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1. Introduction

Our aim is to generalize recent results on the behavior of certain multiplicative func-
tions near twin-prime arguments and also several related theorems of Schinzel undertaken 
without primality assumptions. In particular, we obtain multidimensional Schinzel-type 
results for more general multiplicative functions, in which prime pairs are replaced with 
prime tuples and the additive offsets from the prime arguments are essentially arbitrary. 
Consequently, the present work subsumes and generalizes many results from [8,10,11].

Despite a flurry of recent activity [12–14,22], the existence of infinitely many twin 
primes is still conjectural. Consequently, results involving twin primes and, more gener-
ally, prime tuples, must rely on unproven conjectures. Dickson’s conjecture is one of the 
weakest widely-believed conjectures that implies the twin prime conjecture [1,5,15]. It is 
far weaker than the celebrated Bateman–Horn conjecture, which concerns polynomials 
of arbitrary degree and makes asymptotic predictions [1–3].

Dickson’s Conjecture. If f1, f2, . . . , fk ∈ Z[t] are linear polynomials with positive lead-
ing coefficients and f = f1f2 · · · fk does not vanish identically modulo any prime, then 
f1(t), f2(t), . . . , fk(t) are simultaneously prime infinitely often.

Before stating our main results, we briefly survey some of the relevant literature. In 
what follows, ϕ denotes the Euler totient function. In 2017, Garcia, Kahoro, and Luca 
showed that the Bateman–Horn conjecture implies ϕ(p − 1) � ϕ(p + 1) for a majority 
of twin-primes pairs p, p + 2 and that the reverse inequality holds for a small positive 
proportion of the twin primes [8]. This bias disappears if only p is assumed to be prime 
[9]. Analogues for prime pairs were obtained in 2018 by Garcia, Luca, and Schaaff [10]. 
Although preliminary numerical evidence suggested that ϕ(p +1)/ϕ(p −1) might remain 
bounded as p, p + 2 runs over the twin primes, Garcia, Luca, Shi, and Udell proved that 
Dickson’s conjecture implies that these quotients are dense in [0, ∞) [11].

The motivation for multidimensional generalizations of these results goes back to 
Schinzel, who obtained many similar results without primality restrictions. For example, 
[18, Thm. 1] ensures that

{(
ϕ(n + 1)
ϕ(n) ,

ϕ(n + 2)
ϕ(n + 1) , . . . ,

ϕ(n + d)
ϕ(n + d− 1)

)
: n ∈ N

}
is dense in [0,∞)d. (1.1)

The same result holds with the sum-of-divisors function σ in place of ϕ (Schinzel quips 
“Theorem 2 is obtained from Theorem 1 by replacing the letter ϕ with σ”). The seminal 
result in this direction is Schinzel’s 1954 observation that{

ϕ(n + 1)
ϕ(n) : n = 1, 2, . . .

}
is dense in [0,∞), (1.2)

a variant of an obscure result of Somayajulu [21]. This density result inspired later work 
of Schinzel, Sierpiński, Erdős, and others [6,7,17–20] (see also [16, Ch. 1]).
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Before stating our main result, we require a few words about notation. In what follows, 
N = {1, 2, . . .} denotes the set of natural numbers, Z the set of integers, and R the set of 
real numbers. We let P = {2, 3, 5, 7, 11, . . .} denote the set of prime numbers; the symbol 
p always refers to a prime number. An m-tuple (α1, α2, . . . , αm) ∈ Z is admissible if 
there does not exist a p ∈ P such that α1, α2, . . . , αm form a complete residue system 
modulo p. This ensures that no congruence obstruction prevents the linear polynomials 
x − α1, x − α2, . . . , x − αm from being simultaneously prime infinitely often.

Our main theorem is both a broad multidimensional generalization of the results of 
[11] and a version of Schinzel’s theorem (1.1) with primality restrictions.

Theorem 1. Let f be a positive multiplicative function such that

(a) limp→∞ f(p) = 1, and
(b)

∏
p∈P f(p) is not absolutely convergent,

let

lim
n→∞

h(n + 1)
h(n) = κ ∈ (0,∞),

and let g = fh. For any distinct α1, α2, . . . , αd ∈ Z and admissible (β1, β2, . . . , βm) with 
αi �= βj for 1 � i � d and 1 � j � m, Dickson’s conjecture implies both

{(
g(n + α2)
g(n + α1)

,
g(n + α3)
g(n + α1)

, . . . ,
g(n + αd)
g(n + α1)

)
: n + β1, n + β2, . . . , n + βm ∈ P

}
(1.3)

and

{(
g(n + α1)
g(n + α2)

,
g(n + α2)
g(n + α3)

, . . . ,
g(n + αd−1)
g(n + αd)

)
: n + β1, n + β2, . . . , n + βm ∈ P

}
(1.4)

are dense in [0, ∞)d−1.

Theorem 1 also holds for m = 0; that is, without primality restrictions. To see this, 
choose β such that αi �= β for each 1 � i � d and observe that if tuples of ratios 
of functions of n are dense in [0, ∞)d−1 when n + β is prime, these ratios will still be 
dense in [0, ∞)d−1 without primality assumptions. However, our proof relies on Dickson’s 
conjecture and does not adapt to the m = 0 case unconditionally. It is a nontrivial task 
to remove this assumption, and we do not attempt to do so here.

The main ingredient in the proof of Theorem 1 is the following result, which is of 
independent interest (despite its more technical statement) since it generalizes several 
results from [11] that do not fall under the umbrella of Theorem 1.
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Theorem 2. Let f be a positive multiplicative function such that

(a) limp→∞ f(p) = 1, and
(b) for some infinite subset S ⊆ P , 

∏
p∈S f(p) diverges to 0.

For distinct α1, α2, . . . , αd ∈ Z and an admissible (β1, β2, . . . , βm) ∈ Zm with αi �= βj

for all i, j, Dickson’s conjecture implies that
{(

f(n + α1), f(n + α2), . . . , f(n + αd)
)

: n + β1, n + β2, . . . , n + βm ∈ P
}

is dense in [0, r]d, in which

r = min
{
f

( π(m+d)∏
j=1

p
xj

j

)
: 0 � xj � �log2 d� + 1

}
. (1.5)

Here π(x) =
∑

p�x 1 denotes the prime-counting function.

This paper is organized as follows. In Section 2 we present a wide array of examples 
and applications of Theorems 1 and 2. We present several necessary lemmas in Section 3
before proceeding to Section 4, which concerns the proof of Theorem 2. The proof of The-
orem 1 is contained in Section 5. We conclude with several remarks and open problems 
in Section 6.

2. Examples and applications

We demonstrate that a wide variety of known and novel results follow from Theo-
rems 1 and 2. Since there are so many consequences of these theorems, we split the 
following list of examples into one-dimensional and multidimensional categories. In par-
ticular, we highlight some striking numerical examples which illustrate that our method 
of proof narrows down the search for suitable prime tuples to the extent that the relevant 
computations are feasible on a standard laptop computer.

2.1. One-dimensional results

Before we recover all of the main one-dimensional results from [11], we first direct the 
reader to Table 1, which contains a few curious examples. As usual, we assume the truth 
of Dickson’s conjecture.

Example 3. Theorem 1 with f(n) = ϕ(n)/n, h(n) = n, α1 = −1, α2 = 1, β1 = 0, and 
β2 = 2, implies [11, Thm. 1]:

{
ϕ(p + 1) : p, p + 2 ∈ P

}
is dense in [0,∞).
ϕ(p− 1)
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Table 1
Here p, p + 6, p + 12, p + 18 are prime and ϕ(p + a2)/ϕ(p + a1) closely approximates a 
fundamental mathematical constant. Underlined digits agree with those of the constant 
in question.

ξ a1, a2 p ϕ(p+a2)
ϕ(p+a1)

γ −1, 1 95674157816864951038010948990752780001 0.577215664901530. . .
π 5, 16 12029840180666026511494250079901 3.14159265355768. . .
e 11, 16 106784808714334981809995191 2.71828182788915. . .

Example 4. Apply Theorem 1 to f(n) = σ(n)/n, in which σ(n) =
∑

d|n d, with the same 
h, αi, and βi, as in the previous example, and obtain [11, Thm. 4a]:

{
σ(p + 1)
σ(p− 1) : p, p + 2 ∈ P

}
is dense in [0,∞).

Example 5. Since lim supp→∞ ϕ(p + 1)/ϕ(p) = 1
2 , we do not expect a straightforward 

prime version of Schinzel’s result (1.2) (it is known unconditionally that {ϕ(p +1)/ϕ(p) :
p ∈ P} is dense in [0, 12 ] [11, Thm. 2]). However, we can obtain shifted Schinzel-type 
results with primality restrictions, such as

{
ϕ(n + 1)
ϕ(n) : n + 7, n + 9 ∈ P

}
is dense in [0,∞).

Example 6. Let f(n) = ϕ(n)/n in Theorem 2 with α1 = 1, β1 = 0, and β2 = 2. Then 
m + d = 3, π(m + d) = 2, and �log2 d� + 1 = 1. Since

r = min
{
ϕ(2 · 3)

2 · 3 ,
ϕ(2)

2 ,
ϕ(3)

3 ,
1
1

}
= 1

3 ,

Theorem 2 implies {ϕ(p +1)/(p +1) : p, p +2 ∈ P} is dense in [0, 13 ] and hence we recover 
[11, Thm. 3]:

{
ϕ(p + 1)
ϕ(p) : p, p + 2 ∈ P

}
is dense in [0, 1

3 ].

Example 7. Let f(n) = n/σ(n) and use the same parameters as in the previous example. 
Since r = min{ 6

σ(6) , 
2

σ(2) , 
3

σ(3) , 
1
1} = 1

2 , Theorem 2 implies { p+1
σ(p+1) : p, p +2 ∈ P} is dense 

in [0, 12 ] and we recover [11, Thm. 4c]:

{
σ(p + 1) : p, p + 2 ∈ P

}
is dense in [2,∞).
σ(p)



S.R. Garcia et al. / Journal of Number Theory 219 (2021) 212–227 217
Table 2
Here p +β1, p +β2, . . . are prime and (ϕ(p+a2)

ϕ(p+a1)
, ϕ(p+a3)
ϕ(p+a1)

) closely approximates (ξ1, ξ2). Underlined 
digits agree with those of the constants in question. Note that 43, 67, and 163 are the largest 
Heegner numbers; 5, 8, and 13 are Fibonacci numbers; 561, 1105, and 1729 are the first three 
Carmichael numbers; and 196884 is the coefficient of q in the Fourier expansion of the j-invariant 
(as in Monstrous Moonshine).

ξ1 ξ2 β1, β2, . . . α1, α2, α3 p ϕ(p+a2)
ϕ(p+a1)

ϕ(p+a3)
ϕ(p+a1)√

2
√

3 0,2 43, 67, 
163

751184478449
416099048649
570893527818
494096598933
189697746350
453399017762
020065304443
6211

1.4142135
623730950
488016888
50439. . .

1.7320508
075688772
935283112
31013. . .

√
5+1
2

√
5−1
2 0, 2 5, 8, 13 130084391444

506326722340
792832995109
955572053763
06391

1.6180339
88749894
870. . .

0.6180339
88749894
8557. . .

∫ 1
0 xx dx

∫ 1
0

1
xx dx 0, 10, 12, 64, 

88
561, 1105, 
1729

918845569650
372195012106
105368325979
588394815789
872234894985
9809

0.7834305
107121345
08863. . .

1.291285
99706266
35404396
9. . .

e/10 π/10 0, 2, 56, 80, 
196884

314, 159, 
265

961359758712
644806513809
803026043276
8517

0.2718281
831735333
2418. . .

0.3141592
658358261
2337. . .

2.2. Higher-dimensional generalizations

Theorem 1 permits higher-dimensional generalizations of the key results of [11]. These 
are prime analogues of Schinzel’s seminal result (1.1). Table 2 displays a variety of 
appealing examples. In what follows, we assume the truth of Dickson’s conjecture.

Example 8. Apply Theorem 1 to f(n) = ϕ(n)/n and deduce that both

{(
ϕ(n + α1)
ϕ(n + α2)

,
ϕ(n + α2)
ϕ(n + α3)

, . . . ,
ϕ(n + αd−1)
ϕ(n + αd)

)
: n + β1, n + β2, . . . , n + βm ∈ P

}

and

{(
ϕ(n + α2)
ϕ(n + α1)

,
ϕ(n + α3)
ϕ(n + α1)

, . . . ,
ϕ(n + αd)
ϕ(n + α1)

)
: n + β1, n + β2, . . . , n + βm ∈ P

}

are dense in [0, ∞)d−1 for any distinct α1, α2, . . . , αd ∈ Z and admissible (β1, β2, . . . , βm)
with αi �= βj for 1 � i � d and 1 � j � m. These are prime analogues of Schinzel’s 
theorem (1.1). In a similar manner, these results hold for σ as well.



218 S.R. Garcia et al. / Journal of Number Theory 219 (2021) 212–227
Example 9. Let

f(n) = exp
(∑

p∈P

νp(n)
p

)

and h(n) = 1, in which νp is the p-adic valuation. Then f(p) = e1/p → 1 and

∏
p∈P

f(p) =
∏
p∈P

exp
(

1
p

)
= exp

(∑
p∈P

1
p

)

diverges. Then Theorem 1 implies

{(
f(n + α1)
f(n + α2)

,
f(n + α2)
f(n + α3)

, . . . ,
f(n + αd−1)
f(n + αd)

)
: n + β1, n + β2, . . . , n + βm ∈ P

}

and
{(

f(n + α2)
f(n + α1)

,
f(n + α3)
f(n + α1)

, . . . ,
f(n + αd)
f(n + α1)

)
: n + β1, n + β2, . . . , n + βm ∈ P

}

are dense in [0, ∞)d−1 for any distinct α1, α2, . . . , αd ∈ Z and admissible (β1, β2, . . . , βm)
with αi �= βj for 1 � i � d and 1 � j � m.

3. Preliminaries

The following lemma is essentially due to Schinzel [18, Lem. 1], except that here we 
insist upon the extra condition 	k > nk and we consider 0 < C < 1 instead of C > 1. 
We provide the proof here because of these modifications.

Lemma 10. Let un denote an infinite sequence of real numbers such that

lim
n→∞

un = 0 and lim
n→∞

un+1

un
= 1.

For each 0 < C < 1 and strictly increasing sequence nk in N, there exists 	k ∈ N such 
that

	k > nk for k = 1, 2, 3 . . . and lim
k→∞

u	k

unk

= C.

Proof. For k ∈ N, let 	k � nk be the least natural number such that

ulk � C.

unk
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Such a number exists because limn→∞ un = 0. Furthermore, 	k > nk because C <

unk
/unk

= 1 by assumption. The minimality of 	k ensures that

C <
u	k−1

unk

(3.1)

and hence

C
u	k

u	k−1
=

(
C

unk

u	k−1

)
u	k

unk

<
u	k

unk

� C.

Thus,

lim
k→∞

u	k

unk

= C. �
The next lemma is a generalization of [11, Lem. 5] (see also [4, Prop. 8.8]).

Lemma 11. Let f be a positive multiplicative function such that limp→∞ f(p) = 1 and ∏
p∈S f(p) diverges to zero for some S ⊂ P . For any finite subset P ′ ⊂ P ,

{f(n) : n squarefree, p � n for all p ∈ P ′} is dense in [0, 1].

Proof. Let qi denote the ith smallest prime in the infinite set S\P ′. Define

un =
n∏

i=1
f(qi),

which tends to zero as n → ∞ and satisfies

lim
n→∞

un+1

un
= lim

n→∞
f(qn+1) = 1.

Let nk be an increasing sequence in N and 0 < C < 1. Lemma 10 provides a sequence 
	n in N such that

	k > nk for k = 1, 2, . . . and lim
k→∞

u	k

unk

= C.

Then wk =
∏	k

i=nk+1 qi is squarefree, not divisible by any element of P ′, and satisfies

f(wk) = f

(
	k∏

i=nk+1
qi

)
=

	k∏
i=nk+1

f(qi) =
∏	k

i=1 f(qi)∏nk

i=1 f(qi)
= u	k

unk

→ C. �

Lemma 12. Let f be a positive multiplicative function such that limp→∞ f(p) = 1 and ∏
p∈S f(p) diverges to zero for some S ⊂ P . For any finite P ′ ⊂ P , the set of d-tuples 

(f(w1), f(w2), ..., f(wd)) such that
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(a) w1, w2, . . . , wd ∈ N are squarefree and pairwise relatively prime, and
(b) p � wi for p ∈ P ′ and 1 � i � d,

is dense in [0, 1]d

Proof. We proceed by induction on d. If I1 ⊂ [0, 1] is an open interval, Lemma 11 provides 
a squarefree w1 such that f(w1) ∈ I1 and p � w1 for all p ∈ P ′. Let I1, I2, . . . , Id ⊂
[0, 1] be open intervals and suppose that there are squarefree, pairwise relatively prime 
w1, w2, . . . , wd−1 such that p � wi for all p ∈ P ′ and f(wi) ∈ Ii for 1 � i � d − 1. Let 
P ′′ be the union of P ′ with the set of divisors of w1, w2, . . . , wd−1. Lemma 11 provides a 
squarefree wd, coprime to w1, w1, . . . , wd−1, such that (f(w1), f(w2), . . . , f(wd)) ∈ I1 ×
I2 × · · · × Id and p � wd for each p ∈ P ′′ ⊃ P ′. This concludes the induction. �

The next lemma provides a simple method to pass between results about sets of the 
form (1.4) and (1.3).

Lemma 13. The function Φ : (0, ∞)d−1 → (0, ∞)d−1 defined by

Φ(y1, y2, . . . , yd−1) =
(

1
y1

,
y1

y2
,
y2

y3
, . . . ,

yd−2

yd−1

)

is a homeomorphism.

Proof. Since Φ is continuous, it suffices to observe that the continuous function Ψ :
(0, ∞)d−1 → (0, ∞)d−1

Ψ(x1, x2, . . . , xd−1) =
(

1
x1

,
1

x1x2
,

1
x1x2x3

, . . . ,
1∏d−1

i=1 xi

)

inverts Φ. �
4. Proof of Theorem 2

We break the proof of Theorem 2 into a number of subsections for clarity. This orga-
nization highlights the particular parameters involved at each stage.

4.1. Initial setup and outline

Suppose f is a positive multiplicative function satisfying hypotheses (a) and (b) of 
Theorem 2. Let α1, α2, . . . αd ∈ Z be distinct, let (β1, β2, . . . , βm) be an admissible m-
tuple with αi �= βj for 1 � i � d and 1 � j � m. Define L = π(m + d) and let r be given 
by (1.5).
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It suffices to show that for each ε > 0 and ξ = (ξ1, ξ2, . . . , ξd) ∈ [0, r]d, there is an 
n ∈ N such that n + βj is prime for 1 � j � m and f(n + αi) ∈ (ξi(1 − ε), ξi(1 + ε)) for 
each 1 � i � d.

4.2. The integers b1, b2, . . . , bL

Since (β1, β2, . . . , βm) is an admissible m-tuple,

P (t) = (t + β1)(t + β2) · · · (t + βm)

does not vanish identically modulo any prime. Consequently, for each pj with j =
1, 2, . . . , L, there is some bj ∈ Z such that P (bj) �≡ 0 (mod pj) and hence

pj � bj + βi for 1 � i � m. (4.1)

4.3. The exponents xi,j

Let

s = �log2 d� + 1

and observe that psj � 2s > d for each j ∈ N. Since there are precisely psj multiples of pj
modulo ps+1

j , there is an ej ∈ Z such that

αi + ejpj + bj �≡ 0 (mod ps+1
j ) for 1 � i � d.

Define

xi,j = max
{
y : pyj |αi + ejpj + bj

}
(4.2)

and observe that xi,j � s for 1 � i � d and 1 � j � L.

4.4. The intervals I1, I2, . . . , Id

For i = 1, 2, . . . , d, define

Ii =
(
ξi

1 − ε

f(
∏L

j=1 p
xi,j

j )
, ξi

1 + ε

f(
∏L

j=1 p
xi,j

j )

)
∩ (0, 1). (4.3)

Since ξi ∈ [0, r] and 0 < r � f(
∏L

j=1 p
xi,j

j ), it follows that each Ii is nonempty.
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4.5. The natural numbers w1, w2, . . . , wd

Define

P ′ = {p1, p2, . . . , pL}∪
{
p : p

∣∣( d∏
i=1

αi

)( ∏
1�i�d
1�j�m

(αi−βj)
)( ∏

1�i<j�d

(αi−αj)
)}

. (4.4)

Lemma 12 provides pairwise relatively prime w1, w2, . . . , wd ∈ N such that f(wi) ∈ Ii
and p � wi for all p ∈ P ′ and 1 � i � d.

4.6. The natural number c

Since p1, p2, . . . , pL, w1, . . . , wd are pairwise relatively prime, the Chinese remainder 
theorem yields c ∈ N such that

c ≡ ejpj + bj (mod ps+1
j ) for 1 � j � L, (4.5)

c ≡ wi − αi (modw2
i ) for 1 � i � d. (4.6)

4.7. The polynomials

Define

h0(t) =
( d∏

j=1
w2

j

)( L∏
j=1

ps+1
j

)
t + c (4.7)

and

hi(t) = h0(t) + βi for 1 � i � m, (4.8)

gi(t) = h0(t) + αi

wi

∏L
j=1 p

xi,j

j

for 1 � i � d. (4.9)

4.8. Integer coefficients

By construction, h1, h2, . . . , hm ∈ Z[t]. Let us verify that g1, g2, . . . , gd ∈ Z[t]. From 
(4.7) and (4.9), we have

gi(t) =
(
∏d

j=1 w
2
j )(

∏L
j=1 p

s+1
j )

wi

∏L
j=1 p

xi,j

j

t + c + αi

wi

∏L
j=1 p

xi,j

j

. (4.10)

The coefficient of t is an integer since xi,j � s for 1 � i � d and 1 � j � L. For the 
constant term, first observe that each wi | c + αi by (4.6). The definition (4.2) of xi,j

ensures that pxi,j

j | αi + ejpj + bj and (4.5) implies
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αi + ejpj + bj ≡ αi + c (mod ps+1
j ). (4.11)

Consequently, 
∏L

j=1 p
xi,j

j | c + αi. Since p1, p2, . . . , pL, w1, . . . , wd are pairwise relatively 
prime, the constant term in (4.10) is an integer. Thus, g1, g2, . . . , gd ∈ Z[t].

4.9. Nonvanishing modulo small primes

Consider

F (t) =
( m∏

i=1
hi(t)

)( d∏
i=1

gi(t)
)

∈ Z[t] (4.12)

(the first product excludes h0) and observe that degF = m + d. We claim that F does 
not vanish modulo any of p1, p2, . . . , pL. Since xi,	 � s,

p	

∣∣∣
(∏d

j=1 w
2
j

)(∏L
j=1 p

s+1
j

)
wi

∏L
j=1 p

xi,j

j

and hence h0(t) ≡ c (mod p	) by (4.7). The definition (4.2) of xi,	 and (4.11) imply

xi,	 = max{y : py	 |(c + αi)}

and therefore the constant term in (4.10) is not divisible by p	. Thus,

gi(t) = h0(t) + αi

wi

∏L
j=1 p

xi,j

j

≡ c + αi

wi

∏L
j=1 p

xi,j

j

�≡ 0 (mod p	).

Since (4.5) implies that c ≡ b	 (mod p	), it follows from (4.1) that

hi(t) = h0(t) + βi ≡ c + βi ≡ b	 + βi �≡ 0 (mod p	).

Consequently, F does not vanish modulo any of p1, p2, . . . , pL.

4.10. Nonvanishing modulo large primes

Suppose toward a contradiction that F vanishes identically modulo some prime p /∈
{p1, p2, . . . , pL}. Observe that p > m +d = degF since L = π(m +d). The fully-factored 
presentation (4.12) ensures that some linear factor of F vanishes identically modulo p.

The definitions (4.7), (4.8), and (4.9) ensure that the leading coefficient of each linear 
factor of F divides (

∏d
j=1 w

2
j )(

∏L
j=1 p

s+1
j ). Thus, p | wk for some 1 � k � d. Our 

construction (4.6) of c ensures that c ≡ wk − αk ≡ −αk (modwk) and hence

h0(t) ≡ c ≡ −αk (mod p). (4.13)
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The construction of wk implies gcd(wk, βi−αk) = 1 since no prime in the set P ′ defined 
by (4.4) divides wk. Thus, for i = 1, 2, . . . , m and all t ∈ Z,

hi(t) ≡ βi + c ≡ βi − αk �≡ 0 (mod p).

Since p � wi for i �= k, (4.13) implies that for all t ∈ Z,

gi(t) = h0(t) + αi

wi

∏L
j=1 p

xi,j

j

≡ −αk + αi

wi

∏L
j=1 p

xi,j

j

�≡ 0 (mod p)

because gcd(wi, αi − αk) = 1 since no prime in P ′ divides wi. Now consider the case 
i = k, for which p | wk. Then (4.6) ensures that

c + αk

wk
≡ 1 (modwk) and hence c + αk

wk
≡ 1 (mod p).

For all t ∈ Z, (4.7) and (4.9) imply

gk(t) ≡
L∏

j=1
p
−xi,j

j �≡ 0 (mod p).

Since no linear factor of F vanishes identically, we have reached a contradiction. 
Consequently, F does not vanish identically modulo any p /∈ {p1, p2, . . . , pL}.

4.11. Conclusion

Dickson’s conjecture provides infinitely many t such that

hi(t) is prime for 1 � i � m,

gj(t) is prime for 1 � j � d,

gj(t) > max{wj , pL} for 1 � j � d.

Let n = h0(t) for any such t. Then (4.8) and (4.9) imply

n + βi = hi(t) for 1 � i � m,

n + αi = gi(t)wi

L∏
j=1

p
xi,j

j for 1 � j � d.

Since gi(t), wi, and 
∏L

j=1 p
xi,j

j are pairwise relatively prime for each 1 � i � d,

f(n + αi) = f

(
gi(t)wi

L∏
p
xi,j

j

)
= f

(
gi(t)

)
f(wi)f

( L∏
p
xi,j

j

)

j=1 j=1
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because f is multiplicative. Condition (a) asserts that limp→∞ f(p) = 1, so f(gi(t)) =
1 + o(1) as t increases. By definition, each f(wi) ∈ Ii, the open interval defined by (4.3)
Consequently, if t is sufficiently large

f(n + αi) ∈ f

( L∏
j=1

p
xi,j

j

)
Ii =

(
ξi(1 − ε), ξi(1 + ε)

)

for 1 � i � d. Since ε > 0 was arbitrary, we conclude that
{(

f(n + α1), f(n + α2), . . . , f(n + αd)
)

: n + β1, n + β2, . . . , n + βm ∈ P
}

is dense in [0, r]d. �
5. Proof of Theorem 1

Suppose that f is a positive multiplicative function such that

(a) limp→∞ f(p) = 1, and
(b)

∏
p f(p) is not absolutely convergent,

α1, α2, . . . , αd ∈ Z are distinct, and (β1, β2, . . . , βm) is an admissible m-tuple with αi �=
βj for all i, j. Suppose that

lim
n→∞

h(n + 1)
h(n) = κ ∈ (0,∞)

and define g = fh. Since

g(n + αi)
g(n + αj)

= f(n + αi)
f(n + αj)

· h(n + αi)
h(n + αj)

,

and

lim
n→∞

h(n + αi)
h(n + αj)

= καi−αj ,

to prove the density of either (1.4) or (1.3) in [0, ∞)d−1, it suffices to consider the case 
in which h is identically 1.

Condition (b) ensures that there is an S ⊆ P such that 
∏

p∈S f(p) diverges to 0 or 
∞. Assume Dickson’s conjecture and apply Theorem 2 to f or 1/f , respectively, and 
conclude that

S =
{(

f(n + α1), f(n + α2), . . . , f(n + αd)
)

: n + β1, n + β2, . . . , n + βm ∈ P
}

(5.1)
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is dense in [0, r]d or [r, ∞)d for some r > 0. By possibly considering 1/f in place of f , 
we may assume that S is dense in [0, r]d. Let (ξ1, ξ2, . . . , ξd) ∈ [0, r]d and set

ρ = max{ξ1, ξ2, . . . , ξd}.

Given ε > 0, let δ > 0 be such that

1 − ε <
1 − δ

1 + δ
<

1 + δ

1 − δ
< 1 + ε.

Select x1 ∈ (0, r/ρ) ∩ (0, r) and define xi = x1ξi for 2 � i � d. Thus,

0 < xi = x1ξi <

(
r

ρ

)
ρ = r for 1 � i � d

and hence (x1, x2, . . . , xd) ∈ (0, r)d. Since S is dense in [0, r]d, there is an n ∈ N such 
that n + β1, n + β2, . . . , n + βm are prime and

|f(n + αi) − xi| < δxi for 1 � i � d.

Consequently,

f(n + αi−1)
f(n + α1)

<
xi−1(1 + δ)
x1(1 − δ) = ξi−1

1 + δ

1 − δ
< ξi−1(1 + ε),

and

f(n + αi−1)
f(n + α1)

>
xi−1(1 − δ)
x1(1 + δ) = ξi−1

1 − δ

1 + δ
> ξi−1(1 − ε)

for 2 � i � d. In particular,

f(n + αi−1)
f(n + α1)

∈
(
(1 − ε)ξi−1, (1 + ε)ξi−1

)
for i = 2, 3, . . . , d− 1,

and hence the set (1.3) is dense in [0, ∞)d−1. Lemma 13 provides the corresponding 
result for the set (1.4). This completes the proof Theorem 1. �
6. Further research

We have focused on primality constraints of the form n +β1, n +β2, . . . , n +βm ∈ P and 
simple shifts n +α1, n +α2, . . . , n +αd in the arguments of the multiplicative function. One 
can consider more general conditions. For this, Dickson’s conjecture (which concerns only 
linear polynomials) no longer suffices. However, Schinzel’s Hypothesis H should permit 
a generalization [19]. Going further, the Bateman–Horn conjecture might even provide 
asymptotic estimates [1–3].
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Problem 14. Generalize Theorems 1 and 2 to include polynomial primality constraints 
P1(n), P2(n), . . . , Pm(n) ∈ P .

Problem 15. Generalize Theorems 1 and 2 so that the arguments n +α1, n +α2, . . . , n +αd

are replaced by polynomial functions of n.

Obviously, it would be of interest to generalize in both directions simultaneously. The 
interplay between the two conditions is likely to be nontrivial since already Theorem 1
requires that αi �= βj for 1 � i � d and 1 � j � m. Example 5 shows that this restriction 
is, at least in some cases, necessary.
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