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Increasing generality in machine learning through
procedural content generation

Sebastian Risi®'?™ and Julian Togelius ®'3

Procedural content generation (PCG) refers to the practice of generating game content, such as levels, quests or characters,
algorithmically. Motivated by the need to make games replayable, as well as to reduce authoring burden and enable particular
aesthetics, many PCG methods have been devised. At the same time that researchers are adapting methods from machine
learning (ML) to PCG problems, the ML community has become more interested in PCG-inspired methods. One reason for this
development is that ML algorithms often only work for a particular version of a particular task with particular initial parame-
ters. Inresponse, researchers have begun exploring randomization of problem parameters to counteract such overfitting and to
allow trained policies to more easily transfer from one environment to another, such as from a simulated robot to a robot in the
real world. Here we review existing work on PCG, its overlap with current efforts in ML, and promising new research directions
such as procedurally generated learning environments. Although originating in games, we believe PCG algorithms are critical

to creating more general machine intelligence.

been a feature of many video games (Table 1). PCG refers

to the algorithmic creation of game content—not the game
engine, but things such as levels, quests, maps, characters or even
rules—either in runtime (as the game is being played) or at design
time (as the game is made). There are several reasons why PCG is
used in games: it can increase the replayability of a game as play-
ers are presented with a new experience every time they play, it
can help to reduce production costs and disk storage space, and
it enables new types of games built on the unique affordances of
content generation.

Interestingly, developments in PCG and machine learning (ML)
have started to influence each other in reciprocal ways. Procedural
content generation via machine learning (PCGML)' refers to the
use of ML to train models on existing game content, and then lever-
age these models to create novel content automatically. This can be
done through simply sampling from the learned models, or through
searching the artefact space implied by the model so as to optimize
some objective. Interestingly, PCGML poses different and hard
challenges compared to generating images, for example, because the
produced content needs to function.

At the same time that PCG researchers are starting to incor-
porate these advances into their systems, interest in the ML com-
munity is increasing in PCG-inspired methods to improve the
robustness of ML systems. One reason for this development is the
growing evidence that, while ML methods perform well for tasks or
in the environments they are trained on, they do not generalize well
when that environment is changed or different from what is seen
during training. Training neural networks with many free param-
eters and over long training times has led to state-of-the-art perfor-
mance in many domains, but these solutions are typically overfitted
to the particular training examples, achieving high accuracy on a
training set but performing poorly on data not used for training.
Particularly in deep reinforcement learning (RL), in which an agent
has to learn in interaction with its environment, overfitting is rarely
addressed but a significant problem. Take the very popular arcade
learning environment as an example’, a classic benchmark in RL

For several decades, procedural content generation (PCG) has

based on an emulation of the Atari 200 games console. Hundreds
of games were made for that console; however, they all have fixed
sets of levels and very little in the way of randomization. Training
an agent to play a game in the arcade learning environment makes
it liable to overfit not only to that particular game, but also to its
levels and sequence of events.

The basic idea of employing PCG to address the generality
problem in ML systems is to artificially create more training data
or training situations. This way, ML-based systems can be biased
towards learning general task properties instead of learning spurious
elements found in the training examples. Methods include simpler
approaches, such as data augmentation, that artificially increase the
data used for training, or methods that train agents in a large number
of training environments that include randomized elements. PCG
methods have been extended to create complete maps for Capture
the Flag® or maps for two-dimensional video games’, and in a recent
impressive demonstration of the advantage of training in procedur-
ally generated environments, have allowed a robot hand trained in a
simulation to manipulate a RubiK’s cube in the real world®.

In this Review, we examine the history of PCG and the recent
trends in hybridizing PCG methods with ML techniques. The goal
is to share with the larger ML research community work from this
exciting area that is just beginning to capture the interest of research-
ers outside of games but could ultimately encourage the emergence
of more general artificial intelligence (AI). Additionally, we aim to
supply ML researchers with a new toolbox to aid their generalization
work, and games researchers and developers with new perspectives
from ML. This Review points out convergent research interests and
complementary methods in the two communities, details promis-
ing future research directions and under-explored research avenues
enabled by more advanced PCG techniques.

Classic PCG

While possibly the first video game to include PCG dates from
1978 (Beneath Apple Manor by Don Worth for the Apple II), Rogue
(1980) by Toy and Wichmann created an important design para-
digm. In Rogue, the player explores a multi-level dungeon complex,
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Table 1| A comparison of several methods for PCG and domain randomization described in this article

Representation?

Generation method®

Learned  Hand-designed Evolution Learned  Gradient-based Random Sampling Rules
search

Classic PCG
Standard constructive® (for example, O [ ] (@] @] O O (@] [ J
Rogue, Pitfall!, Civilization, Elite,
Minecraft)
Dawn Fortress® O o O @) @) [ O O
Data augmentation and domain randomization®
Simple data augmentation'>” [} O O O O O O [ J
Uniform domain randomization'® (@) [ ) (@] O O O [ ] O
Guided domain randomization* O [ ) O o @) @) O O
Automatic domain randomization® (@) [ ] (@] @] O O [ J O
Search-based PCG'
Standard search-based PCG?***%%? O [ ) o O O O O O
PCGMLe
Standard PCGML'#%% o O O O O O [ J O
PCGML with constrained sampling™® @ O O O O o (@] O
Latent variable evolution"">2942> [ ) O [ ) O O @) O O
PCGRL" O o O [ J O O O @)
Generative playing networks™ () (@) O O [ ] O (@] @]
Procedurally generated learning environments
POET®*, MCC»> O o o O O O O @)
Progressive PCGK® (@) () (@) @) @) (@) O ([

The first two columns indicate the representation of the content, which is either designed by hand or learned through ML. °The last columns indicate how the content is generated given a representation.
<Constructive methods follow rules and do not do any resampling. The black circles show which attributes each method has. ‘Dwarf Fortress is an example of a generate-and-test (random search) method
where the world is regenerated if it fails certain tests. °The various forms of domain randomization use hand-coded representations and differ in whether they simply sample this space or perform some
sort of search with a learned policy. fIn the search-based paradigm, a hand-coded representation is searched using an evolutionary algorithm. eMost PCGML approaches randomly sample a learned
representation, whereas PCGML with constraints resample when constraints are not satisfied. "Latent variable evolution combines search-based PCG with a learned representation, for example, in the
form of a GAN. 'PCGRL uses a policy learned by RL to search a hand-coded representation, whereas generative playing networks instead uses RL to test the arte'acts and gradient descent to generate them.
IPOET and MCC are fundamentally search-based methods, which include a learning agent inside the evaluation loop. “Progressive PCG uses a parameterizable constructive generator, coupled to a RL-based

game-playing agent.

battling enemies and collecting treasures. As the creators did not
want to author the dungeons themselves (they wanted to play the
game and be surprised), they needed to create a dungeon generation
algorithm; every time you play a game of Rogue, a new set of dun-
geons are generated. Rogue came to inspire a genre of games called
rogeuelikes, which are characterized mainly by the use of runtime
generation of content that is essential to gameplay. The highly suc-
cessful Diablo series of games (Blizzard, 1997-2013), as well as plat-
formers such as Spelunky (Mossmouth, 2008), are roguelikes.

While the PCG in Rogue was motivated by a need for replay-
ability and unpredictability, another key reason for using PCG is
to create game worlds that are larger than can fit in memory or on
storage media. A paradigm-setting game here was Elite (Brabensoft,
1984), a spacefaring adventure game featuring thousands of planets
that seemingly miraculously fit in memory on a Commodore 64,
with 64 kilobytes of memory. Every time a star system was visited,
the game would recreate the whole starsystem with planets, space
stations and spacecraft, from a given random seed. This approach
has later been used for games such as No Man’s Sky (Hello Games,
2015), which famously contains more planets than you can visit in a
lifetime, all with their own ecologies.

The strategy games in the very popular Civilization series also
rely heavily on PCG, as a new world is created for the players to
explore and contest every time a new game is created. Similarly, the
open-world sandbox game Minecraft (Mojang, 2010) creates a com-
pletely new world at the start of each game session. Other games

NATURE MACHINE INTELLIGENCE | VOL 2 | AUGUST 2020 | 428-436 | www.nature.com/natmachintell

use PCG in more peripheral roles, such as the sidequest generation
(for example, creating an infinite supply of fetch quests through a
guild system) in The Elder Scrolls V: Skyrim (Bethesda, 2011) (along
with some earlier games in the series) and the pervasive generation
of terrain features and vegetation in a large number of open-world
three-dimensional games. PCG techniques are now so common-
place and reliable that it is more common than not to utilize them
in many game genres.

Interestingly, PCG in video games is actually prefigured by cer-
tain pen-and-paper generators intended to be executed by humans
with the help of dice or cards, including a dungeon generator for
the classic Dungeons and Dragons (TSR, 1976) role-playing game®.
Some recent board games that include aspects of PCG are 504 (2F
Spiele, 2015) or Betrayal at House on the Hill (Avalon Hill, 2004).

The types of PCG that can be found in most existing games are
called constructive PCG methods (Table 1). This means that the
content generation algorithm runs in a fixed time, without iteration,
and does not perform any search. For generating textures, height-
maps, and similar content, a commonly used family of algorithms
are fractal noise algorithms such as Perlin noise’. Vegetation, cave
systems, and similar branching structures can be efficiently gen-
erated with graphically interpreted grammars such as L-systems®.
Other constructive methods that are borrowed from different fields
of computer science, and were adapted to the needs of PCG in
games, include cellular automata’ and other approaches based on
local computation. Other constructive methods are based on rather

429


http://www.nature.com/natmachintell

REVIEW ARTICLE

NATURE MACHINE INTELLIGENCE

less principled and more game-specific methods. For example,
Spelunky combines a number of pre-authored level chunks accord-
ing to patterns that are designed so as to ensure unbroken paths
from entrance to exit.

In this Review we focus on examples where there’s a notion of
‘environment’ (typically through learning being centred on an agent
in simulated physical world), but will throughout the text mention
other learning settings where relevant for comparison. We will cover
work coming out of both commercial game development, AI/ML
research targeted at games, and AI/ML research targeted at other
applications. Our (imperfect) distinction between PCG and other
methods is that pure randomization/shuffling is not PCG; however,
many PCG algorithms include randomness.

Data augmentation and domain randomization

While not necessarily called PCG in the ML community, the idea of
data augmentation is essentially a simple form of constructive PCG.
These methods aim to address the problem of overfitting in ML,
that is, achieving a high accuracy on a training set but performing
poorly on data not used for training'*"".

Data augmentation methods increase the diversity in the data-
set, not by collecting more data but by adding modified versions of
the already existing data'>"*. Data augmentation is very common in
supervised learning tasks, for example, through cropping, padding
or adding noise to images in a dataset. It is common practice in
ML and has resulted in substantially less overfitting and state-of-art
results in a variety of domains'>'*'°.

A different form of data augmentation was introduced by
Geirhos et al.'%, in which the authors showed that training the same
network architecture but with a stylized version of ImageNet images
(for example, a cat with the texture of an elephant) can significantly
increase the model’s accuracy and robustness. In fact, the authors
showed that a deep convolutional network trained on the standard
ImageNet dataset mainly focuses on textures in images instead of
their shape; training on the stylized version of ImageNet increases
their shape bias and with that, their accuracy and robustness.

In the field of RL, domain randomization'’-" is a simple form of
PCG and one way to counter overfitting in ML. The main idea of
domain randomization is to train an agent in many simulated train-
ing environments, where certain properties are different in each
environment. The goal is to learn a single policy that can work well
across all of them. In addition to trying to encourage ML systems to
be more robust and general, another use case of domain random-
ization is to facilitate the transfer of policies trained in a simula-
tor to the real world'®*-*%, Training in a simulation instead of the
real world has several advantages such as the training being faster,
cheaper and more scalable, and having access to the ground truth.

In a promising demonstration of this approach, Tobin et al.'®
trained an object detector on thousands of examples of objects with
randomized colours, textures, camera positions, lighting conditions
and so on in a simulator and then showed it can detect objects in the
real world without any additional training. Another example is the
work by Sadeghi et al.”’, who trained a vision-based navigation pol-
icy for a quadrotor entirely in a simulated environment with highly
randomized rendering settings and then transferred this policy to
the real world without further training.

Following Weng', we can further divide domain randomiza-
tion into three subgroups: uniform domain randomization, guided
domain randomization, and automatic domain randomization.
In uniform domain randomization, each parameter is uniformly
sampled within a certain range. For example, in the work by Tobin
et al.", the size of objects, their mass or the amount of noise added
to the camera image were drawn from a uniform distribution.

In the more sophisticated guided domain randomization, the
type of randomization is influenced by its effect on the training
process'”?**. The goal of this guided randomization is to save
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computational resources by focusing the training on aspects of the
task that actually increase the generality of the model. For example,
instead of randomly applying pre-defined and hard-coded data aug-
mentation methods, the approach AutoAugment™ can learn new data
augmentation techniques. These augmentation techniques are opti-
mized for based on their validation accuracy on the target dataset.
Such methods can be seen as a form of adaptive content generation;
in the PCQG literature there are approaches to PCG that adapt to an
agent driven by, for example, Schmidhuber’s theory of curiosity***.

Another related approach is DeceptionNet”, which is trained
to find modifications to an image through distortion, changing the
background and so on that make it harder for an image recognition
network to output the correct classification. Both a recognition and
deception network are alternatively trained such that the deception
module becomes better in confusing the recognition module, and
the recognition module becomes better in dealing with the modi-
fied images created by the deception module.

Very recently, OpenAlI showed that a neural network that con-
trols a five-fingered humanoid robot hand to manipulate a Rubik’s
cube can sometimes solve this task in the real world even though it
was only trained in a simulated environment’. Key to this achieve-
ment in robotic manipulation was training the robot in simulation
on alarge variety of different environmental variations, similar to the
domain randomization approaches already mentioned. Following
related work in PCG for games®, the ingredient to make this sys-
tem work was to increase the amount of domain randomization,
as the robot gets better and better at the task. For example, while
the network was initially only tasked to control a Rubik’s cube of
5.7 cm, later in training it had to deal with cubes that could range
from 5.47-6.13 cm in simulation. Because the robot had to deal
with many different environments, dynamics of meta-learning did
emerge in the trained neural network; this allowed the robot to
adapt to different situations during test time, such as the transfer
to the real world. Automatic domain randomization is similar to
guided domain randomization but focuses more on increasing the
diversity of the training environments based on task performance,
instead of sampling efficiently from a distribution of environments.

While current domain randomization methods are showing
promising results, the PCG community has invented many sophis-
ticated algorithms that—we believe—could greatly improve the
generality of ML methods even further. As we discuss in the follow-
ing sections, more recent work in PCG has focused on search-based
approaches and on learning the underlying PCG representations
through ML techniques.

Al-driven PCG
Given the successes of PCG in existing video games, as well as the
perceived limitations of current PCG methods, the past decade has
seen a new research field form around game content generation. The
motivations include being able to generate types of game content
that cannot currently be reliably generated, making game develop-
ments easier and less resource-intensive, enabling player-adaptive
games that create content in response to player actions or prefer-
ences, and generating complete games from scratch. Typically, the
motivations centre on games and players; however, as we shall see,
many of the same methods can be used for creating and varying
environments for developing and testing Al

While there has been recent work on constructive methods,
more work has focused on approaches based on search and/or ML.

Search-based PCG. In search-based PCG (Table 1), stochastic
search/optimization algorithms are used to search for good con-
tent according to some evaluation function®. Often, but not always,
some type of evolutionary algorithms is used, due to the versatil-
ity of these algorithms. Designing a successful search-based con-
tent generation solution hinges on designing a good representation,
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Fig. 1| PCG-based games. a,b, In academia, PCG approaches have been used to produce complete and playable 3D games® (a) and rules for
two-dimensional games?’ (b). ¢, PCG-enabled games include Petalz, in which players can collaboratively breed an unlimited variety of different
procedurally generated flowers*. d, PCG also allows the creation of maps and character classes for first-person shooters®. e, Yavalath is one of the few
examples of commercially available games where the game rules are procedurally generated™.

which enables game content to be searched for. The representation
affects, among other things, which algorithms can be used in the
search process; if the content can be represented as a vector of real
numbers, this allows for very strong algorithms such as CMA-ES*
and differential evolution® to be used. If the representation is,
for example, a graph or a permutation, this poses more constraints
on the search.

An early success for search-based PCG is Browne and Maire’s
work on generating board games, using a game description language
capable of describing rules and boards for classical board games™.
The initial population was seeded with a dozens of such games,
including Checkers, Connect Four, Gomoku and Hex. The evaluation
function was simulation-based; candidate games were evaluated
through being played with a Minimax algorithm combined with a
state evaluation function automatically derived for each game. The
actual game evaluation is a combination of many metrics, includ-
ing how often the game leads to a draw, how early in the game it is
possible to predict the winner and the number of lead changes. This
process, though computationally very expensive, came up with at
least one game (Yavalath), which was of sufficient quality to be sold
commercially (Fig. le).

While attempts to create complete video games including game
rules through search-based methods have met mixed success?**~*,
search-based PCG has been more effective in generating specific
types of game content such as levels. We have seen applications to
generating maps for the real-time strategy game StarCraft*, and
levels for the platform game Super Mario Bros”, the first-person
shooter Doom’, and the physics puzzle game Angry Birds®, among
many similar applications. Search-based PCG has also been used for
other types of game artefacts. In this paper, the term artefact refers

to objects made by an algorithm, such as particle effects for weap-
ons®, role-playing game classes*' or flowers* (Fig. 1).

The most important component in a search-based
content-generation pipeline is the evaluation function, which
assigns a number (or vector) to how desirable the artefact is. In
many cases, this is accomplished by playing through the con-
tent in some way and assigning a value based on characteristics
of the gameplay, as in the Yavalath example in Fig. 1°% other
evaluation functions can be based on directly observing the
artefact, or on some machine-learned estimate of, for example,
player experience.

An emerging trend is to go beyond optimizing for a single objec-
tive and instead trying to generate a diverse set of artefacts that
perform well. The goal here is to generate, for example, not just a
single level but a set of levels that vary along various dimensions,
such as the number of enemies or difficulty to solve for an A* algo-
rithm*. The Map-Elites algorithm, originally introduced to create
more robust robot gaits*, has been adapted to create sets of game
levels that vary in what skills they require from the agent or what
mechanics they feature®.

An alternative to stochastic optimization algorithms is to use
constraint satisfaction methods*® such as answer set programming®’.
Casting artefacts as answer sets can allow very efficient search for
content that obeys specific constraints, but is hard to integrate with
simulation-based evaluation methods. This paradigm is sometimes
called solver-based PCG.

PCG via ML. ML methods such as generative adversarial networks
(GANs)* have revolutionized the way we generate pictorial content,
such as images of faces, letters and various objects. However, when
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generating game content with some form of playability constraints
(such as levels, maps or quests), things become more complicated
because these types of content are in some ways more like code than
images. An image of a face where the contours smudge just looks
slightly off, whereas a level for Super Mario Bros with an impos-
sibly long jump is not just a small defect, it's unplayable and there-
fore worthless. Similar functionality requirements can be found
in level-like artefacts such as robot path planning problems, logic
puzzles and quests'. Therefore we call such content, in which some
algorithmic way of verifying their functionality (for example, play-
ability) exists, functional content.

Simply training a GAN on a large set of functional artefacts does
not guarantee that the generator network learns to produce levels
that fulfill these functionality requirements, nor that the discrimi-
nator learns to identify and check for those constraints. The result
is often artefacts that look right but don’t function well*. Another
potential reason for the failure of ML-based methods to generate
functional content is that methods such as GANs mostly learn local
dependencies, whereas functionality in many types of content can
depend on features that are far from each other, and/or counting the
number of instances of a feature.

The same effect has been found with other representations, such
as long short-term memory networks®” and Markov chains®. One
way of counteracting this effect is bootstrapping, where newly gen-
erated artefacts that are found to satisfy the functionality require-
ments are added back to the training set for continued training, thus
biasing training specifically to functional artefacts®.

ML models can also be combined with search to improve their
efficiency. One way to do this is to use the learned model as a repre-
sentation for search-based PCG. The idea here is to use ML to find
the general space of content that is roughly defined by the examples
the model is trained on, and then search within that space. Using
GAN:S, this could be done by searching the latent space; when train-
ing a GAN, a latent vector is used as input to the generator network.
The latent space is defined by that input. Latent variable evolution
refers to using evolutionary algorithms to search the latent space
for artefacts that optimize some kind of objective function®. For
example, latent variable evolution was used to generate new levels
for Super Mario Bros, by first training a GAN on one-screen seg-
ments of most levels in the original game. The latent space was then
searched for vectors that would maximize objectives such as that
the segment should contain many jumps, or should not be winnable
without jumping, or should be unwinnable™.

Functionality evaluation can be integrated into adversarial learning
processes in other ways. Generative playing networks consist of a gen-
erator network that generates levels, and a RL agent that learns to play
them®. While the objective for the playing agent is simply to perform
as well as possible on the level, the objective for the level-generating
agent is to provide an appropriate level of challenge for the agent.

Another way of using ML for PCG is to use RL. The conceptual
shift here is to see PCG as a sequential process, where each action
modifies a content artefact in some way. The goal of the training
process then becomes to find a policy that for any content state
selects the next action so that it leads to maximum expected final
content quality. For this training process to be useful, we will need
the trained policy to be a content generator capable of producing
diverse content, rather than simply producing the same artefact
every time it is run. A recent paper articulates a framework for PCG
via RL and proposes methods for ensuring that the policy has suffi-
ciently diverse results in the context of generating two-dimensional
levels*. Two important lessons learned is to always start from a ran-
domized initial state (which need not be a functional level) and to
use short episodes, to prevent the policy from always converging
on the same final level. (It is interesting to note that the issues with
learning general policies in RL recur in trying to learn policies that
create content that can help generalize RL policies.)
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Compared to PCG based on supervised or self-supervised learn-
ing, PCG based on RL has the clear advantage of not requiring prior
content to train on, but the drawback of requiring a reward func-
tion judging the quality of content. This is very similar in nature
to the evaluation function in search-based PCG. Compared to
search-based PCG, PCG via RL moves the time and computation
expense from inference to training stage; whereas search-based
PCG uses extensive computation in generating content, PCG via RL
uses extensive computation to train a model that can then be used
cheaply to produce additional content.

Procedurally generated learning environments

An exciting opportunity for PCG algorithms is to create the actual
learning environments that scaffold the learning of artificial
agents (Fig. 2). Similarly to how current ML methods are moving
towards automating more and more facets of training (for example,
meta-learning the learning algorithms themselves, learning net-
work architectures instead of hand-designing them), the automated
generation of these progressive curricula that can guide learning
offers unique benefits.

One of the first examples of this idea is minimal criterion
coevolution (MCC)*. In MCC both the agent and the environ-
ment co-evolve to solve increasingly more difficult mazes. Recent
work building on these ideas is POET®, which deals with the more
challenging OpenAl gym bipedal walker domain. POET is a good
example of an approach in which solutions to a particular obstacle
course can function as stepping stones for solving another one. In
fact, for the most difficult environments (shown on the right in
Fig. 2a) it was not possible to directly train a solution; the stepping
stones found in other environments were necessary to solve the
most ambitious course.

Importantly, procedurally generated training environments
can also increase the generality of RL agents that typically over-
fit to their particular environment®*”**. Zhang et al.”” showed
that training on thousands of levels in a simple video game can
allow agents to generalize to levels not seen before. Some domains
in the OpenAl gym training environments include procedur-
ally generated content, requiring the agents to learn more gen-
eral strategies. For example, in the CarRacing-v0 environment™,
agents are presented with a new procedurally generated car rac-
ing track every episode and the final reward is the average reward
over multiple rollouts. These procedurally generated environ-
ments required more sophisticated neural architectures to be
solvable®, highlighting their usefulness in testing the ability of
the RL agents. A similar approach for encouraging the discovery
of general policies worked well for evolving stable policies for a
two-dimensional bipedal walker domain®'. In addition to helping
in supervised learning settings (see the ‘Data augmentation and
domain randomization’” section), forms of data augmentation can
also help RL agents to become more robust. Randomized envi-
ronments are also present in the Arena multi-agent testbed®” and
the MazeExplorer testbed®, both built on first-person shooters.
In the work by Cobbe et al.**** agents are trained in environments
in which random rectangular regions of the environment are cut
out and replaced by rectangles filled with random colours, which
helps these agents to generalize better.

Jaderberg et al.’ relied on a PCG-based approach to allow RL
agents to master Quake III Arenas Capture the Flag (Fig. 2b). In
their work, agents were trained on a mixture of procedurally gener-
ated indoor and outdoor maps (with varying walls and flag loca-
tions), which allowed the agents to learn policies that are robust
to variations in the maps or the number of players. This work also
demonstrated another advantage of procedurally generated maps:
because each map is different, agents learned to learn how to keep
track of particular map locations (for example, the entrance to the
two bases) through their external memory system.
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Fig. 2 | Examples of learning environments created by PCG-based approaches. a, The POET algorithm learns to create increasingly complex
environments for a two-dimensional bipedal walker together with their neural network controllers>®. b, Procedurally generated maps were one of the key
ingredients to allow agents to master the Quake Il Capture the Flag domain®. ¢,d, Increasing task complexity depending on the performance of the agent
has shown to lead to more general solutions for controlling a robot hand for dexterous in-hand manipulating in simulation and in the real world*¢® (¢), and

video game playing?® (d).

While the aforementioned work®” showed that training on a
larger variety of environments can lead to more general agents, it
did require a large number of training levels. In work from the PCG
research community, Justesen et al.* introduced a progressive PCG
approach (PPCG), which showed that performance of training agents
can be increased while using less data if the difficulty of the level
is changed in response to the performance of the agents (Fig. 2d).
A similar approach was later adopted by OpenAl to train their
humanoid robot hand (Fig. 4c) in increasingly more challenging
environments>®.

In fact, there is some initial evidence that very varied training
environments can also foster the emergence of meta-learning in
recurrent neural networks, which allows adaption to situations not
seen during training®. While approaches such as OpenATI’s RubiK’s
cube solving robot hand hint at the potential of this approach, creat-
ing an encoding that can produce an even larger variety of different
and effective training environments could have a substantial impact
on the generality of the agents and robots we are able to train.

We also summarize the similarities and differences between
POET, MCC and PPCG in Table 1. While all three approaches use
hand-designed representations, PPCG does not evolve the levels but
instead uses a ruled-based generator.

Opportunities and challenges

We believe the idea of automatically and procedurally generating
learning environments with the right complexity that scaffold the
learning of autonomous agents is an exciting research direction that
can help overcome some of the constraints that impede generaliza-
tion and open-ended learning in current AL This research direction
is similar to what has been proposed in PCG research before, and
also to the idea of Al-generating algorithms®. We identify six main
open challenges that we believe are essential in pushing the field of
PCG forward, allowing it to realize its promise to create more adap-
tive and lifelong learning ML agents.

Learning from limited data. When generating images with ML,
it is common practice to train the model on thousands, maybe
even millions, of images®. However, such amounts of high-quality

NATURE MACHINE INTELLIGENCE | VOL 2 | AUGUST 2020 | 428-436 | www.nature.com/natmachintell

data are rarely available when developing a game, or even in a fin-
ished game. For example, the original Super Mario Bros game has
32 levels, resulting in a few hundred screens’ worth of content. For
some games, a large amount of user-generated content is available
online, but this content can be of very variable quality. And when
creating, for example, a robot-learning benchmark from scratch,
creating scenarios to train a content model on can be a substan-
tial time investment. Bootstrapping in PCG* (see subsection ‘PCG
via ML) can help overcome this problem of content shortage, and
various data augmentation could also help but learning to generate
new content from limited data is still a significant challenge. More
research is needed on how to learn from little data, and on how to
learn generative models based on many different types of data. For
example, by training a model on lots of available benchmark rules
to learn generic patterns, it should be possible to generate environ-
ments for a new benchmark.

Generating complete games. While PCG techniques have shown
impressive results for particular types of content in particular game
genres, there has been much less progress on the harder problem of
generating complete games. Browne and Maire’s work from 2010
(discussed above’?), which resulted in a well-reviewed board game
that is sold in stores, remains the gold standard. Generating com-
plete video games™***%% (Fig. 1) or card games™ seems to be a
much harder challenge, with the results often being unplayable or
uninteresting. Methods that have been tried include constraint sat-
isfaction through answer set programming as well as evolutionary
search. This is partly because of these games are very complex, and
partly because it is very hard to find good evaluation metrics for
complete games. Yet, generating complete challenges, including
rules, topology, visuals and so on, seems to be a crucial part of a
process where we gradually scale up challenges for agents that are
capable of completing not just one challenge, but multiple ones.
PCG via ML could be a potentially promising approach to tackle
this challenge. For example, Fan et al.”' very recently showed that
a neural network can learn from crowd-sourced elements such as
descriptions of locations and characters to create multiplayer text
adventure games. This idea of leveraging and integrating real-world
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data to create games (also known as data games), was first proposed
by Gustafsson et al.”> and later extended to procedurally gener-
ate simple adventures games using open data from Wikipedia”™.
Another example of how to leverage advances in ML for PCG is the
recent Al Dungeon 2 text adventure game™. In this game, players
can type in any command and the system can respond to it reason-
ably well, creating the first never-ending text adventure. The system
is built on OpenAI's GPT-2 language model”, which was further
fine-tuned on a number of text adventure stories. This work also
highlights that ML techniques combined with PCG might lead to
completely new types of games that would not have been possible
without advanced AI methods.

Lifelong generation for lifelong learning. The problem of lifelong
learning is that of continuously adapting and improving skills over
a long lifetime of an agent, comprising many individual episodes,
though not necessarily divided into episodes as currently thought
of’*7%. This would require an agent to build on previously learned
skills as it faces increasingly harder or more complex, or just more
varied, challenges. Lifelong learning is a problem, or maybe rather
a setting, whose popularity has seemingly waxed and waned (under
different names) as subsequent generations of researchers have dis-
covered this challenge and then understood how hard it is. Within
the artificial life community, the challenge of simulating open-ended
evolution is closely related to that of lifelong learning. The idea
behind open-ended evolution is to try to computationally replicate
the process that allows nature to endlessly produce a diverse set of
interesting and complex artefacts. Environments such as Tierra”
and Avida® were early attempts at realizing that possibility.

The procedural generation of environments and challenges is a
great opportunity for lifelong learning, and might even be a precon-
dition for lifelong learning to be practically possible. It is possible
that earlier attempts to realize lifelong learning have had limited
success partly because the environments lacked sufficient chal-
lenges of the right complexity. The POET system shows one way of
co-creating environments with agents®. However, there is a great
outstanding research challenge in devising mechanisms for gradu-
ally growing or complexifying environments (see the following sub-
section) so as to generate the right problems at the right time for
agents to continually learn.

New PCG-based RL benchmarks. A variety of benchmarks have
been proposed to test the generalization abilities of RL algorithms.
Justesen et al.*® used procedurally generated levels in the general
video game AI (GVG-AI) framework® to study overfitting of RL
algorithms to different level distributions. In a similar vein to the
work by Justesen et al.?, levels in the CoinRun platform game are
procedurally generated to quantify the ability of RL algorithms to
generalize to never-before-seen levels*®. Another procedurally
generated environment is the Unity game engine-based Obstacle
Tower environment®, which requires increasingly complex skills
such as locomotion, planning and puzzle-solving. Others have
recently combined the Unity environment with GVG-AI, creating
UnityVGDL®, which allows ML agents in Unity to be tested on a
large selection of games.

Other setups that do not use PCG include the work by Nichol
et al.*, in which Sonic the Hedgehog levels were separated into a
training and test set to investigate how well RL algorithms general-
ize. In the Psychlab environment®, agents are tested on known tasks
from cognitive psychology, such as visual search or object tracking,
making the results from simulated agents directly comparable to
human results.

We propose the creation of PCG-based benchmarks in which
the agent’s environment and reward are non-stationary and become
more and more complex over time. A starting point could be
PCG approaches that are able to evolve the actual rules of a game
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(see subsection ‘Generating complete games’). New rules could be
introduced based on agents’ performance and estimates of their
learning capacity. Adaptation within trials is as important as adap-
tation between trials: a generator could generate increasingly dif-
ficult games, which are different enough in each trial that a policy
that would not adapt within a trial would fail. The Animal-AI
Environment®, in which agents have to adapt to unforeseen chal-
lenges based on classical tests from animal cognition studies, shares
similar ideas with the benchmarks we are proposing here but does
not focus on procedurally generated environments and tasks.

From simulation to the real world. Procedurally generated envi-
ronments have shown their potential in training robot policies that
can cross the reality gap. Promising work includes approaches that
try to learn the optimal parameters of a simulator, so that policies
trained in that simulator work well with real data®*. However,
current approaches are still limited to lab settings, and we are far
from being able to train robots that can deal with the messiness and
diversity of tasks and environments encountered in the real world.

An intriguing opportunity is to train policies in much more
diverse simulated environments than have been explored so far,
with the hope that they will be able to cope better with a wider range
of tasks when transferred to real physical environments. Both the
Unity Simulation environment and Facebooks Al Habitat are tak-
ing a step in this direction. With Unity Simulation, Unity is aiming
for simulation environments to work at scale, allowing developers
to built digital twins of factories, warehouses or driving environ-
ments. FacebooK’s AI Habitat is designed to train embodied agents
and robots in photorealistic three-dimensional environments to
ultimately allow them to work in the real world.

In addition to developing more sophisticated ML models, one
important research challenge in crossing the reality gap is the content
gap®. Because the synthetic content that the agents are trained on typ-
ically only represents a limited set of scenarios that might be encoun-
tered in the real world, the agents are likely to fail if they encounter
situations that are too different from what they have seen before.

How to create PCG approaches that can limit this content gap
and create large and diverse training environments, which prepare
agents well for the real world tasks to come, is an important open
research direction.

PCG beyond game-like environments. While PCG, as surveyed
in this Review, is a set of techniques originally developed for video
games with wide applicability in game-like environments, the ideas
behind PCG can be generalized to many other domains. The idea
of creating diverse artificial problems so as to enhance learning
has wide applicability. For example, neural architecture search is a
domain with some similarities to games, where the ‘content’ (net-
work architectures) is evaluated on its functionality. Interestingly,
many of the same techniques work well for neural architecture
search and game content generation®'. Looking further afar, PCG
techniques might play a role in many ML domains that at a first
glance have very little in common with games.
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