Lawrence Berkeley National Laboratory

Recent Work

Title

ADC Nonlinearity Correction for the MAJORANA DEMONSTRATOR

Permalink

https://escholarship.org/uc/item/82x5v66¢c

Journal

IEEE Transactions on Nuclear Science, PP(99)

ISSN
0018-9499

Authors
Abgrall, N
Allmond, M
Arnquist, I
et al

Publication Date
2020

DOI
10.1109/TNS.2020.3043671

Peer reviewed

eScholarship.org

Powered by the California Digital Library
University of California



2003.04128vl [physics.ins-det] 4 Mar 2020

arxXiv

IEEE TRANSACTIONS ON NUCLEAR SCIENCE |

ADC Nonlinearity Correction for the MAJORANA DEMONSTRATOR
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Imperfections in analog-to-digital conversion cannot be ignored when signal digitization requirements demand both wide dynamic
range and high resolution, as is the case for the MAJORANA DEMONSTRATOR ,6GC neutrinoless double beta decay search. Enabling the
experiment’s high-resolution spectral analysis and efficient pulse shape discrimination required careful measurement and correction
of ADC nonlinearites. A simple measurement protocol was developed that did not require sophisticated equipment or lengthy data
taking campaigns. A slope-dependent hysteresis was observed and characterized. A correction applied to digitized waveforms prior
to signal processing reduced the differential and integral nonlinearites by an order of magnitude, eliminating these as dominant
contributions to the systematic energy uncertainty at the double-beta decay Q value.

Index Terms—germanium detectors, enriched 16Ge, neutrinoless double beta decay, signal processing.

1. INTRODUCTION XPERIMENTS requiring signal digitization with both
wide dynamic range and high resolution must pay spe-
cial attention to nonlinearities in analog-to-digital conversion

(ADC). The MAJORANA DEMONSTRATOR [1] is such an ex-
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periment, consisting of an array of enriched high-purity germa-
nium detectors used to search for the neutrinoless double-beta
(0v/3/3) decay of 76Ge. This hypothetical nuclear decay emits
two electrons without the balancing emission of anti-leptons;
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the observation of such a matter creation process would signify
that lepton number is not conserved, with implications for
the matter-antimatter asymmetry of the universe [2]. The
DEMONSTRATOR requires a wide dynamic range for detection
of low-energy spectral features of backgrounds for high-energy
OvBp decay signals. A wide dynamic range also enables
searches for other Beyond-the-Standard-Model physics at low
energy [3], [4]. High resolution is required for efficient pulse
shape discrimination (PSD) of gamma and alpha radiation, and
for careful measurement of the signal amplitude (energy) to
distinguish 033 decay from the Standard Model process in
which two neutrinos are emitted. Recently, the MAJORANA
collaboration published its O35 decay search results [5], [6],
demonstrating high-efficiency PSD, very low background, and
the best energy resolution to date among large-scale 0v53
decay searches. This achievement was made possible in part
by the novel method presented in this paper for measuring
and correcting ADC nonlinearities in the GRETINA Digitizer
Modules [7], [8] employed in the MAJORANA DEMONSTRA-
TOR.

The experiment is staged at the 4850-foot level of the
Sanford Underground Research Facility [9] in Lead, SD. It
is composed of 58 p-type point contact (PPC) high purity ger-
manium detectors divided between two compact arrays housed
within identical low-background cryostats. Each of the two
detector arrays contains seven strings, with each string being
an assembly of three, four, or five vertically stacked detectors.
The PPC technology [10], [11] was selected because of its
superb energy resolution and ability to distinguish between
multi- and single-site interactions. Charge collection in PPC
detectors occurs on time scales of hundreds of nanoseconds
to a microseconds [12].

The point contact of the detector is connected by a spring-
loaded pin to the gate of a field-effect transistor (FET)
mounted on a low-mass front end (LMFE) board made of
high-radiopurity materials [13]. In addition to the FET this
circuit incorporates an amorphous-Ge feedback resistor, and
the proximity of its traces provides the appropriate feedback
capacitance for the charge-based amplification of the detector
signals. The circuit also includes an additional capacitive-
coupled trace for sending test pulses to the gate of the FET.
The LMEFE is located close to the detector in order to minimize
stray input capacitance. The RC constant of the feedback loop
is on the order of milliseconds.

The rest of the preamplifier lies outside the cryostat and
is connected to the LMFE by a long (2.15 m) length of
cable [13]. The voltage at the first stage of the preamplifier
is measured at regular intervals to monitor temperature and
leakage current stability. The second stage of the preamplifier
is AC coupled to the first stage, and has two differential
outputs which differ in gain by a factor of ~3. The detector
signals have a sharp rising edge, the structure of which
provides information on the charge drift, and a tail that
falls exponentially with a ~70 s time constant arising from
the AC coupling between the first and second stages of the
preamplifier.

For each crystal array, four circuit boards (“controller
cards™) interface with the preamplifiers. Each of these con-

troller cards contains sixteen 12-bit ADCs for monitoring base-
line voltages and sixteen 16-bit digital-to-analog converters
(DAC:s) for pulsing the FETs. The pulsers allow distribution of
pulses of programmable amplitude and frequency to specified
sets of FETs. These pulsers are used to monitor gain stability,
trigger efficiency, and detector livetime. The pulsers can also
be used for validation of digitizer linearity, as discussed below.

The high and low gain outputs of each detector’s pream-
plifier are connected to separate digitization channels. The
GRETINA Digitizer Modules provide 10 channels per card,
each with differential input and a 14-bit ADC digitizing at
100 MHz. The input dynamic range is £1.25 V. An on-
board field-programmable gate array (FPGA) performs digital
discrimination and trapezoidal shaping. The digitizers provide
various triggering modes and accomplish raw data storage
of triggered signals with a FIFO (first in, first out) memory.
Signal pre-summing of portions of the waveform allows for
the optional extension of the time window captured within the
2000 sample limit for each recorded trace. The digitization
electronics for the two cryostats operate out of separate
VME crates, e¢ach housing the requisite number of GRETINA
digitizer boards and a single board computer (SBC) to read
out the digitizers in that crate. The two SBCs communicate
with one central computer running ORCA (Object Oriented
Real-time Control and Acquisition) which controls the entire
data acquisition (DAQ) system [14]. All acquisition parameters
are programmable and easily accessed through an ORCA
interface.

Full analysis of the pulse shapes is performed offline in
software. Signal amplitudes are measured to estimate event
energies using a trapezoidal filter with a 4 ps integration
time, a flat-top of 2.5 us, and employing a modified pole-zero
adjustment to correct for charge trapping [15]. The smoothed
derivative of the pulse is computed with a running linear fit
over a ~100 ns range to distinguish single-site signal events
from multi-site background interactions [16]. A third pulse
shape parameter looks for excess slope in the exponential
tail of the pulse that indicates the presence of “delayed
charge recovery” (DCR) following surface alpha background
interactions [17]. These algorithms all rely on linear analog-
to-digital conversion of the detector signals.

Periodic nonlinearitics have been observed in the ADC chips
used in the GRETINA Digitizer Module (Analog Devices
ADO6645) arising from the subranging nature of the ADC
implementation. Of particular note is that the nonlinearities
in these ADCs depend not only on the voltage level but
also the rate at which the voltage changes [18]. Uncorrected,
these ADC nonlinearities affect energy determination by up
to several keV and degrade both of the key pulse shape
parameters used to reject background events.

A number of methods are available for correcting non-
linearity, for example the histogram method [19], integral
nonlinearity curve tables [20], using the analytic inverse of
the integral nonlinearity curve [21], and the blind calibration
algorithm [22]. However, most methods require special equip-
ment or architectures, and/or lengthy measurement campaigns.
They also often assume that ADC differential nonlinearities are
fixed constants that are independent of the time variation of the
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input signal. These aspects made standard methods inadequate
for the MAJORANA DEMONSTRATOR.

In this paper, we present the nonlinearity correction de-
veloped for the MAJORANA DEMONSTRATOR. First we will
describe the measurement of the nonlinearities by applying
external signals and measuring the response of each digitizer
channel. Then we describe our nonlinearity correction algo-
rithm, and quantify the energy performance of the DEMON-
STRATOR after applying the nonlinearity correction. Finally,
we discuss the validation of the linearity of the corrected
energy spectrum using external pulsers.

II. NONLINEARITY MEASUREMENT

Our measurement of ADC nonlinearity is performed
through application of summed ramped voltage signals sent
directly to the front-end inputs of a digitizer. With linearly
ramped inputs from well-behaved function generators, one can
observe deviations from linearity in the digitized output of an
ADC channel. Deviation from the mean yields the differential
nonlinearity (DNL) at the ADC channel [23]. Integration of
the DNL yields the integral nonlinearity (INL) [23].

The measurement procedure makes use of two external
function generators (Agilent 33220A) applied to the two
differential inputs of a digitizer channel. The first function
generator provides a slow ramp covering the full ADC range,
while the second provides a faster ramp of smaller amplitude
that modulates the signal from the first ramp. In our setup,
the slow ramp waveform is set at 100% symmetry (sawtooth
wave) with a period of 10 s and an amplitude of £1.25 V.
The fast ramp waveform is set at 50% symmetry (triangle
wave) with a period of 750 ps and an amplitude of +125 mV.
Figure | shows a schematic plot of the two pulser outputs.
These signals are summed together by the differential inputs
of the digitizer.

A synchronized output of the function generator was used
to externally trigger the digitization card on a rising or falling
portion of the fast ramp. The digitized traces record a short,
monotonic region of the fast ramp, as shown for example in
Figure 2. The slope of the waveform is determined by the
slope of the fast ramp, and its overall ADC offset is determined
by the location along the slow ramp. For each sample within
a waveform, a linear fit was performed within a 20 sample
(St = 200 ns) window, over which the fast ramp varies by
roughly | ADC unit. Taking advantage of the small but finite
high-frequency noise on the order of | ADC unit [24], the
fit slope within each window provides a good measurement
of the drop of the fast ramp in ADC units across the ADC
channel nearest the center of the window.

Data was taken for about 30 minutes, corresponding to
roughly 2.4M waveforms recorded on each digitizer channel,
giving about 300000 fit slopes per ADC channel. We average
the measurements for each ADC channel of a digitizer input to
obtain that digitizer channel’s final DNL curve, an example of
which is shown in Fig. 3. As the slow ramp shifts the voltage
offset of the fast ramp (the slow ramp’s slope is much less than
1 ADC unit over the digitization window), each ADC channel
is traversed by varying locations along the fast ramp. As a re-
sult, the DNL we compute averages over any nonlinearities of

Time (s)

Time (s)

Fig. 1. Schematic plot for the external input: Top) slow ramp signals and
Bottom) fast ramp.

U 4060
4040
4020
4000
3980
3960 —
3940 —

3920
Time (ps)

Fig. 2. Measured (down-going) waveform. A linear fit is performed within
20 samples (St = 200 ns), over SADC ~ 1 ADC unit.

the fast ramp, making our method insensitive to imperfections
in the fast ramp linearity. The computed averages also do not
rely, as other nonlinearity measurements do, on the frequency
with which a particular ADC channel is traversed, so that our
method is also insensitive to nonlinearities in the slow ramp.
These features enable the use of lower-cost function generators
without stringent linearity specifications.

The measured DNL curve exhibits a picket-fence-like struc-
ture that is typical of multi-range ADCs. All digitizer channels
measured show a similar trend with a similar magnitude,
however the detailed structure and the sizes of the DNL
spikes varied somewhat from one digitizer channel to the next,
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Fig. 3. An example measured average DNL curve at each ADC channel using
high statistics data of a single digitizer channel.

requiring their individual measurement. For each digitizer
channel, we integrate the measured DNL curve, and fit and
subtract away any overall slope to obtain the INL curve,
as shown for example in Fig. 4. The maximum deviation
of the INL is at the level of approximately 2 ADC units,
corresponding to about | keV (3 keV) for high gain (low gain)
detector signals in the MAJORANA DEMONSTRATOR.

ADC Channel

Fig. 4. An example measured INL curve for a single digitizer channel. The
zig-zag pattern arises from the picket fence structure of the DNL curve.

Using this technique, we measured the INL with varying
amplitude and trigger positions (up-going vs. down-going
regions) of the fast ramp. The resulting ADC INLs exhibit
hysteresis, particularly in the vicinity of the large DNL peaks
(see Fig. 5). We interpret the hysteresis as a delayed response
of the ADC to the signal. Using the slope of the fast ramp
and the distance in ADC unit for the INL curves to come into
agreement with each other following a large nonlinearity, we
roughly estimated the time scale of the delayed response to be
~1.4 /is. This time delay is incorporated into the nonlinearity
correction described below. Our method was sufficient to
reduce ADC nonlinearities to a negligible level, however the

time delay could be optimized further with more careful study.

— Slow speed, down-going
Slow speed, up-going

----- Fast speed, down-going

ADC Channel

Fig. 5. An example INL curve over a small ADC range for different fast
ramp amplitudes and directions. The ADC exhibits a hysteresis effect, which
can be seen in both the measured INL curve deviation between opposite ramp
directions (shown by the green and red curves) and in the larger deviation seen
at higher ramp rates (seen in the difference between the red and blue curves
at ADC values less than 260). The delayed response time constant describing
the hysteresis effect is found from the number of ADC units needed for the
curves to come into agreement following a large nonlinearity. The ramp rate
is used to convert this value into a time.

III. NONLINEARITY CORRECTION

After searching for digitization problems such as range
saturation or sticky ADC channels, recorded waveforms must
be immediately corrected for nonlinearities, prior to further
digital signal processing. To first order, our correction is
applied using the INL curve as a look-up table. Additionally,
a small recursive adjustment is made to correct the observed
time delay in the ADC response.

First, we prepared estimates of the “instantaneous” INL
curves in which the distortion due to the time delay was
removed. This was accomplished by simply averaging the up-
going and down-going curves. This inherently retains some
of the distortion, but the remnant error was deemed to be
negligible compared to other energy scale uncertainties and
noise contributions. A more sophisticated treatment in which
up-going and down-going measurements are spliced on either
side of a large DNL spike, or in which a full deconvolution
of the response time is performed, could yield improved
performance.

Once the instantaneous INL curves are estimated, the non-
linearity correction is then applied. In the absence of the
delayed response exemplified in Fig. 5, the correction would
be applied by simply subtracting the INL from each ADC
value. To account for the time delay, we instead compute

ADC” = ADCn — INLref n, e

where ADC” is the corrected ADC value of waveform sample
n, ADCn is its original ADC value, and INLrefn is a
recursively computed reference correction that exponentially
approaches the instantaneous INL value with time constant 7.
It is given by

INLrefin = INLref,n-1 + (INLn — INLref,n-1) s 2)
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where INLn is the instantaneous INL correction for sample
n, and rs is the sampling period. The initial value of INLrefjn
is set to the INL of the average ADC value of a | ps region
of baseline preceding the detector signal in the digitized trace.
The value of r is taken to be 1.4 //s for all digitizer channels;
attempts to optimize this parameter channel-by-channel did
not yield significant improvement in residual nonlinearities.

IV. PERFORMANCE OF THE NONLINEARITY CORRECTION

The most straightforward and direct method to measure
the performance of the nonlinearity correction is to compare
energy calibration residuals before and after the correction is
applied. Figure 6 shows such a comparison for 228Th source
data taken with the MAJORANA DEMONSTRATOR calibration
system [25]. Since other sources of energy uncertainty are on
the order of 0.1 keV [6], this comparison shows that without
correction, ADC nonlinearity would be a dominant source
of energy uncertainty in the MAJORANA DEMONSTRATOR.
However, it does not provide a measure of the remnant
contribution to the energy uncertainty of the ADC nonlinearity
after applying our correction, because ADC nonlinearity is not
the only source of variance in the data. Thus other methods
are required to measure the performance of the correction in
more detail.

No NEC
With NEC

-0.05

-0.15

Energy (keV)

Fig. 6. An example of calibrated energy residuals in the high-gain amplifica-
tion output of one detector before (blue circles) and after (red triangles) the
non-linearity correction. The shaded regions characterize the non-statistical
spread of the data points.

Since low gain channels in the MAJORANA DEMONSTRA-
TOR have ~1/3 the gain of high gain channels, the nonlinearity
has different amplitude and energy periodicity in the high
and low gain channels. This allows one to use the energy
difference between the low and high gains to investigate the
nonlinearity. Figure 7 shows one example of the difference
in energies recorded simultaneously by each gain for events
collected during a 228Th calibration source deployment. The
uncorrected trend (blue) exhibits a superposition of sawtooth-
shaped nonlinearities from the low gain (large amplitude,
long period sawtooth) and high gain (small amplitude, short
period sawtooth) channels. Both patterns begin to wash out
at higher energies because the signal region in the tail that
is integrated by the trapezoidal filter spans a broader range

Energy (keV)

Fig. 7. The energy difference between the high gain and the low gain channels
of 228Th calibration source events for one detector. Blue dots show the energy
difference prior to nonlinearity correction while red dots show the energy
difference after our correction is applied.

of ADC channels, averaging away the nonlinearity. After
correction (red trend), the energy difference is reduced by
roughly an order of magnitude. The features in the remnant
nonlinearity, including the overall slope and the appearance
of small structures, vary subtly from channel to channel.
However, based on the relative gains, on average the low gain
contribution to the remnant nonlinearity should be roughly
three times that from the high gain channel. The observed
patterns are consistent with this estimate.

The front-end pulsers described in the introduction were
also used to assess the ADC linearities over a limited dynamic
range. First, a series of runs was taken in which the front-
end pulser amplitude was stepped evenly over its full dynamic
range, and the amplitudes of the output pulses were measured.
The data were fit to a line, and the residuals were computed
and calibrated into keV as estimates of the nonlinearities. With
a single sweep one cannot distinguish ADC nonlinearities from
potential nonlinearities in the pulser electronics themselves,
so the observed nonlinearities in this first series of runs were
taken as upper limits on the latter. Then a second set of runs
was taken with the same series of pulser amplitude settings,
except that the pulser signals were attenuated by a factor of
~5 before being sent to the front-ends. The attenuators would
shrink any nonlinearities inherent to the pulsers by the same
factor; in our case, the observed nonlinearities in the second
sweep were larger than those attributable to the pulser, and
were consistent with being dominated by ADC nonlinearities.
Figure 8 shows an example of nonlinearities derived from such
pulser sweeps. While this method only covers a fraction of
the energy range, it provides our best estimates of residual
nonlinearities over that range. From these sweeps, we conclude
that below ~300 keV, remaining deviations from linearity are
on the order of +£0.1-0.3 keV in all detectors in both cryostats,
and are consistent with the more conservative method based
on energy differences between low and high gain data that
extends to much higher energies.

Finally, Figure 9 shows the impact of ADC nonlinearities
and their correction in the delayed charge recovery (DCR)
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No NLC

With NLC

Energy(keV)

Fig. 8. Digitizer linearity as assessed via front-end pulser scans, with and
without estimated energies corrected by the primary nonlinearity correction.
The image displays residuals from a linear fit below 300 keV to the estimated
energies of a sweep over attenuated pulser amplitudes. The deviation above
~300 keV is due to saturation of the pulser dynamic range.

parameter used to reject events from alpha particles striking
the passivated surface of the detectors [17]. Alphas incident on
the passivated surface of the HPGe detectors exhibit significant
charge trapping that is partially recovered at delayed times
relative to the fast rise of their pulses. The ADC nonlinearity
injects a visible wiggle in this parameter as a function of
energy. Correcting for the nonlinearity significantly improves
the DCR resolution and therefore the discrimination against
alpha-incident events. The nonlinearity correction also drasti-
cally reduces the energy-dependence of the DCR cut signal
acceptance.

g 0.008
0.006
-0.002 No NLC
-0.004 With NLC

Energy (a.u.)

Fig. 9. ADC nonlinearities observed in the delayed charge recovery parameter
for discriminating alphas, measured with calibration data in one detector. The
blue dots show how the ADC nonlinearity injects a visible wiggle in the DCR
parameter as a function of energy, while the red dots demonstrate how this
variation is removed by the nonlinearity correction. An offset of the blue dots
is added for better visualization.

V. ENERGY SYSTEMATIC UNCERTAINTY QUANTIFICATION

Ultimately ADC nonlinearities cannot be completely elimi-
nated, and their residual systematic effects must be character-
ized. In this final section, we describe the quantification of the

contribution of residual ADC nonlinearities to the systematic
uncertainty in event energy estimation in the MAJORANA
DEMONSTRATOR. Systematic uncertainties in other pulse
shape parameters can be estimated using similar techniques.

The impact of nonlinearities on energy estimation can be
quantified in terms of their effect on the detector response
function. In the MAJORANA DEMONSTRATOR this is particu-
larly relevant, because the physics is extracted via the search
for a peak at a known energy (the 76Ge double-beta decay
spectral endpoint, 2039 keV), with the shape of the response
function. In the MAJORANA DEMONSTRATOR, as for many
detectors, the peak shape is predominantly Gaussian, so that
it is characterized essentially by just two parameters: the mean
and RMS width. ADC nonlinearities modify both of these
parameters. We compute the systematic uncertainties in these
two parameters assuming an analysis in which events from
all crystals are combined into a single distribution; biases for
a crystal-by-crystal analysis can be computed using identical
techniques.

The primary impact of ADC nonlinearities is an energy-
dependent shift in the mean of the response function due
directly to the value of the (residual) nonlinearity at any given
energy. We refer to this as the “local” energy nonlinearity.
We quantify the size of the local energy nonlinearities using
the energy differences estimated between high and low gain
channels, shown in Fig. 7. We divide the energy spectrum into
fine energy bins so that the nonlinearity can be assumed to be
constant over the bin. We then compute the average energy
difference ALH{E) between low and high gains in each bin
for each detector. Since ADC nonlinearities are presumed to
be a static property of the ADCs and since no evidence is
observed for significant time variation of AZH{E), possible
time-dependent changes are ignored. Next, to accommodate
our choice of an all-crystal analysis, we compute the average
(ALH{E)) and the RMS (0'A(S)) of these energy differences
over all of the detectors in the array. The former biases the
mean of the detector response, and the latter contributes to its
width.

The energy variations in the ALA{E) are observed to be
roughly constant in scale across the entire energy spectrum.
Since high gain channels in the MAJORANA DEMONSTRATOR
have ~3 times the gain of low gain channels, we assume that
the relative residual nonlinearity at a given energy differ by
a factor of 3 on average. Depending on the relative sign at
each energy, these nonlinearities may add to or subtract from
each other to give the observed ALH(E). We thus expect the
residual non-linearities to lie within the ranges ALHj (1 =+ 3)
for high gain channels, and ALH{E)/ (1 = L) for low gain
channels. We conservatively estimate the corresponding con-
tributions to the systematic uncertainty in the detector response
function mean to be “"ALH(E) for high gain channels, and

1 + (2)"ALH(E) for low gain channels. The solid lines in
Figure 10 shows the trend for "AZH(E) as a function of en-
ergy for all operating high gain channels using high-statistics
calibration data with and without the nonlinearity correction
applied. The energy uncertainty is highly suppressed by the
nonlinearity correction and is below 0.1 keV over the full
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calibration energy range.

Energy (keV)

Fig. 10. Local energy systematic bias (solid line) and additional variance
(shaded region) due to residual nonlinearities before and after the nonlinearity
correction for all operating high gain channels using high-statistics calibration
data.

In addition to shifting the mean, when events from multiple
detectors are combined into a single spectrum, detector-to-
detector differences in the local energy nonlinearities con-
tribute to additional width in the combined, array-wide re-
sponse function. Unfortunately, we cannot disentangle any
difference in variability between the low gain and high gain
nonlinearities from the data we have, so we conservatively take
the full variability as an estimate of the resulting increase in
the energy width for either gain. We thus inflate the width
parameter of the energy response function by adding it in
quadrature with a4 (E) directly. The trend of a4 (E) before
and after nonlinearity correction is plotted as the shaded
regions in Fig. 10. The width is substantially reduced by the
correction, especially at higher energies, and is at the level
of 70.2 keV over the entire energy range. The uncertainty
contribution to the energy response function width due to
the uncertainty in a4 (E) is negligible compared to the Fano
width.

In the MAJORANA DEMONSTRATOR and any similarly cal-
ibrated detector, nonlinearities also have a more global effect
on the energy scale: the nonlinearities at the calibration points
lead to non-statistical fit residuals (see Fig. 6), representing a
possible pull in the entire calibration. Without a full model of
the detailed energy dependence of the residual nonlinearities,
this global energy bias can be bracketed with an additional
systematic uncertainty in the mean of the detector response
function. This contribution can be incorporated directly into
the calibration fits by simply inflating the uncertainties in the
calibration fit parameters by the square-root of the reduced
X2 of the fit. This corresponds to adding an additional global
variance at each calibration point that accounts for their non-
statistical scatter about the best-fit curve. As can be seen from
the scatter of the data points in Fig. 6, in the MAJORANA
DEMONSTRATOR this contribution to the energy uncertainty
is on the order of 0.05 keV.

VI. coNncLusioN

Nonlinearity is a well-known issue for fast ADCs. In this
paper, we have shown this effect is observable in various
aspects of MAaJORANA DEMONSTRATOR data, including the
energy difference between the low and high gains, the energy
calibration residuals, and the delayed charge recovery pulse
shape discrimination parameter. We have also demonstrated
that the nonlinearity exhibits a non-trivial hysteresis and yet
can be measured with inexpensive signal generators and cor-
rected with simple, efficient algorithms. After the nonlinearity
correction, the energy deviation from linearity is less than
0.1 keV, and the additional contribution to the energy width is
about 0.2 keV. This correction was required to achieve the
record energy resolution of the MAJORANA DEMONSTRA-
TOR’s neutrinoless double-beta decay search.
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