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The Prime Number Theorem
as a Capstone in a Complex Analysis Course

Stephan Ramon Garcia'

Department of Mathematics, Pomona College, Claremont, CA, USA
stephan.garcia@pomona.edu

Synopsis

We present a detailed proof of the prime number theorem suitable for a typical
undergraduate- or graduate-level complex analysis course. Our presentation is
particularly useful for any instructor who seeks to use the prime number theorem
for a series of capstone lectures, a scaffold for a series of guided exercises, or
as a framework for an inquiry-based course. We require almost no knowledge of
number theory, for our aim is to make a complete proof of the prime number
theorem widely accessible to complex analysis instructors (and their students).
In particular, we highlight the potential pitfalls and subtleties that may catch the
instructor unawares when using more terse sources.

1. Introduction

The prime number theorem is one of the great theorems in mathematics.
It unexpectedly connects the discrete and the continuous with the elegant
statement

lim )

=1
-0 x/logr

in which 7(z) denotes the number of primes at most x. The original proofs,
and most modern proofs, make extensive use of complex analysis. Our aim
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here is to present, for the benefit of complex analysis instructors, a com-
plete proof of the prime number theorem suitable either as a sequence of
capstone lectures at the end of the term, a scaffold for a series of exercises,
or a framework for an entire inquiry-based course. We require almost no
knowledge of number theory. In fact, our aim is to make a detailed proof of
the prime number theorem widely accessible to complex analysis instructors
of all stripes.

Why does the prime number theorem belong in a complex-variables course?
At various stages, the proof utilizes complex power functions, the complex
exponential and logarithm, power series, Euler’s formula, analytic continua-
tion, the Weierstrass M-test, locally uniform convergence, zeros and poles,
residues, Cauchy’s theorem, Cauchy’s integral formula, Morera’s theorem,
and much more. Familiarity with limits superior and inferior is needed to-
ward the end of the proof, and there are plenty of inequalities and infinite
series.

The prime number theorem is one of the few landmark mathematical results
whose proof is fully accessible at the undergraduate level. Some epochal
theorems, like the Atiyah—Singer index theorem, can barely be stated at the
undergraduate level. Others, like Fermat’s last theorem, are simply stated,
but have proofs well beyond the undergraduate curriculum. Consequently,
the prime number theorem provides a unique opportunity for students to
experience a mathematical capstone that draws upon the entirety of a course
and which culminates in the complete proof of a deep and profound result
that informs much current research. In particular, students gain an under-
standing of and appreciation for the Riemann Hypothesis, perhaps the most
important unsolved problem in mathematics. One student in the author’s
recent, class proclaimed, “I really enjoyed the prime number theorem being
the capstone of the course. It felt rewarding to have a large proof of an
important theorem be what we were working up towards as opposed to an
exam.” Another added, “I enjoyed the content very much...I was happy I
finally got to see a proof of the result.”

Treatments of the prime number theorem in complex analysis texts, if they
appear at all, are often terse and nontrivial to expand at the level of detail
needed for our purposes. For example, the standard complex analysis texts
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[4, 7, 20, 26, 28, 31, 32, 33, 38| do not include proofs of the prime number
theorem, although they distinguish themselves in many other respects. A
few classic texts [1, 6, 25, 41] cover Dirichlet series or the Riemann zeta
function to a significant extent, although they do not prove the prime number
theorem. Bak and Newman |3, Sec. 19.5] do an admirable job, although their
presentation is dense (five pages). Marshall’s new book assigns the proof as a
multi-part exercise that occupies half a page [27, p. 191]. Simon’s four-volume
treatise on analysis [35] and the Stein—Shakarchi analysis series [37] devote a
considerable amount of space to topics in analytic number theory and include
proofs of the prime number theorem. Lang’s graduate-level complex analysis
text [21] thoroughly treats the prime number theorem, although he punts at a
crucial point with an apparent note-to-self “(Put the details as an exercise)”.

On the other hand, number theory texts may present interesting digres-
sions or tangential results that are not strictly necessary for the proof of the
prime number theorem. They sometimes suppress or hand wave through
the complex analysis details we hope to exemplify. All of this may make
navigating and outlining a streamlined proof difficult for the nonspecialist.
We do not give a guided tour of analytic number theory, nor do we dwell
on results or notation that are unnecessary for our main goal: to present
an efficient proof of the prime number theorem suitable for inclusion in a
complex analysis course by an instructor who is not an expert in number
theory. For example, we avoid the introduction of general infinite products
and Dirichlet series, Chebyshev’s function v and its integrated cousin )y,
the von Mangoldt function, the Gamma function, the Jacobi theta function,
Poisson summation, and other staples of typical proofs. Some fine num-
ber theory texts which contain complex-analytic proofs of the prime number
theorem are [2, 8, 11, 13, 18, 39|.

No instructor wants to be surprised in the middle of the lecture by a major
logical gap in their notes. Neither do they wish to assign problems that
they later find are inaccurately stated or require theorems that should have
been covered earlier. We hope that our presentation here will alleviate these
difficulties. That is, we expect that a complex analysis instructor can use as
much or as little of our proof as they desire, according to the level of rigor
and detail that they seek. No step is extraneous and every detail is included.
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The proof we present is based on Zagier’s [42] presentation of Newman’s proof
[29] (see also Korevaar’s exposition [19]). For our purposes their approach is
ideal: it involves a minimal amount of number theory and a maximal amount
of complex analysis. The number-theoretic content of our proof is almost
trivial: only the fundamental theorem of arithmetic and the definition of
prime numbers are needed. Although there are elementary proofs [12, 34|, in
the sense that no complex analysis is required, these are obviously unsuitable
for a complex analysis course.

This paper is organized as follows. Each section is brief, providing the in-
structor with bite-sized pieces that can be tackled in class or in (potentially
inquiry-based) assignments. We conclude many sections with related remarks
that highlight common conceptual issues or opportunities for streamlining if
other tools, such as Lebesgue integration, are available. Proofs of lemmas
and theorems are often broken up into short steps for easier digestion or
adaptation as exercises. Section 2 introduces the prime number theorem and
asymptotic equivalence (~). We introduce the Riemann zeta function ((s)
in Section 3, along with the Euler product formula. In Section 4 we prove
the zeta function has a meromorphic continuation to Res > 0. We obtain
series representations for log ((s) and log|((s)| in Section 5. These are used
in Section 6 to establish the nonvanishing of the zeta function on the vertical
line Res = 1. Section 7 introduces Chebyshev’s function J(x) = >, logp
and establishes a simple upper bound (needed later in Section 10). In Section
8, we prove that a function related to log ((s) extends analytically to an open
neighborhood of the closed half plane Res > 1. Section 9 provides a brief
lemma on the analyticity of Laplace transforms. Section 10 is devoted to the
proof of Newman’s Tauberian theorem, a true festival of complex analysis.
Section 11 uses Newman’s theorem to establish the convergence of a certain
improper integral, which is shown to imply J(x) ~ z in Section 12. We end
in Section 13 with the conclusion of the proof of the prime number theorem.

Acknowledgments. We thank Ken Ribet, S. Sundara Narasimhan, and
Robert Sachs for helpful comments.



170 The Prime Number Theorem as a Capstone

2. Prime Number Theorem

Suppose that f(z) and g(z) are real-valued functions that are defined and
nonzero for sufficiently large z. We write f(z) ~ g(z) if

lim@=1

2= g(x)
and we say that f and g are asymptotically equivalent when this occurs. The
limit laws from calculus imply that ~ is an equivalence relation.

Let 7(z) denote the number of primes at most x. For example, 7(10.5) = 4
since 2,3,5,7 < 10.5. The distribution of the primes appears somewhat
erratic on the small scale. For example, we suspect that there are infinitely
many twin primes; that is, primes like 29 and 31 which differ by 2 (this is the
famed twin prime conjecture). On the other hand, there are arbitrarily large
gaps between primes: n! +2,n!+3,... n!l + n is a string of n — 1 composite
(non-prime) numbers since n! + k is divisible by k for k = 1,2,... n.

The following landmark result is one of the crowning achievements of human
thought. Although first conjectured by Legendre [22] around 1798 and per-
haps a few years earlier by the young Gauss, it was proved independently in
1896 by Hadamard [16] and de la Vallée Poussin [9] with methods from com-
plex analysis, building upon the seminal 1859 paper of Riemann [30] (these
historical papers are reprinted in the wonderful volume [5]).

Theorem 2.1 (Prime Number Theorem).
m(x) ~ Li(x),

i which g
Li(z) = | —
5 logt

1s the logarithmic integral.
The predictions afforded by the prime number theorem are astounding; see

Figure 1. Unfortunately, Li(z) cannot be evaluated in closed form. As a
consequence, it is convenient to replace Li(z) with a simpler function that
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Figure 1: Graphs of Li(z) versus m(x) on various scales.

is asymptotically equivalent to it. L’Hopital’s rule and the fundamental
theorem of calculus imply that

1
Li Togs . 1
v—o x/logr  a—oo logr—a(y)  a—w ] — 1
(log z)2 log
and hence N
Li ~ .
i(z) log x

However, the logarithmic integral provides a better approximation to m(x);
see Table 1.

We will prove the prime number theorem in the following equivalent form.

X

Theorem 2.2 (Prime Number Theorem). 7(x) ~ oo
0g T

Our proof incorporates modern simplifications due to Newman [29] and Za-
gier [42]. However, the proof is still difficult and involves most of the tech-
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x () Li(x) x/logx
1000 168 177 145
10,000 1,229 1,245 1,086
100,000 9,592 9,629 8,686
1,000,000 78,498 78,627 72,382
10,000,000 664,579 664,917 620,421
100,000,000 5,761,455 5,762,208 5,428,681
1,000,000,000 50,847,534 50,849,234 48,254,942
10,000,000,000 455,052,511 455,055,614 434,294,482
100,000,000,000 4,118,054,813  4,118,066,400  3,948,131,654
1,000,000,000,000 | 37,607,912,018 37,607,950,280 36,191,206,825

Table 1: The logarithmic integral Li(x) is a better approzimation to the prime counting
function 7(x) than is x/logx (entries rounded to the nearest integer).

niques and tools from a typical complex analysis course. There is little num-
ber theory in the proof; it is almost all complex analysis. Consequently, it is
an eminently fitting capstone for a complex analysis course. As G.H. Hardy
opined in 1921 [24]:

No elementary proof of the prime number theorem is known, and one
may ask whether it is reasonable to expect one. Now we know that the
theorem is roughly equivalent to a theorem about an analytic function,
the theorem that Riemann’s zeta function has no roots on a certain
line. A proof of such a theorem, not fundamentally dependent on the
theory of functions [complex analysis|, seems to me extraordinarily
unlikely.

In 1948 Erdés [12] and Selberg [34] independently found proofs of the prime
number theorem that avoid complex analysis. These “elementary” proofs are
more difficult and intricate than the approach presented here; see [10, 11, 17,
23, 40| for the details and [15, 36] for an account of the murky history of the
elementary proof.

Remark 2.3. A common misconception is that f(z) ~ g(x) implies that
f(z) — g(z) tends to zero, or that it remains small. The functions f(z) =
22 + z and g(z) = z? are asymptotically equivalent, yet their difference is

unbounded.
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Remark 2.4. The prime number theorem implies that p,, ~ nlogn, in which
prn denotes the nth prime number. Since m(p,) = n, substitute ¢ = p, and
obtain

. nlogn , 7(pn) log pp logn . logn
lim = lim = lim
n—=0  Pn n—0 Pn IOg Pn n—p0 log Pn

log 7(q) log (M) +log ¢ — loglog ¢
= lim ——= = lim
g—o  loggq q—0© log q
) log 1 log log q
= lim +1—-—"=) =1
q—o \ log g log q

Remark 2.5. Another simple consequence of the prime number theorem is
the density of {p/q : p, ¢ prime} in [0, 00) [14].

3. The Riemann zeta function

The Riemann zeta function is defined by
1
Z—, for Res > 1. (3.1)
— ns

The use of s for a complex variable is standard in analytic number theory,
and we largely adhere to this convention. Suppose that Res > o > 1. Since

slogn| _ 6Re(slogn) _ e(logn)Res _ (elogn)Res _ nRes >n°

it follows that

=1 =1
L < U <

The Weierstrass M-test ensures that (3.1) converges absolutely and uniformly

on Res > 0. Since 0 > 1 is arbitrary and each summand in (3.1) is analytic
on Res > 1, we conclude that (3.1) converges locally uniformly on Res > 1
to an analytic function.

In what follows, p denotes a prime number and a sum or product indexed
by p runs over the prime numbers. Here is the connection between the zeta
function and the primes.
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Theorem 3.2 (Euler Product Formula). If Res > 1, then ((s) # 0 and

cw=T1(1-2) " (3.3

p

The convergence is locally uniform in Res > 1.

Proof. Since [p~®| = p~ R < 1 for Res > 1, the geometric series formula
implies
1 -1 0 < 1 )n 0 1
1= = s = )

in which the convergence is absolute. Since a finite number of absolutely
convergent series can be multiplied term-by-term, it follows that

1 1711 171— 1+1+1+ 1+1+1+
2s 3s - 9s 225 3s 325

in which only natural numbers divisible by the primes 2 or 3 appear. Simi-
larly,

111—1_11+i+i+i+i+i+ 1y L1y
s ps B 9s 3s 43 65 8s 5s 525
1 1 1 1 1 1 1 1 1

=l+—F+—+—F+—F—F+—+—+—+
* 28 35 45 * 53 * 6° * 8 95 105 123

+...’

in which only natural numbers divisible by the primes 2, 3, or 5 appear.
Since the prime factors of each n < N are at most N, and because the tail
of a convergent series tends to 0, it follows that for Res > o > 1

C(S)-H(l—éyl > <§]n—10a0

p<N n>N n=N

1

S

N

as N — oo. This establishes (3.3) and proves that the convergence is locally
uniform on Re s > 1. Since each partial product does not vanish on Res > 1
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and because the limit ((s) is not identically zero, Hurwitz’ theorem? ensures
that ((s) # 0 for Res > 1. O

Remark 3.4. By [[ (1 —p~*)~" we mean limy o [ [,<y(1 —p~*)~". This
definition is sufficient for our purposes, but differs from the general defini-
tion of infinite products (in terms of logarithms) one might see in advanced
complex-variables texts.

Remark 3.5. The convergence of [ [ ,(1—p~*)~" and the nonvanishing of each
factor does not automatically imply that the infinite product is nonvanishing
(this is frequently glossed over). Indeed, limy_, o 1_[2[:1 % = limy_ 4 2LN =0
even though each factor is nonzero. Thus, the appeal to Hurwitz’ theorem is
necessary unless another approach is taken.

Remark 3.6. A similar argument establishes

)] (1 - i) 1 (3.7)

» p

in which the convergence is locally uniform on Re s > 1. This directly yields
the nonvanishing of ((s) on Res > 1. However, a separate argument is
needed to deduce the locally uniform convergence of (3.3) from the locally
uniform convergence of (3.7).

Remark 3.8. The Euler product formula implies Euclid’s theorem (the in-
finitude of the primes). If there were only finitely many primes, then the
right-hand side of (3.3) would converge to a finite limit as s — 1*. However,
the left-hand side of (3.1) diverges as s — 1" since its terms tend to those
of the harmonic series.

4. Analytic Continuation of the Zeta Function

We now prove that the Riemann zeta function can be analytically continued
to Res > 0, with the exception of s = 1, where ((s) has a simple pole.

2Let Q < C be nonempty, connected, and open, and let f,, be a sequence of analytic
functions that converges locally uniformly on Q to f (which is necessarily analytic). If
each f, is nonvanishing on €2, then f is either identically zero or nowhere vanishing on 2.
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Although much more can be said about this matter, this modest result is
sufficient for our purposes. On the other hand, the instructor might wish to
supplement this material with some remarks on the Riemann Hypothesis; see
Remark 4.5. Students perk up at the mention of the large monetary prize
associated to the problem. At the very least, they may wish to learn about
the most important open problem in mathematics.

Theorem 4.1. ((s) can be analytically continued to Res > 0 except for a
simple pole at s = 1 with residue 1.

Proof. In what follows, |z| denotes the unique integer such that |z| < z <
|z| + 1; in particular, 0 < z — || < 1. For Res > 2,3

[
s
2=
|
s
3
S|
—_
I
s
2=
|
M8
+ 3
—_
~

n=1
0 0]
n+1 ndx
=9 Z strl
n=1v"
0
n+1 lIJ dx
=9 Z strl
n=1v"n

Observe that for Res > 1,

*d 1 1 *
J - == —I—l—sJ ~ _dr =0
1 1

s s—1 s—1 xstl

3The assumption Res > 2 ensures that both Zle - and o "n—_l converge locally

n=1
uniformly.
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and hence

<<s):sfo || dw

s+l
1 * o * x| da
= 1-— d
<3—1+ SL poE x>+s£ e
1 ©x—|z|
=21 +1— SL s dx. (4.2)

If the integral above defines an analytic function on Res > 0, then ((s)
can be analytically continued to Res > 0 except for a simple pole at s = 1
with residue 1. We prove this with techniques commonly available at the
undergraduate-level (see Remark 4.4).

fuls) = | taclal,,

s+1
n T

Forn=1,2,..., let

For any simple closed curve 7 in Res > 0, Fubini’s theorem and Cauchy’s
theorem imply

f fuls)ds = f L " xx;[l ") g1 ds
e ([ ) e
_ ;n+(1x ~la) 0 dz
— on

Morera’s theorem ensures that each f,, is analyticon Res > 0. If Res > o0 >

0, then
f strl
L xRe(s-&-l

o
RgE

D 1fals)]

n=1

S
—

Ms

xs+1

3
Il
—

MS

3
Il
—_
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dx

I‘J+1

N
8 q“_‘bé

<

Consequently, the Weierstrass M-test implies that

Z fals) = foo 371;+[135J dz (4.3)

1

converges absolutely and uniformly on Res > o. Since ¢ > 0 was arbitrary,
it follows that the series converges locally uniformly on Res > 0. Being the
locally uniform limit of analytic functions on Res > 0, we conclude that
(4.3) is analytic there. O

Remark 4.4. The instructor should be aware that many sources, in the
interest of brevity, claim without proof that the integral in (4.2) defines an
analytic function on Re s > 0. This is a nontrivial result for an undergraduate
course, especially since the domain of integration is infinite. If the instruc-
tor has Lebesgue integration at their disposal, the dominated convergence
theorem, which can be applied to [1, c0), makes the proof significantly easier.

Remark 4.5. It turns out that ((s) can be analytically continued to C\{1}.
The argument involves the introduction of the gamma function I'(z) =
§o z*le™®dz to obtain the functional equation

C(s) = 27 Lsin (?) D(1 - s)C(1 — s). (4.6)
The extended zeta function has zeros at —2, —4, —6, ... (the trivial zeros),

along with infinitely many zeros in the critical strip 0 < Res < 1 (the
nontrivial zeros). To a few decimal places, here are the first twenty nontrivial
zeros that lie in the upper half plane (the zeros are symmetric with respect
to the real axis):

0.5 + 14.13474, 0.5 + 21.02207, 0.5 + 25.0109z, 0.5 + 30.4249¢, 0.5 + 32.9351¢,
0.5 + 37.5862¢, 0.5 + 40.9187%, 0.5 + 43.32714, 0.5 + 48.0052¢, 0.5 + 49.7738¢,
0.5 + 52.9703%, 0.5 + 56.4462¢, 0.5 + 59.3470z, 0.5 + 60.8318¢, 0.5 + 65.1125¢,
0.5+ 67.0798¢, 0.5 + 69.54647, 0.5 4 72.0672%, 0.5 4+ 75.7047%, 0.5 + 77.1448:.
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The first 10" nontrivial zeros lie on the critical line Res = 3. The famous
Riemann Hypothesis asserts that all the zeros in the critical strip lie on the
critical line; see Figure 2. This problem was first posed by Riemann in 1859
and remains unsolved. It is considered the most important open problem in
mathematics because of the impact it would have on the distribution of the
prime numbers.

critical strip

N

trivial zeros

analytic continuation original domain

Figure 2: Analytic continuation of ((s) to C\{1}. The nontrivial zeros of the Riemann

zeta function lie in the critical strip 0 < Res < 1. The Riemann Hypothesis asserts that

all of them lie on the critical line Re s = %

Remark 4.7. Students might benefit from learning that the error in the
estimate afforded by the prime number theorem is tied to the zeros of the
zeta function. Otherwise the Riemann Hypothesis might seem too esoteric
and unrelated to the prime number theorem. One can show that if {(s) # 0
for Res > o, then there is a constant C, such that

|7(z) — Li(x)| < Cya?logx

forall z = 2[5, (2.2.6)]. Since it is known that the zeta function has infinitely

many zeros on the critical line Res = %, we must have o > %
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5. The logarithm of ((s)

In this section we establish a series representation of the logarithm of the
zeta function. We use this result in Section 6 to establish the nonvanishing
of ((s) for Res = 1 and in Section 8 to obtain an analytic continuation of a
closely related function.

0

Lemma 5.1. If Res > 1, then log((s) = Z C—”, in which ¢, =0 forn > 1
nS

n=1

Proof. The open half plane Res > 1 is simply connected and ((s) does not
vanish there (Theorem 3.2). Thus, we may define a branch of log((s) for
Re s > 1 such that log ((c) € R for o > 1. Recall that

log ( ) 2 % (5.2)

for |z| < 1 and observe that Res > 1 implies |p~¢| = p~®¢* < 1, which
permits z = p~* in (5.2). The Euler product formula (3.3), the nonvanishing
of ((s) for Res > 1, and the continuity of the logarithm imply

log ((s) = log H
P

k=1 k=1 n=1
in which 1
— if n = pF,
o =14k b (5.4)
0 otherwise.

The series rearrangement above is permissible by absolute convergence. [

Lemma 5.5. If s = 0 + it, in which 0 > 1 and t € R, then

o0

log [¢(5)] = 2 Cn cos(tlogn)’

g
n=1 n

in which the ¢, are given by (5.4).
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Proof. Since 0 = Res > 1, Lemma 5.1 and Euler’s formula provide

Cn

log [¢(s)| = Re (log(s)) = Re Y
n=1

0 c o c e—itlogn
n n
CReY ey
elo+it)logn eo logn
n=1 n=1
o
¢ cos(tlogn) -
o Z ne ’
n=1

Remark 5.6. The identity (5.3) permits a proof that Zp p~1 diverges; this is
Euler’s refinement of Euclid’s theorem (the infinitude of the primes). Suppose
toward a contradiction that >} p~' converges. For |2| < 1, (5.2) implies

1
log [ —— || =
()
For s > 1, (5.3) and the previous inequality imply
log ((s) —Zlog( ! ) <22:l <22}1 <
p L=p rnd b p P |

This contradicts the fact that ((s) has a pole at s = 1. The divergence of
Zp p~! tells us that the primes are packed tighter in the natural numbers

0¢]

2

k=1

2
k

Q0

2|

< kZ |2|F = T S 2|2. (5.7)
=1

than are the perfect squares since Y, | - = ((2) is finite (in fact, Euler
proved that it equals %2)

6. Nonvanishing of {(s) on Res =1

Theorem 4.1 provides the analytic continuation of ((s) to Res > 0. The
following important result tells us that the extended zeta function does not
vanish on the vertical line Res = 1. One can show that this statement is
equivalent to the prime number theorem, although we focus only on deriving
the prime number theorem from it.

Theorem 6.1. ((s) has no zeros on Res = 1.
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Proof. Recall that ((s) extends analytically to Re s > 0 (Theorem 4.1) except
for a simple pole at s = 1; in particular, ((s) does not vanish at s = 1.
Suppose toward a contradiction that ((1 + it) = 0 for some t € R\{0} and
consider

f(s) = C(s)CH(s +it)¢(s + 2it).
Observe that

(i) ¢3(s) has a pole of order three at s = 1 since ((s) has a simple pole at
s=1;

(ii) ¢*(s +it) has a zero of order at least four at s = 1 since ((1 + it) = 0;
and

(iii) ((s + 2it) does not have a pole at s = 1 since t € R\{0} and s = 1 is
the only pole of ((s) on Res = 1.

Thus, the singularity of f at s = 1 is removable and f(1) = 0. Therefore,
iy log (5)| = —oc. (62
On the other hand, Lemma 5.5 yields
log |f(s)| = 3log |C(s)[ + 4log[C(s + it)] + log [C(s + 2it)]

0 0 0
Cn ¢ cos(tlogn) cp, cos(2t logn)
=3t T

ag
n=1 n

— (3 + 4 cos(tlogn) + cos(2tlogn))

o

I
s
S|o

since ¢, = 0 for n > 1 and
3+ 4cosx 4 cos2z = 2(1 + cosz)? = 0, for z € R.

This contradicts (6.2), so ((s) has no zeros with Re s = 1. O

Remark 6.3. Since Theorem 3.2 already ensures that ((s) # 0 for Res > 1,
Theorem 6.1 implies ((s) does not vanish in the closed half plane Res > 1.
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7. Chebyshev Theta Function

It is often convenient to attack problems related to prime numbers with log-
arithmically weighted sums. Instead of working with 7(z) = >} 1 directly,
we consider

9(z) = > logp. (7.1)

p<uz

We will derive the prime number theorem from the statement ¥(z) ~ =.
Since this asymptotic equivalence is difficult to establish, we first content
ourselves with an upper bound.

Theorem 7.2 (Chebyshev’s Lemma). 9(z) < 3z for z > 1.

Proof. If n < p < 2n, then

|
b divides (27 = 2
n nln!

since p divides the numerator but not the denominator. The binomial theo-
rem implies

2 (2n
22n _ (1 + 1)271 _ ( >1k12n—/€

k=0 k
> (271) > H D= H 6logp
n n<p<2n n<p<2n
= exp< Z logp>
n<p<2n

exp (J(2n) — J(n)).

Therefore,
Y(2n) —J(n) < 2nlog?2.

Set n = 21 and deduce

9(2F) —9(2F 1) < 2% log 2.
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Since ¥(1) = 0, a telescoping-series argument and the summation formula
for a finite geometric series provide

9(2F) = 9(2F) — 9(2°) = Zk: 9(21))

<22i10g2 < (1424224 +2%)1og2
i=1
< 2k og 2.
If 2 > 1, then let 28 < 2 < 2FFL; that is, let k = [logmj Then
I(z) < 92" < 282 1og2 = 4-2Flog2 < 2(4log2) < 3z
since 4log2 ~ 2.7726 < 3. O]

Remark 7.3. The Euler product formula (3.3), which requires the funda-
mental theorem of arithmetic, and the opening lines of the proof of Cheby-
shev’s lemma are the only portions of our proof of the prime number theorem
that explicitly require number theory.

Remark 7.4. There are many other “theta functions,” some of which arise
in the context of the Riemann zeta function. For example, the Jacobi theta
function 0(z) = >,°_ e=™°% defined for Re z > 0, is often used in proving
the functional equation (4.6).

8. The ® Function

Although we have tried to limit the introduction of new functions, we must

consider |
ogp
O(s) =y —=, (8.1)
> p

whose relevance to the prime numbers is evident from its definition. If Re s >
o > 1, then

log p
pS

Z Zlo}i]s) Zlogp<210gn

p
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by the integral test. The Weierstrass M-test ensures (8.1) converges uni-
formly on Res > o. Since the summands in (8.1) are analytic on Res > 1
and ¢ > 1 was arbitrary, the series (8.1) converges locally uniformly on
Res > 1 and hence ®(s) is analytic there. For the prime number theorem,
we need a little more.

Theorem 8.2. ¢(s) —

1 18 analytic on an open set containing Res > 1.
8 N

Proof. For Res > 1, (5.3) tells us
log¢(s) =log ([T —p)7") == Dlogl=p™).  (83)
P )
The inequality (5.7) implies

2
pRes’

1—p~°| <

which implies that the convergence in (8.3) is locally uniform on Res > 1.
Consequently, we may take the derivative of (8.3) term-by-term and get

¢(s) _ 5 (ogp)p™ _ vy 1
ls) Zp: T~ 2loen (ps - 1)

p
_ l _ logp log p
_Z<logp)(s pp—1> Zp:< p—l))
log p logp log p
B Zp: % Z = & +Zp:ps (p°—1)

If Res >0 > %, then the limit comparison test and integral test? imply

2|5

p

0

logp logn logn

The Weierstrass M-test ensures that

3 8P

—1
(e — 1)
4Compare Zn 5 n(, 711)2 with Zn 5 lgéf and observe that S;O lfff dt < o0.
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converges locally uniformly on Res > I and is analytic there. Theorem 4.1

2
implies that

) log p
26) = ) " D)

p

extends meromorphically to Re s > % with poles only at s = 1 and the zeros
of ((s). Theorem 4.1 also yields

C(s)=(s=1)7"2(s), Z(1)=1,

in which Z(s) is analytic near s = 1. Consequently,

C'(s) _ —1(s—=1)2Z(s) + (s = 1)1 Z'(s) _ 1 N Z'(s)
C(s) (s —1)"1Z(s) s—1  Z(s)
and hence . 2(s) 1
_ s) ogp
@(3)—8_1  Z(s) ;ps(ps—l)’

in which the right-hand side is meromorphic on Re s > % with poles only at
the zeros of ((s). Theorem 6.1 ensures that ¢ has no zeros on Re s = 1, so the
right-hand side extends analytically to some open neighborhood of Res > 1;
see Remark 8.4. O

Remark 8.4. The zeros of a nonconstant analytic function are isolated,
so no bounded sequence of zeta zeros can converge to a point on Res = 1.
Consequently, it is possible to extend ®(s) —(s—1)~! a little beyond Re s = 1
in a manner that avoids the zeros of ((s). It may not be possible to do this
on a half plane, however (the Riemann Hypothesis implies this is possible on
the half plane Res > 7).

9. Laplace Transforms

Laplace transform methods are commonly used to study differential equations
and often feature prominently in complex-variables texts. We need only the
basic definition and a simple convergence result. The following theorem is not
stated in the greatest generality possible, but it is sufficient for our purposes.
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Theorem 9.1. Let f : [0,00) — C be piecewise continuous on [0,a] for all
a>0 and

|f(t)] < Ae™", fort=0

Then the Laplace transform

0 0]
z) = f ft)e " dt (9.2)
0
of f is well defined and analytic on the half plane Rez > B.

Proof. For Rez > B, the integral (9.2) converges by the comparison test
since

. ¢ “ Bt t(Re 2) OOt(BR) A
t)e *|dt < A TeHdt = A At = —— .
| e < [ ate | e e

If ~ is a simple closed curve in Re z > B, then its compactness ensures that
there is a ¢ > B such that Rez > o for all z € . Thus,

« A
—zt <
L Fe |t < ———

is uniformly bounded for z € ~. Fubini’s theorem® and Cauchy’s theorem
yield

Lg(z) dz = Lfof(t)e—zt dtdz = Loof(t) (Le—zt dz) dt = Loof(t) -0dt = 0.

Morera’s theorem implies that g is analytic on Re z > B. O]

Theorem 9.3 (Laplace Representation of ®). For Res > 1,

os) _ f " (ehet dt. (9.4)

S 0

Proof. Recall from Theorem 7.2 that J(x) < 3z. Thus, for Res > 2

2 S Z 19 Z nRes - Z (Re s)— ’ (95>

s
n=1 n

d(n—1)

>The interval [0, o) is unbounded and hence the appeal to Fubini’s theorem is required
if one uses Riemann integration; see the proof of Theorem 4.1.
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Consequently,

; ¥(n) ”; J(n)
- 7;1 ns 7;1 (n+1)
= 1 1
- EW”) <n_ ICESIE
- Z 9(n) (S ! ;jfl

I
»

Il
»
— —

The Prime Number Theorem as a Capstone

-

(by (8.1))

(by (7.1))

(by (9.5))

(I(x) =J(n) on [n,n + 1))

(x = €' and dx = €' dt)

(9.6)

This establishes the desired identity (9.4) for Res > 2. Since Theorem 7.2
implies ¥(e") < 3e’, Theorem 9.1 (with A = 3 and B = 1) ensures that (9.6)
is analytic on Res > 1. On the other hand, ®(s) is analytic on Res > 1 so
the identity principle implies that the desired representation (9.4) holds for

Res > 1.

]
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10. Newman’s Tauberian Theorem

The following theorem is a tour-de-force of undergraduate-level complex anal-
ysis. In what follows, observe that g is the Laplace transform of f. The
hypotheses upon f ensure that we will be able to apply the theorem to the
Chebyshev theta function.

Theorem 10.1 (Newman’s Tauberian Theorem). Let f : [0,00) — C be a
bounded function that is piecewise continuous on [0,a] for each a > 0. For
Rez > 0, let

o0 | " pte

and suppose g has an analytic continuation to a neighborhood of Rez = 0.
Then

T—0

g(0) = lim L f(t)dt.

In particular, SSO f(t)dt converges.

Proof. For each T € (0,00), let

T
gr(2) = f e (1) dt. (10.2)
0
The proof of Theorem 9.1 ensures that each gr(z) is an entire function (see
Remark 10.14 for another approach) and g(z) is analytic on Rez > 0; see
Remark 10.14. We must show

lim gr(0) = ¢(0). (10.3)

T—o0

STEP 1. Let || f]., = sup,sq | f(t)|; this is finite by assumption. For Rez > 0,

l9(2) = gr(2)] =

JOOO e Ff(t) dt — JT e 7 f(t) dt‘ =

0

JOO e Ff(t) dt‘

T

0 Q0
< J e~ Re(zt)’f<t)| dt < ‘f”oof e—tRez dt
T T

€_T Rez

© Rez

= |71 (10.4)
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STEP 2. For Rez < 0,

T
or(2)] = < [ e s

0

JT e P f(t) dt

0

T T
< |f||oof0 e dr < |, f etz gy
—0

—TRez

e
= |1 fl TRe | (10.5)

STEP 3. Suppose that g has an analytic continuation to an open region €2
that contains the closed half plane Rez > 0. Let R > 0 and let iz > 0 be
small enough to ensure that g is analytic on an open region that contains the
curve C'r (and its interior) formed by intersecting the circle |z| = R with the
vertical line Re z = —dg; see Figure 3.

Figure 3: The contour Cr. The imaginary line segment [—iR,iR] is compact and can be
covered by finitely many open disks (yellow) upon which g is analytic. Thus, there is a
d0r > 0 such that g is analytic on an open region that contains the curve Cg.

STEP 4. For each R > 0, Cauchy’s integral formula implies

0 -0 = 5 [ (o) - gD (14 5) F (0o

- 271 Cr ﬁ
We examine the contributions to this integral over the two curves

5 =Crn{z:Rez>0} and Cp=Crn{z:Rez<0}.
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STEP 5. Let us examine the contribution of Cj, to (10.6). For z = Re™,

1 22
il SR |
)

1 ) ) 1
= §|R€7’Lt + R61t| = ﬁ’g_‘_ Z|

1+z
z R?

Reit + RQ

B ' 1 Re

2| Re 2|
=7 (10.7)
For z € C,
e | = eT Re= (10.8)
and hence (10.4), (10.7), and (10.8) imply
1 T 22\ dz
— _ 142 )22
27 ch (9r(2) = 9(2))e ( * R2> z
1 e"TRez\ o 2| Re z|
< . ez
2T (‘f”w Re z > (fv_) ( R? )<7TR)
~ ~~ < by (10.8) ~——~—""
] by (10.4) by (10.7)
= =% 10.9
i (109)

STEP 6A. We examine the contribution of C to (10.6) in two steps. Since
the integrand in the following integral is analytic in Rez < 0, we can re-
place the contour Cf with the left-hand side of the circle |2| = R in the

computation
1 T 22\ dz
— 1+ =) — 10.10
QWiJEgT(Z)e ( * RQ) z ( )
1 . 22\ dz
= |— Z 1 _— _—
omi LZ—R gr(z)e ( " R2> p
Re z<0
1 e~ TRez\ o 2| Re z|
< — R ez R
= (171 e ) (2 ) e
. ~- > ﬁ_/
by (10.5) by (10.7)
|/
= —= 10.11
R ) ( )

see Figure 4.
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Cr

Figure 4: The integrand in (10.10) is analytic in Rez < 0. Cauchy’s theorem ensures that
the integral over C, equals the integral over the semicircle {z : |z| = R,Rez < 0}.

STEP 6B. Next we focus on the corresponding integral with ¢ in place of gr.
Let
M = sup lg(2)].

2eCh
which is finite since C'y is compact. Since |z| > dp for z € C},

2 TRez
T zZZ\ 1 _ 2Me
‘g(z)e (1 + _RQ) S o

Fix € > 0 and obtain a curve C(e) by removing, from the beginning and
end of Cp, two arcs each of length €dp/(4M); see Figure 5. Then there is a
p > 0 such that Rez < —p for each z € U (¢). Consequently,

22\ dz 2MerT 2M  2edp
lim su J ze”(l—i——)— < limsu <—~7r + — )
T—»oop Ch g( ) R%*) = T—»oop N Or , \51{ 4MJ
from C (e) from the two arcs
=€
Since € > 0 was arbitrary,
2\ d
lim sup J g(z)e*" (1 + 2—2) il — (10.12)
T—o0o C]; R z
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Figure 5: Cg(€) is obtained from Cp by removing two segments (red) each of length
€dr/(4M). There is a p > 0 such that Rez < —p for each z € Cf (€).

STEP 7. For each fixed R > 0,

lim sup |g7(0) — g(0)|

T—0
1 22\ dz
=1 — — T+ =)= by (10.
e o= [ (o) —a)e (14 55) | v (08)
e, (1l
< 7 + 7 +0 (by (10.9), (10.11), (10.12))
-
from 011; from Cp
24,
R
Since R > 0 was arbitrary,
lim sup |g7(0) — g(0)] = 0;
T—o0
that is, limy_, gr(0) = g(0). O

Remark 10.13. A “Tauberian theorem” is a result in which a convergence
result is deduced from a weaker convergence result and an additional hypoth-
esis. The phrase originates in the work of G.H. Hardy and J.E. Littlewood,
who coined the term in honor of A. Tauber.
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Remark 10.14. To see that gr(z) is entire, first note that since we are
integrating over [0, 7] there are no convergence issues. We may let v be any
simple closed curve in C when we mimic the proof of Theorem 9.1. Another
approach is to expand e*! as a power series and use the uniform convergence
of the series on [0, 7] to exchange the order of sum and integral. This yields
a power series expansion of gr(z) with infinite radius of convergence. Here
are the details. Fix 7" > 0 and let

M = sup |f(t)],

0<t<T

which is finite since [0,T] is compact and f is piecewise continuous (a
piecewise-continuous function has at most finitely many discontinuities, all
of which are jump discontinuities). Then

MTn+1
n+1"

T
Cp = J ftdt satisfies  |e,| <
0

Since e® is entire, its power series representation converges uniformly on
[0, T]. Thus,

gr(2) = fo<> = [ g

0 0
o n o © (_1)nc

= t” = L mon
£ 02 (Cora- £

defines an entire function since its radius of convergence is the reciprocal of

. MaT™" 1-T
< lim sup - = =0
n—0o0 (n —+ ]_)ﬁ(n')ﬁ 1-00

S=

lim sup

by the Cauchy-Hadamard formula.

Remark 10.15. Step 6b is more complicated than in most presentations
because we are using the Riemann integral (for the sake of accessibility)
instead of the Lebesgue integral. The statement (10.12) follows immediately
from the Fatou-Lebesgue theorem in Lebesgue theory; see the proof in [35].
Riemann integration theory cannot prove (10.12) directly since the integrand
does not converge uniformly to zero on Cf.
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11. An Improper Integral

Things come together in the following lemma. We have done most of the
difficult work already; the proof of Lemma 11.1 amounts to a series of strate-
gic applications of existing results. It requires Chebyshev’s estimate for J(x)
(Theorem 7.2), the analytic continuation of ®(s)—(s—1)~! to an open neigh-
borhood of Res > 1 (Theorem 8.2), the Laplace-transform representation of
®(s) (Theorem 9.3), and Newman’s theorem (Theorem 10.1).

Fo(x) -

Lemma 11.1. f < dx converges.

1 x?

Proof. Define f :[0,00) — C by

and observe that this function is piecewise continuous on [0, a] for all @ > 0
and
[FO] < [9(e)]e™ +1<4

for all t > 0 by Theorem 7.2. Then Theorem 9.1 with A =4 and B = 0 en-
sures that the Laplace transform of f is analytic on Re z > 0. Consequently,
for Rez > 0

o] e
f ft)e *dt = J (V(e)e ™ —1)e *dt
0 0
= J (ﬁ(et)e*(”l)t — e*Zt) dt
0
= J V(e)e Tt g — J e dt (11.2)
0 0
(0 1
= J d(et)e GVt — =
0 z
P 1 1
— % - (by Theorem 9.3).

Let z = s — 1 and note that Theorem 8.2 implies that

g(z)zw_l:‘b(s)_ 1

z+1 z S s—1
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extends analytically to an open neighborhood of Re s > 1; that is, to an open
neighborhood of the closed half plane Rez > 0. Theorem 10.1 ensures that
the improper integral

Q0 0
f f(t)dt = [ (V(e)e " — 1) dt
0 Jo
0
— ﬁ—l)d—m (r =€ and dz = €' dt)
J1 T z
w R
_ x) —x e
J1 x2
converges. O

Remark 11.3. Newman’s theorem implies that the improper integral in
Lemma 11.1 equals g(0), although this is not necessary for our purposes.

Remark 11.4. Since |d(e')| < 3e' by Theorem 7.2, the first improper in-
tegral (11.2) converges and defines an analytic function on Rez > 0 by
Theorem 9.1 with A = 3 and B = 1. We did not mention this in the proof
of Lemma 11.1 because the convergence of the integral is already guaranteed
by the convergence of {; f(t)e™* dt and §; e=* dt.

12. Asymptotic Behavior of ¥(x)

A major ingredient in the proof of the prime number theorem is the following
asymptotic statement. Students must be comfortable with limits superior
and inferior after this point; these concepts are used frequently throughout
what follows.

Theorem 12.1. 9J(x) ~ x.

Proof. Observe that

0 _ 0 _

J o) dt  exists = lim U0 tdt =0. (12.2)
1 t2 w0 ), t2

. 7 N,

~
by Lemma 11.1 I(z)
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STEP 1. Suppose toward a contradiction that

limsupM > 1, and let limsup@ >a > 1.
x

T—00 i £—00

Then there are arbitrarily large x > 1 such that ¥(x) > ax. For such “bad”
'CE’

I(azx) — I(z) = f U > f ar —t . (92) > az andy

t2 ¢ is increasing
T

f Mmduzf S (t = zu, dt =z du)
1

x2u? .U

x

a—1—loga > 0.

Since
liminf (I(ox) — I(z)) >0

—00
x bad

contradicts (12.2), we conclude
U(z)

limsup —= < 1.
r—00 X

STEP 2. This is similar to the first step. Suppose toward a contradiction

that o p
lim inf @ <1, andlet liminf—— ( )
r—00 €x T—00

<p<

the limit inferior is nonnegative since ¥(z) is nonnegatlve. Then there are
arbitrarily large x > 1 such that ¥(x) < Sx. For such “bad” z

[(x> B [(ﬁx) _ Jx 19(t) dt < fﬂc ﬁx —t dt (ﬁ($)< Ba E}nd)

2 2 ¥ is increasing

— Bm—fu B—u du  (t = zu, dt = xdu)
B IU

=1—-pF+logp <0.

T

Since
li%%lf (I(z) — I(Bz)) <0
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contradicts (12.2), we conclude

lim inf M > 1.
r—00 X
STEP 3. Since
v v
lim sup (_a:) <1 and lim inf ﬂ > 1,
T—00 i T—00 s
it follows that lim, .., J(z)/z = 1; that is, J(z) ~ . O

Remark 12.3. Let f(x) = x — 1 —logz for x > 0. Then f'(z) =1— 1/x
and f”(x) = 1/22, so f is strictly positive on (0,1) and (1, 0); see Figure 6.
This ensures the positivity of a — 1 — loga for @ > 1 and the negativity of
1—p+logp for ge (0,1).

1 2 3 4

Figure 6: Graph of f(z) =z —1—logx.

Remark 12.4. One can show that 7(z) ~ z/logx implies ¥(z) ~ z, al-
though this is not necessary for our purposes. In light of Theorem 13.1
below, this implication shows that m(x) ~ z/logx is equivalent to ¥(x) ~ z.

13. Completion of the Proof

At long last we are ready to complete the proof of the prime number theorem.
We break the conclusion of the proof into three short steps.

Xz

Theorem 13.1 (Prime Number Theorem). 7(z) ~ oo s
og T
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Proof. Recall from Theorem 12.1 that J(x) ~ x; that is, lim,_,,, ¥(z)/x = 1.

STEP 1. Since

Zlogp Z = (log ) zl—w ) log x,

P<T p<z
it follows that
W, 1
1= tim 2% ot 2 g T8 1087
T—00 T T—00 xT T—00 T

STEP 2. For any € > 0,

x) = Zlogp > Z log p

psw rl-e<p<zx
> Z log(x'™¢) = log(x'™) Z 1
rl-c<p<a rl-c<p<z
= (1 —¢€)(logx) (Zl— Z )
p<x p<ZEl €
> (1—e)(m(z) —2') log .
Therefore,
v 9
1= lim ﬁ = limsupﬂ
r—00 T T—00 T
1— — 7)1
 limsup (( e)(m(z) — 2'7) 0gx>
xTr—00 .,L‘
1 1
= (1 —¢)limsup (W(x) o8t ng)
Tr—00 ZE’ l‘€
1 1
=(1-¢) limsupM — (1 —¢) lim %8t
T—00 x x—o0 €
1
= (1 —¢)limsup M.
T—00 e
Since € > 0 was arbitrary,
1
lim sup M < 1

Tr—00
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STEP 3. Since

1< liminfM < limsupM <
- x/logx v /logx

we obtain
m(z)

z—w0 1/ log x -

This concludes the proof of the prime number theorem.

]

It is probably best not to drag things out at this point. Nothing can com-

pete with finishing off one of the major theorems in mathematics.

After

coming this far, the reader should be convinced that the proof of the prime

number theorem, as presented here, is largely a theorem of complex analy-
sis (obviously this is a biased perspective based upon our choice of proof).
Nevertheless, we hope that the reader is convinced that a proof of the prime

number theorem can serve as an excellent capstone for a course in complex

analysis.
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