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Distributed Mirror Descent With Integral
Feedback: Asymptotic Convergence Analysis
of Continuous-Time Dynamics

Youbang Sun

Abstract—This letter addresses distributed optimization,
where a network of agents wants to minimize a global
strongly convex objective function. The global function can
be written as a sum of local convex functions, each of which
is associated with an agent. We propose a continuous-
time distributed mirror descent algorithm that uses purely
local information to converge to the global optimum. Unlike
previous work on distributed mirror descent, we incor-
porate an integral feedback in the update, allowing the
algorithm to converge with a constant step-size when dis-
cretized. We establish the asymptotic convergence of the
algorithm using Lyapunov stability analysis. We further
illustrate numerical experiments that verify the advantage
of adopting integral feedback for improving the conver-
gence rate of distributed mirror descent.

Index Terms—Optimization algorithms, decentralized
control, Lyapunov methods, mirror descent.

|. INTRODUCTION

HE MIRROR descent (MD) algorithm [1] is a primal-

dual method that has been successfully used for large-
scale convex optimization problems. MD can be seen as
a generalization of gradient descent, which can exploit the
geometry of the optimization problem. The algorithm replaces
the Euclidean distance with a so-called Bregman divergence
as the regularizer for projection. This idea provides a signifi-
cant convergence speed-up for high-dimensional optimization
problems [2].

In practice, optimization methods (including MD)
are numerically implemented in discrete time, but their
continuous-time analysis has always been of major interest
to the control and optimization community [3]-[5]. This
stems from the fact that many optimization methods can be
interpreted as discretization of ordinary differential equations
(ODEs), and therefore, their convergence can be established
using the theory of control and dynamical systems. The MD
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algorithm is no exception in this regard, and it can be studied
via a system of ODEs [6].

In this letter, we address distributed continuous-time
optimization via decentralized mirror descent, inspired by the
success of centralized MD in large-scale optimization. In this
setup, a network of agents wants to minimize a global strongly
convex objective function. The global function can be written
as a sum of local convex functions, each of which is associated
with an agent. We develop a continuous-time decentralized
MD algorithm that uses purely local gradient information to
converge to the global minimizer. Contrary to the prior work
on (discrete) distributed mirror descent (e.g., [7], [8]), we
enforce consensus among agents using the idea of integral
feedback, in addition to the standard neighborhood averaging.
The integral feedback is particularly useful for implemen-
tation purposes, allowing the algorithm to converge with a
constant step-size when discretized. We establish the asymp-
totic convergence using Lyapunov stability analysis, based on
a Lyapunov function that relies on both primal and dual vari-
ables. Our numerical experiments verify that adopting integral
feedback improves the convergence rate of distributed mirror
descent.

A. Related Literature

I) Gradient Tracking in Discrete Distributed Gradient
Descent (DGD): A natural question in (discrete) distributed
optimization is that whether decentralized algorithms are
able to perform on par with their centralized counterparts.
For purely convex problems (non-strongly convex and non-
smooth), this could be done using diminishing step sizes [9],
which tends agents to an agreement. However, since cen-
tralized gradient descent for strongly convex and/or smooth
problems works optimally under the constant step-size setting,
its decentralization was challenging. Therefore, a number of
works (see e.g., [10]-[13]) have proposed the idea of gradient
tracking to overcome this hurdle. The term “tracking” implies
that the algorithm uses a variable calculated from past gra-
dients to keep track of the information from the network. It
then uses the variable combined with the current local gradient
to output a “corrected” gradient such that the network agents
are able to reach consensus. These methods accumulate past
information and play a similar role as integral feedback, but
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they are discrete-time. Such modification enables the decen-
tralized algorithm to match its centralized counterpart in terms
of convergence rate.

II) Continuous-time DGD: Of particular relevance to
the current work is the literature on continuous-time
DGD [14]-[19]. Similar to the centralized setup, these works
construct ODEs to describe the dynamics of DGD. While
the concept of DGD is rather straightforward, for continuous-
time analysis in certain cases (e.g., strongly convex problem),
no desirable results are obtained by simply combining gra-
dient descent with a standard neighborhood averaging. This
is in the similar spirit as the challenge in discrete DGD,
overcome by gradient tracking. To tackle the continuous-time
problem, multiple works have utilized the integral feedback
idea [16]-[19], which introduces another variable to drive the
disagreement among agents to zero. Nevertheless, these works
are on gradient descent, and the results cannot be applied
directly to MD, which is a more general framework, and
proposing an MD algorithm to have a comparable performance
is still an open research problem.

1) Distributed Mirror Descent (DMD): Decentralizing
mirror descent has recently drawn a great deal of atten-
tion. While our focus is on the continuous-time analysis,
DMD has been largely analyzed in discrete time in vari-
ous contexts, such as online optimization [8], [20], stochastic
optimization [21], [22], and the effect of delays in distributed
optimization [7]. It has also been applied to social learning
and belief dynamics [23]. Furthermore, Doan et al. [24] study
the convergence of iterates for both centralized and decentral-
ized MD. A large subset of these works (e.g., [7], [8], [20],
[21], [24]) feature diminishing step-size to ensure consensus,
not suitable for the strongly convex setup. Continuous-time
DMD has been studied in [25], [26] with the motiva-
tion of noise-variance reduction in stochastic optimization.
The main distinction of our work with these literature
on DMD is adopting and analyzing the idea of integral
feedback.

We also remark that the letter of Yu and Acikmese [27]
adopts an RLC-circuit perspective to DMD. The difference
between [27] and this letter is that we study strongly convex
functions, so our convergence guarantee is on the decision
variable rather than the objective value.

B. Paper Organization

The rest of this letter is organized as follows. In
Section II, we lay out the problem formulation and develop
the continuous-time distributed mirror descent with inte-
gral feedback. In Section III, we provide the theoretical
convergence analysis of the algorithm using Lyapunov sta-
bility analysis. Section IV provides a discretized version
of our algorithm and illustrates a numerical simulation to
show effectiveness of the proposed algorithm, and Section V
concludes.

Il. PROBLEM FORMULATION
A. Notation

We use the following notation in this letter:

[n)] set {1,2,3,...,n} for any integer n
x’ transpose of vector z

Ig identity matrix of size d x d

1q4 d-dimensional vector of all ones

0 vector of all zeros

II]I Euclidean norm operator

(x,y) || inner product between x and y
[z]; || the i-th element of the vector x
[A];; || the ij-th element of the matrix A
At pseudo inverse of matrix A
® Kronecker product operator

The vectors are all in column format. We denote by
col{vy, ..., vy} the vector that stacks all vectors v; for i € [n].
We use diag{ay, ..., a,} to represent an n x n diagonal matrix
that has the scalar g; in its i-th diagonal element.

B. Network Setting

In distributed optimization, we often consider a network of n
agents modeled with a graph G = (V, £), where the agents are
represented by nodes V = [r] and the connection between two
agents i and j is captured by the edge {i, j} € £. Each agent is
associated with a local cost function, and if the link {i,j} € £
exists, that implies agents i and j can exchange information
about their respective cost functions. Then, agent j is in the
neighborhood of agent i, denoted by A; 2 {j € V : {i,j} € £}.

The agents work collectively to find the optimum of the
global cost function, which is the sum of all cost local
functions (to be defined precisely in Section II-C).

Assumption 1: We assume the graph G is undirected and
connected, i.e., there exists a path between any two distinct
agents i, j € V. We use L € R"*" to the represent the Laplacian
of the graph G.

The connectivity assumption implies that £ has a unique
null eigenvalue. That is, £1, = 0, and 1, is the only direction
(eigenvector) recovering the null eigenvalue.

C. Distributed Optimization Problem

In this letter, we consider a distributed (or decentralized)
optimization problem in an unconstrained setting. Let us
denote by f; : R? — R, the cost function associated with agent
i € [n]. Then, the goal is to find the optimal solution of the
global cost function F, which can be written as a sum of local
cost functions as follows,

minimize
xeRd

F) =) fix). €y
i=1

Since individual agents do not have knowledge of F, they
cannot find the global solution on their own, and they must
communicate with each other to augment their incomplete
information with that of their neighborhood.

Assumption 2: For any agent i € V, we assume that the
local cost function f; : R? — R is convex and differentiable.

While Assumption 2 implies that the global objective func-
tion F is also convex and differentiable, we impose an
additional assumption on the global cost as follows.
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Assumption 3: The global function F : R? — R is strongly
convex. The optimal value denoted by F* exists, and the
unique solution that achieves F* is denoted by x*.

The assumption above will be used later in the analy-
sis to prove the uniqueness of equilibrium for our proposed
distributed continuous-time algorithm.

D. Centralized Mirror Descent

Since the focus of this letter is on the mirror descent
algorithm, we provide some background on the centralized
algorithm in this section, before developing the distributed
algorithm in Section II-E.

Gradient descent methods iteratively minimize a first order
approximation of a function plus a Euclidean regularizer.
Mirror descent generalizes this idea to a non-Euclidean setup
by using the notion of Bregman divergence, which replaces the
Euclidean distance as the regularizer. The Bregman divergence
is defined with respect to a generating function ¢ : RY — R,
as follows

Dy (x, X) £ ¢(x) —p(x) = (Vo (x), x = x'). 2

It can be immediately seen from above that the Bregman
divergence is not generally symmetric, thereby it is not a
distance.

Assumption 4: The generating function ¢ is closed, differ-
entiable and (4-strongly convex.

The assumption above is standard. For example, ¢ (x) =
%||)c||2 (the generator for the Euclidean distance), as well as

the negative entropy function ¢(x) = Z}izl [x]jlog([x];) (the
generator for the Kullback-Leibler divergence) both satisfy the
assumption [8].

In discrete time, the unconstrained mirror descent algorithm
with learning rate 7 is written as

XD = argmin[F(x(k)) F pVFEO)T (x — x®)y
X

3)

where using the Euclidean distance in lieu of the Bregman
divergence (i.e., Dy(x, x®y = %Hx — x®|12) reduces the
algorithm to a gradient descent.

For writing the continuous-time dynamics of mirror decent,
an equivalent form of the update above is more convenient to
use. This equivalent form is based on the convex conjugate
or Fenchel dual of function ¢, which is denoted by ¢* and
defined as follows

¢*(2) £ sup{(x,2) — ()}

xeR4

+ Dy, x<k>)},

The definition above entails the subsequent equivalence
7 =Vo() = x' =V¢*(@),

and Assumption 4 guarantees that ¢* is u;l-smooth. More
details can be found in [28].

With the definition of ¢* in place, the update (3) can be
rewritten in the following equivalent form

kD — B _ nVF(x(k))

KD g (g *HD). )

Then, taking the learning rate n to be infinitesimally small,
the centralized mirror descent ODE takes the following form

z=—VF(x),
x = Vo*(2),
x(0) = xp, z(0) = z9p with xo = V¢*(z0), 5)

which has been studied in [6, Sec. 2.1]. It is easy to see that
when ¢(x) = 1|x||, since ¢*(z) = 1lzI% we have that
x = V¢*(z) = z, and the mirror descent ODE reduces to
the gradient descent ODE.

E. Distributed Mirror Descent With Integral Feedback

We now develop the distributed version of mirror descent
algorithm. Motivated by the use of integral feedback [16]-[19]
to enforce consensus among agents, we propose the following
continuous-time algorithm

t
G= —Vhe+ Y 0y —x) + /0 > 65— x)

JeN; JeN;
xi = Vo (z), 6)

initialized with x;(0) = xj0, z;(0) = zj9, where x;0 = V*(zi0).

The dual update z; for agent i € [n] uses only private gra-
dient information. It also enforces the primal variables in the
neighborhood of i to get close to each other by using both
a consensus term and an integral feedback. The integral
feedback uses an additional state in each agent to store the
information of past consensus term. Then, the second update
maps the variable z; back to the primal space using ¢*.

To analyze (6), it is more convenient to stack all the local
vectors as follows

x £ col{x1, x2, ..., xu}
z = col{z1, 22, ..., %}, (N
and define the following notation
LEL®l
V¢*(z) £ col{Ve*(z1), Vo™ (22), ..., V§* (zn)}
VF(x) £ col{Vfi(x1), Va(x2), ..., Vin(x)}. (®)

Then, by introducing the variable y to replace the integral, the
dynamics given in (6) can be rewritten as follows,

z=—(Vf(x) +Lx+Yy),
y = Lx,
x = V¢*(2),

where y € R™ and y(0) = 0.

C))

I1l. MAIN RESULTS

In this section, we establish the theoretical convergence of
the distributed mirror descent algorithm with integral feed-
back, proposed in (6). We prove that all agents will converge
asymptotically to the minimizer of the global function F,
defined in (1).

First, we propose a lemma to show that the unique equilib-
rium of (6) for primal variables coincides with the minimizer
of problem (1), which will later be used in the proof for the
asymptotic convergence to the equilibrium.
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Lemma 1: Given Assumptions 1-4, an equilibrium point for
the continuous-time dynamics (6) exists, and it is unique. In
the equilibrium, x¥ = x* = V¢*(z}) for all i € [n], i.e., the
equilibrium point has the consensus property, and at equilib-
rium, the primal variable for each agent is the solution to
problem (1).

Proof: Since the continuous-time dynamics (9) is equiva-
lent to (6), to prove Lemma 1, it is sufficient to show that
there exists a unique point (x*, y*, z*) satisfying equilibrium
conditions for (9):

— To have y = 0, we need x* to be in the null space of
L = £ ® 14, which together with the connectivity assumption
(Assumption 1), it implies that x* = 1, ® a for some vector
aeRe.

Next, we show that indeed a = x*, where x* is the minimizer
of F.

— To have z = 0, we need

Vf(x*) +y* =0. (10)
Due to the initialization y(0) = 0, we have that
t
y(@) = L/ x(t)dr, (11D
0

which implies (1, ® 1) 'y(H) = (1, ® I;) 'L [y x()dt = 0.
Therefore, (1, ® Id)Ty* = 0, and combining this with (10),
we get

n
(1, ® 1) "Vf(x*) = 0 = Z Vfi(a) = VF(a) = 0.
i=1
Due to the strong convexity of F'in Assumption 3, the solution
for a is unique and a = x* is the minimizer of F. Hence, the
following point is the unique equilibrium

y = -V,

thereby completing the proof. |
In order to better capture the dynamics of the variables,

without loss of generality, we shift the equilibrium of the

dynamics to zero by defining a set of new variables

x' =1, ®x*, 7" = Vo (x¥),

yEy-y, z2z-7, (12)
where (x*,y*, z*) is the unique equilibrium point given in
Lemma 1. We can then rewrite the first two equations of (9)
as follows
7= —(VfE+x)+LE+X)+§+y")
— —(V/&+X") - Vf(x") — L& - §,

y = L,

~ A
X=x—x,

13)

where we used the fact that x* = 1, ® x* and y* = —Vf(x*).

Now, as the matrix L = £ ® I; is symmetric and positive
semi-definite, there exists a decomposition L = QAQT, where
Q is an orthogonal matrix and A = diag{i, ..., A} is a
diagonal matrix. Let

1 1 T
S = L2 = QAZQ s
where A% = diag{~/A1, ..., v/ Anq}. Given (11), there exists

a variable w(r) = Sfot x(17)dt and its centered version w =
w — w*, such that

y=Sw, and y=Sw. (14)

Replacing y in (13) with Sw, we have that
i = —(Vf(X +x*) — VF(x*)) — LX — SW,

W = S%.

N

15)

Following the proof of Lemma 1, it is straightforward to
show that the dynamics above at equilibrium satisfy X =
0. We state our main theorem below to show that the
system converges asymptotically to the equilibrium provided
by Lemma 1.

Theorem 1: Given Assumptions 1-4, for any starting point
x;(0) = xj9,z;(0) = zjo with x;0 = V¢*(zip), the distributed
mirror descent algorithm with integral feedback proposed
in (6) will converge to the global optimum asymptotically,
i.e., limy_ o x;(f) = x* for any i € [n].

Proof: We study the convergence of the dynamics (15). Let us
consider the candidate Lyapunov function

W w. (16)

| =

n
V(Z, W) = qus* (zi, 7 +

i=1
Notice that the Bregman divergence used in the candidate
Lyapunov function is defined with respect to ¢*. Since ¢*
is convex and M;‘—smooth, V(z, w) is non-negative and has
Lipschitz-continuous first derivatives. Differentiating V and

recalling (6)-(13)-(15), we derive
¥ d : * * * ~ d\’;V
V= (9@ = ¢'@) — (V9 5 — ) + W
i=1

L dzi T
= <xi—x,7t’)+wTSx

i=1

= (X — X", %) +w'Sx
= (X, —(VfX +X*) — Vf(x*) + LX + SW)) + W' 5%
= — (X, V/(X+X*) — Vf(x")) — X LX.

It is clear from the convexity of local functions that V<
0 at all times. When local variables do not have consensus,
V < 0 since Xx'LX < 0. When consensus is reached, X =
1, ® a, and then the first term (X, Vf(X + x*) — Vf(x")) =
Yo i{a, Vfi(a + x*) — Vf;(x*)) is equal to zero if and only
if a = 0, which implies X = 0. The uniqueness of a = 0 is
due to the strong convexity in Assumption 3. Therefore, the
condition for equality is x = x*, which also gives z = z*.

The Lyapunov function satisfies V > 0 forz # 0,and V =0
when zZ = 0, w = 0. We also have V < 0 with equality only
at equilibrium. Then, by LaSalle’s invariance principle, the
dynamics (15) will converge asymptotically to its equilibrium
point, and this completes the proof. |

Theorem 1 shows that for the convergence of DMD, we
do not have to appeal to a diminishing step-size (when dis-
cretized) to enforce consensus. We can remedy this using
integral feedback without a loss in the convergence speed (as
we see in the next section).

IV. NUMERICAL SIMULATION

In this section, we first derive a discretized version of our
algorithm in (18) and then illustrate a numerical example that
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shows the advantage of using integral feedback for speeding
up the convergence of distributed mirror descent.

A. Discretization

Recall the continuous-time dynamics (9). We use Euler’s
method to derive a discrete version of the algorithm as fol-
lows. We first choose a time interval for discretization denoted
by At. Let # 2 kAt and x© £ X(t;) = x(kAt). We can simi-
larly define y® and z®¥. We then have the following discrete
updates

21 _ 40

At
y(k+l) _ y(k)
At
After re-arranging the terms, the fully distributed mirror
descent algorithm with integral feedback takes the following
(discrete) form

— —(Vf(x(k)) + Lx® + y(k))’

= Lx®, (17)

7D = 20 — [ VA@®) + 3 ® + 3 @® —5®) | ar,

JeN;
y D = 3 £ 3w ® —x®)ar,
JeN;

XD = Vgt D). (18)

B. Numerical Example

We now provide a simulation for the update (18).

— Network Structure: We consider a 10-agent cycle network,
where each agent is connected to its previous and next agent,
and the last agent is connected to the first agent.

— Generating Function for Mirror Descent: To imple-
ment mirror descent, we employ the commonly used negative
entropy as the generating function, where

d
¢ x) = Z [x]jlog([x])) = [zli = [Vo(0)]i = 1 + log([x]y),

j=1

and by convention [x];log([x];) = 0 if [x]; = 0. Here, x and
z are both d-dimensional vectors. By simple calculations, it
can be shown that ¢*, the convex conjugate of ¢, takes the
following form

d
') =YV = [ = [V @l = el
=1

Thus, we can now implement (18).

— Global and Local Functions: To construct the functions,
we first generate a 100-dimensional vector u following a
Gaussian distribution AV'(10 x 14, I;). We then perturb u to
generate local optima u; = u + w;, where w; ~ N (0, 1)
for i € [n]. We set the local functions f;(x) = %||A,-x— bill%,
where b; = Aju; and A; € R29%190 j5 a random matrix of rank
15. The global function becomes F(x) = %IIAx — b||2, where
A € R200x100 apd b € R2% are stacked versions of their dis-
tributed counterparts. We can verify that F is strongly convex,
and the closed-form solution for this problem is x* = A'b.

0.6
—— Integral Feedback (Our work)
Constant Step-size
0.5 —— Diminishing Step-size
0.4
W
103
X
w
0.2
0.1
0.0 -

T T T T T T T T T 103
0 25 50 75 100 125 150 175 200
iteration (k)

Fig. 1. The trajectory of the global objective evaluated at agent 1.

20.0
—— Integral Feedback (Our work)

Constant Step-size
—— Diminishing Step-size

5.0 A

2.54

0.0

T T T T T T T T T 103
0 25 50 75 100 125 150 175 200
iteration (k)

Fig. 2. The average distance of local variables from the optimum.

TABLE |
LIST OF RUN TIME AND ITERATION NEEDED FOR RESPECTIVE
METHODS TO REACH F(x7) — F(x*) < 0.01

Method Integral feedback | Diminishing | Constant
run time (sec) 31 130 00
iter. number 51248 273044 o0

We run (18) with a feasible random initialization xl(o), and let
(0)

y;” = 0 and zl@) = V¢>(x§0)) for every i € [n]. Recall that
n=10 and d = 100, and we set Ar = 1072,

Note that the local objective functions are only convex, but
the global objective function F(x) = Y ., fi(x) is strongly
convex in consistent with our theoretical assumptions.

— Performance: We compare our method with distributed
mirror descent without integral feedback [7], [8]. These works
were originally proposed for convex global functions with
a suggested diminishing step-size \/LE Beside that, we also
include their performance with constant step-size.

For all three algorithms, we plot F (xik)) — F* and

%27:1 ||x§k) — x*|| with respect to iteration k, in Fig. 1 and
Fig. 2, respectively. We also provide a comparison on the
run-time of the methods in Table I. The run-time is the
required time to hit 0.01 precision on the objective value.
We can see that our method converges faster than distributed
mirror descent without integral feedback both in run time
and in iteration number. In fact, without integral feedback,
agents never converge to the global solution using a constant
step-size, because the local objective functions have different
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10
—— Integral Feedback (Our work)
5 4 | Constant Step-size
\ —— Diminishing Step-size
P 01
W
|
= =51
X
=
S
L -10-+
_15 4
_20 4
T T T T T T T T T X103
0 25 50 75 100 125 150 175 200
iteration (k)

Fig. 3. The trajectory of the log-distance to global solution evaluated at
agent 1.

local minima. We further plot log(F (xgk)) — F*) with respect to
iteration k in Fig. 3. Interestingly, our method exhibits a linear
convergence rate (i.e., exponentially fast), which is on par with
the state-of-the-art distributed gradient descent methods (in the
sense of achieving a linear rate). We reiterate that diminish-
ing step-size is suitable for convex (and not strongly convex)
global objective functions. The main purpose of the compar-
isons with other methods is to illustrate the power of integral
feedback when the strong convexity assumption is satisfied.

V. CONCLUSION

In this letter, we considered a distributed optimization sce-
nario where a network of agents aims at minimizing a strongly
convex function, that can be written as a sum of local con-
vex functions. The agents only have access to local gradients,
but they are able to exchange information with one another.
We proposed a fully decentralized mirror descent algorithm
that enforces consensus among agents through a consen-
sus term plus an additional integral feedback. We studied
the continuous-time dynamics of the algorithm and provided
asymptotic convergence using Lyapunov stability. Focusing
on strongly convex problems, we presented empirical results
verifying that distributed mirror descent with integral feed-
back enjoys a faster convergence rate, compared to its variants
without integral feedback.

This letter provides technical analysis for the asymptotic
convergence, but the simulations show that the algorithm (per-
haps with smoothness assumption) can exhibit exponential
convergence. Therefore, a potential future direction is the the-
oretical analysis of this behavior. Furthermore, studying the
theoretical guarantees of (18) will shed more light on required
technical assumptions in maintaining the same convergence
rate when transitioning from the continuous-time update to
the discrete-time update.
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