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ABSTRACT

The sample path generated by a stochastic simulation often exhibits significant variability within each
replication, revealing periods of good and poor performance alike. As such, traditional summaries of
aggregate performance measures overlook the more fine-grained insights into the operational system
behavior. In this paper, we take a simulation analytics view of output analysis, turning to machine learning
methods to uncover key insights from the dynamic sample path. We present a k nearest neighbors model
on system state information to facilitate real-time predictions of a stochastic performance measure. This
model is built on the premise of a system-specific measure of similarity between observations of the state,
which we inform via metric learning. An evaluation of our approach is provided on a stochastic activity
network and a wafer fabrication facility, both of which give us confidence in the ability of metric learning
to provide interpretation and improved predictive performance.

1 INTRODUCTION

Analysis of stochastic simulation has long been centered around the evaluation of aggregate performance
measures. This paper is motivated by the belief that static summaries such as these can represent a limited
view of a highly dynamic and possibly non-stationary process. Dynamic performance measures such as
waiting times or congestion levels are seen to fluctuate throughout simulated replications. Revealing the
factors that drive these fluctuations is key to a deeper understanding of the represented system. With this
aim, we propose a dual-purpose methodology for output analysis designed to support real-time predictions,
whilst simultaneously revealing insight into the key drivers of dynamic performance.

Our work falls into the newly developing area of simulation analytics, first suggested by Nelson (2016).
In this area, simulation is regarded as a generator of dynamic sample paths, from which data analytics
and machine learning tools can glean insights into the conditional relationships and dependencies that
characterize the system behavior. We are aided in this approach by recent advances in data storage to
enable cheap and effectively unlimited retention of sample path data. Indeed, many commercial simulation
products currently retain a record of the events and state transitions that occur throughout a replication,
albeit primarily for the purpose of debugging. Crucially, the capability is there, and whilst we are not
dealing with the technicalities of how to post-process and store system traces, we are considering ways
to exploit the opportunity for deeper analysis that such a detailed transaction log presents. To add further
motivation and plausibility, we note that the size of datasets generated by sample paths of discrete-event
simulation will typically not approach the volumes associated with “big data” in modern-day analytics.
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To motivate the scope of our work, consider for example a doctors’ surgery seeking to evaluate the
performance of different staffing schedules. For this system, performance indicators such as patient waiting
times or staff utilization can be used to rank alternatives (Brailsford 2007). Whilst the daily averages of
these indicators can allow an initial screening of solutions, they provide an incomplete picture of a system
that is likely to exhibit significant variability throughout the day. A more probing analysis may relate to the
systems’ robustness to certain conditions such as a higher than usual demand for prescription medicines.
Moreover, when our simulated systems exhibit periods of poor performance, we want to understand the
cause. If we can reveal, for example, that the number of patients awaiting a blood test constitutes a
driving influence behind variable waiting times, this is a useful insight which might suggest a more efficient
allocation of resources. To enable such analyses, we build a predictive model for a dynamic system response,
the structure of which is designed to expose the key factors which drive this response.

Specifically, our predictive model takes the form of a non-parametric k-nearest-neighbor (kNN) classifier
on the system state. Our choice here is motivated by the understanding that components of the state in a
simulation model interact jointly in a way that is difficult to capture with parametric functions. Deferring
a definition of system state to the later sections and appealing to the example above, we might include
variables representing the number of patients undergoing or awaiting different treatments, or the number
of nurses on duty. We let xxx ∈X ⊂Rd denote the system state at a given time, and construct a measure of
similarity over the space of X . Each instance xxx ∈X carries with it an observed system response, y, which
we measure as a categorical variable. For example, a patient entering the surgery in state xxxi experiences the
waiting time yi, classed as above or below average. Our stored sample paths provide many observations
of (xxxi,yi), which create our training data. Taking a kNN approach, we can classify the waiting time of a
patient arriving to the system in state xxx∗ according to the observed waiting time categories of the k nearest
instances to xxx∗ among the training data.

A key aspect of our methodology is in defining an appropriate measure of distance, or similarity,
between observations in X . For this, we delve into a rich literature on metric learning. The process of
tuning a system-specific distance function is helpful in revealing interactions among the state variables
and their relative contributions towards the system response. Thus, combining metric learning with kNN
classification allows us to join interpretability with predictive performance. This dual benefit lends optimism
to the scope of our work, which we believe extends to researchers and practitioners alike. In particular,
whilst the application of metric learning serves to highlight the performance-dictating components and
interactions within a system, the ability to make real-time predictions represents a fundamental step towards
using simulation for system control.

The structure of the paper is as follows. In Section 2 we discuss related work and provide a background
for kNN classification and metric learning. Section 3 presents results to motivate and demonstrate our
methodology in the context of simulation, before we conclude with a brief summary in Section 4.

2 BACKGROUND

In this section, we establish a background for our work, drawing on related work in the area of simulation
analytics and describing our proposed application of kNN. We also introduce the field of metric learning,
providing a focused review of the relevant literature.

2.1 Related Work in Simulation Analytics

The possibility of using simulation to inform real-time decision problems has recently begun to draw
attention. A number of papers have emerged in which simulation sample paths are stored and used to build
metamodels for making dynamic predictions. In the context of a queueing network, Ouyang and Nelson
(2017) proposed a two-stage logistic regression modelling approach in which the state and time aspects
of the sample path are treated separately, while Jiang et al. (2020) use a logistic regression model to
dynamically predict the risk of financial portfolios. Wu and Barton (2016), meanwhile, show that Fourier
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analysis can successfully detect changes in the dynamic trajectories of system state variables to discriminate
between congested and uncongested systems.

The approaches outlined above represent attempts to model sample path behavior within a parametric
framework. In reality, we understand simulation to be a complex stochastic process in which the dynamic
and possibly non-stationary behaviour is difficult to capture in a parametric model. Accordingly, Lin et al.
(2019) suggest a kNN approach to provide predictions for time-dependent mean performance measures.
They describe this as “virtual performance”, and further consider the behavior of its higher order moments
(Lin and Nelson 2018). An example of virtual performance is given by the waiting time of a customer in
a service system conditional on arriving to the system at time t. In our own take on virtual performance,
the conditioning event relates to the state of the system; modifying this example, we consider the waiting
time of a customer conditional on arriving to the system in state xxx. In the case of Lin et al. (2019), the
kNN estimator of virtual performance is one-dimensional in the sense that neighbors are determined by a
single variable: simulation time. Our own kNN model, meanwhile, takes a more comprehensive view of
‘neighbors’, accommodating multiple predictors in an attempt to fully characterize the state of a system.
Importantly, we note that a multi-dimensional state description is likely to contain variables which are not
immediately comparable in terms of scale or interpretation. On these grounds, we recognise that identifying
neighbors based on simple Euclidean distance, whilst effective in the one-dimensional setting of Lin et al.
(2019), will not be appropriate for us.

2.2 kNN Classification

A kNN classification model provides a simple rule whereby instances are classified according to the labels
of their k nearest neighbors (Hastie et al. 2009). In this paper, we consider a binary classification task.
Our training data {(xxxi,yi)}n

i=1 are obtainable directly from the stored sample paths. These observations are
functions of the simulation time in a given replication; xxxi ∈ Rd represents the system state at time ti, and
yi ∈ {0,1} denotes an associated system performance measure, which in general may be observable at a
later time. We use the term “system state” at time t to refer to some subset of the information generated
by the simulation up to time t.

Using kNN classification to classify an instance xxx∗, we identify its k nearest training instances, denoted
by xxx∗(1), . . . ,xxx∗(k), and their corresponding labels y∗(1), . . . ,y∗(k). Our classification rule is defined as a
function of c ∈ [0,∞):

ŷ∗ =

{
1 if 1

k ∑
k
i=1 y∗(i) ≥ c,

0 if 1
k ∑

k
i=1 y∗(i) < c.

(1)

The classification threshold c = 1/2 corresponds to a typical majority rule, although in general we can
choose c to minimize some error criterion such as mean squared error (MSE) on a test set, or to represent
a desired trade-off between the two types of misclassification.

A nearest neighbor classifier relies upon the assumption that instances which are similar to one another
in the input space will yield a similar classification in the output space. Intuitively, the truth of this
assumption requires that the distance measure used to identify neighbors reflects some domain-specific
notions of similarity between input instances. Selecting a relevant distance measure to use with kNN
classification therefore requires careful consideration of the problem domain. Whilst Euclidean distance
is often viewed as a default, significant advantage can be gained by using a more tailored metric (Kulis
2013). This leads us to the topic of metric learning, which provides a data-driven way to automate the
process of defining a suitable distance metric.

2.3 Mahalanobis Metric Learning

We recall our data of the form {(xxxi,yi)}n
i=1, where xxxi is a d-dimensional vector of predictor variables and

yi its associated class label. The aim of metric learning is to adapt a distance function over the space of
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predictor vectors. As common in the metric learning literature, we consider the family of Mahalanobis
distance functions. These take the form

dM(xxxi,xxx j) = [(xxxi−xxx j)
>M(xxxi−xxx j)]

1/2, (2)

parametrized by M ∈ Sd
+, where Sd

+ denotes the set of d-dimensional symmetric positive semi-definite
matrices. This condition ensures that dM satisfies the properties of a pseudometric (Bellet et al. 2014). We
note here that the identity matrix M = Id recovers the standard Euclidean distance.

A positive semi-definite matrix, M, will always permit the decomposition M = L>L. This allows us to
write the Mahalanobis distance (2) as dM(xxxi,xxx j) = [(Lxxxi−Lxxx j)

>(Lxxxi−Lxxx j)]
1/2. Hence, we can understand

the metric dM to be equivalent to the Euclidean metric after a linear transformation of the data defined by L.
This is a useful relationship which suggests two different parametrizations for the metric learning problem.
The optimization task can be performed with respect to the matrix M ∈ Sd

+ or the linear transformation
L. Metric learning methods have been proposed from both perspectives, with each offering their own
advantages. Optimization over M is generally favoured as it leads to convex formulations which can be
solved more efficiently. However, learning the transformation matrix L allows for rank constraints to be
directly imposed. In general, L ∈ Rr×d , where r ≤ d is the rank of L and M. Learning a low rank matrix
brings the data into a transformed space of fewer dimensions, which offers advantages when the original
dimension, d, is large.

The metric learning task is typically supervised by a collection of constraints summarizing our prior
intuition about the relative distances that we wish to emerge between training instances. Often, this
supervision comes in the form of the following sets:

S = {(xxxi,xxx j) | xxxi and xxx j should be close} (similarity constraints),

D = {(xxxi,xxx j) | xxxi and xxx j should not be close} (dissimilarity constraints),

R = {(xxxi,xxx j,xxxl) | xxxi should be closer to xxx j than it is to xxxl} (relative similarity constraints).

In the absence of particular intuition, these sets can be derived from the class labels of the training
instances. For example, pairs of similarly labelled instances should populate S , while pairs of differently
labelled instances can populate D . Intuitively, triplets (xxxi,xxx j,xxxl) with yi = y j 6= yl might populate the set
R. Whilst these sets are assumed to be given, their specific construction should be relevant to the data and
the application at hand. The task of selecting appropriate constraint sets is treated as a learning task itself
by Wang et al. (2012), although in general these sets are assumed to be given, and remain fixed throughout
the metric learning procedure.

In general, the metric learning problem is an optimization of the form minM∈Sd
+
`(M,S ,D ,R)+λ r(M).

Here, ` is a loss function to penalize violations of the training constraints under the metric dM, and
r(M) describes some regularization on the values of M, with λ ≥ 0 the regularization parameter. The
main distinctions among different metric learning methods arise from their choices of loss function and
regularization.

The earliest method for Mahalanobis metric learning is attributed to Xing et al. (2002). The intuitive
formulation seeks to minimise the sum of squared distances in S whilst keeping the sum of distances in
D above a threshold:

min
M∈Sd

+

∑
(xxxi,xxx j)∈S

d2
M(xxxi,xxx j) s.t. ∑

(xxxi,xxx j)∈D
dM(xxxi,xxx j)≥ γ.

To solve this optimization, the authors proposed a gradient based algorithm with iterative projections onto
Sd
+ maintaining the positive semi-definite constraint. Whilst the primary motivation for this work was an

application to clustering, the method has proved useful to many machine learning algorithms, paving the
way for metric learning to be viewed as a convex optimization.

Following this formulation, several more tailored methods have emerged. With an objective function
inspired by the task of nearest neighbor classification, Goldberger et al. (2004) proposed a method referred
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to as Neighbourhood Components Analysis (NCA). They compute a softmax version of the probability that
xxxi’s nearest neighbor is from the same class, pi = ∑ j:y j=yi exp(−d2

M(xxxi,xxx j))/∑l 6=i exp(−d2
M(xxxi,xxxl)). Their

objective function, which is to maximise the sum of these probabilities over all training points, equates to
learning the distance metric which minimises the expected leave-one-out error rate of the nearest neighbor
classifier. To aid the gradient calculation, the optimization was presented in terms of the transformation
matrix L. The objective function of NCA is therefore non-convex, making the method susceptible to finding
only local maxima. However, a convex extension to NCA was proposed by Globerson and Roweis (2005).

A second approach tailored to the task of nearest neighbor classification was provided by the Large
Margin Nearest Neighbor (LMNN) algorithm, developed by Weinberger and Saul (2009). The construction
of the constraint sets for LMNN is motivated by the fact that success of kNN only relies on local clusterings
of similarly labelled points, rather than a global clustering. Specifically, the concept of target neighbors is
introduced, which, in the absence of prior knowledge, are defined for each training point as the k nearest
points in Euclidean distance which share the same class label. Taking ηi j ∈ {0,1} to indicate whether xxx j
is a target neighbor of xxxi, the sets S = {(xxxi,xxx j) | ηi j = 1}, and R = {(xxxi,xxx j,xxxl) | ηi j = 1 and yl 6= yi} are
defined. The objective function of LMNN then takes the following form:

min
M∈Sd

+

(1−µ) ∑
(xxxi,xxx j)∈S

d2
M(xxxi,xxx j) + µ ∑

(xxxi,xxx j,xxxl)∈R
max{0,1+d2

M(xxxi,xxx j)−d2
M(xxxi,xxxl)}.

This objective function seeks a local neighborhood of each instance that is populated with other instances
of the same class, while those of a different class are repelled by a ‘large’ margin. The parameter µ ∈ [0,1]
controls the trade-off between attracting target neighbors and repelling oppositely labelled instances. A
number of extensions to LMNN have been proposed. Torresani and Lee (2006) explore kernel methods to
combine LMNN with dimensionality reduction of the feature space, while Kedem et al. (2012) suggest
extensions to a non-linear metric.

Whilst NCA and LMNN remain perhaps the most notable contributions in the direction of metric
learning for nearest neighbor classification, many metric learning methods exist in the wider literature,
offering different perspectives on the fundamental task. We refer the interested reader to the work of Kulis
(2013) and Bellet et al. (2014) for a thorough review of established methods.

In this paper, we limit ourselves to considering a classification task. For this reason, the metric learning
formulation and methods discussed above apply specifically to data in which the response variable is
categorical. However, it should be recognised that kNN represents a versatile rule that readily extends to
regression problems as well (see for instance Weinberger and Tesauro (2007)).

3 METRIC LEARNING FOR SIMULATION

In this section, we motivate our proposed methodology for metric learning and kNN classification on
simulation models. Whilst many methods are available to perform metric learning, in the results presented
here we used CVXR (Fu et al. 2018), an open-source convex optimization solver, to employ the original
formulation of Xing et al. (2002). To specify the constraint sets, S and D , we take a local neighborhood
approach inspired in part by LMNN. We denote by N (q)(xxxi) the set containing the q nearest points to xxxi

in Euclidean distance. Then, for all xxxi, and for all xxx j ∈N (q)(xxxi), we make the following assignments:

(xxxi,xxx j) ∈

{
S if y j = yi,

D if y j 6= yi.

As noted by Weinberger and Saul (2009), the success of kNN requires only that the local neighborhood
of each instance be populated by others of the same classification. Particularly in our simulation context,
which allows a high-dimensional representation of system state, this will be relevant; a global clustering
of each class may be inappropriate. Euclidean distance provides an initial view of the local neighborhoods
of our training points. It stands to reason that pairs of nearby points in Euclidean distance with equivalent
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class labels should be encouraged to remain as neighbors. These points naturally fall close in the predictor
space and they share the same classification; we can confidently describe them as ‘similar’. On the
other hand, nearby pairs with different classifications need to be forced apart, since they will impede the
performance of our classifier. Moreover, owing to their different classifications, we assume that there is
something fundamentally ‘dissimilar’ about these pairs of instances which is not detected by Euclidean
distance. By placing these pairs in D , we aim to learn a distance metric that is sensitive to these more
subtle dissimilarities.

In the results presented in this section, we use the original metric learning formulation of Xing et al.
(2002):

min
M∈Sd

+

∑
(xxxi,xxx j)∈S

d2
M(xxxi,xxx j) s.t. ∑

(xxxi,xxx j)∈D
dM(xxxi,xxx j)≥ γ.

We set the constraint constant to γ = |D |. In other words, we aim to minimise the sum of squared distances
in S whilst keeping the average distance in D from falling below 1. In reality, the choice of γ > 0 is
unimportant, and, provided numerical stability of the optimization algorithm is maintained, a different
choice results only in a scaling of the solution matrix by a constant factor. To generate the sets S and
D , we take a local neighborhood size of q = 20, and we evaluate the performance of kNN classification
using k = 50 nearest neighbors. Whilst these values prove sufficient here to provide results supportive of
our methodology, the optimal setting of the parameters q and k will in practice vary across systems, and
can be selected via cross validation (Hastie et al. 2009).

We first consider a simple motivating example to illustrate the advantages of metric learning and kNN
classification in a simulation context. We then evaluate a realistic application of our methodology on a
more complex simulation of a wafer fabrication facility.

3.1 A Stochastic Activity Network

We consider the simple stochastic activity network represented in Figure 1. We denote the five activity
times by X1,X2, . . . ,X5, modeling each as an i.i.d. random variable, Xi ∼ Exp(1) for i = 1,2, . . . ,5. There
are three possible paths through the network, such that the total time taken for completion is given by
T = max{X1 +X4,X1 +X3 +X5,X2 +X5}. To bring ourselves into a classification setting, we consider the
binary response Y = 1 if T > 5, and 0 otherwise.

Given the structure of this network, we understand that the path X1→ X3→ X5, requiring three activities,
will often represent the longest path through the network and hence define the value of Y . Of these three
activity times, X1 and X5 appear in a second path also, giving them an edge over X3 in terms of contribution
towards the response. These two alternative paths suggest that some interaction effects will also exist
between X1 and X4 and between X2 and X5; in each case, high values of both variables will encourage the
response Y = 1.

We ran n = 10,000 replications of the network, recording the five activity times, X1,X2, . . . ,X5, and
the classification response, Y , for which the proportion of class 1 was around 16%. Knowing the exact
mechanism by which the activity times generate the response gives us an understanding against which
we can evaluate the output matrix of the metric learning. This output, M, provides a visual guide to the
comparative relevance of the five activity times towards the response, and is shown in Figure 2. When

A

B

C

D
X1

X2

X3

X4

X5

Figure 1: A small stochastic activity network.
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used as the Mahalanobis distance matrix in (2), the diagonal elements in M indicate the weights given
to differences in individual variables in defining the overall distance between two instances, whilst the
off-diagonal elements additionally reflect relationships among the variables. We see immediately from
Figure 2 that the largest diagonal elements correspond to the variables X1, X3, and X5. Thus, under the
metric dM, instances with similar values of these three variables will be deemed more similar overall,
with less importance given to their proximity in terms of X2 and X4. This reflects our understanding that
X1→ X3→ X5 is the most relevant path through the network. We can further note that the diagonal terms
for X1 and X5 are slightly higher than for X3, reflecting the additional contributions that these two variables
make towards Y .

We turn our attention to the off-diagonal terms of M, and note that the positive semi-definite constraint
imposes no restrictions on their sign. For the purpose of interpretation, we define zzzi j = xxxi−xxx j, and note
from (2) that the off-diagonal element M(k, l) appears in the contribution of the term 2zzzi j(k)zzzi j(l)M(k, l)
to the squared Mahalanobis distance between xxxi and xxx j. The magnitude of M(k, l) indicates the impact
of the product term zzzi j(k)zzzi j(l) on dM(xxxi,xxx j), whilst its sign indicates the way in which these variables
interact. Specifically, a positive value of M(k, l) indicates that dM(xxxi,xxx j) will increase when zzzi j(k) and
zzzi j(l) have the same sign, and decrease otherwise, whilst the opposite is true for negative M(k, l). Applying
this interpretation to Figure 2, we can understand the positive off-diagonal terms in connection with the
additive relationship through which the variables generate the response, whilst the greatest strengths are
understandably attributed to the relationships among the dominant variables X1, X3, and X5. As such, we
are encouraged to see that the matrix obtained by metric learning aligns with our intuitive understanding
of this system. In realistic simulation models for which such intuition is less accessible, we suggest that
metric learning can be effective in revealing relationships among system components, and their relative
contributions towards driving the system performance.

The effectiveness of kNN classification using a learned distance metric is illustrated in Figure 3. The
receiver operating characteristic (ROC) curves (Hastie et al. 2009) show the performance of the kNN
classifier following 2-5-fold cross validation (CV). J-K-fold CV, consisting of J independent K-fold cross
validations, is understood to represent a more robust procedure than traditional K-fold CV (Moss et al.
2018). Specifically in our experiments, each CV iteration takes four fifths of the data to comprise the
training set on which the distance metric is learned, and the points in the remaining test set are classified by
finding their k nearest neighbors from the training set, with respect to the learned distance metric. The ROC
curves display the trade-off between the true positive rate and the false positive rate as the classification
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X3

X4

X5

X1 X2 X3 X4 X5
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Figure 2: A visualization of the learned matrix,
M, for the stochastic activity network.
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Figure 3: ROC curves for classification on the
stochastic activity network.
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threshold varies. Here, the true positive rate (sensitivity) refers to the proportion of class 1 points correctly
classified, whilst the false positive rate (1− specificity) refers to the proportion of class 0 points incorrectly
classified as class 1. Thus, in practice, the ROC curves can be used to select the classification threshold,
c, in (1), based on a desired sensitivity-specificity trade-off. In Figure 3, the ten dashed CV curves are
averaged at each threshold to produce the solid curves. Using the same CV partitions, we also show the
ROC curves from logistic regression, a standard classification technique.

The comparison in Figure 3 reveals the value of the kNN approach. Logistic regression represents a
parametric attempt to model the response as a function of the predictor variables. However, owing to the
nature of the network, measuring similarity with regards to the key activity times proves a more successful
foundation for prediction. The connected dependence structure among the predictors in this example is not
untypical of the relationships among state variables in many simulation models.

Making a further appeal to the nature of simulation, we recognise that a multi-dimensional character-
ization of the system state is likely to include a number of variables that provide little or no contribution
to the system response. To demonstrate the capability of metric learning in handling data of this na-
ture, we augmented the five activity times with a further fifteen i.i.d. random variables, Xi ∼ Exp(1) for
i = 6,7, . . . ,20. The response, Y , depends only on X1,X2, . . . ,X5 as before, with these additional variables
representing noise dimensions. Metric learning on this augmented data yields the matrix shown in Figure 4.
We see that metric learning is able to successfully filter out the noise dimensions and recover the important
structure among the five activity times. Figure 5 shows the ROC curves for this example, and also shows
the performance of the kNN classifier with Euclidean distance, which is comparable to that of logistic
regression.

We are encouraged to see in Figures 4 and 5 the capability of metric learning in the presence of
noise variables, both in terms of retaining interpretability and bringing improvement to Euclidean kNN
classification. This lends optimism to our proposed application, since we recognise that irrelevant variables
will be a common feature of the large state descriptions of realistic simulation models. We progress now
to one such model, in which we demonstrate further the capability of metric learning and its application
to kNN classification.

0.0
0.1
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0.3
0.4
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Figure 4: The learned matrix, M, after the data
from the stochastic activity network is augmented
with fifteen noise variables.
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Figure 5: ROC curves for classification on the
noise-augmented stochastic activity network.
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3.2 A Wafer Fab Model

To evaluate our approach with a more realistic simulation, we employ the model of a wafer fabrication
facility (fab) described by Kayton et al. (1996). The manufacturing process of semiconductor wafers
involves several processing steps at a number of stations. Machines with different processing capacities
and unpredictable breakdown patterns present a challenge to the management of product flow through these
facilities. Moreover, the layered nature of their circuitry design requires wafers to make multiple visits to
particular stations, introducing an aspect of re-entrant flow that further complicates our view of the system.

Briefly, the simulation model is comprised of 11 stations with lognormal processing times. Three
product types are produced by the facility, each requiring a specific routing sequence through the 11
stations. Notable stations include station 3, characterized by an unreliable machine, and station 4, which
represents the bottleneck station to which products make repeated visits. Together with the varying processing
behavior of the different stations, including batch processing at stations 1 and 2, these features establish a
system with a level of complexity approaching that of typical simulation models.

On release into the system, each wafer is assigned a due date based on its expected processing time
through an empty system. Therefore, we can consider observed completion times relative to due dates as
a dynamic indicator of system performance. To describe the system state, we take a Markovian view in
assuming that all information relevant to the future evolution of the system can be captured in the currently
observable system conditions. Namely, we focus on the current values of the 22 integer variables describing
the queue size and the number of resources in use at each station. We recognise that this state description
is incomplete, given the different product types and processing stages of individual wafers. However,
having tested numerous additional state descriptors, we find that a basic physical view of the system state
is sufficient here to provide compelling support for our methodology. As such, our data {(xxxi,yi)}n

i=1 are as
follows. We record the 22-dimensional system state, xxxi, at the moment a wafer is released into the system,
and observe its associated binary response, yi, indicating whether this wafer was completed early or late
with respect to its due date. To aid an understanding of our approach, Figure 6 shows an excerpt of the
system trace information recorded by this simulation, from which we extract our system state description. In
general, rather than trying to select a parsimonious state description, we suggest including all the observable
state information that may prove relevant, and then allowing metric learning to discover what is actually
relevant.

To avoid confusing the behaviors of the different product types, our data contains only observations
from a single product type. In the results that follow, we combine observations from multiple replications of
the system, discarding a warm-up period from each to leave us with insight into the operational steady-state
behavior. The proportion of ‘Late’ responses in our data was around 72%. Additionally, the simulation

Clock Event ID Step Station Product Queue 1 Resource 1 Queue 2 Resource 2 Queue 3 Resource 3 …

2008.383059 StationDepart 22 2 11 3 1 0 1 0 11 0 …

2008.383059 StationArrive 22 3 3 3 1 0 1 0 11 0 …

2040 Release 25 1 1 3 1 0 1 0 12 0 …

2040 StationArrive 25 1 1 3 1 0 1 0 12 0 …

2109.106176 StationDepart 25 1 1 3 0 1 1 0 12 0 …

2109.106176 StationDepart 24 1 1 1 0 1 1 0 12 0 …

2109.106176 StationArrive 25 2 11 3 0 0 1 0 12 0 …

2109.106176 StationArrive 24 2 4 1 0 0 1 0 12 0 …

2125 Release 26 1 1 1 0 0 1 0 12 0 …

2125 StationArrive 26 1 1 1 0 0 1 0 12 0 …

2150.158025 StationDepart 24 2 4 1 1 0 1 0 12 0 …

2150.158025 StationArrive 24 3 3 1 1 0 1 0 12 0 …

2179.242595 StationDepart 25 2 11 3 1 0 1 0 13 0 …

2179.242595 StationArrive 25 3 3 3 1 0 1 0 13 0 …

2179.925414 Repair ‐10 ‐10 ‐10 ‐10 1 0 1 0 14 0 …

Figure 6: An example of the trace from the wafer fab simulation, which we use to build a state description.
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can be performed with a choice of dispatching rules, relating to the order in which queueing wafers are
processed (Kayton et al. 1996). The results displayed in Figures 7 and 8 used a ‘least work remaining’
rule, in which priority is given to wafers which are nearer completion.

The metric learning procedure resulted in the matrix visualized in Figure 7. The stand-out elements in
this matrix correspond to the queue sizes at stations 3 and 4, which we recall to coincide with the unreliable
machine and the system bottleneck, respectively. The metric learning result highlights the significance of
these two queue sizes in defining the overall system performance.

Performing kNN classification on this data, with 2-5-fold CV as in the previous example, yields the
ROC curves shown in Figure 8. Compared to a Euclidean kNN classifier, the curves reveal the benefit to
classification performance that metric learning brings. Essentially, as the size of the state space increases,
we expect the benefit of metric learning over Euclidean distance to become even more pronounced.

As a statistical learning technique, kNN is best suited to low-dimensional data (Beyer et al. 1999). To
visualize the effect of metric learning with respect to dimensionality reduction, it is convenient to consider
the transformation matrix L given by the decomposition M = L>L. We recall that the metric dM can be
viewed as the Euclidean metric in the space transformed by L. Taking the eigen-decomposition of M, the
ith row of L is given by λ

1/2
i vvv>i , where λi and vvvi denote, respectively, the ith largest eigenvalue of M and

its corresponding eigenvector. Thus, the eigenvalues of M directly impact the spread of our data in its
transformed dimensions. Figure 9 shows the eigenvalues of the original data covariance matrix, in order of
decreasing size, whilst Figure 10 shows the eigenvalues of M. We see that metric learning in this example
results in much of the variability of the data being compressed into the first dimension. Hence, we can
acknowledge the effective dimensionality reduction brought upon our data by metric learning. Projecting
the transformed data against its first and second dimensions results in the plot shown in Figure 11. We can
see that this dominant first dimension is effective in distributing our two response classes.

In formulations such as NCA, which directly seek a transformation of the feature space, dimensionality
reduction can be straightforwardly enforced. However, even when not directly sought, the by-product
of dimensionality reduction is almost inherent in the nature of the metric learning task. Since a nearest
neighbor rule is understood to suffer the curse of dimensionality, and we aim to accommodate simulations
with a high-dimensional state space, the dimensionality reduction encouraged by metric learning represents
an important aspect of our methodology; it allows us to apply kNN without the need for user-intervention
in trimming the state space.
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Figure 7: A visualization of the learned matrix,
M, for the wafer fab problem.
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on the wafer fab problem, comparing Euclidean
distance with the learned metric.

358



Laidler, Morgan, Nelson, and Pavlidis
Ei

ge
nv

al
ue

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 9: The eigenvalues of the
original data covariance matrix.
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4 CONCLUSION

In this paper we have presented a novel methodology in the field of simulation analytics. The basis of our
methodology, kNN classification, provides a non-parametric framework in which to model the behavior
of a system, whilst the addition of metric learning is shown to bring both interpretability and improved
prediction performance. We have demonstrated the merits of our approach for its intended application
to simulation, showing that the typical features of sample path data, such as interacting and irrelevant
variables, are well-handled by metric learning. Although we only present results from a single metric
learning method in this paper, the extensive research and accomplishment in this field gives optimism to the
scope of metric learning for simulation. In short, we propose that a kNN approach combined with metric
learning can have wide-reaching benefits, as simulation users begin to look beyond aggregate performance
measures and seek a more fine-grained analysis from their simulation models.
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