F' vanishes identically modulo p.

The definitions (4.7), (4.8), and (4.9) ensure that the leading coefficient of each linear
factor of F' divides (H;l:l w?)(HfZl p‘;H). Thus, p | wy for some 1 < k < d. Our
construction (4.6) of ¢ ensures that ¢ = wg — ay = —ax (mod wy) and hence

ho(t)

¢ = —ay, (mod p). (4.13)
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The construction of wy implies ged(wy, 3; — ) = 1 since no prime in the set P’ defined
by (4.4) divides wy. Thus, for ¢ =1,2,...,mand all t € Z,

hi(t) = B; + ¢ = B; — ax, Z 0 (mod p).

Since p { w; for i # k, (4.13) implies that for all t € Z,

ho (t) —+ Q; — O —+ (67
9i(t) = T @, — A # 0 (mod p)
w; HJ 1D; Wy HJ 1DP;

because ged(w;, a; — ag) = 1 since no prime in P’ divides w;. Now consider the case
i = k, for which p | wg. Then (4.6) ensures that

ok _ 1 (mod wy) and hence etk = 1 (modp).
W W

For all t € Z, (4.7) and (4.9) imply

L
) = H S 20 (mod p).

Since no linear factor of F' vanishes identically, we have reached a contradiction.
Consequently, F' does not vanish identically modulo any p ¢ {p1,ps,...,pL}.

4.11. Conclusion

Dickson’s conjecture provides infinitely many ¢ such that

h;(t) is prime for 1 < i < m,
g;(t) is prime for 1 < j < d,

g;(t) > max{w;,pr} for 1 < j<d.
Let n = ho(t) for any such ¢. Then (4.8) and (4.9) imply

n+ B; = hi(t) for 1 <i<m,
L

n+a; =gt wZpr” for 1 <j<d.
Jj=1

Since g;(t), w;, and Hle p}“’j are pairwise relatively prime for each 1 < i < d,

f(n+ai)=f(gi(t)wiﬁlpfi’j> = fai( (sz”)
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because f is multiplicative. Condition (a) asserts that lim, . f(p) = 1, so f(g:(t)) =
1+ 0o(1) as t increases. By definition, each f(w;) € I;, the open interval defined by (4.3)
Consequently, if ¢ is sufficiently large

L
fln+a;) € f( HPZ”)L = (&1 —e),&(14¢))

for 1 < i < d. Since € > 0 was arbitrary, we conclude that
{(f(n+a1),f(n+a2),...,f(n+ad)) n+Bi,n+ B2 ...,n+ Bm € ]P’}
is dense in [0,7]¢. O
5. Proof of Theorem 1
Suppose that f is a positive multiplicative function such that

(a) limy o0 f(p) =1, and
(b) II, f(p) is not absolutely convergent,

a1,Qs,...,aq € Z are distinct, and (81, fa, .. ., Bm) is an admissible m-tuple with «; #
B; for all 7, j. Suppose that

. h(n+1)
1 _— =

Jim. hn) k € (0,00)
and define g = fh. Since

gint+ai)  fntai) h(n+ o)
gn+a;)  fln+a;) h(n+aj)’

and

. h(n+ o)
lim ——— =«
2 h(n+ ay)

Qi —Qy
)
to prove the density of either (1.4) or (1.3) in [0,00)471, it suffices to consider the case
in which h is identically 1.
Condition (b) ensures that there is an S C P such that [ g f(p) diverges to 0 or
oo. Assume Dickson’s conjecture and apply Theorem 2 to f or 1/f, respectively, and
conclude that

S={(f(n+a), f(n+as),....f(n+aq) :n+pbr,n+Ps....,n+Bn P} (5.1)
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is dense in [0,7]? or [r,00)? for some r > 0. By possibly considering 1/f in place of f,
we may assume that S is dense in [0,7]?. Let (£1,&,...,&4) € [0,7] and set

p= max{élvi?a s agd}‘
Given € > 0, let § > 0 be such that

1— <ﬂ<ﬂ<l+
fS115° 16 =

Select 1 € (0,7/p) N (0,7) and define x; = z1§; for 2 < i < d. Thus,
O<a, =21& < <r>pr forl1<i<d
P

and hence (z1,%2,...,74) € (0,7)? Since S is dense in [0,7]?, there is an n € N such
that n + 81,n+ Bo,...,n+ B,, are prime and

lf(n+ o) — x| <ox; forl<i<d.

Consequently,
fn4+ai 1) 2 1(146) 149 .
fn+ay) x1(1 —6) —&-11_6 <&iaa(l+e),
and
fint+aiy) wa(1-0) . 1-6 _
fn+ay) z1(1+49) _51_11+5 > i1l —e)

for 2 < i < d. In particular,

fn+ai—1)

Fin+ar) €((l—e)&-1,(1+e)&-q) fori=2,3,...,d—1,

and hence the set (1.3) is dense in [0,00)¢"!. Lemma 13 provides the corresponding
result for the set (1.4). This completes the proof Theorem 1. O

6. Further research

We have focused on primality constraints of the form n+ 81, n+ps, ..., n+p, € P and
simple shifts n+aq, n+as, ..., n+ay in the arguments of the multiplicative function. One
can consider more general conditions. For this, Dickson’s conjecture (which concerns only
linear polynomials) no longer suffices. However, Schinzel’s Hypothesis H should permit
a generalization [19]. Going further, the Bateman—Horn conjecture might even provide
asymptotic estimates [1-3].
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Problem 14. Generalize Theorems 1 and 2 to include polynomial primality constraints
Pl(n)7P2(n)7 B Pm(n) eP.

Problem 15. Generalize Theorems 1 and 2 so that the arguments n4+ay, n+as, ..., n+aq
are replaced by polynomial functions of n.

Obviously, it would be of interest to generalize in both directions simultaneously. The
interplay between the two conditions is likely to be nontrivial since already Theorem 1
requires that a; # 3; for 1 < ¢ < dand 1 < j < m. Example 5 shows that this restriction
is, at least in some cases, necessary.
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