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For several decades, procedural content generation (PCG) has 
been a feature of many video games (Table 1). PCG refers 
to the algorithmic creation of game content—not the game 

engine, but things such as levels, quests, maps, characters or even 
rules—either in runtime (as the game is being played) or at design 
time (as the game is made). There are several reasons why PCG is 
used in games: it can increase the replayability of a game as play-
ers are presented with a new experience every time they play, it 
can help to reduce production costs and disk storage space, and 
it enables new types of games built on the unique affordances of 
content generation.

Interestingly, developments in PCG and machine learning (ML) 
have started to influence each other in reciprocal ways. Procedural 
content generation via machine learning (PCGML)1 refers to the 
use of ML to train models on existing game content, and then lever-
age these models to create novel content automatically. This can be 
done through simply sampling from the learned models, or through 
searching the artefact space implied by the model so as to optimize 
some objective. Interestingly, PCGML poses different and hard 
challenges compared to generating images, for example, because the 
produced content needs to function.

At the same time that PCG researchers are starting to incor-
porate these advances into their systems, interest in the ML com-
munity is increasing in PCG-inspired methods to improve the 
robustness of ML systems. One reason for this development is the 
growing evidence that, while ML methods perform well for tasks or 
in the environments they are trained on, they do not generalize well 
when that environment is changed or different from what is seen 
during training. Training neural networks with many free param-
eters and over long training times has led to state-of-the-art perfor-
mance in many domains, but these solutions are typically overfitted 
to the particular training examples, achieving high accuracy on a 
training set but performing poorly on data not used for training. 
Particularly in deep reinforcement learning (RL), in which an agent 
has to learn in interaction with its environment, overfitting is rarely 
addressed but a significant problem. Take the very popular arcade 
learning environment as an example2, a classic benchmark in RL 

based on an emulation of the Atari 200 games console. Hundreds 
of games were made for that console; however, they all have fixed 
sets of levels and very little in the way of randomization. Training 
an agent to play a game in the arcade learning environment makes 
it liable to overfit not only to that particular game, but also to its 
levels and sequence of events.

The basic idea of employing PCG to address the generality 
problem in ML systems is to artificially create more training data 
or training situations. This way, ML-based systems can be biased 
towards learning general task properties instead of learning spurious 
elements found in the training examples. Methods include simpler 
approaches, such as data augmentation, that artificially increase the 
data used for training, or methods that train agents in a large number 
of training environments that include randomized elements. PCG 
methods have been extended to create complete maps for Capture 
the Flag3 or maps for two-dimensional video games4, and in a recent 
impressive demonstration of the advantage of training in procedur-
ally generated environments, have allowed a robot hand trained in a 
simulation to manipulate a Rubik’s cube in the real world5.

In this Review, we examine the history of PCG and the recent 
trends in hybridizing PCG methods with ML techniques. The goal 
is to share with the larger ML research community work from this 
exciting area that is just beginning to capture the interest of research-
ers outside of games but could ultimately encourage the emergence 
of more general artificial intelligence (AI). Additionally, we aim to 
supply ML researchers with a new toolbox to aid their generalization 
work, and games researchers and developers with new perspectives 
from ML. This Review points out convergent research interests and 
complementary methods in the two communities, details promis-
ing future research directions and under-explored research avenues 
enabled by more advanced PCG techniques.

Classic PCG
While possibly the first video game to include PCG dates from 
1978 (Beneath Apple Manor by Don Worth for the Apple II), Rogue 
(1980) by Toy and Wichmann created an important design para-
digm. In Rogue, the player explores a multi-level dungeon complex, 
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battling enemies and collecting treasures. As the creators did not 
want to author the dungeons themselves (they wanted to play the 
game and be surprised), they needed to create a dungeon generation 
algorithm; every time you play a game of Rogue, a new set of dun-
geons are generated. Rogue came to inspire a genre of games called 
rogeuelikes, which are characterized mainly by the use of runtime 
generation of content that is essential to gameplay. The highly suc-
cessful Diablo series of games (Blizzard, 1997–2013), as well as plat-
formers such as Spelunky (Mossmouth, 2008), are roguelikes.

While the PCG in Rogue was motivated by a need for replay-
ability and unpredictability, another key reason for using PCG is 
to create game worlds that are larger than can fit in memory or on 
storage media. A paradigm-setting game here was Elite (Brabensoft, 
1984), a spacefaring adventure game featuring thousands of planets 
that seemingly miraculously fit in memory on a Commodore 64, 
with 64 kilobytes of memory. Every time a star system was visited, 
the game would recreate the whole starsystem with planets, space 
stations and spacecraft, from a given random seed. This approach 
has later been used for games such as No Man’s Sky (Hello Games, 
2015), which famously contains more planets than you can visit in a 
lifetime, all with their own ecologies.

The strategy games in the very popular Civilization series also 
rely heavily on PCG, as a new world is created for the players to 
explore and contest every time a new game is created. Similarly, the 
open-world sandbox game Minecraft (Mojang, 2010) creates a com-
pletely new world at the start of each game session. Other games 

use PCG in more peripheral roles, such as the sidequest generation 
(for example, creating an infinite supply of fetch quests through a 
guild system) in The Elder Scrolls V: Skyrim (Bethesda, 2011) (along 
with some earlier games in the series) and the pervasive generation 
of terrain features and vegetation in a large number of open-world 
three-dimensional games. PCG techniques are now so common-
place and reliable that it is more common than not to utilize them 
in many game genres.

Interestingly, PCG in video games is actually prefigured by cer-
tain pen-and-paper generators intended to be executed by humans 
with the help of dice or cards, including a dungeon generator for 
the classic Dungeons and Dragons (TSR, 1976) role-playing game6. 
Some recent board games that include aspects of PCG are 504 (2F 
Spiele, 2015) or Betrayal at House on the Hill (Avalon Hill, 2004).

The types of PCG that can be found in most existing games are 
called constructive PCG methods (Table 1). This means that the 
content generation algorithm runs in a fixed time, without iteration, 
and does not perform any search. For generating textures, height-
maps, and similar content, a commonly used family of algorithms 
are fractal noise algorithms such as Perlin noise7. Vegetation, cave 
systems, and similar branching structures can be efficiently gen-
erated with graphically interpreted grammars such as L-systems8. 
Other constructive methods that are borrowed from different fields 
of computer science, and were adapted to the needs of PCG in 
games, include cellular automata9 and other approaches based on 
local computation. Other constructive methods are based on rather 

Table 1 | A comparison of several methods for PCG and domain randomization described in this article

Representationa Generation methodb

Learned Hand-designed Evolution Learned Gradient-based Random 
search

Sampling Rules

Classic PCG

Standard constructivec (for example, 
Rogue, Pitfall!, Civilization, Elite, 
Minecraft)

○ ● ○ ○ ○ ○ ○ ●

Dawn Fortressd ○ ● ○ ○ ○ ● ○ ○

Data augmentation and domain randomizatione

Simple data augmentation12,13 ● ○ ○ ○ ○ ○ ○ ●

Uniform domain randomization18 ○ ● ○ ○ ○ ○ ● ○

Guided domain randomization24 ○ ● ○ ● ○ ○ ○ ○

Automatic domain randomization5 ○ ● ○ ○ ○ ○ ● ○

Search-based PCGf

Standard search-based PCG29,32,37,92 ○ ● ● ○ ○ ○ ○ ○

PCGMLg

Standard PCGML1,49,93 ● ○ ○ ○ ○ ○ ● ○

PCGML with constrained sampling50 ● ○ ○ ○ ○ ● ○ ○

Latent variable evolutionh51,52,94,95 ● ○ ● ○ ○ ○ ○ ○

PCGRLi54 ○ ● ○ ● ○ ○ ○ ○

Generative playing networksi53 ● ○ ○ ○ ● ○ ○ ○

Procedurally generated learning environments

POET56, MCCj55 ○ ● ● ○ ○ ○ ○ ○

Progressive PCGk28 ○ ● ○ ○ ○ ○ ○ ●
aThe first two columns indicate the representation of the content, which is either designed by hand or learned through ML. bThe last columns indicate how the content is generated given a representation. 
cConstructive methods follow rules and do not do any resampling. The black circles show which attributes each method has. dDwarf Fortress is an example of a generate-and-test (random search) method 
where the world is regenerated if it fails certain tests. eThe various forms of domain randomization use hand-coded representations and differ in whether they simply sample this space or perform some 
sort of search with a learned policy. fIn the search-based paradigm, a hand-coded representation is searched using an evolutionary algorithm. gMost PCGML approaches randomly sample a learned 
representation, whereas PCGML with constraints resample when constraints are not satisfied. hLatent variable evolution combines search-based PCG with a learned representation, for example, in the 
form of a GAN. iPCGRL uses a policy learned by RL to search a hand-coded representation, whereas generative playing networks instead uses RL to test the artefacts and gradient descent to generate them. 
jPOET and MCC are fundamentally search-based methods, which include a learning agent inside the evaluation loop. kProgressive PCG uses a parameterizable constructive generator, coupled to a RL-based 
game-playing agent.
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less principled and more game-specific methods. For example, 
Spelunky combines a number of pre-authored level chunks accord-
ing to patterns that are designed so as to ensure unbroken paths 
from entrance to exit.

In this Review we focus on examples where there’s a notion of 
‘environment’ (typically through learning being centred on an agent 
in simulated physical world), but will throughout the text mention 
other learning settings where relevant for comparison. We will cover 
work coming out of both commercial game development, AI/ML 
research targeted at games, and AI/ML research targeted at other 
applications. Our (imperfect) distinction between PCG and other 
methods is that pure randomization/shuffling is not PCG; however, 
many PCG algorithms include randomness.

Data augmentation and domain randomization
While not necessarily called PCG in the ML community, the idea of 
data augmentation is essentially a simple form of constructive PCG. 
These methods aim to address the problem of overfitting in ML, 
that is, achieving a high accuracy on a training set but performing 
poorly on data not used for training10,11.

Data augmentation methods increase the diversity in the data-
set, not by collecting more data but by adding modified versions of 
the already existing data12,13. Data augmentation is very common in 
supervised learning tasks, for example, through cropping, padding 
or adding noise to images in a dataset. It is common practice in 
ML and has resulted in substantially less overfitting and state-of-art 
results in a variety of domains12,14,15.

A different form of data augmentation was introduced by 
Geirhos et al.16, in which the authors showed that training the same 
network architecture but with a stylized version of ImageNet images 
(for example, a cat with the texture of an elephant) can significantly 
increase the model’s accuracy and robustness. In fact, the authors 
showed that a deep convolutional network trained on the standard 
ImageNet dataset mainly focuses on textures in images instead of 
their shape; training on the stylized version of ImageNet increases 
their shape bias and with that, their accuracy and robustness.

In the field of RL, domain randomization17–19 is a simple form of 
PCG and one way to counter overfitting in ML. The main idea of 
domain randomization is to train an agent in many simulated train-
ing environments, where certain properties are different in each 
environment. The goal is to learn a single policy that can work well 
across all of them. In addition to trying to encourage ML systems to 
be more robust and general, another use case of domain random-
ization is to facilitate the transfer of policies trained in a simula-
tor to the real world18,20–22. Training in a simulation instead of the 
real world has several advantages such as the training being faster, 
cheaper and more scalable, and having access to the ground truth.

In a promising demonstration of this approach, Tobin et  al.18 
trained an object detector on thousands of examples of objects with 
randomized colours, textures, camera positions, lighting conditions 
and so on in a simulator and then showed it can detect objects in the 
real world without any additional training. Another example is the 
work by Sadeghi et al.20, who trained a vision-based navigation pol-
icy for a quadrotor entirely in a simulated environment with highly 
randomized rendering settings and then transferred this policy to 
the real world without further training.

Following Weng17, we can further divide domain randomiza-
tion into three subgroups: uniform domain randomization, guided 
domain randomization, and automatic domain randomization. 
In uniform domain randomization, each parameter is uniformly 
sampled within a certain range. For example, in the work by Tobin 
et al.18, the size of objects, their mass or the amount of noise added 
to the camera image were drawn from a uniform distribution.

In the more sophisticated guided domain randomization, the 
type of randomization is influenced by its effect on the training  
process17,23–25. The goal of this guided randomization is to save  

computational resources by focusing the training on aspects of the 
task that actually increase the generality of the model. For example, 
instead of randomly applying pre-defined and hard-coded data aug-
mentation methods, the approach AutoAugment24 can learn new data 
augmentation techniques. These augmentation techniques are opti-
mized for based on their validation accuracy on the target dataset. 
Such methods can be seen as a form of adaptive content generation; 
in the PCG literature there are approaches to PCG that adapt to an 
agent driven by, for example, Schmidhuber’s theory of curiosity26,27.

Another related approach is DeceptionNet25, which is trained 
to find modifications to an image through distortion, changing the 
background and so on that make it harder for an image recognition 
network to output the correct classification. Both a recognition and 
deception network are alternatively trained such that the deception 
module becomes better in confusing the recognition module, and 
the recognition module becomes better in dealing with the modi-
fied images created by the deception module.

Very recently, OpenAI showed that a neural network that con-
trols a five-fingered humanoid robot hand to manipulate a Rubik’s 
cube can sometimes solve this task in the real world even though it 
was only trained in a simulated environment5. Key to this achieve-
ment in robotic manipulation was training the robot in simulation 
on a large variety of different environmental variations, similar to the 
domain randomization approaches already mentioned. Following 
related work in PCG for games28, the ingredient to make this sys-
tem work was to increase the amount of domain randomization, 
as the robot gets better and better at the task. For example, while 
the network was initially only tasked to control a Rubik’s cube of 
5.7 cm, later in training it had to deal with cubes that could range 
from 5.47–6.13 cm in simulation. Because the robot had to deal 
with many different environments, dynamics of meta-learning did 
emerge in the trained neural network; this allowed the robot to 
adapt to different situations during test time, such as the transfer 
to the real world. Automatic domain randomization is similar to 
guided domain randomization but focuses more on increasing the 
diversity of the training environments based on task performance, 
instead of sampling efficiently from a distribution of environments.

While current domain randomization methods are showing 
promising results, the PCG community has invented many sophis-
ticated algorithms that—we believe—could greatly improve the 
generality of ML methods even further. As we discuss in the follow-
ing sections, more recent work in PCG has focused on search-based 
approaches and on learning the underlying PCG representations 
through ML techniques.

AI-driven PCG
Given the successes of PCG in existing video games, as well as the 
perceived limitations of current PCG methods, the past decade has 
seen a new research field form around game content generation. The 
motivations include being able to generate types of game content 
that cannot currently be reliably generated, making game develop-
ments easier and less resource-intensive, enabling player-adaptive 
games that create content in response to player actions or prefer-
ences, and generating complete games from scratch. Typically, the 
motivations centre on games and players; however, as we shall see, 
many of the same methods can be used for creating and varying 
environments for developing and testing AI.

While there has been recent work on constructive methods, 
more work has focused on approaches based on search and/or ML.

Search-based PCG. In search-based PCG (Table 1), stochastic 
search/optimization algorithms are used to search for good con-
tent according to some evaluation function29. Often, but not always, 
some type of evolutionary algorithms is used, due to the versatil-
ity of these algorithms. Designing a successful search-based con-
tent generation solution hinges on designing a good representation, 
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which enables game content to be searched for. The representation 
affects, among other things, which algorithms can be used in the 
search process; if the content can be represented as a vector of real 
numbers, this allows for very strong algorithms such as CMA-ES30 
and differential evolution31 to be used. If the representation is,  
for example, a graph or a permutation, this poses more constraints 
on the search.

An early success for search-based PCG is Browne and Maire’s 
work on generating board games, using a game description language 
capable of describing rules and boards for classical board games32. 
The initial population was seeded with a dozens of such games, 
including Checkers, Connect Four, Gomoku and Hex. The evaluation 
function was simulation-based; candidate games were evaluated 
through being played with a Minimax algorithm combined with a 
state evaluation function automatically derived for each game. The 
actual game evaluation is a combination of many metrics, includ-
ing how often the game leads to a draw, how early in the game it is 
possible to predict the winner and the number of lead changes. This 
process, though computationally very expensive, came up with at 
least one game (Yavalath), which was of sufficient quality to be sold 
commercially (Fig. 1e).

While attempts to create complete video games including game 
rules through search-based methods have met mixed success27,33–35, 
search-based PCG has been more effective in generating specific 
types of game content such as levels. We have seen applications to 
generating maps for the real-time strategy game StarCraft36, and 
levels for the platform game Super Mario Bros37, the first-person 
shooter Doom38, and the physics puzzle game Angry Birds39, among 
many similar applications. Search-based PCG has also been used for 
other types of game artefacts. In this paper, the term artefact refers 

to objects made by an algorithm, such as particle effects for weap-
ons40, role-playing game classes41 or flowers42 (Fig. 1).

The most important component in a search-based 
content-generation pipeline is the evaluation function, which 
assigns a number (or vector) to how desirable the artefact is. In 
many cases, this is accomplished by playing through the con-
tent in some way and assigning a value based on characteristics 
of the gameplay, as in the Yavalath example in Fig. 132; other 
evaluation functions can be based on directly observing the 
artefact, or on some machine-learned estimate of, for example,  
player experience.

An emerging trend is to go beyond optimizing for a single objec-
tive and instead trying to generate a diverse set of artefacts that 
perform well. The goal here is to generate, for example, not just a 
single level but a set of levels that vary along various dimensions, 
such as the number of enemies or difficulty to solve for an A* algo-
rithm43. The Map-Elites algorithm, originally introduced to create 
more robust robot gaits44, has been adapted to create sets of game 
levels that vary in what skills they require from the agent or what 
mechanics they feature45.

An alternative to stochastic optimization algorithms is to use 
constraint satisfaction methods46 such as answer set programming47. 
Casting artefacts as answer sets can allow very efficient search for 
content that obeys specific constraints, but is hard to integrate with 
simulation-based evaluation methods. This paradigm is sometimes 
called solver-based PCG.

PCG via ML. ML methods such as generative adversarial networks 
(GANs)48 have revolutionized the way we generate pictorial content, 
such as images of faces, letters and various objects. However, when 

a
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Fig. 1 | PCG-based games. a,b, In academia, PCG approaches have been used to produce complete and playable 3D games33 (a) and rules for 
two-dimensional games27 (b). c, PCG-enabled games include Petalz, in which players can collaboratively breed an unlimited variety of different 
procedurally generated flowers42. d, PCG also allows the creation of maps and character classes for first-person shooters96. e, Yavalath is one of the few 
examples of commercially available games where the game rules are procedurally generated32.
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generating game content with some form of playability constraints 
(such as levels, maps or quests), things become more complicated 
because these types of content are in some ways more like code than 
images. An image of a face where the contours smudge just looks 
slightly off, whereas a level for Super Mario Bros with an impos-
sibly long jump is not just a small defect, it’s unplayable and there-
fore worthless. Similar functionality requirements can be found 
in level-like artefacts such as robot path planning problems, logic 
puzzles and quests1. Therefore we call such content, in which some 
algorithmic way of verifying their functionality (for example, play-
ability) exists, functional content.

Simply training a GAN on a large set of functional artefacts does 
not guarantee that the generator network learns to produce levels 
that fulfill these functionality requirements, nor that the discrimi-
nator learns to identify and check for those constraints. The result 
is often artefacts that look right but don’t function well4. Another 
potential reason for the failure of ML-based methods to generate 
functional content is that methods such as GANs mostly learn local 
dependencies, whereas functionality in many types of content can 
depend on features that are far from each other, and/or counting the 
number of instances of a feature.

The same effect has been found with other representations, such 
as long short-term memory networks49 and Markov chains50. One 
way of counteracting this effect is bootstrapping, where newly gen-
erated artefacts that are found to satisfy the functionality require-
ments are added back to the training set for continued training, thus 
biasing training specifically to functional artefacts4.

ML models can also be combined with search to improve their 
efficiency. One way to do this is to use the learned model as a repre-
sentation for search-based PCG. The idea here is to use ML to find 
the general space of content that is roughly defined by the examples 
the model is trained on, and then search within that space. Using 
GANs, this could be done by searching the latent space; when train-
ing a GAN, a latent vector is used as input to the generator network. 
The latent space is defined by that input. Latent variable evolution 
refers to using evolutionary algorithms to search the latent space 
for artefacts that optimize some kind of objective function51. For 
example, latent variable evolution was used to generate new levels 
for Super Mario Bros, by first training a GAN on one-screen seg-
ments of most levels in the original game. The latent space was then 
searched for vectors that would maximize objectives such as that 
the segment should contain many jumps, or should not be winnable 
without jumping, or should be unwinnable52.

Functionality evaluation can be integrated into adversarial learning 
processes in other ways. Generative playing networks consist of a gen-
erator network that generates levels, and a RL agent that learns to play 
them53. While the objective for the playing agent is simply to perform 
as well as possible on the level, the objective for the level-generating 
agent is to provide an appropriate level of challenge for the agent.

Another way of using ML for PCG is to use RL. The conceptual 
shift here is to see PCG as a sequential process, where each action 
modifies a content artefact in some way. The goal of the training 
process then becomes to find a policy that for any content state 
selects the next action so that it leads to maximum expected final 
content quality. For this training process to be useful, we will need 
the trained policy to be a content generator capable of producing 
diverse content, rather than simply producing the same artefact 
every time it is run. A recent paper articulates a framework for PCG 
via RL and proposes methods for ensuring that the policy has suffi-
ciently diverse results in the context of generating two-dimensional 
levels54. Two important lessons learned is to always start from a ran-
domized initial state (which need not be a functional level) and to 
use short episodes, to prevent the policy from always converging 
on the same final level. (It is interesting to note that the issues with 
learning general policies in RL recur in trying to learn policies that 
create content that can help generalize RL policies.)

Compared to PCG based on supervised or self-supervised learn-
ing, PCG based on RL has the clear advantage of not requiring prior 
content to train on, but the drawback of requiring a reward func-
tion judging the quality of content. This is very similar in nature 
to the evaluation function in search-based PCG. Compared to 
search-based PCG, PCG via RL moves the time and computation 
expense from inference to training stage; whereas search-based 
PCG uses extensive computation in generating content, PCG via RL 
uses extensive computation to train a model that can then be used 
cheaply to produce additional content.

Procedurally generated learning environments
An exciting opportunity for PCG algorithms is to create the actual 
learning environments that scaffold the learning of artificial 
agents (Fig. 2). Similarly to how current ML methods are moving 
towards automating more and more facets of training (for example, 
meta-learning the learning algorithms themselves, learning net-
work architectures instead of hand-designing them), the automated 
generation of these progressive curricula that can guide learning 
offers unique benefits.

One of the first examples of this idea is minimal criterion 
coevolution (MCC)55. In MCC both the agent and the environ-
ment co-evolve to solve increasingly more difficult mazes. Recent 
work building on these ideas is POET56, which deals with the more 
challenging OpenAI gym bipedal walker domain. POET is a good 
example of an approach in which solutions to a particular obstacle 
course can function as stepping stones for solving another one. In 
fact, for the most difficult environments (shown on the right in 
Fig. 2a) it was not possible to directly train a solution; the stepping 
stones found in other environments were necessary to solve the 
most ambitious course.

Importantly, procedurally generated training environments 
can also increase the generality of RL agents that typically over-
fit to their particular environment28,57,58. Zhang et  al.57 showed 
that training on thousands of levels in a simple video game can 
allow agents to generalize to levels not seen before. Some domains 
in the OpenAI gym training environments include procedur-
ally generated content, requiring the agents to learn more gen-
eral strategies. For example, in the CarRacing-v0 environment59, 
agents are presented with a new procedurally generated car rac-
ing track every episode and the final reward is the average reward 
over multiple rollouts. These procedurally generated environ-
ments required more sophisticated neural architectures to be 
solvable60, highlighting their usefulness in testing the ability of 
the RL agents. A similar approach for encouraging the discovery 
of general policies worked well for evolving stable policies for a 
two-dimensional bipedal walker domain61. In addition to helping 
in supervised learning settings (see the ‘Data augmentation and 
domain randomization’ section), forms of data augmentation can 
also help RL agents to become more robust. Randomized envi-
ronments are also present in the Arena multi-agent testbed62 and 
the MazeExplorer testbed63, both built on first-person shooters. 
In the work by Cobbe et al.64,65 agents are trained in environments 
in which random rectangular regions of the environment are cut 
out and replaced by rectangles filled with random colours, which 
helps these agents to generalize better.

Jaderberg et  al.3 relied on a PCG-based approach to allow RL 
agents to master Quake III Arena’s Capture the Flag (Fig. 2b). In 
their work, agents were trained on a mixture of procedurally gener-
ated indoor and outdoor maps (with varying walls and flag loca-
tions), which allowed the agents to learn policies that are robust 
to variations in the maps or the number of players. This work also 
demonstrated another advantage of procedurally generated maps: 
because each map is different, agents learned to learn how to keep 
track of particular map locations (for example, the entrance to the 
two bases) through their external memory system.
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While the aforementioned work3,57 showed that training on a 
larger variety of environments can lead to more general agents, it 
did require a large number of training levels. In work from the PCG 
research community, Justesen et al.28 introduced a progressive PCG 
approach (PPCG), which showed that performance of training agents 
can be increased while using less data if the difficulty of the level 
is changed in response to the performance of the agents (Fig. 2d).  
A similar approach was later adopted by OpenAI to train their 
humanoid robot hand (Fig. 4c) in increasingly more challenging 
environments5,66.

In fact, there is some initial evidence that very varied training 
environments can also foster the emergence of meta-learning in 
recurrent neural networks, which allows adaption to situations not 
seen during training5. While approaches such as OpenAI’s Rubik’s 
cube solving robot hand hint at the potential of this approach, creat-
ing an encoding that can produce an even larger variety of different 
and effective training environments could have a substantial impact 
on the generality of the agents and robots we are able to train.

We also summarize the similarities and differences between 
POET, MCC and PPCG in Table 1. While all three approaches use 
hand-designed representations, PPCG does not evolve the levels but 
instead uses a ruled-based generator.

Opportunities and challenges
We believe the idea of automatically and procedurally generating 
learning environments with the right complexity that scaffold the 
learning of autonomous agents is an exciting research direction that 
can help overcome some of the constraints that impede generaliza-
tion and open-ended learning in current AI. This research direction 
is similar to what has been proposed in PCG research before, and 
also to the idea of AI-generating algorithms67. We identify six main 
open challenges that we believe are essential in pushing the field of 
PCG forward, allowing it to realize its promise to create more adap-
tive and lifelong learning ML agents.

Learning from limited data. When generating images with ML, 
it is common practice to train the model on thousands, maybe 
even millions, of images68. However, such amounts of high-quality 

data are rarely available when developing a game, or even in a fin-
ished game. For example, the original Super Mario Bros game has 
32 levels, resulting in a few hundred screens’ worth of content. For 
some games, a large amount of user-generated content is available 
online, but this content can be of very variable quality. And when 
creating, for example, a robot-learning benchmark from scratch, 
creating scenarios to train a content model on can be a substan-
tial time investment. Bootstrapping in PCG4 (see subsection ‘PCG 
via ML’) can help overcome this problem of content shortage, and 
various data augmentation could also help but learning to generate 
new content from limited data is still a significant challenge. More 
research is needed on how to learn from little data, and on how to 
learn generative models based on many different types of data. For 
example, by training a model on lots of available benchmark rules 
to learn generic patterns, it should be possible to generate environ-
ments for a new benchmark.

Generating complete games. While PCG techniques have shown 
impressive results for particular types of content in particular game 
genres, there has been much less progress on the harder problem of 
generating complete games. Browne and Maire’s work from 2010 
(discussed above32), which resulted in a well-reviewed board game 
that is sold in stores, remains the gold standard. Generating com-
plete video games33–36,47,56,69 (Fig. 1) or card games70 seems to be a 
much harder challenge, with the results often being unplayable or 
uninteresting. Methods that have been tried include constraint sat-
isfaction through answer set programming as well as evolutionary 
search. This is partly because of these games are very complex, and 
partly because it is very hard to find good evaluation metrics for 
complete games. Yet, generating complete challenges, including 
rules, topology, visuals and so on, seems to be a crucial part of a 
process where we gradually scale up challenges for agents that are 
capable of completing not just one challenge, but multiple ones.

PCG via ML could be a potentially promising approach to tackle 
this challenge. For example, Fan et al.71 very recently showed that 
a neural network can learn from crowd-sourced elements such as 
descriptions of locations and characters to create multiplayer text 
adventure games. This idea of leveraging and integrating real-world 

a

d

b c

Difficulty 0 Difficulty 0.25 Difficulty 0.5 Difficulty 0.75 Difficulty 1 Human level 0

Fig. 2 | Examples of learning environments created by PCG-based approaches. a, The POET algorithm learns to create increasingly complex 
environments for a two-dimensional bipedal walker together with their neural network controllers56. b, Procedurally generated maps were one of the key 
ingredients to allow agents to master the Quake III Capture the Flag domain3. c,d, Increasing task complexity depending on the performance of the agent 
has shown to lead to more general solutions for controlling a robot hand for dexterous in-hand manipulating in simulation and in the real world5,66 (c), and 
video game playing28 (d).
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data to create games (also known as data games), was first proposed 
by Gustafsson et  al.72 and later extended to procedurally gener-
ate simple adventures games using open data from Wikipedia73. 
Another example of how to leverage advances in ML for PCG is the 
recent AI Dungeon 2 text adventure game74. In this game, players 
can type in any command and the system can respond to it reason-
ably well, creating the first never-ending text adventure. The system 
is built on OpenAI’s GPT-2 language model75, which was further 
fine-tuned on a number of text adventure stories. This work also 
highlights that ML techniques combined with PCG might lead to 
completely new types of games that would not have been possible 
without advanced AI methods.

Lifelong generation for lifelong learning. The problem of lifelong 
learning is that of continuously adapting and improving skills over 
a long lifetime of an agent, comprising many individual episodes, 
though not necessarily divided into episodes as currently thought 
of76–78. This would require an agent to build on previously learned 
skills as it faces increasingly harder or more complex, or just more 
varied, challenges. Lifelong learning is a problem, or maybe rather 
a setting, whose popularity has seemingly waxed and waned (under 
different names) as subsequent generations of researchers have dis-
covered this challenge and then understood how hard it is. Within 
the artificial life community, the challenge of simulating open-ended 
evolution is closely related to that of lifelong learning. The idea 
behind open-ended evolution is to try to computationally replicate 
the process that allows nature to endlessly produce a diverse set of 
interesting and complex artefacts. Environments such as Tierra79 
and Avida80 were early attempts at realizing that possibility.

The procedural generation of environments and challenges is a 
great opportunity for lifelong learning, and might even be a precon-
dition for lifelong learning to be practically possible. It is possible 
that earlier attempts to realize lifelong learning have had limited 
success partly because the environments lacked sufficient chal-
lenges of the right complexity. The POET system shows one way of 
co-creating environments with agents56. However, there is a great 
outstanding research challenge in devising mechanisms for gradu-
ally growing or complexifying environments (see the following sub-
section) so as to generate the right problems at the right time for 
agents to continually learn.

New PCG-based RL benchmarks. A variety of benchmarks have 
been proposed to test the generalization abilities of RL algorithms. 
Justesen et  al.28 used procedurally generated levels in the general 
video game AI (GVG-AI) framework81 to study overfitting of RL 
algorithms to different level distributions. In a similar vein to the 
work by Justesen et al.28, levels in the CoinRun platform game are 
procedurally generated to quantify the ability of RL algorithms to 
generalize to never-before-seen levels64,65. Another procedurally 
generated environment is the Unity game engine-based Obstacle 
Tower environment82, which requires increasingly complex skills 
such as locomotion, planning and puzzle-solving. Others have 
recently combined the Unity environment with GVG-AI, creating 
UnityVGDL83, which allows ML agents in Unity to be tested on a 
large selection of games.

Other setups that do not use PCG include the work by Nichol 
et  al.84, in which Sonic the Hedgehog levels were separated into a 
training and test set to investigate how well RL algorithms general-
ize. In the Psychlab environment85, agents are tested on known tasks 
from cognitive psychology, such as visual search or object tracking, 
making the results from simulated agents directly comparable to 
human results.

We propose the creation of PCG-based benchmarks in which 
the agent’s environment and reward are non-stationary and become 
more and more complex over time. A starting point could be 
PCG approaches that are able to evolve the actual rules of a game  

(see subsection ‘Generating complete games’). New rules could be 
introduced based on agents’ performance and estimates of their 
learning capacity. Adaptation within trials is as important as adap-
tation between trials: a generator could generate increasingly dif-
ficult games, which are different enough in each trial that a policy 
that would not adapt within a trial would fail. The Animal-AI 
Environment86, in which agents have to adapt to unforeseen chal-
lenges based on classical tests from animal cognition studies, shares 
similar ideas with the benchmarks we are proposing here but does 
not focus on procedurally generated environments and tasks.

From simulation to the real world. Procedurally generated envi-
ronments have shown their potential in training robot policies that 
can cross the reality gap. Promising work includes approaches that 
try to learn the optimal parameters of a simulator, so that policies 
trained in that simulator work well with real data87,88. However, 
current approaches are still limited to lab settings, and we are far 
from being able to train robots that can deal with the messiness and 
diversity of tasks and environments encountered in the real world.

An intriguing opportunity is to train policies in much more 
diverse simulated environments than have been explored so far, 
with the hope that they will be able to cope better with a wider range 
of tasks when transferred to real physical environments. Both the 
Unity Simulation environment and Facebook’s AI Habitat are tak-
ing a step in this direction. With Unity Simulation, Unity is aiming 
for simulation environments to work at scale, allowing developers 
to built digital twins of factories, warehouses or driving environ-
ments. Facebook’s AI Habitat is designed to train embodied agents 
and robots in photorealistic three-dimensional environments to 
ultimately allow them to work in the real world.

In addition to developing more sophisticated ML models, one 
important research challenge in crossing the reality gap is the content 
gap88. Because the synthetic content that the agents are trained on typ-
ically only represents a limited set of scenarios that might be encoun-
tered in the real world, the agents are likely to fail if they encounter 
situations that are too different from what they have seen before.

How to create PCG approaches that can limit this content gap 
and create large and diverse training environments, which prepare 
agents well for the real world tasks to come, is an important open 
research direction.

PCG beyond game-like environments. While PCG, as surveyed 
in this Review, is a set of techniques originally developed for video 
games with wide applicability in game-like environments, the ideas 
behind PCG can be generalized to many other domains. The idea 
of creating diverse artificial problems so as to enhance learning 
has wide applicability. For example, neural architecture search is a 
domain with some similarities to games, where the ‘content’ (net-
work architectures) is evaluated on its functionality. Interestingly, 
many of the same techniques work well for neural architecture 
search and game content generation89–91. Looking further afar, PCG 
techniques might play a role in many ML domains that at a first 
glance have very little in common with games.
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