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Distributed Mirror Descent With Integral
Feedback: Asymptotic Convergence Analysis
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Abstract—This letter addresses distributed optimization,
where a network of agents wants to minimize a global
strongly convex objective function. The global function can
be written as a sum of local convex functions, each of which
is associated with an agent. We propose a continuous-
time distributed mirror descent algorithm that uses purely
local information to converge to the global optimum. Unlike
previous work on distributed mirror descent, we incor-
porate an integral feedback in the update, allowing the
algorithm to converge with a constant step-size when dis-
cretized. We establish the asymptotic convergence of the
algorithm using Lyapunov stability analysis. We further
illustrate numerical experiments that verify the advantage
of adopting integral feedback for improving the conver-
gence rate of distributed mirror descent.

Index Terms—Optimization algorithms, decentralized
control, Lyapunov methods, mirror descent.

I. INTRODUCTION

T
HE MIRROR descent (MD) algorithm [1] is a primal-

dual method that has been successfully used for large-

scale convex optimization problems. MD can be seen as

a generalization of gradient descent, which can exploit the

geometry of the optimization problem. The algorithm replaces

the Euclidean distance with a so-called Bregman divergence

as the regularizer for projection. This idea provides a signifi-

cant convergence speed-up for high-dimensional optimization

problems [2].

In practice, optimization methods (including MD)

are numerically implemented in discrete time, but their

continuous-time analysis has always been of major interest

to the control and optimization community [3]–[5]. This

stems from the fact that many optimization methods can be

interpreted as discretization of ordinary differential equations

(ODEs), and therefore, their convergence can be established

using the theory of control and dynamical systems. The MD
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algorithm is no exception in this regard, and it can be studied

via a system of ODEs [6].

In this letter, we address distributed continuous-time

optimization via decentralized mirror descent, inspired by the

success of centralized MD in large-scale optimization. In this

setup, a network of agents wants to minimize a global strongly

convex objective function. The global function can be written

as a sum of local convex functions, each of which is associated

with an agent. We develop a continuous-time decentralized

MD algorithm that uses purely local gradient information to

converge to the global minimizer. Contrary to the prior work

on (discrete) distributed mirror descent (e.g., [7], [8]), we

enforce consensus among agents using the idea of integral

feedback, in addition to the standard neighborhood averaging.

The integral feedback is particularly useful for implemen-

tation purposes, allowing the algorithm to converge with a

constant step-size when discretized. We establish the asymp-

totic convergence using Lyapunov stability analysis, based on

a Lyapunov function that relies on both primal and dual vari-

ables. Our numerical experiments verify that adopting integral

feedback improves the convergence rate of distributed mirror

descent.

A. Related Literature

I) Gradient Tracking in Discrete Distributed Gradient

Descent (DGD): A natural question in (discrete) distributed

optimization is that whether decentralized algorithms are

able to perform on par with their centralized counterparts.

For purely convex problems (non-strongly convex and non-

smooth), this could be done using diminishing step sizes [9],

which tends agents to an agreement. However, since cen-

tralized gradient descent for strongly convex and/or smooth

problems works optimally under the constant step-size setting,

its decentralization was challenging. Therefore, a number of

works (see e.g., [10]–[13]) have proposed the idea of gradient

tracking to overcome this hurdle. The term “tracking” implies

that the algorithm uses a variable calculated from past gra-

dients to keep track of the information from the network. It

then uses the variable combined with the current local gradient

to output a “corrected” gradient such that the network agents

are able to reach consensus. These methods accumulate past

information and play a similar role as integral feedback, but
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they are discrete-time. Such modification enables the decen-

tralized algorithm to match its centralized counterpart in terms

of convergence rate.

II) Continuous-time DGD: Of particular relevance to

the current work is the literature on continuous-time

DGD [14]–[19]. Similar to the centralized setup, these works

construct ODEs to describe the dynamics of DGD. While

the concept of DGD is rather straightforward, for continuous-

time analysis in certain cases (e.g., strongly convex problem),

no desirable results are obtained by simply combining gra-

dient descent with a standard neighborhood averaging. This

is in the similar spirit as the challenge in discrete DGD,

overcome by gradient tracking. To tackle the continuous-time

problem, multiple works have utilized the integral feedback

idea [16]–[19], which introduces another variable to drive the

disagreement among agents to zero. Nevertheless, these works

are on gradient descent, and the results cannot be applied

directly to MD, which is a more general framework, and

proposing an MD algorithm to have a comparable performance

is still an open research problem.

III) Distributed Mirror Descent (DMD): Decentralizing

mirror descent has recently drawn a great deal of atten-

tion. While our focus is on the continuous-time analysis,

DMD has been largely analyzed in discrete time in vari-

ous contexts, such as online optimization [8], [20], stochastic

optimization [21], [22], and the effect of delays in distributed

optimization [7]. It has also been applied to social learning

and belief dynamics [23]. Furthermore, Doan et al. [24] study

the convergence of iterates for both centralized and decentral-

ized MD. A large subset of these works (e.g., [7], [8], [20],

[21], [24]) feature diminishing step-size to ensure consensus,

not suitable for the strongly convex setup. Continuous-time

DMD has been studied in [25], [26] with the motiva-

tion of noise-variance reduction in stochastic optimization.

The main distinction of our work with these literature

on DMD is adopting and analyzing the idea of integral

feedback.

We also remark that the letter of Yu and Açıkmeşe [27]

adopts an RLC-circuit perspective to DMD. The difference

between [27] and this letter is that we study strongly convex

functions, so our convergence guarantee is on the decision

variable rather than the objective value.

B. Paper Organization

The rest of this letter is organized as follows. In

Section II, we lay out the problem formulation and develop

the continuous-time distributed mirror descent with inte-

gral feedback. In Section III, we provide the theoretical

convergence analysis of the algorithm using Lyapunov sta-

bility analysis. Section IV provides a discretized version

of our algorithm and illustrates a numerical simulation to

show effectiveness of the proposed algorithm, and Section V

concludes.

II. PROBLEM FORMULATION

A. Notation

We use the following notation in this letter:

The vectors are all in column format. We denote by

col{v1, . . . , vn} the vector that stacks all vectors vi for i ∈ [n].

We use diag{a1, . . . , an} to represent an n×n diagonal matrix

that has the scalar ai in its i-th diagonal element.

B. Network Setting

In distributed optimization, we often consider a network of n

agents modeled with a graph G = (V, E), where the agents are

represented by nodes V = [n] and the connection between two

agents i and j is captured by the edge {i, j} ∈ E . Each agent is

associated with a local cost function, and if the link {i, j} ∈ E

exists, that implies agents i and j can exchange information

about their respective cost functions. Then, agent j is in the

neighborhood of agent i, denoted by Ni ! {j ∈ V : {i, j} ∈ E}.

The agents work collectively to find the optimum of the

global cost function, which is the sum of all cost local

functions (to be defined precisely in Section II-C).

Assumption 1: We assume the graph G is undirected and

connected, i.e., there exists a path between any two distinct

agents i, j ∈ V . We use L ∈ R
n×n to the represent the Laplacian

of the graph G.

The connectivity assumption implies that L has a unique

null eigenvalue. That is, L1n = 0, and 1n is the only direction

(eigenvector) recovering the null eigenvalue.

C. Distributed Optimization Problem

In this letter, we consider a distributed (or decentralized)

optimization problem in an unconstrained setting. Let us

denote by fi : R
d → R, the cost function associated with agent

i ∈ [n]. Then, the goal is to find the optimal solution of the

global cost function F, which can be written as a sum of local

cost functions as follows,

minimize
x∈Rd

F(x) =

n
∑

i=1

fi(x). (1)

Since individual agents do not have knowledge of F, they

cannot find the global solution on their own, and they must

communicate with each other to augment their incomplete

information with that of their neighborhood.

Assumption 2: For any agent i ∈ V , we assume that the

local cost function fi : R
d → R is convex and differentiable.

While Assumption 2 implies that the global objective func-

tion F is also convex and differentiable, we impose an

additional assumption on the global cost as follows.
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Assumption 3: The global function F : R
d → R is strongly

convex. The optimal value denoted by F⋆ exists, and the

unique solution that achieves F⋆ is denoted by x⋆.

The assumption above will be used later in the analy-

sis to prove the uniqueness of equilibrium for our proposed

distributed continuous-time algorithm.

D. Centralized Mirror Descent

Since the focus of this letter is on the mirror descent

algorithm, we provide some background on the centralized

algorithm in this section, before developing the distributed

algorithm in Section II-E.

Gradient descent methods iteratively minimize a first order

approximation of a function plus a Euclidean regularizer.

Mirror descent generalizes this idea to a non-Euclidean setup

by using the notion of Bregman divergence, which replaces the

Euclidean distance as the regularizer. The Bregman divergence

is defined with respect to a generating function φ : R
d → R,

as follows

Dφ(x, x′) ! φ(x) − φ(x′) − ⟨∇φ(x′), x − x′⟩. (2)

It can be immediately seen from above that the Bregman

divergence is not generally symmetric, thereby it is not a

distance.

Assumption 4: The generating function φ is closed, differ-

entiable and µφ-strongly convex.

The assumption above is standard. For example, φ(x) =
1
2
∥x∥2 (the generator for the Euclidean distance), as well as

the negative entropy function φ(x) =
∑d

j=1 [x]j log([x]j) (the

generator for the Kullback–Leibler divergence) both satisfy the

assumption [8].

In discrete time, the unconstrained mirror descent algorithm

with learning rate η is written as

x(k+1) = argmin
x

{

F(x(k)) + η∇F(x(k))⊤(x − x(k))

+ Dφ(x, x(k))

}

, (3)

where using the Euclidean distance in lieu of the Bregman

divergence (i.e., Dφ(x, x(k)) = 1
2
∥x − x(k)∥2) reduces the

algorithm to a gradient descent.

For writing the continuous-time dynamics of mirror decent,

an equivalent form of the update above is more convenient to

use. This equivalent form is based on the convex conjugate

or Fenchel dual of function φ, which is denoted by φ⋆ and

defined as follows

φ⋆(z) ! sup
x∈Rd

{⟨x, z⟩ − φ(x)}.

The definition above entails the subsequent equivalence

z′ = ∇φ(x′) ⇐⇒ x′ = ∇φ⋆(z′),

and Assumption 4 guarantees that φ⋆ is µ−1
φ -smooth. More

details can be found in [28].

With the definition of φ⋆ in place, the update (3) can be

rewritten in the following equivalent form

z(k+1) = z(k) − η∇F(x(k))

x(k+1) = ∇φ⋆(z(k+1)). (4)

Then, taking the learning rate η to be infinitesimally small,

the centralized mirror descent ODE takes the following form

ż = −∇F(x),

x = ∇φ⋆(z),

x(0) = x0, z(0) = z0 with x0 = ∇φ⋆(z0), (5)

which has been studied in [6, Sec. 2.1]. It is easy to see that

when φ(x) = 1
2
∥x∥2, since φ⋆(z) = 1

2
∥z∥2, we have that

x = ∇φ⋆(z) = z, and the mirror descent ODE reduces to

the gradient descent ODE.

E. Distributed Mirror Descent With Integral Feedback

We now develop the distributed version of mirror descent

algorithm. Motivated by the use of integral feedback [16]–[19]

to enforce consensus among agents, we propose the following

continuous-time algorithm

żi = −∇fi(xi) +
∑

j∈Ni

(xj − xi) +

∫ t

0

∑

j∈Ni

(xj − xi)

xi = ∇φ⋆(zi), (6)

initialized with xi(0) = xi0, zi(0) = zi0, where xi0 = ∇φ⋆(zi0).

The dual update zi for agent i ∈ [n] uses only private gra-

dient information. It also enforces the primal variables in the

neighborhood of i to get close to each other by using both

a consensus term and an integral feedback. The integral

feedback uses an additional state in each agent to store the

information of past consensus term. Then, the second update

maps the variable zi back to the primal space using φ⋆.

To analyze (6), it is more convenient to stack all the local

vectors as follows

x ! col{x1, x2, . . . , xn}

z ! col{z1, z2, . . . , zn}, (7)

and define the following notation

L ! L ⊗ Id

∇φ⋆(z) ! col{∇φ⋆(z1),∇φ⋆(z2), . . . ,∇φ⋆(zn)}

∇f (x) ! col{∇f1(x1),∇f2(x2), . . . ,∇fn(xn)}. (8)

Then, by introducing the variable y to replace the integral, the

dynamics given in (6) can be rewritten as follows,

ż = −(∇f (x) + Lx + y),

ẏ = Lx,

x = ∇φ⋆(z), (9)

where y ∈ R
nd and y(0) = 0.

III. MAIN RESULTS

In this section, we establish the theoretical convergence of

the distributed mirror descent algorithm with integral feed-

back, proposed in (6). We prove that all agents will converge

asymptotically to the minimizer of the global function F,

defined in (1).

First, we propose a lemma to show that the unique equilib-

rium of (6) for primal variables coincides with the minimizer

of problem (1), which will later be used in the proof for the

asymptotic convergence to the equilibrium.
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Lemma 1: Given Assumptions 1-4, an equilibrium point for

the continuous-time dynamics (6) exists, and it is unique. In

the equilibrium, x⋆
i = x⋆ = ∇φ⋆(z⋆

i ) for all i ∈ [n], i.e., the

equilibrium point has the consensus property, and at equilib-

rium, the primal variable for each agent is the solution to

problem (1).

Proof: Since the continuous-time dynamics (9) is equiva-

lent to (6), to prove Lemma 1, it is sufficient to show that

there exists a unique point (x⋆, y⋆, z⋆) satisfying equilibrium

conditions for (9):

– To have ẏ = 0, we need x⋆ to be in the null space of

L = L ⊗ Id, which together with the connectivity assumption

(Assumption 1), it implies that x⋆ = 1n ⊗ a for some vector

a ∈ R
d.

Next, we show that indeed a = x⋆, where x⋆ is the minimizer

of F.

– To have ż = 0, we need

∇f (x⋆) + y⋆ = 0. (10)

Due to the initialization y(0) = 0, we have that

y(t) = L

∫ t

0

x(τ )dτ, (11)

which implies (1n ⊗ Id)
⊤y(t) = (1n ⊗ Id)

⊤L
∫ t

0 x(τ )dτ = 0.

Therefore, (1n ⊗ Id)
⊤y⋆ = 0, and combining this with (10),

we get

(1n ⊗ Id)
⊤∇f (x⋆) = 0 =⇒

n
∑

i=1

∇fi(a) = ∇F(a) = 0.

Due to the strong convexity of F in Assumption 3, the solution

for a is unique and a = x⋆ is the minimizer of F. Hence, the

following point is the unique equilibrium

x⋆ = 1n ⊗ x⋆, y⋆ = −∇f (x⋆), z⋆ = ∇φ(x⋆),

thereby completing the proof.

In order to better capture the dynamics of the variables,

without loss of generality, we shift the equilibrium of the

dynamics to zero by defining a set of new variables

x̃ ! x − x⋆, ỹ ! y − y⋆, z̃ ! z − z⋆, (12)

where (x⋆, y⋆, z⋆) is the unique equilibrium point given in

Lemma 1. We can then rewrite the first two equations of (9)

as follows

˙̃z = −(∇f (x̃ + x⋆) + L(x̃ + x⋆) + ỹ + y⋆)

= −(∇f (x̃ + x⋆) − ∇f (x⋆)) − Lx̃ − ỹ,

˙̃y = Lx̃, (13)

where we used the fact that x⋆ = 1n ⊗ x⋆ and y⋆ = −∇f (x⋆).

Now, as the matrix L = L ⊗ Id is symmetric and positive

semi-definite, there exists a decomposition L = Q%Q⊤, where

Q is an orthogonal matrix and % = diag{λ1, . . . , λnd} is a

diagonal matrix. Let

S = L
1
2 = Q%

1
2 Q

⊤
,

where %
1
2 = diag{

√
λ1, . . . ,

√
λnd}. Given (11), there exists

a variable w(t) = S
∫ t

0 x(τ )dτ and its centered version w̃ =

w − w⋆, such that

y = Sw, and ỹ = Sw̃. (14)

Replacing ỹ in (13) with Sw̃, we have that

˙̃z = −(∇f (x̃ + x⋆) − ∇f (x⋆)) − Lx̃ − Sw̃,

˙̃w = Sx̃. (15)

Following the proof of Lemma 1, it is straightforward to

show that the dynamics above at equilibrium satisfy x̃ =

0. We state our main theorem below to show that the

system converges asymptotically to the equilibrium provided

by Lemma 1.

Theorem 1: Given Assumptions 1-4, for any starting point

xi(0) = xi0, zi(0) = zi0 with xi0 = ∇φ⋆(zi0), the distributed

mirror descent algorithm with integral feedback proposed

in (6) will converge to the global optimum asymptotically,

i.e., limt→∞ xi(t) = x⋆ for any i ∈ [n].

Proof: We study the convergence of the dynamics (15). Let us

consider the candidate Lyapunov function

V(z̃, w̃) =

n
∑

i=1

Dφ⋆(zi, z⋆) +
1

2
w̃⊤w̃. (16)

Notice that the Bregman divergence used in the candidate

Lyapunov function is defined with respect to φ⋆. Since φ⋆

is convex and µ−1
φ -smooth, V(z̃, w̃) is non-negative and has

Lipschitz-continuous first derivatives. Differentiating V and

recalling (6)-(13)-(15), we derive

V̇ =
d

dt

n
∑

i=1

(

φ⋆(zi) − φ⋆(z⋆) − ⟨∇φ⋆(z⋆), zi − z⋆⟩
)

+ w̃⊤ dw̃

dt

=

n
∑

i=1

⟨xi − x⋆,
dzi

dt
⟩ + w̃⊤Sx̃

= ⟨x − x⋆,
dz

dt
⟩ + w̃⊤Sx̃

= ⟨x̃,−(∇f (x̃ + x⋆) − ∇f (x⋆) + Lx̃ + Sw̃)⟩ + w̃⊤Sx̃

= − ⟨x̃,∇f (x̃ + x⋆) − ∇f (x⋆)⟩ − x̃⊤Lx̃.

It is clear from the convexity of local functions that V̇ ≤
0 at all times. When local variables do not have consensus,

V̇ < 0 since x̃⊤Lx̃ < 0. When consensus is reached, x̃ =

1n ⊗ a, and then the first term ⟨x̃,∇f (x̃ + x⋆) − ∇f (x⋆)⟩ =
∑n

i=1⟨a,∇fi(a + x⋆) − ∇fi(x
⋆)⟩ is equal to zero if and only

if a = 0, which implies x̃ = 0. The uniqueness of a = 0 is

due to the strong convexity in Assumption 3. Therefore, the

condition for equality is x = x⋆, which also gives z = z⋆.

The Lyapunov function satisfies V > 0 for z̃ ̸= 0, and V = 0

when z̃ = 0, w̃ = 0. We also have V̇ ≤ 0 with equality only

at equilibrium. Then, by LaSalle’s invariance principle, the

dynamics (15) will converge asymptotically to its equilibrium

point, and this completes the proof.

Theorem 1 shows that for the convergence of DMD, we

do not have to appeal to a diminishing step-size (when dis-

cretized) to enforce consensus. We can remedy this using

integral feedback without a loss in the convergence speed (as

we see in the next section).

IV. NUMERICAL SIMULATION

In this section, we first derive a discretized version of our

algorithm in (18) and then illustrate a numerical example that
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shows the advantage of using integral feedback for speeding

up the convergence of distributed mirror descent.

A. Discretization

Recall the continuous-time dynamics (9). We use Euler’s

method to derive a discrete version of the algorithm as fol-

lows. We first choose a time interval for discretization denoted

by 't. Let tk ! k't and x(k) ! x(tk) = x(k't). We can simi-

larly define y(k) and z(k). We then have the following discrete

updates

z(k+1) − z(k)

't
= −(∇f (x(k)) + Lx(k) + y(k)),

y(k+1) − y(k)

't
= Lx(k). (17)

After re-arranging the terms, the fully distributed mirror

descent algorithm with integral feedback takes the following

(discrete) form

zi
(k+1) = zi

(k) −

⎛

⎝∇fi(xi
(k)) + yi

(k) +
∑

j∈Ni

(xi
(k) − xj

(k))

⎞

⎠'t,

yi
(k+1) = yi

(k) +
∑

j∈Ni

(xi
(k) − xj

(k))'t,

xi
(k+1) = ∇φ⋆(zi

(k+1)). (18)

B. Numerical Example

We now provide a simulation for the update (18).

– Network Structure: We consider a 10-agent cycle network,

where each agent is connected to its previous and next agent,

and the last agent is connected to the first agent.

– Generating Function for Mirror Descent: To imple-

ment mirror descent, we employ the commonly used negative

entropy as the generating function, where

φ(x) =

d
∑

j=1

[x]j log([x]j) =⇒ [z]i = [∇φ(x)]i = 1 + log([x]i),

and by convention [x]j log([x]j) = 0 if [x]j = 0. Here, x and

z are both d-dimensional vectors. By simple calculations, it

can be shown that φ⋆, the convex conjugate of φ, takes the

following form

φ⋆(z) =

d
∑

j=1

e[z]j−1 =⇒ [x]i = [∇φ⋆(z)]i = e[z]i−1.

Thus, we can now implement (18).

– Global and Local Functions: To construct the functions,

we first generate a 100-dimensional vector u following a

Gaussian distribution N (10 × 1d, Id). We then perturb u to

generate local optima ui = u + wi, where wi ∼ N (0, Id)

for i ∈ [n]. We set the local functions fi(x) = 1
2
∥Aix − bi∥2,

where bi = Aiui and Ai ∈ R
20×100 is a random matrix of rank

15. The global function becomes F(x) = 1
2
∥Ax − b∥2, where

A ∈ R
200×100 and b ∈ R

200 are stacked versions of their dis-

tributed counterparts. We can verify that F is strongly convex,

and the closed-form solution for this problem is x⋆ = A†b.

Fig. 1. The trajectory of the global objective evaluated at agent 1.

Fig. 2. The average distance of local variables from the optimum.

TABLE I
LIST OF RUN TIME AND ITERATION NEEDED FOR RESPECTIVE

METHODS TO REACH F (x1) − F (x⋆) ≤ 0.01

We run (18) with a feasible random initialization x
(0)
i , and let

y
(0)
i = 0 and z

(0)
i = ∇φ(x

(0)
i ) for every i ∈ [n]. Recall that

n = 10 and d = 100, and we set 't = 10−2.

Note that the local objective functions are only convex, but

the global objective function F(x) =
∑n

i=1 fi(x) is strongly

convex in consistent with our theoretical assumptions.

– Performance: We compare our method with distributed

mirror descent without integral feedback [7], [8]. These works

were originally proposed for convex global functions with

a suggested diminishing step-size 1√
k
. Beside that, we also

include their performance with constant step-size.

For all three algorithms, we plot F(x
(k)
1 ) − F⋆ and

1
n

∑n
i=1 ∥x

(k)
i − x⋆∥ with respect to iteration k, in Fig. 1 and

Fig. 2, respectively. We also provide a comparison on the

run-time of the methods in Table I. The run-time is the

required time to hit 0.01 precision on the objective value.

We can see that our method converges faster than distributed

mirror descent without integral feedback both in run time

and in iteration number. In fact, without integral feedback,

agents never converge to the global solution using a constant

step-size, because the local objective functions have different
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Fig. 3. The trajectory of the log-distance to global solution evaluated at
agent 1.

local minima. We further plot log(F(x
(k)
1 )−F⋆) with respect to

iteration k in Fig. 3. Interestingly, our method exhibits a linear

convergence rate (i.e., exponentially fast), which is on par with

the state-of-the-art distributed gradient descent methods (in the

sense of achieving a linear rate). We reiterate that diminish-

ing step-size is suitable for convex (and not strongly convex)

global objective functions. The main purpose of the compar-

isons with other methods is to illustrate the power of integral

feedback when the strong convexity assumption is satisfied.

V. CONCLUSION

In this letter, we considered a distributed optimization sce-

nario where a network of agents aims at minimizing a strongly

convex function, that can be written as a sum of local con-

vex functions. The agents only have access to local gradients,

but they are able to exchange information with one another.

We proposed a fully decentralized mirror descent algorithm

that enforces consensus among agents through a consen-

sus term plus an additional integral feedback. We studied

the continuous-time dynamics of the algorithm and provided

asymptotic convergence using Lyapunov stability. Focusing

on strongly convex problems, we presented empirical results

verifying that distributed mirror descent with integral feed-

back enjoys a faster convergence rate, compared to its variants

without integral feedback.

This letter provides technical analysis for the asymptotic

convergence, but the simulations show that the algorithm (per-

haps with smoothness assumption) can exhibit exponential

convergence. Therefore, a potential future direction is the the-

oretical analysis of this behavior. Furthermore, studying the

theoretical guarantees of (18) will shed more light on required

technical assumptions in maintaining the same convergence

rate when transitioning from the continuous-time update to

the discrete-time update.
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