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Abstract—The reliability of software that has a Deep Neural
Network (DNN) as a component is urgently important today given
the increasing number of critical applications being deployed
with DNNs. The need for reliability raises a need for rigorous
testing of the safety and trustworthiness of these systems. In
the last few years, there have been a number of research efforts
focused on testing DNNs. However the test generation techniques
proposed so far lack a check to determine whether the test
inputs they are generating are valid, and thus invalid inputs are
produced. To illustrate this situation, we explored three recent
DNN testing techniques. Using deep generative model based
input validation, we show that all the three techniques generate
significant number of invalid test inputs. We further analyzed
the test coverage achieved by the test inputs generated by the
DNN testing techniques and showed how invalid test inputs can
falsely inflate test coverage metrics.

To overcome the inclusion of invalid inputs in testing, we
propose a technique to incorporate the valid input space of
the DNN model under test in the test generation process. Our
technique uses a deep generative model-based algorithm to
generate only valid inputs. Results of our empirical studies show
that our technique is effective in eliminating invalid tests and
boosting the number of valid test inputs generated.

Index Terms—deep neural networks, deep learning, input
validation, test generation, test coverage

I. INTRODUCTION

Deep Neural Networks (DNN) components are increasingly
being deployed in mission and safety critical systems, e.g.,
[1], [2], [3], [4]. Similar to traditional programmed software
components, these learned DNN components require signif-
icant testing to ensure that they are reliable and thus fit for
deployment.

Yet DNNs differ from programmed software components
in a variety of ways. (1) They generally do not have well-
defined specifications and instead rely on a set of examples that
represent intended component behavior. (2) These examples
are used to train the parameters of a fixed implementation
architecture resulting in implementation behavior encoded as
values of the learned parameters. (3) The training process
continues until the learned function is an accurate approxi-
mation of the intended behavior. Finally, (4) the accuracy of
the learned function is intended to generalize to the set of valid
inputs comprised of the data distribution of which the training
examples are representative.

The above characteristics of DNNs present challenges for
applying existing software testing methods to DNNs. For
example, the lack of specifications makes it most challenging
to develop a rich test oracle, as well as the fact that parameter
values encode behavior which renders traditional structural
code coverage ineffective. The growing body of research on
DNN testing has begun to address some of these characteris-
tics. While structural code coverage metrics are ineffective for
DNNs, methods that cover combinations of computed DNN
neuron values have been developed to assess and drive DNN
testing [5], [6], [7]. Also, variations of metamorphic testing
have been developed to check critical continuity properties
across the learned function approximations helping to fill the
oracle gap [8], [9], [10]. In this paper, we focus on the
challenges that DNN generalization presents to testing, and in
particular how current DNN testing techniques treat valid and
invalid inputs. To understand these challenges, consider the
implementation of a traditional software component , which
is developed to meet a specification S : Rn → Rm ∪ e, where
e denotes the error behavior intended for invalid inputs. In this
setting, the input domain Rn is partitioned into valid inputs,
V , and invalid inputs, V = Rn − V , which should yield e.

The testing of selects a test set T ⊂ Rn and assesses
whether ∀t ∈ T : (t) = S(t). As sketched in Fig. 1a, typically
is comprised of input validation, which determines if an input
value lies in V and then executes either functional logic which
realizes the behavior of S on V , or error processing for
invalid data. Developers have come to rely on the several
intuitions about such software. First, input validation logic is

(i⃗) {
if (valid(i⃗))
return logic(i⃗)
else
return error(i⃗)

}

(a) Code

N(i⃗) {
. . .

. . .. . .
return
}

(b) DNN

Fig. 1: Structure of code and DNN components and N .



V 0000000100000000000000001100100011111111111111111111 0.462
V 0000000100000000000000001000100011111111111111111111 0.442 (0.462)

V 1101110101101000110001101000110011111111111111111111 0.692
V 1111111100001010010001101010010111111111111111011011 0.673 (0.808)

Fig. 2: Cumulative neuron coverage of LeNet-1 on the first 100 valid and invalid inputs generated by DLFuzz (top) and
DeepXplore (bottom); coverage vectors (left) and ratios (right) for each set are shown along with the cumulative ratio (in
parentheses)

distinct from functional logic, demanding testing approaches
that exploit its properties [11], [12], [13], [14] to effectively
support it [15], [16], [17]. Second, test suites that achieve
higher coverage are better in that they exercise more of the
validation, functional, and error logic.

Now, consider a DNN, N : Rn → Rm, which is trained to
accurately approximate the, possibly unavailable, specification
S. As sketched in Fig. 1b, N is comprised of layers of
neurons that are cross-coupled by connections labeled with
learned parameters. When the learned parameters for N are
such that Pr(N (i) = S(i) | i ∈ V ) ≥ 1 − ϵ, for a desired
error ϵ, the network is expected to generalize to the valid
input distribution, V . Even if N were trained to detect invalid
data and respond appropriately, its structure does not force a
distinction between input validation, functional logic, or error
processing. In practice, this distinction is uncommon and in
this case N does not even have an analog for e in its output
domain. Because of the lack of this distinction, whether an
input lies in V or V , the computation performed byN overlaps
to a large degree, e.g., common sets of neurons are activated.

Not distinguishing between valid and invalid input can be
problematic for DNN testing in at least three ways. (1) Testing
techniques that generate invalid inputs increase cost with little
value added for testing the functional logic ofN . Fig. 3 depicts
valid test inputs and selected invalid test inputs from two
recently proposed DNN test generation techniques [5], [18].
As we show in §IV, across a range of testing approaches for
DNNs [19], [5], [18], on average 42% of the generated tests
are invalid and in the worst-case all generated tests by a given
technique are invalid. (2) When a test case fails developer time
is required to triage the failure. With high numbers of invalid
test inputs, developers may be forced to look through large
numbers of test inputs, similar to those depicted in Fig. 3, to
make judgements about test validity. The high-rate of invalid
inputs runs the risk that developers will avoid the use of
these techniques, thereby negating their purported value. (3)
Whereas for traditional software the coverage produced by
invalid inputs is confined to the validation and error logic, for
DNNs an analogous separation of coverage is not guaranteed.
As depicted at the top of Fig. 2, the cumulative coverage from
valid and invalid test sets can be almost identical – differing
by as few as 1 of 52 neurons. Worse yet, as depicted in the
bottom of Fig. 2, invalid tests can artificially boost coverage
significantly beyond what is achieved by valid tests - from
0.692 to 0.808. This increase in coverage suggests that, unlike
for traditional software, DNN test suites that achieve higher
coverage are not necessarily better!

Fig. 3: Valid tests vs Invalid tests. Top Row: Valid tests
from MNIST training dataset. Middle Row: Invalid tests from
DeepConcolic. Bottom Row: Invalid tests from DeepXplore

In this paper, we study the effects of DNN test generation
techniques not distinguishing between valid and invalid data
and characterize the potential impact of the issues identified
above. Our approach is to leverage a growing body of research
from the Machine Learning (ML) community that learns
models of the training distribution, V , from which the training
data is drawn [20], [21], [22], [23]. While there are many such
models, in this paper we employ the variational auto-encoder
(VAE) – leaving the study of alternative models to future work.

Leveraging VAE models allows us to study techniques
representative of the current state of DNN testing research
and to make two important observations. First, we demonstrate
that existing DNN testing techniques, such as DeepXplore [5],
DLFuzz [19], and DeepConcolic [18], produce large numbers
of test cases with invalid inputs, which increases test cost
without a clear benefit. Second, we demonstrate that existing
DNN test coverage metrics, e.g., [5], [6], are unable to
distinguish valid and invalid test cases, which risks biasing
test suites toward including more invalid inputs in pursuit of
higher coverage.

Building on these observations, we present a novel approach
that combines a VAE model with existing test generation
techniques to produce test cases with only valid inputs. More
specifically, we formulate the joint optimization of probability
density of valid inputs and the objective of existing DNN
test generation techniques, and use gradient ascent to generate
valid tests. An experimental analysis on datasets used in the
DNN testing literature [24], [25] shows the cost-effectiveness
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of the proposed approach.
The primary contributions of this work lie in: (a) the iden-

tification of limitations in existing DNN test generation and
coverage criteria in their treatment of invalid input data; (b)
the development of a technique for incorporating an explicit
model of the valid input space of a DNN into test generation to
address those limitations; and (c) experimental evaluation that
demonstrates the extent of the limitations and the effectiveness
of our technique in mitigating them.

The remainder of this article is organized as follows. The
following section, §II, describes the concepts that are used
in this paper and related work. Our approach is detailed in
§III. Experimental strategy and results are described in §IV.
§V discusses the threats to validity of our study and §VI
concludes.

II. BACKGROUND AND RELATED RESEARCH

A. Deep Neural Networks

Deep Neural Networks (DNNs) are a class of Machine
Learning models that can extract high level features from
raw input. Similar to the human brain, DNNs contain a large
number of inter-connected elements called neurons. DNNs
have multiple layers, and each layer contains a number of
neurons. A typical DNN consists of an input layer, one or
more hidden layers followed by an output layer. Connections
between neurons are called edges and their associated weights
are referred to as the model parameters. A neuron receives
its input as a weighted sum over outputs of neurons from
the previous layer. The neuron then applies a non-linear
activation function on this input to generate its output. Overall,
a DNN is a mathematical function over the model parameters
for transforming inputs into outputs. The model learns its
parameters by training on known input data called the training
data. The objective of DNN training is to learn the model
parameters in order to make accurate predictions on unseen
data during deployment.

B. DNN testing techniques

DNN testing is an active research area with a number
of testing techniques developed to address the challenges of
testing these systems [26], [10] in terms of test coverage
criteria, test generation and test oracles.

After training, DNN testing techniques use either natural
inputs or adversarial inputs for testing. Adversarial inputs are
test inputs that are generated by applying tiny perturbations
on the original inputs, which cause the model to make false
predictions [27]. There is another line of research that focuses
on generating adversarial examples for exposing vulnerabili-
ties of DNN models [27], [28], [29] without addressing test
adequacy. However our work differs by focusing on coverage
guided DNN testing techniques from the software engineering
literature.

1) Coverage Criteria: In traditional software testing, cov-
erage criteria are used to measure how thoroughly software
is tested. Most practical coverage criteria e.g., [30], use the
structure of the software system to make this assessment, e.g.,

the percentage of statements or branch outcomes covered by
a test suite. Similar to structural software coverage criteria,
coverage criteria for DNNs have been proposed by various
research efforts, as follows.

Pei et al. [5] proposed neuron coverage (NC) as a test
coverage criteria. For a given test suite, neuron coverage is
measured as the ratio of the number of unique neurons whose
output exceeds a specified threshold value to the total number
of neurons present in the DNN.

Ma et al. [6] proposed a range of coverage criteria includ-
ing: k-multisection neuron coverage (KMNC), neuron bound-
ary coverage (NBC), and strong neuron activation coverage
(SNAC). These coverage criteria can be used to determine
whether a test case falls in the major functional region or
corner case region of a DNN. Activation traces of all neurons
are captured for the training data and lower and upper bounds
of activations are measured for each of the neurons.

K-multisection coverage is calculated by dividing the inter-
val between lower and upper bounds into k-bins and measuring
the number of bins activated by the test inputs. For a test suite,
k-multisection coverage is the ratio of the uniquely covered
bins to the total number of bins in the model.

Neuron activations above the upper bound or below the
lower bound are considered to be in corner case regions.
Neuron boundary coverage is measured as a ratio of the
number of covered upper and lower corner case regions to
the total number of corner case regions of the model. Strong
neuron activation coverage is the ratio of the number of
covered upper corner case regions to the total number of upper
corner case regions in the DNN. Top-k neuron coverage and
top-k neuron patterns are based on top hyper-activate neurons
and their combinations.

Modified Condition/Decision Coverage variants for DNNs
[7] are proposed by Sun et al [7]. These metrics are based
on sign and value change of a neuron’s activation to capture
the causal changes in the test inputs. Ma et al. [31] proposed
combinatorial test coverage to measure the combinations of
neuron activations and deactivations covered by a test suite.

In our work, we focus on the NC, KMNC, NBC, and SNAC
criteria and we show that these metrics cannot differentiate
between valid and invalid test inputs generated by existing
DNN test generation techniques. We leave the analysis for
other coverage metrics for future work.

2) DNN test generation: Research on DNN test generation
is largely inspired by traditional software testing techniques
such as metamorphic testing, fuzz based testing and symbolic
execution. Below, we discuss the state of DNN test generation
research.

DeepXplore [5] is a white-box differential test generation
technique that uses domain specific constraints on inputs.
This technique requires multiple DNN models trained on the
same dataset as cross referencing oracles. The objective of
DeepXplore is a joint optimization of neuron coverage and
differences in the predictions of DNN models. Maximizing
the objective generates tests that achieve high neuron coverage
while simultaneously achieving erroneous predictions by the
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DNN model. DeepXplore uses gradient ascent to solve the
joint optimization. DeepTest [9] is another testing technique
that generates test inputs by applying domain specific con-
straints on seed inputs. The major focus of DeepTest is to
generate test inputs for testing autonomous vehicles. It uses
greedy search driven by neuron coverage criteria.

Fuzzing is another traditional software testing technique
that has been adapted for DNN test generation including
DLFuzz [19], and TensorFuzz [32]. DLFuzz is an adversar-
ial input test generation technique. It uses neuron coverage
driven test generation similar to DeepXplore. However unlike
DeepXplore, it does not require multiple DNN models. It
also uses a constraint to keep the newly generated test inputs
close to the original inputs. TensorFuzz is a coverage guided
testing method for finding numerical issues in trained neural
networks and disagreements between neural networks and their
quantized versions.

DeepConcolic [18] uses the concolic testing approach for
generating adversarial test inputs for DNN testing. Concolic
execution is a coverage-guided testing technique that com-
bines symbolic execution and path information from concrete
execution for generating tests satisfying a coverage criteria.
DeepConcolic supports neuron coverage and MC/DC variants
for DNNs.

None of these DNN testing techniques check whether the
test inputs they are generating follow the training distribution.
They generate a significant number of invalid inputs that
are outside the model’s training distribution as shown in our
evaluation section IV.

C. Out-of-Distribution Input Detection

Out-of-distribution input detection (OOD), also referred to
as outlier or anomaly detection, is a well-studied problem in
ML field[20], [21], [22], [33]. A recent survey [23] describes
the state of deep learning based outlier detection research and
classifies deep learning based outlier detection techniques into
supervised, semi-supervised, unsupervised categories. Unsu-
pervised models are preferred as labeling is expensive. We
use an unsupervised generative model based approach for our
work.

A generative model learns the distribution of the data and
can predict how likely a test input is with respect to training
distribution. This prediction can be used to identify invalid test
inputs. A DNN classifier learns the conditional distribution
of target variables with respect to observable variables. Even
though such a classifier has high accuracy on data sampled
from the training distribution, its accuracy on samples outside
the training distribution cannot be guaranteed [34]. By training
a generative model with the same data, its density predictions
can be used to reject inputs with low densities. When a test
input has low density it implies that the DNN classifier did not
have enough samples around test input region in the training
dataset.

Examples of generative models are autoencoders, vari-
ational autoencoders [35], generative adversarial networks
(GAN) [36], and autoregressive models such as PixelCNN [37]

Fig. 4: Technique for identifying invalid test inputs

and PixelCNN++ [38]. We primarily use the variational au-
toencoder based out-of-distribution detection technique in our
work. Also, we repeat our experiments to identify invalid
inputs generated by test generation techniques using a Pixel-
CNN++ based validation approach. The study is described in
section IV-B to show how sensitive invalid input identification
is with respect to the out-of-distribution detection mechanism
used.

D. Variational Autoencoder

A variational autoencoder is a generative model that rep-
resents latent space as a probability distribution. It has an
encoder, code layer and a decoder [35]. The encoder is
responsible for mapping inputs to a lower dimensional latent
space, and the decoder generates new inputs by sampling from
the latent space. Latent space is modeled by a code layer,
and it is generated from a prior distribution, e.g., a Normal
Gaussian distribution. The encoder’s objective is to learn the
posterior distribution and decoder’s objective is to learn the
likelihood of the original input reconstructed by the decoder.
A VAE model is trained by minimizing the difference between
posterior and latent prior distributions and maximizing the
likelihood estimation of the input. A trained VAE model will
generate high probability density estimates for data belonging
to the training data distribution when compared to out-of-
distribution inputs. This key insight is used for validating test
inputs generated by DNN test generation techniques in our
research.

III. APPROACH

In this section, we describe our approach to (1) identifying
limitations of existing DNN test generation techniques, and
(2) generating valid test inputs for testing DNNs.

A. Analysis of Existing DNN Test Generation Techniques

The methodology for analysing test inputs generated by
existing test generation techniques is depicted in Fig. 4.
DNN(s) under test and the deep generative model are trained
on the same dataset. Test inputs generated by existing DNN
test generation techniques for the DNN(s) under test are passed
as inputs to the deep generative model which estimates their
densities. These densities are used by the decision logic to
classify inputs as valid or invalid.

For our experiments, we use a VAE for expressing the deep
generative model logic, and in particular, the model proposed
by An and Cho [20] where the decoder of a VAE outputs
distribution parameters for the samples generated by the
encoder. The probability of generating the original test input
from a latent variable is calculated using these distribution
parameters. This probability is referred to as reconstruction
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probability. Valid inputs have higher reconstruction probability
when compared to invalid inputs.

For a dataset under test, which we call the valid dataset,
we identify another dataset which has a different distribution.
The inputs from this dataset are considered as invalid inputs.
Invalid dataset selection is guided by two factors: (1) the
dataset should have same input dimensions as the valid dataset,
and (2) invalid and valid datasets should model disjoint data
categories.

After identifying an invalid dataset, we compute the re-
construction probability threshold for identifying invalid in-
puts. Reconstruction probabilities are calculated for inputs
from both valid and invalid datasets. We generate a range
of thresholds from the combined reconstruction probability
values of valid and invalid inputs. We compute the F-measure,
which is a measure of a test’s accuracy, for these threshold
values. The F-measure is the harmonic mean of precision
and recall. A good F-measure balances precision and recall
and results in a fewer number of both false positives and
false negatives. In our case, this means fewer valid inputs
are falsely classified as invalid and fewer invalid inputs are
falsely classified as valid. The threshold value with the highest
F-measure is selected for our experiments. When classifying
test inputs generated by DNN test generation techniques, test
inputs with reconstruction probability less than the selected
threshold are classified as invalid by the VAE classifier.

We measure the percentage of invalid inputs generated by
multiple test generation techniques and the coverage of both
valid and invalid tests. The results of the experiments are used
to answer the research questions related to the limitations of
existing techniques presented in Section IV.

B. Our Test Generation Technique

We present a technique to generate valid test inputs in this
section. Our workflow is described in Fig. 5. Our approach
leverages existing gradient ascent based test generation tech-
nique’s objective formulation. The objective of existing test
generation techniques is modeled to increase test coverage
and produce inputs that cause the model to make incorrect
predictions. We augment this objective with probability density
estimated by a generative model. Gradient ascent is used to
solve the joint optimization. Maximizing the joint optimization
will result in inputs that follow the distribution of the training
data of the DNN under test along with satisfying objective of
the baseline testing technique.

We provide a detailed description of our test generation
algorithm using a VAE as the generative model in Algorithm 1.
The decoder of the VAE outputs the distribution parameters
(µx̂ , σx̂ ) for the samples generated by the encoder as per
the OOD detection algorithm proposed in [20]. The algorithm
requires a DNN under test, an objective function of a baseline
gradient ascent based test generation technique obj1, a prob-
abilistic encoder and decoder as inputs and produces both a
test suite of valid inputs and their test coverage as output.
For every input of the seed set, the probabilistic encoder
generates parameters in latent space as shown in line 4 of the

Fig. 5: Technique for generating valid test inputs

Algorithm 1. In lines 5-7, a sample from the latent space is
used by the decoder to calculate the reconstruction probability
of the input. The objective is modeled as a weighted sum of
obj1 and reconstruction probability in line 8. Lines 9-11 show
the gradient ascent. The gradient is calculated for the objective
and at this stage, domain constraints, if any, are applied to the
gradient and a new test input is generated. In lines 12-13, the
generated test is tested for validity. If this test input causes
the model to mispredict and has a reconstruction probability
higher than the threshold, then on lines 14-15 the coverage
is updated and input is added to the generated test suite. The
procedure continues until all seeds are processed. We evaluate
this technique using DeepXplore as a baseline test generation
technique in Section IV.

Algorithm 1 Valid test input generation using VAE
Input:
X ← Seed inputs
DNN ← DNN under test
obj1 ← Objective function of test generation technique
s ← Step size for gradient ascent
max iterations ← maximum iterations for gradient ascent
fθ, gϕ ← Trained probabilistic encoder and decoder
λ ← hyperparameter for balancing two goals
α ← Reconstruction probability threshold
Output: Set of test inputs, coverage

1: gen test = {}
2: for x in X do
3: for i=1 to max iterations do
4: µz , σz = fθ(z|x)
5: draw sample from z ∼ N (µz , σz)
6: µx̂ , σx̂ = gϕ(x|z)
7: obj2 = pθ(x|µx̂, σx̂)
8: obj = obj1 + λ × obj2
9: gradient = ∂obj/∂x

10: gradient = Constraints(gradient)
11: x = x + s × gradient
12: p = Reconstruction Probability(x, fθ, gϕ)
13: if Counter Example(DNN, x) and p ≥ α then
14: gen test.add(x)
15: update coverage
16: break
17: end if
18: end for
19: end for
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Dataset Name Architecture Accuracy
Source #l:#n:#p

MNIST

MNI-1
MNI-2
MNI-3
MNI-4

LeNet-1 [39]
LeNet-4 [39]
LeNet-5 [39]
Custom [18]

3:52:7206
4:148:69362
5:268:107786
7:1300:312202

98.66%
99.03%
99.08%
99.03%

SVHN

SVH-1
SVH-2
SVH-3
SVH-4

ALL-CNN-A [40]
ALL-CNN-B [40]
ALL-CNN-C [40]
VGG19 [41]

7:2248:1.2M
9:2824:1.3M
9:2824:1.3M
19:28884:38M

96%
95.67%
95.98%
94.69%

TABLE I: Models used in our studies with number of layers
(#l), neurons (#n), parameters (#p), and test accuracy; “M”
denotes millions of parameters.

IV. EVALUATION

The design and evaluation of experiments for studying
existing techniques and demonstrating effectiveness of our ap-
proach are described in this section. We answer the following
research questions:
RQ1: Do existing test generation techniques produce invalid

inputs?
RQ2: Existing test generation techniques are guided by test

coverage criteria. How do invalid inputs affect test cov-
erage metrics?

RQ3: VAE based input validation can be incorporated into
test generation techniques. How effective is this technique
in generating valid inputs and what is the overhead?

RQ4: Is the determination of invalid inputs sensitive to the
generative model used?

A. Evaluation Setup

All experiments are conducted on servers with one Intel(R)
Xeon(R) CPU E5-2620 v4 2.10GHz processor with 32 cores,
62GB of memory, and 4 NVIDIA TITAN Xp GPUs. The
software that supports our evaluation as well as all of the data
described below is available at https://github.com/swa112003/
DistributionAwareDNNTesting.

1) Test Generation Frameworks: We study three state of the
art test generation techniques: DeepXplore [5], DLFuzz [19],
and DeepConcolic [18] to demonstrate the limitations of
existing techniques in terms of generating valid test inputs
and satisfying test coverage criteria. The choice of these
frameworks is guided by the categorization of test input
generation techniques presented in a recent survey [26] and
the availability of open source code. The survey categorizes
test generation frameworks into three algorithmic families;
we choose one technique from each family. DeepXplore is
selected from domain-specific test input synthesis, DLFuzz
from fuzz and search based test input generation and Deep-
Concolic from symbolic execution based test input generation
categories.

2) Test Coverage Criteria: DeepXplore and DLFuzz use
neuron coverage [5] as the test adequacy criteria whereas
DeepConcolic can be used with neuron coverage [5], neuron
boundary coverage [6] and MC/DC coverage criteria for
DNNs [7]. We use neuron coverage as the test adequacy
criteria for generating tests using all three frameworks. Re-
sulting test inputs from test generation are analyzed using

neuron coverage and extended neuron coverage metrics, i.e, k-
multisection neuron coverage, neuron boundary coverage and
strong neuron activation coverage. We leave the remaining
coverage criteria discussed in these works [6], [7] for future
study.

3) Datasets and DNN Models: We use two popular datasets
MNIST [24] and SVHN [25] for the experiments. Gener-
ative models can assign higher densities to datasets whose
distributions are different from their training datasets in some
cases[42]. For example, a VAE trained on CIFAR10 [43] can
assign higher densities to inputs from SVHN dataset. When
such a model is used for invalid input identification, it might
result in high densities being assigned to invalid inputs which
will result in false negatives. Also selecting the threshold
density for deciding invalid inputs becomes challenging in
such scenarios. This problem is actively being addressed by
ML research community[44]. Generative models trained on
MNIST and SVHN do not have this issue [42], so we selected
these two datasets for our research.

MNIST is a collection of grayscale images of handwritten
digits with 60000 training images and 10000 test images. All
three frameworks that we are studying support test generation
for MNIST dataset. Similar to DeepXplore, we use LeNet-1,
LeNet-4 and LeNet-5 networks from LeNet family [39] and a
custom architecture used in the DeepConcolic work [18] for
MNIST classification. All the four models are convolutional
networks with max-pooling layers and the number of layers
ranging from 3 to 7.

SVHN contains color images of digits in natural scenes
and the dataset has 73257 training images and 26032 test
images. We implemented SVHN support for all three frame-
works. We trained SVHN classification models with the ALL-
CNN-A, ALL-CNN-B and ALL-CNN-C network architectures
proposed in [40] and VGG19 [41] for our experiments. These
models are convolutional networks with dropout and either
global average pooling or max-pooling layers and the number
of layers range from 7 to 19. The models are summarized in
Table I where we report measures of their architecture and test
accuracy.

4) VAE Models: For MNIST, we trained the VAE that
outputs distribution parameters using the model architecture
described in [20]. The FashionMNIST dataset [45], is similar
to MNIST and contains 28x28 grey scale images. However
the distribution is different from that of MNIST as Fashion-
MNIST contains clothing images. We use the FashionMNIST
as the invalid input space for calculating the reconstruction
probability threshold. Since the VAE is not trained on Fash-
ionMNIST distribution and FashionMNIST clothing inputs are
semantically unrelated to MNIST digit inputs, the VAE should
output lower reconstruction probabilities for test inputs from
the FashionMNIST dataset.

We experimented with different variations of the generator
architecture used in [46] for selecting a VAE network for the
SVHN dataset. For each of the variants, the encoder is created
by transposing the generator network as suggested in [46]. The
network that achieved the highest F-measure for identifying
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Dataset MNIST SVHN
Valid MNIST Test SVHN Test
Invalid FashionMNIST Test CIFAR10 Test
F-measure 0.99 0.94
False Positives 0.3% 2.4%
False Negatives 1.42% 6.19%

TABLE II: F-measure and percentage of false positives and
false negatives for VAE based input validation model

DNN Testing Technique Valid (%) Invalid (%) Total (%)

MNI-1
DeepXplore 38.5 55.8 55.8
DLFuzz 50 50 50
DeepConcolic - 55.8 55.8

MNI-2
DeepXplore 65.5 75 75
DLFuzz 71.6 70.9 71.6
DeepConcolic - 58.1 58.1

MNI-3
DeepXplore 70.9 79.1 79.1
DLFuzz 78 76.9 78
DeepConcolic - 64.6 64.6

MNI-4
DeepXplore 66.6 73.1 73.3
DLFuzz 71.7 48.0 71.7
DeepConcolic - 63.1 63.1

TABLE III: Neuron Coverage of test inputs generated by
DeepXplore, DLFuzz and DeepConcolic for MNIST classifiers

invalid inputs is selected for our experiments. CIFAR10 [43] is
used as the invalid input dataset for calculating reconstruction
probability threshold of VAE trained on SVHN. F-measure
values and percentage of false positives for MNIST and SVHN
test datasets are given in Table II.

B. Results and Research Questions

In this section, we present results of our experiments we
used to answer the research questions.

RQ1. Do existing test generation techniques produce
invalid inputs?

We generated test inputs for MNIST and SVHN classifiers
using the DeepXplore, DLFuzz and DeepConcolic techniques.
The DeepXplore framework supports three types of input
transformations: lightening, occlusion and blackout. We gen-
erated tests for all three transformations to answer RQ1.

We randomly sampled 500 seed inputs from each MNIST
and SVHN test dataset for DeepXplore and DLFuzz. Deep-
Xplore and DLFuzz use gradient ascent for test generation,
and we used the hyperparameters reported in their respective
works [5], [19] for our study. Similarly, we selected the
neuron coverage threshold of 0.25 as it is commonly used
in DeepXplore and DLFuzz experiments in their original
work. The DeepConcolic tool uses a single seed input for test
generation for neuron coverage, and a timeout of 12 hours is
used for test generation in the primary work [18]. We used
the same strategy, and the framework is run with the global
optimisation approach. Generated tests are classified as valid
or invalid by using the reconstruction probability metric of
VAE. The top row of Fig. 6 shows the percentage of invalid
test inputs generated by these frameworks for MNIST and
SVHN DNN models.

The percentage of tests generated by DeepXplore varies
depending on the constraint used. For all the four MNIST
classifiers, occlusion constraint produced a high percentage of

DNN Testing Technique Valid (%) Invalid (%) Total (%)

SVH-1
DeepXplore 44.4 44.4 44.4
DLFuzz 44.8 44.4 44.8
DeepConcolic - 44.2 44.2

SVH-2
DeepXplore 45.5 45.5 45.5
DLFuzz 45.6 45.5 45.6
DeepConcolic - 45.5 45.5

SVH-3
DeepXplore 45.4 45.4 45.4
DLFuzz 45.7 45.4 45.8
DeepConcolic - 45.2 45.2

SVH-4
DeepXplore 74.2 74 74.8
DLFuzz 75.9 73.3 75.9
DeepConcolic - 72.3 72.3

TABLE IV: Neuron Coverage of test inputs generated by
DeepXplore, DLFuzz and DeepConcolic for SVHN classifiers

invalid test inputs i.e., greater than 90% while blackout con-
straint generated less than 1% invalid inputs. The lightening
constraint generated 94% and 63% invalid inputs for models
MNI-1 and MNI-3 and less than 1% for other two. DLFuzz
generated invalid inputs in the range 36% to 46% for MNI-1,
MNI-2 and MNI-3 classifiers while less than 1% for MNI-4.

For SVHN classifiers, the occlusion and blackout constraints
generated a higher number of invalid tests when compared to
lightening constraints on an average. DLFuzz generated invalid
inputs are in the range 9% to 20% for SVHN classifiers. All
the test inputs generated by the DeepConcolic framework for
both MNIST and SVHN classifiers are classified as invalid by
the VAE model.

Result for RQ1: All three testing techniques studied
produced significant numbers of invalid tests; 42% on
average and ranging from 73-100% in the worst-case.

RQ2. Existing test generation techniques are guided by
test coverage criteria. How do invalid inputs effect test
coverage metrics?

We measured neuron coverage(NC), multi-granularity cov-
erage criteria i.e., k-multisection neuron coverage (KMNC),
neuron boundary coverage (NBC) and strong neuron activation
coverage (SNAC) of both valid and invalid tests generated
by the three frameworks. The k-value of 100 is used for
measuring KMNC coverage. We also measured the cumulative
neuron coverage of valid and invalid test inputs. Results are
presented in Tables III and IV for neuron coverage metric
and Tables V and VI have data for multi-granularity coverage
criteria.

Across 8 DNNs, 3 test generation techniques, and 4 cover-
age criteria, 72% of the time invalid tests achieved coverage
greater than or equal to that achieved by valid tests. The entries
in Tables III, IV, V and VI corresponding to this insight are
highlighted in bold. 25% of the time invalid tests outperform
valid for coverage, and 25% of the time invalid coverage
boosts overall coverage by more then 10%.

Result for RQ2: Invalid inputs yield high coverage for
a variety of coverage criterion when compared to valid
inputs and they frequently increase coverage beyond that
which would be achieved with valid inputs alone.
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Fig. 6: Percentage of invalid test inputs identified by VAE (top pair) and PixelCNN++ (bottom pair) input validation techniques.

RQ3. VAE based input validation can be incorporated
into the test generation techniques. How effective is this
technique in generating valid inputs and what is the
overhead?

To answer this question, we generated test inputs by using
VAE based input validation along with a gradient ascent based
test generation technique as described in Algorithm 1. We
selected DeepXplore as the baseline test generation technique
and density estimated by VAE is incorporated as a goal into
its objective to formulate a joint optimization. Result of a joint
optimization is sensitive to the weights of different goals used
in the objective function. To address this, we fixed the weights
of the goals of the baseline’s objective and performed a sweep
over a range of density weights to find the best configuration.
We used gradient ascent to generate test inputs for MNIST
and SVHN models. We randomly identified 200 seed inputs
from each of the two datasets and used the same seed set
and gradient ascent parameters, i.e., step size and maximum
iterations for baseline and our technique. The experiments are
repeated three times and average results are presented in this
section.

We measured the number of valid tests generated along with
their neuron coverage for our technique and the baseline to
demonstrate the effectiveness of our technique. The validity
of the inputs is measured with respect to the OOD detection

algorithm used, i.e., the VAE in this case. Our technique
generates only valid test inputs. Since baseline generates both
valid and invalid test inputs, we added the input validation
module to the baseline to capture only the valid test inputs.

Neuron coverage achieved by the baseline technique and our
technique are presented in Figures 7 and 8 for MNIST and
SVHN classifiers respectively. The plots show the coverage
over a range of 200 seed inputs. Our technique achieved
neuron coverage greater than or equivalent to that of Deep-
Xplore baseline for all the 8 DNN models. For the scenarios
where baseline is able achieve neuron coverage comparable to
ours, our technique outperformed the baseline in terms of the
number of valid inputs generated. Fig. 9 contains a comparison
of the number of valid inputs generated by the baseline and our
technique for MNIST and SVHN classifiers. The total valid
inputs generated by our technique for the MNIST models are
5.6 times the valid inputs generated by the baseline. For SVHN
dataset, our technique generated 1.6 times more valid inputs
when compared to the baseline. Hence, having VAE in the
test objective guides gradient ascent effectively in searching
for valid inputs.

Table VII shows the performance data of DeepXplore+VAE
and DeepXplore algorithms for 200 seed inputs. Every iter-
ation of these algorithms has two components, 1) gradient
ascent, and 2) input validation. For each seed input, gradient
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DNN Testing
Technique Coverage Valid

(%)
Invalid
(%)

Total
(%)

MNI-1

DeepXplore

KMNC 11.3 58 58.8
NBC - 1.9 1.9
SNAC - 1.9 1.9

DLFuzz

KMNC 49.2 45.3 56.4
NBC - - -
SNAC - - -

DeepConcolic

KMNC - 8.2 8.2
NBC - - -
SNAC - - -

MNI-2

DeepXplore

KMNC 7.1 62 62.4
NBC - 3.4 3.4
SNAC - 6.8 6.8

DLFuzz

KMNC 49.7 40.2 54.2
NBC - - -
SNAC - - -

DeepConcolic

KMNC - 11.2 11.2
NBC - 2.4 2.4
SNAC - 3.4 3.4

MNI-3

DeepXplore

KMNC 12.5 59.2 59.9
NBC 0.2 3.4 3.5
SNAC 0.4 6.7 7.1

DLFuzz

KMNC 45.8 41.6 52.2
NBC - 0.2 0.2
SNAC - - -

DeepConcolic

KMNC - 14.8 14.8
NBC - 1.1 1.1
SNAC - 2.2 2.2

MNI-4

DeepXplore

KMNC 18.7 56.6 57.5
NBC - 1.8 1.8
SNAC - 2.4 2.4

DLFuzz

KMNC 47.5 1.6 47.5
NBC 0.4 - 0.4
SNAC 0.5 - 0.5

DeepConcolic

KMNC - 27.9 27.9
NBC - 3.4 3.4
SNAC - 4.3 4.3

TABLE V: Multi-granularity neuron coverage of test inputs
generated by DeepXplore, DLFuzz and DeepConcolic for
MNIST classifiers

ascent is performed until it finds a valid test input or for
a maximum of 30 iterations whichever happens first. Input
validation is performed only when the differential oracle fails
the generated test input in that iteration. In all the cases, Deep-
Xplore+VAE ran for fewer iterations and input validations
when compared to the baseline. For the scenarios where the
difference between DeepXplore+VAE and baseline’s number
of iterations and input validations is high, DeepXplore+VAE
is faster because the baseline is spending more time on
generating invalid inputs which are then rejected by the input
validation module. When this difference is small, baseline has
better overall run-time, but DeepXplore+VAE generates more
valid inputs and has lower cost per valid input when compared
to the baseline. We note that due to DeepXplore+VAE’s
improved effectiveness in generating valid tests it improves
on the baseline’s ”time to produce a valid test” reducing it
from 4.7 to 1.7 minutes, on average measured across three
runs.

Result for RQ3: Incorporating a VAE into test gener-
ation eliminates the generation of invalid test inputs,
significantly increases the generation of valid inputs,
reduces the time to generate valid tests, and increases
coverage achieved on generated valid tests.

DNN Testing
Technique Coverage Valid

(%)
Invalid
(%)

Total
(%)

SVH-1

DeepXplore

KMNC 30.7 42.4 46.8
NBC 1.6 5.2 6.6
SNAC 0.7 9.1 9.3

DLFuzz

KMNC 55 38.8 57.9
NBC 2.1 0.4 2.3
SNAC 3.3 0.7 3.6

DeepConcolic

KMNC - 17 17
NBC - 1 1
SNAC - 2 2

SVH-2

DeepXplore

KMNC 35.2 45.4 50.1
NBC 2.3 0.7 2.6
SNAC 1.3 1.2 1.9

DLFuzz

KMNC 58 43.5 61.3
NBC 0.6 1.5 1.8
SNAC 1 1.5 2

DeepConcolic

KMNC - 22.5 22.5
NBC - 0.5 0.5
SNAC - 0.8 0.8

SVH-3

DeepXplore

KMNC 32.2 44.9 48.9
NBC 2.4 0.7 2.8
SNAC 1.4 1.2 2.2

DLFuzz

KMNC 52.9 51 60.2
NBC 0.5 1.6 1.9
SNAC 0.8 2.4 2.8

DeepConcolic

KMNC - 20.2 20.2
NBC - 5.4 5.4
SNAC - 4.5 4.5

SVH-4

DeepXplore

KMNC 24.7 40.4 41.8
NBC 1 4 4.1
SNAC 1.8 5.5 5.7

DLFuzz

KMNC 41.4 29.5 43.4
NBC 1.7 1 1.8
SNAC 2.7 1.8 2.9

DeepConcolic

KMNC - 15.2 15.2
NBC - 1.1 1.1
SNAC - 2.0 2.0

TABLE VI: Multi-granularity neuron coverage of test inputs
generated by DeepXplore, DLFuzz and DeepConcolic for
SVHN classifiers

RQ4. Is the determination of invalid inputs sensitive to
the generative model used?

To answer RQ4, we use a PixelCNN++ based input val-
idation technique. PixelCNN++ is an autoregressive deep
generative model [38]. The advantage of using this model
for out-of-distribution detection is that the model outputs the
probability density explicitly. We trained PixelCNN++ models
for MNIST and SVHN datasets. For each dataset, we find
the threshold for identifying invalid inputs by using an invalid
dataset and F-measure analysis similar to VAE based detection
technique described in Section III-A. The F-measure, precision
and recall of the selected thresholds for both the datasets are
presented in Table VIII.

The percentage of test inputs generated by DeepXplore,
DLFuzz and DeepConcolic for the MNIST and SVHN classi-
fication models that are classified as invalid by PixelCNN++
based input classifier are presented on the bottom row of
Fig. 6. PixelCNN++ for the MNIST models, classified a high
percentage of test inputs generated by DeepXplore’s light and
occlusion constraints as invalid and classified all test inputs
as valid for blackout constraint. For the SVHN classifiers,
occlusion and blackout constraints result in higher number of
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Fig. 7: Neuron Coverage of valid inputs generated by DeepXplore and DeepXplore extended with VAE for MNIST models

Fig. 8: Neuron Coverage of valid inputs generated by DeepXplore and DeepXplore extended with VAE for SVHN models

DNN DeepXplore+VAE DeepXplore Iterations
(DeepXplore+VAE
- DeepXplore)

Input validations
(DeepXplore+VAE
- DeepXplore)

Run-time
in mins

Valid
Inputs Iterations Input

validations
Run-time
in mins

Valid
inputs Iterations Input

validations
MNI-1 96.74 29 5413 882 103.82 1 5972 1832 -559 -950
MNI-2 73.5 54 4910 413 103 3 5913 1812 -1003 -1399
MNI-3 60.39 56 4863 200 96.66 3 5917 1587 -1054 -1387
MNI-4 54.97 52 4736 52 46.57 29 5199 375 -463 -323
SVH-1 97.12 17 5637 27 64.7 12 5737 47 -100 -20
SVH-2 97.96 20 5578 28 66.83 9 5798 60 -220 -32
SVH-3 90.34 21 5539 29 69.83 11 5703 80 -164 -51
SVH-4 143.81 83 4126 219 130.57 53 4547 446 -421 -227

TABLE VII: Run-time analysis of test generation algorithms of DeepXplore+VAE and DeepXplore for MNIST and SVHN
classifiers

Fig. 9: Number of valid inputs generated by DeepXplore
and DeepXplore extended with VAE for MNIST and SVHN
models

invalid inputs when compared to the light constraint.
The PixelCNN++ classified all test inputs generated by

DLFuzz as invalid for MNIST models and more than 60%
test inputs as invalid for SVHN models. All inputs generated
by DeepConcolic are identified as invalid for both the models.

The results follow the same trend as observed by VAE based
classifier. However the percentage of test inputs classified as
invalid by PixelCNN++ is less when compared to that of VAE

Dataset MNIST SVHN
Valid MNIST Test SVHN Test
Invalid FashionMNIST Test CIFAR10 Test
F-measure 0.99 0.92
False Positives 0.14% 2%
False Negatives 0.56% 10.66%

TABLE VIII: F-measure and percentage of false positives and
false negatives for PixelCNN++ based input validation model

for DeepXplore generated tests. For DLFuzz, the PixelCNN++
approach resulted in more invalid tests when compared to the
VAE based classifier. Both the VAE and PixelCNN++ based
techniques classified all test inputs generated by DeepConcolic
as invalid.
Result for RQ4: Test generators are judged to produce
invalid tests with different OOD techniques, but the
number of invalid tests is sensitive to the deep generative
model architecture used.

V. THREATS TO VALIDITY

We designed our study to provide a degree of generaliz-
ability by spanning all of the algorithmic families of DNN
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test generation approaches that have been developed to date,
as well as 2 datasets, 8 models, 4 coverage criteria, and
2 approaches to out-of-distribution detection. Moreover, the
datasets and models that we have chosen are those that have
been used in prior research – which was both a convenience
choice and a means of promoting comparison among methods,
e.g., against baselines. Despite these measures, our findings
may be dependent on these choices.

Further study, especially with additional OOD techniques,
beyond VAE and PixelCNN++, is warranted to understand
the generalizability of our findings as relates to the rate at
which invalid inputs are generated and the degree of coverage
achieved by those inputs. Our study on adapting test generation
with OOD is more limited using a single model, a VAE,
and a single test generation approach, DeepXplore which
is a representative of the class of optimization-based test
generation approaches. It is not a simple matter to extend
this study to other families of test generation methods, but
that will be necessary to understand the extent to which the
benefit of integrating OOD methods with DNN test generation
techniques broadly generalizes.

We ran all of our experiments multiple times and cross-
checked them with prior work, e.g., that we achieved the same
level of coverage for baseline techniques as was reported in
prior work. We took these measures to assure the quality of the
data reported here and we made the code available in github
for transparency and replicability.

VI. CONCLUSIONS

This paper demonstrates that existing DNN test generation
and test coverage techniques do not consider the valid input
space, which can have several deleterious effects. It can lead
DNN test methods to generate large numbers of invalid inputs
– those that lie off the training distribution as judged by
state-of-the-art techniques – thereby reducing the efficiency of
the test generation process and, even worse, producing large
numbers of tests that might be rejected as invalid during fault

triage processes. It can lead test coverage techniques to value
invalid tests inappropriately by achieving or improving on
coverage from valid tests – this has the potential to bias test
generation results.

Ndefensive(i⃗) {
if (!OOD(i⃗))
return N(i⃗)

else
return error(i⃗)

}

Fig. 10: Defensive DNN

We demonstrate that existing
out of distribution detection tech-
niques can be coupled with test
generation algorithms to address
this problem. In this work, we fo-
cused on VAE-based OOD detec-
tion and incorporating such mod-
els into optimization-based test
generation. Our study shows this
to be effective in significantly
boosting the number of valid test
inputs generated and in eliminat-
ing invalid tests. While promising, more work is needed to
explore the potential for other OOD models to inform test
generation and to incorporate such models into constraint-
based and fuzzing test generators.

Finally, we plan to explore how the well-understood con-
cept of defensive programming for traditional programs, as
sketched in Fig. 1a, can be adapted to DNNs. Fig. 10 sketches
a possibility suggested by the findings in this paper, where
the role of input validation is played by an OOD detector.
In such an architecture, testing of N should be restricted
to inputs that are not out of distribution, but testing of the
OOD itself must be conducted over a broader input space as
is the case with prior work on input validation testing [15],
[16], [17]. With such an architecture, DNN test suites that
achieve higher coverage of OOD and N are better, thereby
reestablishing the long held intuitions about test coverage for
traditional software.
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