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Endogenous organic molecules in fossil biominerals have the potential to provide records of past molecular 
composition with implications for evolutionary and environmental reconstruction. Fossil DNA has frequently 
been the target biomolecule in fossil samples and is useful for phylogenetic reconstructions of past organisms’ 
relationships to similar extinct and extant taxa and their responses to environmental change (review  by1 e.g.,2–4). 
However, DNA’s preservation for successful sequencing is limited to the past several hundred thousand years for 
vertebrate  taxa5,6 and less than 10,000 years for ancient invertebrate  DNA7.

In contrast, proteins can persist in the fossil record for hundreds of thousands to tens of millions of years, 
and they can inform identi"cation and signi"cant phylogenetic reconstructions of extinct organisms, including 
for hadrosaurs (e.g.,8–10). Preservation of these biomolecules in vertebrate skeletons may in part be due to the 
embedding of cells in the biomineral. For instance, vertebrate bone, which contains osteoblasts, has a relatively 
high organic content (~ 20–30% by  weight11).

Unfortunately, cells are not generally embedded in most invertebrate  biominerals12; therefore, organic matter 
preservation for these taxa is minimal. However, invertebrate skeletons and shells retain specialized extracellular 
proteins associated with the biomineralization  process12. #us, these invertebrate biomineralization proteins pro-
vide a potential sequencing target. For corals, such proteins become embedded in individual skeleton  crystals13, 
protecting them from degradation for long periods of time, and nitrogen likely derived from biomolecules in 
invertebrate biominerals has been analyzed for isotopic composition and presence of peptide bonds in inverte-
brate samples tens to hundreds of millions of years old (e.g.,14–17). For instance, δ15 N analyses of coral skeletons 
from the Triassic reveal that amino acids are preserved in fossil corals for hundreds of millions of  years15, nearly 
as long as there have been reef-building scleractinian  corals18. Yet, invertebrate biominerals contain much lower 
starting amounts of organic matter than their vertebrate counterparts, ~ 1% or  less19–22, potentially leaving little 
sequenceable protein material intact. Until the present work, the oldest sequenced invertebrate “skeletome” data 
derive from ancient mollusk shells dating to several thousand  years23,24, although there have been suggestions 
that somewhat intact proteins older than the Holocene do indeed remain in fossil invertebrate remains. For 
instance, glycoproteins extracted from an 80 myo Trigoniida bivalve mollusk shell were characterized as hav-
ing ~ 5% sequence proportion of DYDY, which is nearly half such content found in a related extant molluscan 
 taxon19, although the identities of the proteins were not determined.

#e mechanisms of coral biomineralization have been intensively studied for over 150 years (review  by25). 
Advances in the past decade include sequencing the skeletal proteomes of several modern  taxa26–29, character-
izing the carbonate chemistry conditions of the calcifying space that likely impact calci"cation in response 
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to ocean  conditions30–32, and developing coral cell cultures that precipitate aragonite at comparable rates to 
intact  corals26,33,34. #ere has also been a general proliferation of sequenced coral genomes and transcriptomes 
(e.g.,35–37). Roles of several biomineralization proteins have been revealed including the ability of the highly acidic 
proteins called coral acid rich proteins (CARPs) or skeletal aspartic acid-rich proteins (SAARPs) to precipitate 
aragonite from  seawater38, and the high enzyme activity of the coral skeletal carbonic anhydrase  STPCA239,40. 
However, the function of most of the approximately 100 known coral skeletal proteins remain to be established. 
Some protein roles may be suggested by their persistent interactions with the mineral once formed. For instance, 
proteins involved in nucleation of aragonite or in adhering amorphous calcium carbonate nanoparticles together 
toward their recrystallization to  aragonite13,41, may be more tightly bound within the mineral and may resist 
degradation. In this context, fossil biomolecular data may help clarify roles of proteins currently of unknown 
function. #us, important information may be forthcoming in addition to the utility of these protein sequences 
in organismal phylogenetic reconstruction.

To examine the persistence of coral skeletal proteins older than the Holocene epoch, we analyzed in-depth 
one modern and several Pleistocene Stage 5E Caribbean corals. As aragonite can recrystallize into secondary 
aragonite or calcite, with a potential loss or degradation of proteins in the process, we determined the samples’ 
mineral integrity by x-ray di%raction and inductively coupled plasma mass spectrometry analysis of element/
calcium abundance. We then used racemization analysis of free and hydrolyzed amino acids and protein visu-
alization to establish that any sequenced proteins are likely endogenous rather than modern contaminants. 
Finally, we sequenced extracted proteins using liquid chromatography with tandem mass spectrometry. #is 
work yielded the oldest known invertebrate protein sequences and suggests that highly acidic proteins resist 
degradation through intimate interactions with the mineral phase and may be useful targets for further analysis 
within the invertebrate fossil record.

�������
��������������������������������������������������Ǥ� Five modern and three fossil coral specimens 
were interrogated for the quality of their mineral preservation (SI Table 1). Fossil corals that were collected in 
1975 from exposed Key Largo Formation deposits, with youngest ages of 125 to 138 kiloanna (ka)42,43, and later 
donated to the Natural History Museum of Los Angeles County (NHMLA) were loaned to the authors. X-ray 
di%raction of these fossil specimens showed that Orbicella anularis-2 (herea&er: Mann2) has recrystallized to 
Mg-calcite and calcite, Montastraea cavernosa-1 (herea&er: Mcav1) is 70–85% aragonite and 15–30% calcite, 
while O. annularis-4 (herea&er Mann4) is 93–100% aragonite and 0–7% calcite (Fig. 1a–l). A modern O. annu-
laris specimen used for in-family comparison is 100% aragonite (Fig. 1m,n). Of the fossil corals, only Mann4 
exhibited Mg/Ca, Sr/Ca, and B/Ca ratios within the range of modern and fossil primary aragonite (Fig. 1o–t). 
Together, our data suggest that the fossil specimen Mann4 remains mostly primary aragonite.

SDS-PAGE indicated that proteins were among the biomolecules extracted by acid hydrolysis of cleaned 
fossil skeleton powder for all fossil specimens (Fig. 2). However, these proteins were degraded as evidenced by 
a bias toward small peptides (i.e., in the low molecular weight area of the gel) in all specimens. Further, fossil 
corals Mcav1 (70–85% aragonite), Mann2 (fully recrystallized to calcite), and Mann4 (> 90% primary aragonite) 
exhibited total hydrolysable amino acid (THAA) D/L Asx (aspartic acid plus asparagine) values of 0.634, 0.611, 
and 0.380, respectively (Table 1). For comparison, THAA D/L Asx of a modern O. annularis skeleton was 0.212.

	������ ���� ������� ������ ��������� �������� ����������Ǥ� No coral proteins were sequenced from 
cleaned skeleton powder of Mann2 (fully recrystallized to calcite) or Mcav1 (75–80% calcite). In contrast, Mann4 
(> 90% primary aragonite) yielded six coral proteins within our stringent criteria containing peptides that were 
sequenced by LC–MS/MS a&er trypsin or trypsin-then-GluC digestion; all proteins had either more than one 
peptide detected at least once, or one peptide detected multiple times (Table 2 and SI Table 2). Five proteins were 
detected in the acid-insoluble fraction and one was detected in the soluble fraction, with no overlap between 
the two fractions. #is is contrasted by the 61 proteins detected across all solubility and digestion fractions of 
proteins extracted from the newest growth of a modern O. annularis (SI Table 3). Proteins sequenced from fossil 
Mann4 skeleton include one of the highly acidic skeletal proteins known as acidic skeletal organic matrix protein 
(acidic SOMP)27 or  SAARP328 in Acropora spp. and P27 in Stylophora pistillata26, and also detected here in our 
modern O. annularis (SI Table 3). Although the Blast2GO annotation calls this protein acidic SOMP-like, we use 
SAARP3 here to be consistent with the most recently published  terminology28 and because the gene is clearly a 
sub-group within the CARPs4/5 or SAARPs1-3 gene family (SI Fig. 2). Other fossil proteins sequenced include 
a coadhesin which was also detected in our modern O. annularis, a lanC-like protein, a polyamine-modulated 
factor-binding protein, and two uncharacterized proteins.

����������
Sequencing of six fossil coral proteins (Table 2), three of which are also found in modern coral skeleton (26,27, 
present study), provides further con"rmation that coral skeletal proteins are speci"c components of the organic 
matrix embedded within individual aragonite crystals rather than simply cellular  contamination13,44, as peripheral 
proteins in the fossil samples would be accessible to degradation processes over the past ~ 100 ka. In the case 
of SAARP3, strong interactions likely persist between the acidic domains of the protein and calcium atoms in 
the  biomineral13. #is protein is a member of the CARPs4/5 or SAARPs1-3 family (SI Fig. 2), one member of 
which has been shown to lead to the precipitation of calcium carbonate from unamended  seawater38. Further, 
blasting indicates that the peptide detected in this protein does not have a BLAST hit in Homo sapiens, so it is 
not a contaminant of the extraction and sequencing. Having shown that the proteins sequenced from the fossil 
specimen are not likely contaminants (SI Tables 4 and 5), we can focus on the remaining fossil proteins. Like 
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Figure 2.  Fossil coral skeletal proteins separated by SDS-PAGE in order of least recrystallized to most 
recrystallized specimens. Lane 1 is the ladder, lane 2 is Mann4 acid insoluble matrix (AIM) pellet, lane 3 is 
Mcav1 AIM pellet, and lane 4 is Mann2 AIM pellet. Mann4 AIM pellet displays a standard acid-extracted 
biomineral protein smear with a band apparent at approximately 60 kDa (top yellow arrow). All specimens’ 
AIM pellets exhibit presence very small peptides (< 20 kDa) indicative of protein degradation (near lower yellow 
arrows), although Mann2 also retains a protein band at 75–80 kDa. Samples and ladder of Mann4 and Mcav1 
were run on the same gel which has been cropped to show only these lanes, whereas Mann2 was run on a 
separate gel. Brightness and contrast of all gels have been adjusted. #e uncropped gel images, both adjusted and 
unadjusted are provided in SI Fig. 1.

Table 1.  Average total hydrolysable amino acid (THAA) relative percent, D/L Asx and Glx, and % FAA Asx of 
proteins extracted from freshly collected, cored, and museum- and privately-held coral skeletons. Asparagine is 
converted to aspartate during hydrolysis of proteins/peptides, and the two together are reported as Asx.

Amino acid

Modern 
Porites 
australiensis 
(63)

Modern 
Acropora 
palmate (61)

Pleistocene 
Acropora 
palmate (61)

"is study

Modern 
Fungia sp.

Modern 
Pocillopora 
damicornis 
and P. acuta

Modern 
Porites lobata

Modern 
Orbicella 
annularis 
-aragonite

Pleistocene 
Orbicella 
annularis 
-aragonite 
(“Mann4”)

Pleistocene 
Orbicella 
annularis 
–mixed 
mineralogy 
(“Mcav1”)

Pleistocene 
Orbicella 
annularis 
-calcite 
(“Mann2”)

%Asx 60.3 52 47 51.9 36.8 51.5 56.3 36.9 37.6 45.0
%Glx 13.9 19 20 15.8 19.0 14.6 18.3 18.2 16.4 13.1
%Ser 8.9 8 1 10.5 8.5 5.2 5.2 4.2 2.7 5.4
%Ala 5.1 5 14 6.3 11.1 8.0 6.5 16.0 15.6 11.9
%Val 3.7 5 7 6.1 8.5 5.6 5.8 8.2 7.5 7.5
%Phe 2.5 2 2 3.5 7.1 7.1 1.7 2.7 11.6 1.6
%Ile 1.9 2 3 2.9 3.9 3.4 3.2 9.4 4.1 4.1
%Leu 3.7 6 6 3.0 5.1 4.6 3.2 4.3 4.4 4.4
THAA D/L 
Asx 0.173 0.181 0.821 0.131 0.141 0.134 0.212 0.38 0.634 0.611

THAA D/L 
Glx – – 0.793 0.072 0.072 0.109 0.107 0.279 0.547 0.470

%FAA Asx – 63 54 4.4 11.0 15.4 2.2 33.7 38.9 35.0
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SAARP3, coadhesin has been sequenced previously from modern coral  skeleton26–28. Coadhesin may persist in 
a sequenceable form in fossil corals due to its relatively high abundance, as suggested in modern skeleton (SI 
Table 3). Coadhesin, a transmembrane protein, contains multiple extracellular thrombospondin type-1 repeats, 
possibly allowing this protein to serve a role in adhesion of calicoblastic cells to organic matrix on and in the 
 skeleton27. Further, thrombospondins may form functional triple helices similar to collagen and  peroxidasin45 
two proteins known from coral  skeleton26,27. #ey have been implicated in structuring the other framework 
proteins of the ECM in mammalian  osteoblasts46 and inhibition of osteoblast  di%erentiation47. #is structural 
set-up of the coral ECM is engulfed by the growing mineral where it is preserved for, potentially, 100s ka. Two 
other proteins, a polyamine-modulated factor-binding protein that may play an adhesion and sca%olding role 
in the biomineralization process, as suggested by the protein’s adhesive properties in  sperm48, and a lanC-like 
protein which may associate with the cell  membrane49, were also detected in the fossil O. annularis skeleton 
but not in the modern one. One uncharacterized protein is similar to a protein previously sequenced from S. 
pistillata  (P1626) while the other is unique to O. annularis skeleton among all coral skeletal proteomes, although 
orthologs are present in genomes and transcriptomes across many scleractinian taxa (reefgenomics.org, NCBI). 
In general, annotation of several of the detected fossil proteins suggests that they were likely involved in adhering 
coral cells to the growing skeleton and in structuring the physical environment of the calcifying space, bringing 
them into direct contact with the mineral.

While 61 proteins were sequenced from the multiple fractions of modern O. annularis skeleton, only three 
of these, and six proteins total across all digestion fractions, were detected in fossil skeleton. #is is likely due to 
two issues. As analysis by SDS-PAGE shows, fossil proteins had likely degraded into smaller peptides (Fig. 2). 
Further, racemization of Arg and Lys would minimize the e'cacy of  trypsin50–52, although the stochastic nature 
of racemization means that, even a&er 100s ka, at least half of the enzyme target amino acids should be in a cleav-
able form. We attempted to overcome diminished e%ectiveness of tryptic digestion on fossil samples by further 
digesting the post-trypsin peptides with GluC, which selectively cleaves a&er Asp or Glu. Increased protein 
sequencing has been observed when using multiple enzymes on modern  specimens53,54, and we detected two 
additional proteins above our cuto% settings in post-GluC digestions of fossil O. annularis acid-insoluble skeletal 
protein. Coral skeleton is notoriously low in organic matter abundance with estimates of skeletal organic matter 
content as low as 0.01%22 and as high as several  percent55, so that the combined e%ects of low starting material, 
protein degradation, and racemization of enzymatic digestion targets places severe limits on the sequenceability 
of fossil coral proteins that would be encountered. Skeletons of invertebrates with comparable amounts of start-
ing organic matter content such as mollusk  shells19 and echinoderm tests and  spines20,21 at 0.3–4% and ~ 0.1% 
by weight, respectively, may face this issue as well.

In work of this nature, care must be taken to ensure that reported proteins are not modern  contaminants56; 
well-preserved specimens must be chosen and best practices in handling samples must be  employed57. Our 
crystallographic and trace element analyses allowed us to select a fossil coral specimen that retained its primary 
aragonite mineralogy (Fig. 1). Further, in addition to extensively cleaning all skeleton powders, we handled fossil 
and modern powders separately in age speci"c glove bags and months apart, with fossil O. annularis skeletons 
handled "rst. We also examined biochemical signatures of age and persistence of intact proteins.

Amino acid racemization has been used for the past 50 years to study fossil samples ranging in age from 500 to 
300,000 years  old58–60. In the present study, Mann4 exhibited THAA D/L Asx lower than similarly-aged Atlantic 
and Caribbean Pleistocene-aged  corals61,62. #is may be due to the fact that most of the Mann4 THAA Asx was 
made up of polymerized amino acids (33.7% FAA) whereas FAA accounted for most of the coral THAA Asx  in61 
(~ 60% FAA based on their Supplementary Figure EA 1; see our Supplementary document for details on quantita-
tion), with the FAA pool being drawn from hydrolysis of terminal amino acids in degraded proteins for which 
racemization had already  occurred63–65. In contrast to Mann4, the higher D/L Asx in Mann2 and Mcav1 may be 
due to degradation of proteins, potentially linked with recrystallization, as observed in protein extracted from 

Table 2.  Six proteins detected in a well-preserved Pleistocene Orbicella annularis (Mann4).

Database Accession Score Mass
No. of 
matches

No. of 
signi#cant 
matches

No. of 
sequences

No. of 
signi#cant 
sequences Blast2GO description e-value

%Coverage 
fraction Digestion

Orbicella_
Annularis g39268.t1 71 112,411 3 2 3 2

Uncharacterized protein 
LOC110058287 isoform X2 
[Orbicella faveolata]

0 2 AIM Trypsin1

Montast-
raea_cav

Montast-
raea_caver-
nosa_96538

60 135,355 2 2 2 2 Coadhesin-like, partial 
[Orbicella faveolata] 0 1 AIM Trypsin1

Platygyra_car-
nosus

Platygyra_car-
nosus_37674 45 22,588 8 5 1 1

Acidic skeletal organic 
matrix protein-like 
[Orbicella faveolata]

8.12E−95 8 AIM Trypsin1

Orbicella_
Annularis g29668.t1 82 38,126 12 7 1 1 lanC-like protein 3 isoform 

X 0 3 AIM Trypsin2

Montast-
raea_cav

Montast-
raea_caver-
nosa_28848

38 21,179 3 3 1 1
Polyamine-modulated factor 
1-binding protein 1-like 
[Orbicella faveolata]

1.50E−93 3 AIM GluC2

Platygyra_car-
nosus

Platygyra_car-
nosus_62468 37 18,905 2 2 1 1 –-NA–- No blast hit 4 AIM Trypsin1
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the partially recrystallized Mcav1 and analyzed by SDS-PAGE (Fig. 2). #is is similar to the process by which 
Asx racemization is greater when demineralization of bone results in degradation of the collagen triple  helix66,67. 
Di%erences in protein content between the fossil coral specimens is likely not due to di%erences in collection or 
preservation as documentation for the fossil skeletons indicates that they were collected by the same person at 
the same time and then stored together in warehouses at the NHMLA a&er their donation.

All three Pleistocene corals also exhibited relative amino acid molar concentrations similar to archived 
modern specimens reported here as well as archived material from a modern Porites skeleton and modern 
and fossil Acropora skeletons for which amino acid relative quanti"cation was performed as part of racemiza-
tion  analysis61,63 (Table 1). Even Mann2, fully recrystallized to calcite, retained a THAA relative composition 
roughly similar to its modern counterparts with a persistent bias toward the acidic residue-containing amino 
acid groups, Asx and Glx. However, compared with modern coral skeletons, we observed decreased relative Asx 
and Ser and increased relative Val in Mann4 and Mcav1, decreased relative Glx in Mann2, and increased relative 
Ala in all three fossil specimens (Table 1, SI Table 6). #e di%erence in amino acid composition could be due to 
loss of highly acidic proteins, of which there are multiple types in coral  skeleton13,41,68, and which would reduce 
the remaining Asx pool while increasing the relative abundance of the remaining non-acidic residues. We also 
observed a bias toward smaller peptides observed by SDS-PAGE (Fig. 2). Together with the non-modern D/L 
Asx and D/L Glx values, these are indicative of both very old proteins and of protein degradation and loss in 
the fossil coral skeletons. Further con"rmation that we did indeed sequence fossil coral skeletons is provided by 
degradation signatures in detected peptides. In particular, the detected peptide in SAARP3 in the acid-insoluble 
SOM fraction is suggested by MS1 data to be deamidated in both asparagines in the peptide. #is deamidation 
is a known degradation feature observed in other paleoproteomic analyses (e.g.69,70). Further e%ects of proteins 
being locked in aragonite crystals may include di%erential production of isoaspartate (or gamma glutamic acid) 
during asparagine (or glutamine)  deamidation71,72; unfortunately, the low peptide yield was insu'cient to pursue 
this analysis in the present study. Finally, our phylogenetic analysis shows that SAARP3 is a coral-speci"c protein 
(SI Fig. 2). In sum, we are con"dent that the six proteins sequenced from the fossil O. annularis, Mann4, are coral 
proteins of the same age as the skeleton.

It should be noted that extraction of coral proteins for sequencing is destructive. While owners of gi&ed or 
loaned coral skeletons were informed of this ahead of time and approved such use of the specimens, we remain 
cognizant that our use of portions of the samples precludes analysis of these portions in the future. We therefore 
sought to minimize the amount of material used for sequencing. Some modern coral skeletal proteome sequenc-
ing has used 10–30 g of cleaned skeleton  powder27,28, but comparable protein detection can be obtained from 
approximately 1 g of cleaned modern  material29. In this study, we found that this smaller amount of skeleton 
allowed sequencing of some fossil proteins and reinforces that these biomolecules are potentially available for 
sequencing from invertebrate biominerals aged over 100 ka. More material may yield better detection, and 
hence more sequenced peptides, in future studies but specimens should be carefully chosen to minimize loss 
of irreplaceable samples. Further, enzymatic digestion success is likely minimized by amino acid racemization. 
While we show here that we can successfully sequence several known modern skeletal proteins in fossil coral 
specimens, future method re"nement may consider inclusion of other, non-enzymatic, peptide cleavage meth-
ods; this could include the use of cyanogen bromide (e.g.73), although signi"cant accumulation of methionine 
oxidation in fossil specimens would minimize its  e%ectiveness74.

In summary, we show that fossil coral skeletons that retain their primary aragonite mineralogy preserve 
endogenous proteins that we extracted and sequenced by standard methods, while proteins in recrystallized fos-
sil coral skeleton are too degraded for sequencing. To be retained in the skeleton for over 100 ka, these proteins 
must have been intimately associated with the aragonite crystal. Our work supports this and pushes back the 
age at which these phylogenetically informative skeleton biomolecules can be obtained from the invertebrate 
fossil record.

�������
������������������Ǥ� Colonies of fossil Orbicella annularis and Montastraea cavernosa skeletons were bor-
rowed from the Natural History Museum of Los Angeles (NHMLA) Invertebrate Paleontology Department 
(Fig. 1). All specimens were originally collected from Pleistocene deposits in the Key Largo Formation (FL) aged 
125 to 138  ka42,75. #ese and modern corals of several species, also NHMLA collections, and the surface layer of 
a privately-owned O. annularis were analyzed for skeleton integrity (SI Table 1).

���������������Ǥ� Slabbed coral fragments were soaked in equal parts 30% hydrogen peroxide and 3% 
sodium hypochlorite a&er  Stoll76 and then ground to 125 µm . Skeleton powder was cleaned three additional 
times before being dried at 40 °C. Cleaning was su'cient to remove contaminant proteins, as determined from 
phosphate bu%ered saline solutions soaked on cleaned skeleton powders and then concentrated on 3 kDa Ami-
con Ultra centrifugal "lter units (Millipore), at the detection level of bichronoic acid assays (SI Table 4), of Stain-
Free SDS-PAGE (Bio-Rad) and imaging (SI Fig. 3), and were at concentrations three orders of magnitude lower 
than that observed in cleaned coral skeleton powder by amino acid  analysis61. All clean powder was only handled 
in age-speci"c glove bags (i.e. separate bags for fossil and modern), and modern samples were never handled at 
the same time as fossil samples for any biochemical analysis.

������������������Ǥ� Duplicate milled sub-samples of cleaned skeleton were cleaned a&er  Stoll76 and dried 
at 60 °C before analysis on a Panalytical X’Pert Pro X-ray Powder Di%ractometer (Malvern) on a zero di%rac-
tion background plate. Spectra were analyzed in X’Pert Hi-Score so&ware and relative amounts of aragonite 
and calcite were determined by the Reference Intensity Ratio  method77 using 01–072-1652 calcite and 00–041-
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1475 aragonite references for all samples. A&er x ray di%raction analysis, elemental composition of powders 
was measured on an Element XR HR-ICP-MS (#ermo Fisher) using Cibicides wuellerstor" (CAM-wuell) as a 
consistency  standard78.

������ ����� ������������Ǥ� Amino acids for racemization analysis, both free and total hydrolysable 
amino acids, were extracted, hydrolyzed, and evaporated to dryness from cleaned skeleton powders by standard 
 methods79. All samples were prepared in duplicate and analyzed at the Northern Arizona University Amino 
Acid Geochronology Laboratory using standard methods with modi"cations for  microfossils80–82. Rehydrated 
samples were spiked with L-homo-arginine as an internal standard and then injected into an HPLC "tted with a 
reverse-phase C18-packed column. ‘Blank’ samples were included.

������������������Ǥ� Approximately 1 g cleaned powder from each coral was decalci"ed in 0.5 M glacial 
acetic acid. Acid insoluble matrix (AIM) pellets were rinsed twice in ice-cold 80% acetone whereas acid soluble 
matrix (ASM) was precipitated in ice-cold 100% acetone and then rinsed twice in ice-cold 80% acetone. Pellets 
were immediately submitted for protein sequencing. A subset of extracted proteins were separated by SDS-
PAGE on 4–20% Mini-PROTEAN TGX Stain-Free™ precast gels (Bio-Rad) which were imaged on a Bio-Rad 
ChemiDoc XRS + imager following UV light exposure for 5 min.

��Ȃ��Ȁ���������������������Ǥ� Skeletal protein AIM and ASM samples were dissolved in 2% SDS bu%er 
and digested using either a "lter aided sample preparation (FASP; Mann4)83 or a multi-enzyme digestion "lter 
aided sample preparation protocol (MED-FASP; Mcav1, Mann2, Mann4, and the surface layer of a modern 
O. annularis) modi"ed  from54. Brie)y, protein was dissolved in SDS bu%er and placed in a 30 kDa Microcon 
Centrifugal Unit (Sigma Aldrich), SDS was displaced using an 8  M urea solution and then the sample was 
diluted to 2 M urea and digested with trypsin (Promega). Digested peptides were moved through the "lter into 
a micro-centrifuge tube (low retention; Fisher). Any undigested material that remained on the "lter was then 
digested with Glu-C (Promega) and peptides centrifuged into a second micro-centrifuge tube. Each fraction was 
analyzed separately on an nano-liquid-chromatography system coupled to a benchtop high-resolution orbitrap 
mass spectrometer (QE-Plus; #ermo Fisher) and operated in positive ion mode with data-dependent acqui-
sition. MS1 was performed at resolution of 70,000 (at 400 m/z) and MS2 at 17,500. Peak lists were extracted 
from raw spectra and processed using a Mascot (2.4; Matrix Science) server against Montastraea cavernosa, M. 
faveolata, and Platygyra carnosus protein databases downloaded from comparative.reefgenomics.org35, an O. 
faveolata protein  database84, and the O. annularis genome predicted protein  database85 under NCBI BioPro-
ject 550266. A common contaminants database downloaded from the Max Planck Institute of Biochemistry, 
Martinsried, and a UniProt-Human database were included in the analysis to test for contaminants. We also 
separately ran the LC–MS/MS data in Mascot against UniProt-bacteria, UniProt-cyanobacteria, and UniProt-
fungi databases and con"rmed that all detected peptides from those databases did not match peptides assigned 
to corals (SI Table 5). We also ran LC–MS/MS data for a preparation blank sample against the coral, common 
contaminants, and UniProt-Human databases to con"rm that other contaminant from the preparation process 
were not assigned to corals (SI Table 5). For all Mascot runs, we applied carbamidomethylation of cysteine as a 
"xed modi"cation and oxidation of methionine, acetylation, and deamidation of asparagine and glutamine as 
variable modi"cations. Enzyme speci"city was set to trypsin with one missed cleavage allowed. Mass tolerances 
were set to 10 ppm and 20 mmu for precursor and product ions, respectively, and precursor charge was set to 
2 + , 3 + , or 4 + .

Initial decoy searches were performed in Mascot using a 1% false discovery rate to determine the appropri-
ate signi"cance value setting. Next, we performed Mascot error-tolerant searches with this signi"cance setting. 
Only protein sequences above the cuto% score with at least two independent signi"cant peptides detected, or 
one peptide detected signi"cantly multiple times, were retained. We blasted these sequences against the NCBI 
nr database in Blast2GO. Further, we BLASTed returned proteins against the NCBI Homo sapiens database and 
manually checked hits with high sequence similarity for identity of LC–MS/MS detected peptides; if ‘coral’ and 
human peptides were identical, we manually removed the protein sequence from our list of coral skeletal pro-
teins. #e mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 
the  PRIDE86 partner repository with the dataset identi"ers found in SI Table 7.

������������� ��������� ��� �����͹Ǥ� CARP4/SAARP1, CARP5/SAARP2, and P27/acidic SOMP/
SAARP3, previously sequenced from coral  skeletons26–29, were blasted against the cnidarian predicted protein 
databases in comparative.reefgenomics.org35. #ey were also blasted against NCBI and the top non-cnidarian 
hits with E-values better than e-20, two Crassostrea gigas sequences, were retained. Multiple sequence align-
ments were generated in T-Co%ee87,88. Aligned protein sequences were trimmed using the TrimAl v1.3 align-
ment utility in Phylemon2 using the gappyout  method89,90. #e most appropriate model was chosen in ProtTest 
 391, and then maximum likelihood trees were constructed in PhyML using the WAG + G + I substitution model 
with bootstrap set to 1000 and all other pre-set  parameters92.

���������������������������������Ǥ� Relative content of each amino acid (THAA) was compared between 
the replicate data for each fossil coral skeleton reported on here versus average values from modern O. annularis, 
Fungia sp. Pocillopora damicornis, P. acuta, and Porites lobata, plus previously reported values from modern 
Acropora palmata61 and Porites australiensis63, as reported or reproduced in Table 1, in  RStudio93. Shapiro–Wilk 
normality tests showed that all modern amino acids exhibited normal distribution, so that Student’s t-tests were 
applied (SI Table 6).



;

Vol:.(1234567890)

�������Ƥ��������� |        (2020) 10:19407  |  �����ǣȀȀ���Ǥ���ȀͷͶǤͷͶ͹;Ȁ�ͺͷͻͿ;ǦͶ͸ͶǦͽͻ;ͺͼǦͺ

www.nature.com/scientificreports/

�����������������
#e mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 
 PRIDE86 partner repository with the dataset identi"ers found in SI Table 7.
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