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This paper introduces a generalized 3rd-order Spectral Representation Method for the simulation of multi-
dimensional random fields and ergodic multi-variate stochastic processes with asymmetric non-linearities. The
formula for the simulation of general d-dimensional random fields is presented and the method is applied to
simulate 2D and 3D random fields. The differences between samples generated by the proposed methodology
and the existing classical Spectral Representation Method are analysed. The formula for the simulation of

multi-variate random processes is subsequently developed. An important feature of the methodologies is that
they can be implemented efficiently with the Fast Fourier Transform (FFT), details of which are presented.
Computational savings are shown to grow exponentially with dimensionality as a testament of the scalability
of the simulation methodology. Examples highlighting the salient features of these methodologies are also

presented.

1. Introduction

Stochastic processes and random fields are used extensively in engi-
neering, from studying the dynamics of wind [1,2], ocean waves [3,4],
and seismic loads [5] on structures to simulation of material mi-
crostructures [6,7]. Because of their importance, numerous methods
have been developed for the simulation of stochastic processes and
random fields. Simulation is particularly useful in the context of Monte
Carlo simulations of large, complex non-linear systems where analytical
analysis of the uncertainty in the system is not possible. Moreover,
simulation of stochastic processes and random fields finds applications
beyond simple Monte Carlo simulations and is important for essentially
any simulation-based uncertainty quantification framework.

Until recently, simulation methods for stochastic processes and
random fields have been derived only from second-order properties of
the process or field. Consider a standard probability space (£2,F,P)
where Q2 is the sample space, F the sigma algebra of events, and P
a probability measure. In these simulation methods, the process/field
indexed on x € D is represented in terms of a stochastic expansion of
the general form

Ax,0) & Ax,0) = ) 0(@)w;(x) eb)

i=1
where 0;(w), w € Q are independent random variables and y;(x),x € D
are deterministic basis functions. Many such stochastic expansions have
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been developed. Among these methods the most popular ones are the
Spectral Representation method (SRM) [8-10] and the Karhunen-Loeve
Expansion (KLE) [11,12]. Each of these methods operates by finding
a set of random variables 6,(w) along with a set of compatible basis
functions y(x) satisfying C(xy, x,) = E[A(x1)A(x,)] = E[A(x1)A(x,)].

For the SRM, y;(x) are the harmonic functions (Fourier basis) and
0;(w) are random variables whose amplitude is derived from the power
spectrum (Fourier transform of the covariance function C(xy, x;)). Like-
wise for the K-L expansion, y;(x) are the eigen-functions of the covari-
ance function and 6;(w) are standard normal random variables scaled
by the square root of the appropriate eigenvalues.

While each of these methods has its advantages, all such methods
have a common disadvantage in that they are only second-order rep-
resentative, i.e they can only match the process up to its covariance
function. Unless acted upon by a nonlinear operator, these fields are
asymptotically Gaussian as the number of terms n increases [13]. In
signal processing terms, the stochastic processes and random fields
simulated by the above methods are equivalent to the output of a
linear system acted upon by Gaussian random noise. This simplification
breaks down in case of real world scenarios such as seismic waves
propagating through different strata of soil, non-linear wind loads on
structures, ocean waves acting on an off-shore structural system, or
turbulent flow of a fluid governed by the Navier-Stokes equation.
Thus, the second-order representation inherently limits these methods
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as they fail to match the higher order properties of the stochastic fields,
which dominate the tail behaviour and in turn plays a crucial role in
uncertainty quantification, reliability etc. The stochastic fields gener-
ated from these non-linear systems possess asymmetric non-linear wave
interactions which need to be included in the stochastic expansion,
details of which were first introduced in [14] and are reviewed in the
subsequent sections.

Methods for the simulation of non-Gaussian stochastic fields work
primarily through a non-linear transformation of the stochastic expan-
sion in Eq. (1). One class of such nonlinear transformations works
by introducing correlated random variables with deterministic basis
functions such as Hermite and Legendre polynomials [15,16]. These
stochastic processes match the marginal statistical moments to a certain
order along with the covariance function. Perhaps the most commonly
used method is the explicit Cumulative Distribution Function (CDF)
based transformation [17,18] given by

Y(x) = F{(@(A(x)) 2

where A(x) is a standard Gaussian random process, @(-) is the standard
normal CDF and F~!(-) is the inverse CDF of the prescribed non-
Gaussian distribution. This method is generally referred to as the
‘translation process’. Efficient algorithms for the translation of scalar,
vector, stationary, and non-stationary stochastic processes simulated by
either SRM or KLE method have been developed in recent years [2,19—
21]. Another class of methods for simulation of non-Gaussian stochas-
tic processes are based on polynomial-chaos expansions [22]. Also,
wavelet-based simulation methodologies have been developed and ap-
plied extensively in the case of non-stationary stochastic processes [23,
24].

In this work, we are interested in the simulation of multidimensional
random fields and multi-variate stochastic processes (stochastic vector
processes). As a brief note, stochastic processes and random fields here
are considered probabilistically equivalent with the only difference
being that stochastic processes are indexed on time (one-dimensional,
denoted by 7 or 7, with w representing frequency under a Fourier
transform) while random fields are indexed on space (denoted by x or
&, with « representing wave-number under a Fourier transform). Thus,
multi-dimensional random fields are specifically indexed on multiple
spatial dimensions, while stochastic vector processes are composed of
multiple correlated random processes, generally occurring at different
discrete spatial locations.

Generally speaking, the simulation of stochastic vector processes
poses the larger technical challenges given its spatial and tempo-
ral dependence. Methods for simulation of multi-dimensional random
fields, on the other hand, often follow as a natural extensions of their
one-dimensional counterparts, although this is not the case for the
higher-order processes we study here. Several methods, dating back
nearly 50 years, have been proposed for the simulation of multi-
dimensional random fields and stochastic vector processes including
methods for stationary, non-stationary, Gaussian and non-Gaussian
processes. Much of this began with the seminal work of Shinozuka
who proposed the Spectral Representation method (SRM) in the early
1970s [25]. Later, in the late 1980s, Mignolet and Spanos [26,27],
in a 2-part paper, introduced the recursive simulation of stationary
multivariate stochastic processes based on autoregressive moving av-
erages methods. This was followed by numerous works in the 1990s,
when much of the theory for the SRM was developed. Li and Kareem
[28] developed a framework for the simulation of non-stationary multi-
variate processes with the use of a stochastic decomposition technique
and later developed a hybrid discrete Fourier Transform and digi-
tal filtering approach [29]. With regard to the SRM, Shinozuka and
Deodatis developed the theoretical framework for simulation of er-
godic, Gaussian stochastic vector processes [30] and multi-dimensional
Gaussian random fields [31] in 1996, with subsequent extensions to
non-stationary [5] and non-Gaussian processes [32]. More recently, the
Iterative Translation Approximation Method (ITAM) has been proposed
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for the efficient simulation of non-Gaussian stochastic vector translation
processes by Shields and Deodatis [33]. Very recently, Liu et al. [34],
proposed a novel method based on the combination of SRM with a
proper orthogonal decomposition for dimension reduction.

As previously mentioned, the existing simulation methods for multi-
dimensional random fields and stochastic vector process, even those
with non-Gaussian marginals, are inherently second-order in that they
capture only the second-order correlation structure of the process/field.
Here, we develop the framework for efficient simulation of non-
Gaussian multi-dimensional random fields and multi-variate random
processes. We specifically consider third-order, asymmetrically non-
linear random processes (i.e. processes that possess quadratic phase in-
teractions leading to an asymmetrically skewed distribution) prescribed
by a known power spectrum and bispectrum. This extends the gen-
eralized third-order spectral representation method proposed in [14]
to multiple spatial dimensions as well as multiple variables and intro-
duces a fast Fourier transform (FFT) implementation of the simulation
algorithm that greatly improves the computational efficiency.

2. Properties of random fields and random vector processes

Prior to introducing any concepts in simulation, it is important
first to understand several important properties of random fields and
random vector processes. In the interest of brevity we present only the
spectral properties of random fields in this section. Other properties
such as stationarity of random fields, cumulants and moments of ran-
dom fields along with symmetry of correlation and spectral properties
of random vector processes are discussed in the Appendix.

As discussed in [35,36], it is common and advantageous to work
with random fields in the Fourier space. For our purposes, the Fourier
domain provides a convenient setting for a nonlinear expansion of
random fields that can be derived directly from the third-order spectra.
Next, we review the spectral quantities necessary for the third-order
expansion proposed herein.

The nth-order polyspectrum of a random field A(x) is defined as the
Fourier transform of its nth-order cumulant [35]

A I U Ay !
A1 R y) = /m [wcn(ﬁl,iz,...,ﬁn_l)
eRE G g dE, e,y

3)

The 2nd-order polyspectrum, also called the power spectrum and
the 3rd-order polyspectrum, also called the bispectrum are of impor-
tance in this article. These are defined as follows:

S4(x) = CAx) = ! / (e D de @

E o0
BAGy k) = Chkpi) = —— [ [ ey epe it g e
1-82) = +3 1’2_(2”)2 _ _ 351252 1552

)

The power spectrum expresses the power associated with each fre-
quency component in the random field while the bispectrum describes
nonlinear interaction between frequency pairs. The power spectrum is
a real quantity while a bispectrum can have both real and imaginary
parts. The real part of the bispectrum corresponds to the Fourier
transform of the symmetric part of the third-order cumulant, whereas
the imaginary part corresponds to the Fourier transform of the anti-
symmetric part. As discussed by Lii et al. [37] and Elgar and Guza [3],
the real component relates to the skewness of the field, while the
imaginary component relates to the skewness of the derivative of the
field. Meanwhile, the amplitude of the bispectrum represents the degree
of quadratic phase coupling between the wave-numbers «; and «,. A
more detailed discussion can be found in [14] and [38].

For practical purposes, it is useful to normalize the polyspectrum,
which introduces the notion of a polycoherence. Although several
normalizations have been proposed [39-41], the nth-order squared
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polycoherence is a standard measure of higher-order polyspectra, and
is defined here for stationary random fields as

2
™ ‘IE [Hﬁ;i dZ()d 2" (E,0) K”')] ‘

2
ARG ®)

E [0} e 200l | B [\dZ@;;‘l m\z]

where dZ(x) are the Fourier coefficients of the generalized random
field and * denotes the complex conjugate. Of particular interest here
is the third-order polycoherence, or bicoherence which can be derived
from Eq. (6) and is given by [39]:

2
|BA Gy, )

> )
E[ldZ(x))d Z(1c) 17154 (x) + 1)

AGHIE

where dZ(x) are the Fourier coefficients of A(x), BA(K'I,K'Z) is the
bispectrum, and S“4(x) is the power spectrum. By Schwartz’ inequality,
this definition of the bicoherence is bounded on [0, 1] which provides
a convenient interpretation of the fraction of energy associated with
phase coupling. Further interpretation of the bicoherence can be found
in [14,40,41]. Interestingly, the polycoherence also plays a crucial role
in discriminating between non-linearity and non-stationarity in random
fields [42].

3. Spectral representation theorem

Cramer’s spectral representation [43] states that any zero-mean,
weakly stationary random field A(x) can be expressed in terms of a
spectral process z(x) through the following Fourier-Stieltjes integral

A(x) = / e dz(k) ®

where the spectral process z(x) satisfies certain orthogonality con-
ditions [44]. More generally, for a zero-mean, kth-order stationary
(k > 2) random field A(x), a spectral process z(x) can be assigned
which satisfies Eq. (8), but possesses the following additional kth-order
orthogonality properties [45]

Eldz(x)]=0

E[z(k)] =0

El|z(x)[*] = F(x)

El|dz(x)|*] = d F(x)

El2(k))2(k2)2* (13)] = (k1 + K3 = K3)G (1, K5)

)
E[dz(k))dz(ky)dz" (k3)] = 8(k| + ky — k3)dG (K1, Ky)

Elz(k))z(ky) ... 25 (k)] = 8(k) + Ky + k3 ... — k) Fr (i), Ky, K3 oo Ky_1)
Eldz(k))dz(ky) ... dz* (k)] = 8(k] + Ky + K3 ... — k)
X dF(x),Kp, K3 ... Kj_1)

where F(x) is the spectral distribution function of z(x), d F(x) is the
spectral density function, G(x;, k) is the bispectral distribution func-
tion, and dG(k,,x,) is the bispectral density function. The bispec-
trum relates to the bispectral density dG(x,,k,) through dG(k,, k) =
B(ky, ky)dk dK,. Finally, Fi(k;, ks, ..., ki) and d Fi (x|, k5, ..., ki_;) are
kth-order spectral distribution and density functions, respectively. Gen-
eralizing, the kth-order spectral density function relates to the kth-order
polyspectrum in Eq. (3) through dF,(k,ks,....kx_1) = Cilky, ks ... s
Kp_drdi, ... dKk_y.

Following from this higher-order spectral representation, we are
specifically interested in third-order stationary random fields, for which
the orthogonality conditions in Eq. (9) hold up to order three. For such
random fields, the process is stationary in its first, second, and third
order properties (weakly 3rd-order stationary) and can be expressed
using the spectral representation in Eq. (8) — referred to herein as the
bispectral representation due to the third-order orthogonality and its
expression in terms of a stationary bispectrum.
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Finally, we are specifically interested in real-valued random fields,
for which the Cramer spectral representation can be written as

A(x) = /Do cos(kx)du(x) + sin(kx)dv(k) (10)

(s
The components du(x) and du(x) are the real and imaginary compo-
nents of the orthogonal increments of dz(x) respectively. Both du(x)
and duv(x) possess orthogonal properties similar to dz(x). A detailed
description of the orthogonality conditions of these components can be
found in [14].

4. Spectral representation methods

Although the general form of the spectral representation was de-
veloped by Cramer, Rice [46] was the first to exploit the spectral
representation for the purposes of simulation, using its discretized form
to simulate one-dimensional, uni-variate Gaussian random processes.
Later formalized for second-order multi-dimensional, multi-variate, and
non-stationary stochastic processes by Shinozuka [8,9], the method be-
came known as the spectral representation method (SRM). Properties of
stochastic processes simulated by the SRM were elaborated in a series of
seminal papers on the method by Shinozuka and Deodatis [10,30,31].

Utilizing second-order orthogonal increments du(x) and duv(x) in Eq.
(10) gives the following form for the second-order SRM to simulate
1-dimensional, uni-variate random fields:

A(x) = \/EZ V28 (k) Ay, cos(kyx — ¢y) an
k=0

where S(x;) is the power spectrum of the process and ¢, are in-
dependent uniformly distributed random phase angles in the range
[0,2x]. Simulation is then conducted by truncating the summation at
an acceptable level, say m terms.

Recently, Shields and Kim [14] extended the SRM for simulation
of 3rd-order stationary stochastic processes. Similar to the 2nd-order
SRM, incorporating third-order orthogonal increments du(x) and duv(x)
in Eq. (10) yields the 3rd-order form of the SRM.

A®) = V2 Y V28 Ar, cos(ix — )
k=0
o i>j>0 (12)
+V2Y Y /28 + KA + Kby (K k)]

k=0 i+j=k
X CcOs ( (k; +k)x — (¢ + &; + B(k;, k) )
where by(k;. ;) is the partial bicoherence defined as:

| Blx,, x;) 2

i

Sp(k)Sp(k;)S(k; +K;)

Sp(x) is the pure power spectrum (i.e. the component of the power
spectrum remaining after wave interactions are removed) given by:

bi(l(i,l('j) = 13)

i2j20
Sp(iy) = S(ky) [1 - bﬁ(xi,xj)] a4
i+j=k
and fi(x;, x;) is the biphase given by:
S[B(Ki, K J)]
R[B(x;, k)]

Here, the first term corresponds to the classical 2nd-order SRM on
the pure power spectrum and the second term models 3rd-order wave
interactions. It has been shown in [14] that simulations generated using
Eq. (12), again using a suitable truncation of m terms in the summation,
match both the power spectrum and the bispectrum of the random field.

We also note that the 3rd-order expansion presented herein is not
necessarily unique. It expresses the higher-order process in terms of
random phases. As in the classical 2nd-order SRM, a formulation based
on random amplitudes or other alternative orthogonal increments may
be possible. Moreover, a direct expansion from the higher-order cor-
relation, akin to the KLE, may be possible. We do not explore these
possible alternative formulations.

P(k;, k;) = arctan (15)
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5. Simulation of multi-dimensional random fields by 3rd-order
spectral representation method

The form of the 3rd-order SRM given in Eq. (12) can be used for
the simulation of one-dimensional, uni-variate (1D-1V) random fields.
In this section, we derive the expression for the simulation of general
d-dimensional (dD-1V) third-order random fields. We first derive the
simulation formula for 2D random fields as it is the most practical to
show and is of particular relevance for many applications. We then
extend it for general d-dimensional random fields.

5.1. Simulation of 2-dimensional random fields

Let A(x,x,) be a two-dimensional uni-variate random field with
zero mean, 2nd-order autocorrelation function R,(¢,&,), bispectrum
B(k;, k1, K12.K2p), and 3rd-order autocorrelation function R;3(&;,&,
&12.&y). Since we are interested in the simulation of real-valued random
fields, the power spectrum is symmetric about the origin, i.e. S(x) =
S(—k), and the following symmetries exist in the bispectrum [14]

B(ky, k3) = B(ky, K1) (16)
B(ky, k) = B(—K1,—Kk3) a7
B(xy.k3) = B(—Kk1 — K3, K3) (18)

Egs. (17) and (18) describe two different axes of symmetry along the
origin.

Exploiting these symmetries allows us to replace the power spec-
trum, S(k,,k,) defined on the range (- < x| < 00,—00 < k; < ®)
by 2S5(x,x,) defined on the range (0 < x; < o0,—-0 < Kk, < ©)
and replace the bispectrum B(k,, k|,, k21, ky) defined on the range
(=00 < ky; £ 0,—00 < kp; £ 00,—00 < Kjp £ 00,—00 < kpy < 00)
by 4B(k;, k12, k21, k) defined on the range (0 < k| < 0,0 < Ky <
00,—00 < Kjp < 00,—00 < Kyy < 00).

With these symmetries in place, along with the orthogonality condi-
tions presented in Eq. (9), any real valued 2-dimensional random field
A(x;,x,) can be expressed in the form

A(xy,x,) = / / [cos(x) x| + Kyxp)du(k, k) + sin(k| x| + kyX,)dv(k |, ;)]
—c0 JO
(19)

where processes u(x;, k,) and v(xy, k,) are defined on the domain 0 <
K| < 00,—00 < Kk, < oo and obey the following the orthogonality
conditions [47]:

Elu(x;, k5)] = E[v(k, k)] =0 (20)
Eldu(k;, k)] = E[dv(ky, k)] =0 (21)

E[u? (i, )] = E[0?(ky, k)] = Fy Ky, K5)
Elu(icyy, ko ulkp, kpp)ulkyy + K12, Koy + Kpp)] =

Elv(kyy, k21)0(K 12, Kpp)U(K 1 + K12, Koy + K92)] = G (K11, Ka15 K12, K22)

ror (22
Elu(x, kp)v(x), k)] =0
Elu(x,, K'Z)U(K';, K';)U(K’;,, K'é,)] =0
Elu(x,, K'z)u(l('i s K'é)U(K’;,, K'é,)] =0
Eldu?(xy, k)] = E[dv*(k;, k)] = S (ky, k)dic;dicy
Eldu(x,, Kz)du(xl, Kz)] =0ifx; # Kl ork, # K; 23)

Elduv(icy, kp)dv(k], Kz)] =0ifK) # K| orky # K}
Eldu(x, kp)dv(ky, )] =0
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]E[du(Kl,Kz)du(K Kz)du(l(l, 2)]—22RB(K 1( kb, Kkl

2°72
Eldu(k;, Kz)du(l( 2)dU(K1 s 2 K] = —Z\SB(K Kl s é, é’
Eldu(k;, Kz)dU(K 2)du(l(1 s 2 K] = —Z\SB(K Kl s é, é’
Eldu(xy, kp)dv(xy, ky)dv(c], 2 K] = —22)13(1(1,1(1 S Ko K3
Eldv(xy, k) du(xy, k) du(xy, 2 x))] =23 Bk, k' k5. k) 24
Eldv(xy, k) du(xy, ky)dv(c], 2 x))] = 2R B(x]. k), k. Y
Eldv(k,, K'z)dU(K'l, 2)du(l(1 S Ky K] = 2?{3(1( K'l s K'é, K'él)
Eldv(k,, K'z)dU(Kl, Kz)dU(K' ”)] = —ZJB(K K’l s K'é, K'é,)

if k) = k] + &)

otherwise 0

where R and S denote the real and imaginary components respectively.
It can be seen in [44] that Eq. (19) does, indeed represent a stochastic
field with zero mean and 2nd-order and 3rd-order autocorrelation
functions R,(£;,&,) and R3(&), &y, £10. &xy), Tespectively.

Discretizing Eq. (19), gives

) 0

Z Z L[cos(icy,, X1 + Ko, X2)du(kyy, , Koy, )

ny=—o00 "l=0

A(xy,x;p) =

+ 8in(ky,, X+ Koy, X2)AU(KY 5 Koy )] (25)

where ky, = nj4x; and k,,, = n,4Ax,, with sufficiently small finite 4k,
and Ax,. If du(ky, ,x,,,) and du(ky,, , k,,,) are defined as

)= \/EAW,I,,2 cos®,, ..
i12j120 [mp|2]ip| 212120

+ 2 Z 2A"1"2 P(Kl’l Kijp KZ'z’KZJz)
ii+ji=ny  iytjp=m

du(lcl,,l s Kon,

X cos(D; j, +D; i, + Plky; s K1j 5 Kiy> K2jy))

(26)

—\/EAWM2 sin®,, ,,,
12120 |np|2iz] 212120

- - . 2An1n2 p(Klll!Kljl’KZM’Kij)
itj=ny  ixtjp=m

dU(Klnl s K'znz) =

X Sin(d)iliz +Q5,+ ﬂ(KUl > K1jy> K2iy» Kij))

27)

where

Apnim, = \/zsp(xlnl,K2n2)4K14K2 (28)

Anln2 = \/ZS(KMI,KZWZ)AKIAKZ (29)

i12j120 |m|2li3]21j2120

— 2
Sp(Kiny > Kony) = Sk, 5 Ko )1 = bp(KliI’Kle’KZiz’K2j2))
ip+ji=ny iytip=ng

(30)

2
| B(k1i, > K1, Kaiy K2, )| Ak Ay

bz(K” Kij»Koj s Knj) =
» By R2ip0 B2)p
P Sy, K2 )Sp(K 1y K21y S (K11 41y Koty i)

(€19)

and @, , are independent random phase angles uniformly distributed
in the range [0, 2], then the resulting 2-dimensional random field is
third-order stationary possessing power spectrum S(k,, k,) and bispec-
trum B(ky;, K2,k Kpp). It is proven in [44] that the orthogonality
requirements on du(ky,, , k,,,) and duv(ky, , k,,,) are satisfied, and there-
fore that the process is third-order stationary possessing the prescribed

spectra.
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Using the above proposed increments, the following series represen-
tation is obtained

Z Z [\/_Almlnz COS(K 1, X1 + Kop, Xo + D@y 1))

ny=—00 py =

A(Xy, %) =

i12j120 |ny|2i3]2]j2120

+ 2An1n2 p(Klll’Kljl’K2123 K2]2)
iftii=ng ixtja=ny

COS(Ky, X1 + KypyXo + Py i) + @ 5 + ﬁ(Kl,-l S K15 K2iys Kij))]
(32)

By rearranging the terms, we can express the series over only positive
indices as

A(xl,xz)—\/_z Z [

ny=0n;=0

/ e
+ /Sy, s =K )AK| Ak COS(K, X — Koy, X + E:l)nz)

112120 ir2j,20

+ Z Z \/ZS(Klnl K'2na)b (Klll Kl/, KZIZ KZJZ)

iy+ji=ny ip+jp=ny

Sy (Kiny» K2ay JAK Ay COS(icy, Xy + Ky Xg + DD, )

nyny

COs(K,, X| + Koy Xy + o) ol

iyin Jia +ﬂ(K1i1’K1j1’K2iz’K212))

'l>11>0 ir2jp20

+ Z \J28 ey =K B, (K K =Ky =)

l|+j1—rl| ir+ja=ny

(2) 2)
—K2n2x2+<1> + @ +ﬂ(Klil,K1j],—KZiZ,—szl))

COS(Ky, X
( Iny 1 irip v

12120 iy>j20
D VT

iytji=ny iy +jp=n;

—Ki, + Kz/z)bp(l(“] s Kyj > —K2iy» Kz/z)

) O]
Koiy Xy + Ky X + @1 + @0+ Bliy; Ky

cos(rqﬂlx1 iy i

—Kaiys Kajy )
(12120 ir>j,>0
+ Z Z 28y > oy,

iyji=ny iy tjp=n;

— K2, )bF(Klfl 2 K1y Kaiy s _Kzl'z)

(1) (2)
COS(K 1y Xy + Koy Xg = Kpjy Xo + @y + @0+ flKy 5Ky 5 Kaiys =K))

(33)

While Eq. (32) provides a compact notation, Eq. (33) sums only over
positive indices which may be beneficial for practical implementation.
Note that, since the formula sums over the positive and negative range
of k, simultaneously, we need to use two different sets of random phase
angles which are differentiated using superscripts @) and @@,

While Egs. (32)-(33) provide a theoretical framework for the sim-
ulation of 2-dimensional third-order stationary random fields, the infi-
nite series representation of Eq. (32) cannot be implemented in prac-
tice. A practical implementation truncates these summations as

N, N
A(x),xy) = 2 2 [\/EAP,,I,,2 COS(K |, X1 + Ky X3 + @y )
ny=—Np n;=0
112120 |ny|2lin 212120
+ Z \/EA"mz by(kyiy k1, Kaiy - K2,
ii+ji=np  iytjp=my

COS(KI'M X+ Koy Xp + ¢i1i2 + ®/1/2 + ﬂ(Klil 2 K12 K2ips KZJ'Z))]
34
where the various terms are defined as in Egs. (28)—(31), 4k, = =l
and 4k, = % are the cutoff wave-numbers for the x; and x, axes
: 2
respectively, and

S(k1,0) = S(0,k,) =0 for — o0 < k) < o0 and — o0 < kp < 0 (35)

B(x11, K12, K21, 0) = BlKy1, K12, 0, k90) = Blky1, 0, 621, K22)
= B(0.x13, K3, k) =0
for — oo < k) <00 ;—00 < kjp < o0 and — oo < ky; < 00;—00 < Ky < 0

(36)
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The cutoff wave-numbers are chosen to satisfy the conditions

KIH KZ“ (s8] (s
/ / S(ky, ky)dkdiy, = (1 — e)/ / S(k1, ky)dk di, 37)
0 —K2u 0 —o0
d

Klu Klu Kou Kou
B(xyy, k10. K215 Kpp)d Ky dKypd Ky d iy
0 0 —Kkou J =Koy
Klu Kiu Kou Kou
=(l-¢ B(x1, K12, K15 Kpo)d K1 dK1pd Ky dkyy
0 0 —kyy J =Koy

(38)

where ¢ <« 1. This effectively means that the power spectrum and
the bispectrum above the cutoff wave-numbers are mathematically or
physically insignificant.

It is straightforward to show that the simulated random fields are

periodic along the x; and x, axes with periods L, = Az—” and L,, = 427”.
2
Additionally, the conditions 4x; < 22K—” and sz < % are imposed

on the spatial increments to prevent a11a51ng Lastly, glven the finite
truncation of the summations, the values of the field in this expansion
A(xy, x,) are theoretically bounded within the range

Ny Ny i12)120 | |>|ir]>/2120
Z Z[ﬁAP'll"z - 2A"1"z P(Kl‘l K1jy> Kaiy» K2Iz)]
ny=—Nj ny=0 it iyti=n,
N N i12j120 |ny|2]ix| 212 |20
Z Z[\/EAP"MZ + ’11"2 P(Klll K1jy> Kaiy» ’(2/2)]]
ny==N; n;=0 itji=ny tjp=ny

39
5.2. Simulation of d-dimensional random fields

Let A(xy,x,,...,x4) be a d-dimensional uni-variate (4D-1V) third-
order stationary random field with zero mean, power spectrum
S(ky, Ky, ..., kq), 2nd-order autocorrelation function R,(&),é&,....&),
bispectrum B(k;, K12, K31, K22, K315 K305 --+ 5 -+ » K1 Kpp), and 3rd-order
autocorrelation function R;(&1,&12,21,620,8315 8300 oevsvvn s Enps Ep). For
convenience, let us define the following new vector quantities:

Position vector: X = [x, X, ..., x,]T
[¢1,65, ..., 8,]
Wave number vector: k¥ = [k, kp, ..., K,,]T

The symmetries in Egs. (16)—(18) still hold.
The formula for the simulation of general d-dimensional random
fields follows closely from the 2D case as

Separation vector: & =

N, N

AX) = Z Z Z [\/_A,,,,Cos(lc X + @;)

ng=—Ng ny=—Nj n;=0

i12)120 |m|2lig]21j2120  Ingl2ligl21jg120 (40)

+ ) YooY V&R

iftji=ny iptja=ny ig+ia=na
X cos(k - X + @; + D5+ B, Fj—,))]

where

\/25 (KA Ak, ... Ak g, A \/ZS(K Ak Ay ... Ak,
i12/120 |my|2liy121j; 120

5,®n) = SE(1- Y

Ing12lig121jqa120

bﬁ(a,zj))

itji=ny  ixtjp=ny ig+ja=nq
|BGe;, 7)1 Ay Arcy ... Ay (41)
bi(;lﬂf},) = S (S (S
(%S, () S (7)

Kin, = MAKY 5 Ky = My AKD; Ky, = NgdKy

K K,
Ak = ,AK2=ﬁ; ,AKd=ﬂ

N N, Ny

and
S@0,K,,...,k4) = S(k1,0, ..., k) = Sk, k,...,00 =0

(42)

for—oo <k <0 —00 <Ky <005...;—00 < ky < ®©



L. Vandanapu and M.D. Shields

B0, K12, .- Kg1,Kg2) = By, 0, . K1, Kgp) = =+ = BlKyy, K1, - 0, K42)
= B(ky1, K12, - K41,0) = 0

for —oo < kj; <00 ;—00 < kjp 00;5...;—00 < kyp < 00;—00 < Kyy < 00
(43)

In the above expressions, the overline subscripts denote the iterable
index sets nn = {ny,my, ..., ng}, i = {iy,ip,....iq}, and j = {ji.jos -, Ja}-
In particular, @; denotes the dth-order tensor of random phase angles
indexed as @, ,, ,,, and A, A7 denote dth-order tensors of amplitudes
having components A, ..., Aun,...n,- Indexing of the wave number
combines the vector overline notations with the overline subscripts
such that k;; denotes the wave number set (ky,, , kp,,, - .- » K4, ). Finally,
K> Koy --.and kg, are the cutoff wave-numbers for the x;, x, ...x,
axes respectively, satisfying

/ Y S@EdE = (10 / " s@dr (44)

Ku

K [ L Y
/7 /7 B(Fl*, K‘]*)dl('l*dl(; = (1 - 6)/ / B(K'IT, K'j*)dl(l*dl(‘]* (45)
K T oo S

where ¢ < 1.

The simulated random fields are periodic along the x;, x, ...x, with
period
2r 2r 2
=—, L, ,=—, .., =— 46
T Ak 2 Ak, X Ak, (46)
and the conditions to prevent aliasing are given as
My € 25 A< 2R w2 (47)
K1y Kou 2Kdu

5.3. Simulation of quadrant random fields

Quadrant random fields have additional symmetries beyond those
presented above. Specifically, in 2D they are given by

S(ky,kp) = SU,ky, I k) for I}, 1, = +1
B(k1y, K12, K215 K22) = BU K115 T1pK 19, 1 Ko15 Inoka) (48)
for Iy, 11y, Iy, Inp = %1

As a result of these additional symmetries, the simulation formula for
2D-1V third-order quadrant random fields simplifies to

N, N

Alxy,Xp) = V2 Z z S, (K1, K2y, JAK ) Aicy [COS(Kln,Xl + Ky, Xp + D)

niy
1,=0 1, =0

+ cos(ky, x| — Ky, Xy + @@

iy
(12,20 iy2j,20

+ \/5 z Z V S(Kl"x > Kon, )bP(Klil Ky Koy s Kzlz)

iy +ji=ny iy +j,=n,

[ Cos(ky, X + Ky, Xy + D) + @

i R A TRV CTRESYY)
+ cos(k, X| — Ky, X +0? +o? + By Ky s =Ko s =Ko )
1n, X1 2n, X2 iiy i iy By 0200 702,

»

2
+ Cos(Ky, X| = Ky, Xy + Ky Xy + (D?]i)ﬂ + <D/|/.2

+ ﬂ(’(n, > K1y —Koiy Koy )

() ()
+ o8k, Xy F Ky, X = Ky Xy + By )+ DU+ Py, Ky Ky Kp)) ]]

(49)

where the various terms are defined as before.
The symmetries in the d-dimensional polyspectra for quadrant ran-
dom fields are given by

Sk, Ky, e kg) = SU Ky, Iyky, ..., Iyky) for 11,1, ... Iy = +1

B(K11, K12, K215 K025 -5 - Kq1» Kg2)
(50)
= By k11, Tiokio, Inykgrs Iokgns ooy oo s Ig1Kg1s L goKan)

for I, 115, Iy Ipps oo s oo I gy I gy = %1
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As a result, the simulation formula for dD-1V third-order quadrant
random fields simplifies to

Ng N> N

A(Xy, Xy oeeyXy) = V2 Z Z Z |:\/SP(KMI,K'ZHZ,..,,K[Md)AKlAKZ..,AKd

ng=0  ny=0n;=0

L.y

cos(I,Kl,”xl + Isznzxz + o+ IdendX3 + D@y )

L=1h=x%1,...I;=+1
(12120 3220 ig2jy>0

RS

ivtji=ny iytjp=ny  igtjg=ng

S(Klnl > K2n2’ e Kdn‘,)

X by (K Ky Koy s Ky oon s Kaiy s K, )

cos (1, Xy + Lyyiey, X5 + Dyl Xy + -+
Ii=1I)=%1,In=+1,... Iy =x1,1jp==+1
LIy gy Iyl gy
+ LgiKgi Xg + LaooKaj X + @0 0 @

+ Bt 5 K1jy s Kaiys Kajy o oo 5 Kaiy s Kaj, ) ]:|

(51)

where

Sp(Kiny s Koy s oo Kny) = S K s Koy s ooe s K, ( 1-

012120 i32jy20 ig2jg20

Z bi(’(ln S K1y Kaiys Kojys oo s Kaiy o Kaj,) )
ivtji=nyiytjp=ny  igtjg=ng
b127(K”1 2 K1y Kaiy s Kojys oo 5 Kaiyg o Kd/d) =
[ Bk K1)y Ky s Koy v Kaiygs Kd/d)|2AK1AIC2 .. Ak,

Sp(K1iys Kaiys oo s Kai ISy (K15 Kajys oo s Ky IS Ky g1y Koty )s -+ > Ktigreig)

(52)

Note that we forego the overline index set notation in lieu of the
full indicial notation given the introduction of additional summations
associated with the symmetries. For simulation purposes, we further
note that the quadrant random fields require the generation of 2¢ sets
of dth-order tensors of random phase angles.

5.4. Simulation of one-dimensional random fields with FFT

The simulation formulae presented up until now can be used for
simulating random fields, but they grow increasingly computational
intensive with increasing dimension; so much so that simulating 3-
dimensional random fields becomes impractical. Assuming that all
required data such as partial bicoherences, biphase angles, etc. have
been computed a priori, sample function generation for a 1D-1V process
using the truncated form of Eq. (12) has complexity O(M N). This
complexity increases exponentially for multi-dimensional random fields
to order O((M N)?) where d is the dimension of the random field. Here,
we introduce a fast Fourier transform (FFT) based implementation to
reduce the complexity of the simulations.

We first develop an FFT based implementation for simulation of
1D-1V third-order random fields and subsequently extend it to the 2D-
1V and dD-1V cases. Let us start by writing Eq. (12) in its complete
discretized form as

i2j>0

A(mAx) =\/§Z 28 (kAx)Axc(1 — Z b2 (kK )) cos ((ndx)(mAx) — ¢y
n=0 i+j=n
© i>j>0

+V2 Y Y VaS@man)axlb,(x. k)l

n=0i+j=n
X cos((ndr)(mAx) — (¢; + ¢; + B(k;. k)
(53)
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Simplifying the representation from two additive terms to only one
term we get

A(mAx) =2 Y \/25(ndr)dx
n=0

i2j20
[ (1- 2 bg(lc,.,xj))cos((nAK)(mAx)-¢,,)
i+j=n
i2j20
+ 2 1b,(x;, k)| cos((ndx)(mAx) — (¢; + b, + Blx;. k;))) ]
i+j=n

(54)

From Euler’s notation we have that ¢/® = cos ¢ + 1sin ¢, hence cos ¢ =
R[e'?]. Applying Euler’s notation, we have

A(max) = V2 Y V25 (ndr)dx
n=0

i2j>0
R[ (1= D) B0x e (0ama-s) (55)
i+j=n
i2j20
£ Y Iyt ple! (a0 o) |
p\Ki>Kj
i+j=k

which can be factored as

A(max) = V2 Y \/2S(ndx) Ak
n=0

i2j20
w[ (¢L020m29)) (A= X 820cx e (56)
i+j=n
i2j>0
+ D) Iy, kple et )|
i+j=n

The standard form for implementation of the FFT is given by [48]:
Ay= Y BN (57)

By grouping terms in Eq. (56) as follows,

©

A(mAx) = m[z Bnei((nmc)(mdx))]
n=0
\/_ i>j>0
where B, = V2C [ A=Y B, k,)en
! ! mzén e (58)
i2j20
+ Y |bp(,(i’Kj)|ei<¢i+¢j+ﬂ<x,,Kj>)]
i+j=n

C, = V2S(ndx)Ax

we see that the simulation formula in Eq. (56) can be expressed in the
compact form of the FFT operator in Eq. (57).

For illustration of the implementation here, we will adopt the
following shorthand notation. Let A = {A,;m = 0,... M — 1} where
A,, = A(mAx) and B = {B,;n = 0,...,N — 1} where B, = B(nAx),
then the fast Fourier transform will be expressed as A = FFT(B).
Similarly, the inverse FFT is denoted A = IFFT(B). Practically speaking,
the FFT implementation involves typically a — normalization term
and therefore inverse FFT requires a multiplication by N. With this
shorthand, the simulation formula can be expressed as

A = R{NIFFT(B)} (59)
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5.5. Simulation of d-dimensional random fields with FFT

The fully discretized simulation formula for d-dimensional random
fields is given as follows:

A(mAxy, myAx,, ..., myAx,) =

Ny N, Ny
DD [\/E\/ZSP(nIAKI,nZAKZ...ndAKd)AKIAIQ...AKd

ny=—Np n;=0

ng=—Ny
cos(nymy Ay Axy + nymyAicy Axy ... ngmy Ak Axy + D@y, )
i12j120 [m|2liy| 212120

+
i+j1=n

Ing|2lig121jqg120

ir+ja=ny igtia=na

V2\/28(n, Ak, myAk, ... nyAxg)AK, Ak, ... Ak,

b, (i1 4Ky, jiAKy, iy AKy, jo Ak, ... ... iyAky, joAKky)
cos (nym; Axc| Ax| + nymy Ay Axy ... ngmg Ay Axy + Dy + P+
By Ak, jy Ak, iy Ak, o Ak, .. .. idAKd,jdAKd))]

(60)

where (see equation given in Box I).

Following similar steps involved in the development of the FFT
implementation for 1D-1V random field, the simulation formula for d-
dimensional random fields is given in Box II. This can be simplified to
a form amenable to the FFT implementation as

N, N,

Ny
A(m Ax, my A%y, myAx) =2 Y e D
ng=0  my=0n,=0 I,=1,,=x1.....I,=#1 (63)

[B" Lyedg (T mm, A, Axl+IzanzAx3Ax2+m+ldndmdAxdAxd):|
S

Again, expressing this in terms of FFT and IFFT operations the following
results:

1, I, I
A=2 ER{NJFFTKZ oFFT, !\ o ... oFFT, (Bl112+1ay)
L=1,L=+1,... I;=+1
(64
where
d
J=ij, fj=1iij=1, fj=00therwise (65)
j=1

FFT'/ equals IFFT if I; = 1 and FFT if I; = —1, and B'12-14 are the dth-
order tensors having components B:; gﬁg in Eq. (63). For example, we
can express the simulation formula in 2D compactly in terms of FFTs

as
A=2 [9{{ N?2(IFFT,, oIFFT, (B'!)) + N(FFT,,oIFFT, (B'™"))} (66)

where the subscript «; or k, specifies the axis of the matrix over which
the FFT/IFFT operates. Similarly, the 3-dimensional implementation
takes the following form:

A =R{N°IFFT, oIFFT, oIFFT, (B'")+ NFFT, oIFFT, oIFFT, (B''™")
+ NZIFFT, oFFT, oIFFT, (B'™'")+ NFFT, oFFT,,oIFFT, (B'"'"')}
(67)

In the case of quadrant random fields, the FFT implementation can
be further simplified to

Ny N, N

A(mlel,mzsz, ’mdAxd) =2 z e Z Z

ng=0  ny=0n=0

By ny...n [ el(ﬂlmlAKlel)(el(nzmzAKzsz) + e_'("ZmZA’(zsz)) (el("dmdAKdAXd)
\na..ng

+ e—z(ndmdAr(d Axd)) ]

(68)
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Sp(nlAKI,nzAKZ, cngdiky) = S(n Ak, ny Ak, ... ngAKy)

i12j120 |ny|2]ip|2]j2 |20

Ing12lig|21jq120

=l itj=Ihn ig+ig=lang

i12j120 my2|i[21ja]20  ng=lig|=1jg120

x(1- B0 Ay o K 1y Ay, A, g AR Ja ) ) 61
iytji=ny itjp=ny ig+ja=ng
B(i| Ay, ji Aky, iy Ay, oKy, ... igAky, jq Ak g)|? Ak Ak, ... Ak
B0y Ay 1 Ay iy Ay, Ay, g By g dig) = ———— VAR AR ARy, Jp AR, o LAy Ja k) AR\ AKy - A
P Sy Ak, i ARy, i AKy)S (1 AKy, Jo Ky, oo Jg AR g)S (G + j)AKY, - (g + Jg)AKy)
Box L.
A(myAx,myAx,, ..., myAx,) =
Ny N N
233y > VS n Ay, Lny Ak, ..., Iing Ak ) Ak, Ax, ... Ay
ng=0 ny=0n=01=1I=+1,.. I;=+1
012120 ny2|ig|21ja20  ng2lig|21jq120 II..Ig
. . . . i H U nyny...n
[ 1- Z b%(llAKl,lel(l,IzAkz,jzAKZ, coes e dgdiy, jadKkg)e M2 (62)

+ b,(i14ky, j1AKy, i Ky, jodKy, ..., .. igAKy, jaAKg)
iytj1=Iiny iptjp=Irm igtia=Iqng
Liyedy | Iily.dg . ) ) . . .
« el(¢’1'2---"d +¢/1j2---1d +P(i1 Ak, j1 Ak Lig ARy jo AKy..o.. . iq A g g AK ) ] ol nymy Ak Ax +Iynymy Ay Axy et Igngmy Ak Axg)
Box II.

In terms of FFT and IFFT operators, it takes the following form:

A=2 R{N'FFT,! oFFT,"! o .. oFFT,! (B)}] (69)

I=1,I=+1,....[;=+1

where B is the dth-order tensor having terms B, ,, ,, in Eq. (68).
Detailed development for the simulation of 2D random fields with the
use of FFT is provided in [44].

5.6. Notes on the use of the FFT technique

It is well known that the application of the FFT technique requires
that certain conditions be satisfied. One such condition relates the
spatial and wave number discretizations as follows:

Ak Ax) = —, Ak Ax, = 12\1_][ (70)

Ay Ax, = 12\[—”
d

2

ees

This is equivalent to a condition that the spatial domain over which the
samples are generated is always equal to one period.

The general procedure for simulating d-dimensional third-order
random fields with the FFT implementation is as follows:

1. Assign the appropriate wave number discretization over the d di-
mensions of the power spectrum and the bispectrum. Associated
spatial increments follow from Eq. (70).

. Ensure that the spatial increments satisfy the conditions in Eq.
(47) to avoid aliasing.

. Generate the necessary 29~!, dth-order random phase tensors
@'1l2--la for general fields or a single dth-order random phase
tensor for quadrant random fields.

. Compute the 27!, dth-order spectral tensors B'1/2:!¢ for gen-
eral fields or a single dth-order spectral tensor for quadrant
random fields.

. Apply FFT and IFFT appropriately along the different axes of the
d-dimensional spectral tensor(s) B according to the equations
above.

The major advantage of the FFT implementation is computational
expense. Each FFT has well-known complexity of the order O(M log N),
whereas each summation of cosines has complexity of the order
O(M N). Because the summations in the original formulation are nested
over each dimension, the complexity grows exponentially with dimen-
sion as O((M N)?). However, as we can see from the above expressions,
the FFT implementation requires only 2¢~!d FFTs and therefore has
complexity of order O(d2¢"'MlogN) <« O(MN)Y). For quadrant
random fields, this is reduced even further having order O(2d M log N)
and therefore only scales linearly with dimension.

The result is a drastic reduction in the computational time, with-
out which the simulation of multidimensional higher-order random
fields becomes infeasible. To illustrate the savings, Table 1 shows a
comparison of the computation time for the non-FFT and the FFT
implementations for a 1-dimensional random field for different number
of sample functions generated. On average the FFT calculations are
three orders of magnitude faster.

While Table 1 illustrates the huge savings for one-dimensional
fields, it is particularly interesting to observe how these computation
times scale with dimension. Table 2 shows that computation times
for 2- and 3-dimensional random fields using the FFT implementation
remain modest. Note, however, that we do not compare with the sum-
mation of cosines here because these calculations become intractable
for dimensions greater than one. All the simulations are performed on
a MacBook Pro 2017 using 3.1 GHz Dual-Core Intel Core i5 CPU and 8
GB 2133 MHz LPDDR3 memory.

6. Simulation of ergodic multi-variate stochastic processes by 3rd-
order spectral representation method

Thus far, we have established the equations for the simulation of
1D-1V random process and nD-1V random fields. To simulate the 1D-
mV stationary stochastic vector process [f(1), f>(t), ... ... fm(t)]T, the
pure component of the 2nd-order cross spectral density S,(w) must
be computed first. In case of a simple 1D-1V stationary stochastic
processes, the computation is straightforward, see Eq. (14). However,
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Table 1
Comparison of the computation time for simulation of 1D third-order
random fields using the standard and FFT implementations.

No. of samples Time (s)

Standard FFT
128 14.842 0.0893
512 26.891 0.0957
1024 48.383 0.1399
2048 82.525 0.3750
4096 456.100 1.9270

the pure cross-spectral density for a stochastic vector process is not
trivial, and requires us to resort to Einstein (tensor) notation. The pure
cross-spectral density is thus expressed as

i>j>0

b(a)k) = ab(wk) - Z Baef(wnw )B h(a)na) )Gpe(a)) (71)
i+j=k

X G ()G 1 (0))G gy () Aco?

where the term G(w) is the inverse of the decomposed pure cross-
spectral density derived as follows. Similar to the 2nd-order expansion,
the pure cross-spectral density can be decomposed using the eigenvalue
decomposition as

SP(w) = Hw)H"*(w) (72)

and having the following properties

Hjj(@) = Hj;(-0), Hy(0) = Hj (-0), Hj (@) = |H (@)]e ),
. SlH (@) (73)
01 (@) = tan (—ER[ij(a))J )

We then define G(w) = (H(w))~!, which again can be expressed in polar

coordinates as:
S[G i (w)] ) 74)

107 (w)
Gp) = G @I, 0}, ) = ™ (e O

Leveraging these quantities, the stochastic vector process f,(f);a =
1,2, ... m can be simulated as follows:

m

fat)=2 Z [ D 1H ()1 VAw cos(ey,t -
I

=1

Ou(w) + dp)

|Baln(wpi’ wqj)”G/p(a)pi)”Gnq(wqj)lAw

COS((@p; + gt = ot (@ i 04)) = 0] (@) = 0] (@) + by + ) |
(75)
where
S[Bypy (@1 @,,)]

o = et SBan@n 0] 76
Pain(@pis @q;) = tan <9{[Ba,,,(w,,,-,wq,-)]> e
is the biphase, and

I} 1
i I 77
om kA(o+2mAw+NAw v

The stochastic vector processes simulated using Eq. (75) satisfy both
ensemble and ergodic properties of the vector process up to the third
order. Further details along with proofs can be found in [49].

6.1. Simulation of stochastic vector processes by FFT

The simulation formula for stochastic vector processes presented
above in Eq. (75) is computationally expensive, but can be accelerated
with the FFT. Again, applying Euler’s formula, ¢'* = cos(¢) + 1sin(¢),

Probabilistic Engineering Mechanics 64 (2021) 103128

Table 2

Computational time for the simulation of 2D and 3D third-order random
fields using the FFT implementation. Standard implementation is not
shown because the calculations are impractical on a desktop computer.

No. of samples Time (s)

2D 3D
1 0.224 20.651
16 0.225 21.839
128 0.274 25.600
512 0.375 37.89

such that fR[e"”] = cos(¢), the simulation formula simplifies to

m
[ Z | H ()] / Acwe" @it =0a1(@1i)+ i)
=1

S = 2

m m i2j>0 (78)

+ 3y 2 DY 1Bun(@p 9,1y @,) |G (@0, Ao

I=1 n=1 p=1 g=1i+j=k

e'(”’ni g 1=Pain(@pi @ )_911,, (@pi )_914 (@g))+Ppi+dg; ] ]

Discretizing the time domain using ¢, = rAt and the frequency domain
using the multi-indexed frequency in Eq. (77) yields

falra =R |2 Z [Z | H w0V Ao 5+
k=0 I=1
m m i>j>0
2 Z |Bg/n(w,'awj)”G[p(a)i)“Gnq(wj)lAa)

1 ¢=1i+j=k

1
v )AwAt e/(—(}a, (@)+d1)

l
S 3
I
=
I

)AwAr H(=Bain(@piwg;)— 9 p(@pi) = 9,,q(wq,>+¢p1+¢qj Je zkrAmAr]

(79

Expressing this equation in terms of the standard FFT implementation,
we have
N-1

Fardn =R[ Y Cpethrion] (80)
k=0
where C, is given by

C,=2[ Z | H, ()] V4 Acwe' 0 (@i)+di)

+ 2 X33 N Butep o) IGy@p Gyl e

% Awe'Pain(@pi@q; )_gllp (@pi) =0y (@q; Y+ bpi+bg; )]

and we have the following conditions to ensure the ergodicity and
avoid aliasing

mat =Ty =m2%, 4= 22 (82)
Aw mAw

Simulation by FFT using Eq. (80) and (81) saves considerable compu-

tational expense while retaining the desired ensemble and ergodicity

properties of the sample functions.

7. Numerical examples

In this section, we present examples of the simulation of skewed
2- and 3-dimensional random fields from prescribed power spectra and
bispectra. These examples, although purely mathematical in nature and
not corresponding to any physically meaningful random field, have
been developed to call attention to specific features of the proposed
methodology. Finally, we also present an example of the simulation of
a stochastic vector process.

7.1. Comparison of 2-dimensional 2nd- and 3rd-order random fields

The first example compares the simulation of a 2-dimensional ran-
dom field by the 2nd-order SRM and the 3rd-order SRM. The prescribed
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Fig. 1. 2-dimensional power spectrum.
power spectrum is given by
N -4 L2 442 f 0 83
(KI,KZ)—76XP—5(K1 +x3) for ky, Ky > (83)

and is plotted in Fig. 1, yielding a random field with zero mean and
variance 75. Notice that the power spectrum is radially symmetric. The
prescribed bispectrum for the 3rd-order random field is given by

RB(x| |, K13, K15 Kpp) = SB(k| 1, K125 K15 K22)

210 )

_ 2 2 2
= ? exp — (k) + Kk}, + Ky +K5) (84)

for &)y, k12, K91, K0 2 0

Visualization of the 2-dimensional bispectrum, which is a 4th-order ten-
sor, is not trivial. Of particular note is that the bispectrum is symmetric
across all dimensions, i.e. it has the same rate of decay along each
axis. This implies that the coupling of the waves is the same in both
dimensions.

One thousand samples of the 2nd- and 3rd-order random fields are
simulated using the SRM with the following parameters.

Ax, = Ax, = 0.7853,
N, =N, =128, M, =M,=256

A, = Ak, = 0.03125,
(85)

The cutoff frequency is x, = 4 rad/sec and the value of ¢ from Egs.
(37)—(38) is determined as

4 4 o o0
/ / S(ky,k)drdiy = (1 — e)/ / S(ky, ky)dx dic,
0 —4 0 -0
4 4 o oo
2/ / S(ky,ky)dx di, =2(1 —e)/ / S(ky, ky)dik dicy
0 Jo 0 0

€ =0.00012668

(86)

Plots of representative 2nd- and 3rd-order sample realizations hav-
ing identical phase angles are presented in Fig. 2. On initial inspection,
both sample realizations look similar. However a closer inspection of
the samples and their statistical properties reveals interesting charac-
teristics. The difference between the sample realizations of the 2nd-
and 3rd-order random fields is shown in Fig. 2(c). The plot clearly
shows that there are significant differences between the two sample
realizations. These differences arise from asymmetry introduced by
the proposed methodology. Also note that the differences are oriented
along a arctan(l) = 45° and arctan(—1) = —45° angle relative to the
x, and x, axes. This arises because the form of the bispectrum is

10
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Table 3
Example 1: Target and estimated moments of random fields generated
by the 2nd and 3rd-order SRM.

Moments Target 3rd-order 2nd-order
Mean 0.00 —0.001 —-0.001
Variance 80 81.99 81.98
Skewness 0.22 0.2079 0.0004

identical in both the x; and x, directions. Consequently, the length-
scale associated with third-order correlations in the x; and x, axes are
the same — resulting in the 45° and —45° “bands” of skewness.

Statistical properties, estimated from the 1000 sample realizations,
are presented in Table 3, illustrating the ability of the proposed method-
ology to match the theoretical properties up to third-order. The original
SRM, on the other hand, matches the properties of the process only
up to second-order. Fig. 3 further shows the convergence of variance
and skewness of the 2D samples generated with increasing number
of samples. We see that there is some small discrepancy between the
theoretical and simulated statistics, even after 1000 samples. Much
of this discrepancy can be attributed to the frequency discretization.
Fig. 3 shows the convergence of variance and skewness with increasing
number of frequency intervals with constant cutoff frequency «,, =
Ky, = 4 rad/sec, which maintains a theoretical accuracy given in Eq.
(86).

7.2. 2-dimensional random fields with different bispectra

In the second example, we modify the bispectrum such that wave
interactions occur on different length-scales in the «, and «, directions
and illustrate how the asymmetric features of random field differ with
these relative length-scales. We generate two sets of random fields with
the same power spectrum given above in Eq. (83) and shown in Fig. 1.
However, we consider two different bispectra as follows

R B\ (K11, K12, K215 K22) = S By (11, K125 K315 Kp2)

_ 500 2 2 2 2 (87)
= exp —(10x;, + k7, + 10x5, + x3,)

R By (k115 K12, K21, K22) = S By (K|, K15 ka1 Kp2)
_ 500 2 2 2 2 (88)
= 7 exp —(ky; + 10x;, + x5, + 10x3,)

Again, visualization of the 2-dimensional bispectra is not included.

The first bispectrum shows accelerated decay along the x; axis
whereas the second bispectrum has accelerated decay along the x, axis.
Samples are again simulated using the FFT implementation of the 3rd-
order SRM. Plots of two sample realizations having the same discretiza-
tion and random phase angles as Example 1 for direct comparison with
the 2nd-order, are presented in Fig. 5.

Again, to the naked eye, the 3rd-order sample realizations look
similar to the second-order. But taking the difference between the
sample realizations of 2nd- and 3rd-order fields (Fig. 6), we now see
that the asymmetric features are elongated along particular axes. In
the case of B, the asymmetric features lie most prominently along the
x, axis where the decay in bispectrum is more rapid. Interestingly, the
asymmetric features occur at an angle approximately arctan(\/ﬁ) ~ 73°
and arctan(— \/1_0) ~ —73° from the x, axis (or arctan(\/ﬁ) ~ 18° and
arctan(— \/(ﬁ ) ~ —18° from the x,; axis) indicative of a 10:1 aspect ratio
of the nonlinear features. The inverse is true for B,.

Lastly, we generated 1000 samples of the 2nd- and 3rd-order ran-
dom fields and the statistical properties of the sample realizations are
presented in Table 4. Again, all of the random fields possess approx-
imately the correct mean and variance. However, only the 3rd-order
SRM samples possess the correct skewness. Moreover, they possess the
full bispectra but this cannot be visualized.
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Fig. 2. 3-dimensional random fields simulated by the (a) 2nd-order SRM, (b) 3rd-order SRM and (c) Difference between the 2nd and 3rd SRM.
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Fig. 4. Convergence of variance and skewness with increasing number of wavenumber intervals.

Table 4

Target and estimated moments of random fields generated by the 2nd
and 3rd order SRM.

Moments Target 3rd-order, B, 3rd-order, B, 2nd-order
Mean 0.00 0.0044 0.0044 0.0044
Variance 80 81.990 81.975 81.996
Skewness 0.052 0.04897 0.04846 0.0005

7.3. Comparison of 3-dimensional 2nd- and 3rd-order random fields

In this example, we compare simulations of 3-dimensional random
fields having a prescribed power spectrum (2nd-order) and power
spectrum and bispectrum (3rd-order). Both random fields have a power

11

spectrum given by:

20 1
S(ky,K,k3) = —— exp—E(Kf + KZZ + K;)

V2

and plotted in Fig. 7. The third-order random field has bispectrum given
by

(89)

RB(x| 1, K12, K15 K92, K31, K32) = SB(K 115 K12, K21, K225 K315 K32)
22 2 2 2 2 2 2
= exp —(K” + K, Ky Ky, R+ K32)

(90)

Visualization of this 3-dimensional bispectrum, which is a 6th-order
tensor is not trivial and is therefore not presented here.

One thousand samples with the following discretization were simu-
lated

Ax; = Ax, = Ax3 = 0.625,
N, =N, =N;=16,

Ak, = Ak, = Ak, = 0.314

o1
M, =M,=M;=32
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(a) Random field with bispectrum Bj.
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Fig. 5. 2-dimensional random fields generated from the two bispectra using the 3rd-order SRM.

30
20
10
0
-10
-20
-30
(b) Random field with bispectrum Ba.
200
175 ’ 30
150 <8
125 10
s 100 0
75 -10
50 -20
25 -30
8 0 50 100 150 200
X1

(b) Random field with bispectrum Bs.

Fig. 6. Difference between samples generated by BSRM and SRM simulations for both the bispectra.
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(a) Random field with bispectrum Bj.
Table 5

Target and estimated moments of random fields generated by the 2nd
and 3rd order SRM.

Moments Target 3rd-order 2nd-order
Mean 0.00 0.0364 0.0364
Variance 179.0812 178.9807 178.9271
Skewness 0.02107 0.02205 0.00081

Plots of representative sample realizations of the 2nd- and 3rd-order
random fields, having identical phase angles, are presented in Fig. 8.
As in the 2-dimensional case, the sample realizations look similar.
The difference between the 2nd- and 3rd-order sample realizations is
shown in Fig. 8(c). This difference is the result of the asymmetric non-
Gaussianity introduced by the bispectrum. Here, similar to example 1,
the asymmetric features in the difference plot are inclined along a 45°
and —45° angle along on each plane (x| —x,, x; —x3, and x, —x3) of the
sample realization. The similarity of the bispectra across all dimensions
gives rise to this.

Sample statistics are given in Table 5 from the 1000 simulations,
which demonstrates the ability of the 3rd-order simulations to match
the moments up to the skewness. The samples also possess the pre-
scribed bispectrum, but it is not feasible to illustrate this.

12

7.4. 3-dimensional random fields with different bispectra

Next, we investigate the effects of variations in the bispectrum in 3-
dimensional random fields. The random fields simulated here possess
the power spectrum from Eq. 7 and illustrated in Fig. 7. We then
generate 3rd-order random fields with 3 different bispectra given by

— €%
R B (k11 K12, K135 K21 K25 K3) = I By (K11, K125 K13, K215 K225 K23)

_ 300 2 2 2 2 2 2 (92)
=5, exp —(101<ll +xp, HKp+ 101(21 + K5, + K23)
R By (K11, K12, K13, Ka15 K22, K23) = S By (K11, K12, K13, K215 K225 K23) ©3)
_ 300 2 2 2 2 2 2 93
=5, exp —(K” + 10)(12 +x;+ Ky + IOK22 + K23)
R B3 (k115 K12, K13 Ka15 K20 Kp3) = S B3 (K11, K19, K13, K21, K225 K23) (©4)
300 2 2 2 2 2 2 94
=5 exp —(kq; + ki, + 10x; + k5, + k5, + 10x35)

each having the bispectrum decay at a higher rate along a specific axis.
For example, the bispectrum B, decays more rapidly along the x, axis
(x1; and k).

Plots of the sample realizations from the 3rd-order SRM, having
identical phase angles as those in the previous example, are presented
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Fig. 7. 3-dimensional power spectrum.

in Fig. 9. As in previous examples, the random field realizations look
very similar. Fig. 10 shows the difference between these samples and
the 2nd-order field simulated in Fig. 8(a). Here we see that by taking
the difference between the samples generated by the 2nd- and 3rd-
order Spectral Representation Methods, we have asymmetric features

(a) Bispectrum Bj

(b) Bispectrum Bs
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Table 6
Target and estimated moments of random fields generated by the 2nd and 3rd order
SRM.

Moments  Target 3rd-order, B, 3rd-order, B, 3rd-order, B;  2nd-order
Mean 0.00 0.0364 0.0364 0.0364 0.0364
Variance ~ 179.0812 178.9703 178.9787 178.9605 178.9270
Skewness  0.00580 0.00680 0.00682 0.00661 0.0008

elongated along different axes. Specifically, for realizations with bis-
pectrum B, have features that are elongated along the x,-axis, thus
the asymmetric features lie along angles of arctan(\/m) ~ 73° and
arctan(—y/10) ~ —73° in the x | —x3 and x| — x, planes and the features
are diagonal (45°) in the x, — x; plane. Likewise, features from B, are
elongated in x; and Bj are elongated in x;.

Lastly, 1000 samples with discretization given in Eq. (91) were
simulated and the statistics of the resulting random fields were calcu-
lated as shown in Table 6. Again, the third-order samples are shown to
possess the appropriate 2nd- and 3rd-order statistics. They also possess
the proper bispectra, this cannot be feasibly illustrated.

7.5. Comparison of 2nd and 3rd-order stochastic vector process

In the final example, we present the simulation of a tri-variate
stochastic vector process representing wind turbulent velocity fluctua-
tions. This example is modified from [30]. Consider three components
of the simulated vector process denoted by f,(t), f»(1), f53(1), describing
the wind velocity fluctuations at three vertical points in a wind profile
(points 1,2 and 3 in Fig. 11).

45.11 9.25
34.19 6.86
23.27 4.48
12.35 2.09
1.44 ~0.30
—9.48 ~2.69
—20.40 —-5.08
-31.32 _7.46
—42.24 _9.85
-53.16 —-12.24

43.86
33.00
22.14
11.27
0.41
—10.45
-21.31
—-32.18
—43.04
—53.90

(c) Bispectrum B3

Fig. 9. 3-dimensional random fields generated using 3 different bispectra.
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(c) Bispectrum B3

Fig. 10. Difference between 3-dimensional random fields generated using the 2nd- and 3rd-order spectral representation methods.

The components of the 2nd-order cross power spectrum are given
by

Sji0)=S;(w) j= 1,2,3

@) = /S (@S (@r(@) jok=1,2.3j #k

where S () is the power spectrum of process f (0 and vjk(®) is the co-
herence function between processes f;(t) and fy (). The form suggested
by Kaimal [50] is selected to model the 2nd-order cross spectrum of
the wind fluctuations and is given by

(95)

_ 120, 2 !
T 221 *U(z) wz 43
1+ Soan(z) 12

S(z,w)

(96)

where z = height above the ground (in m); u, = shear velocity of the
flow (in m/s); and U(z) = mean wind speed at the height z (in m/s).
The model suggested in Davenport [51] is selected for the coherence
function between the wind velocity fluctuations at different heights
given by:

y(4z,w) = exp

27 U (z)) + U(2)]

- C,Az

—] 97
where U(z;) and U(z,) are the mean wind speeds at heights z; and
z, respectively, Az = |z, — z,|, and C, is a constant equal to 10. The
specific parameter values are obtained from [30] yielding a cross power
spectral density given by

38.3 433 135
Si= 5 Sp=——3, Su= 5 (98)
(146.190)3 (14+6.98w)3 (1+21.8w)3
and the corresponding coherence functions given by
Yp(@) = e 0570y (@) = 3B () = 73220 (99)

The spectra and coherences are shown in Fig. 12.

The diagonal components of the 3rd-order cross-spectrum (cross-
bispectrum) are assumed to take the following form:

50
By (wy, wy) = 3
(146.19 % (w, + w,))3
50
By (wy, wy) = 5 (100)
(1+6.98 % (w, + wy))3
50
Bis3(wy, wy) = 3
(14218 % (w; + w,))3
while the off-diagonal terms are given by
Bjji(wy, wy) = i/Biii(wlv wa)B;;;(wy, W) By (Wi, wr)yiji (101)

14

Point 3

140 m

Point 2

Point 1

40 m

Fig. 11. Configuration of the wind velocity points along a vertical wind profile.

where Yijk are the third-order coherence functions (or bi-coherences)
given by

—0.171(w; +wy) —0.357(w; +wy)

7w, wy) =e (W, wy) = e

—1.287(w; +w,) —1.589(w; +w,)
>

nwp, wy) =e sris(wy, wy) = e

(102)

—3.473(w, +wy) —2.659(1w, +10;)

ri3(wy, wy) =e sy, wy) = e

},233(w1’ Wz) — e—24775(w1+w2)

Sample functions of this tri-variate stochastic wind velocity process
are simulated using Egs. (80) and (81) with the FFT technique. The
upper cutoff frequency and the number of frequency discretizations are
given by

w, =2rad/s; N, =100 (103)

which results in the following frequency and time discretizations:

Aw = 0.02 rad/s; At =1.57 sec; Ty = 314.15 sec (104)

A single realization of each vector component is plotted in Fig. 13,
which also shows comparisons with sample functions generated using
the 2nd-order SRM (having the same random phase angles). To ver-
ify that the simulations do, indeed, possess the prescribed statistical
properties, the 1st, 2nd and 3rd-order ensemble properties from 1000
simulation are summarized in Tables 7-9. Note that we do not produce
plots of the spectral quantities because these are difficult to visualize.

From these tables, we see that the first and second-order ensemble
moments are very close to the target for both the second and third-order
simulations. However, the second-order simulations cannot match the
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Fig. 12. Power spectra and coherence functions for a tri-variate wind velocity stochastic vector process.
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Fig. 13. Velocity histories at points 1 (left), 2 (middle) and 3 (right).
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Fig. 14. Convergence of variance with increasing number of samples at points 1 (left), 2 (middle) and 3 (right).
Table 7
First order statistics of the simulated vector process.
Moments 3rd-order 2nd-order Target
ELf, (0] 20.00143 20.00143 0.00 Table 9 o )
EL/,0)] -0.00147 -0.00147 0.00 Third order statistics of the simulated vector process.
E[f5()] —0.00279 —0.00279 0.00 Moments 3rd-order 2nd-order Target
E[f} (1] 4.880 0.012 4.801
]E[fz3 Q)] 3.870 0.004 3.825
Table 8 » , EL£30) 0.337 ~0.010 0.368
Second order statistics of the simulated vector process. ELf,0/2(0)] 3.938 _0.051 3.939
Moments 3rd-order 2nd-order Target E[f, () fsz(t)] 3.218 —0.054 3.231
ELf2(1)] 14.541 14.538 14.539 ELA(0) /7 0] 0.931 -0.048 0.981
ELf2(1)] 14.722 14.720 14.722 EL(0f7(0)] 0.297 -0.058 0.391
EL/2()] 14.724 14.723 14.723 REAOVRO) 0.435 -0.057 0513
2
ELf, (0 f>(0)] 13.698 13.697 13.698 Elf3(0/;0] 0.140 —0.065 0.247
ELf, (0f5(0)] 7.628 7.627 7.628 ELf10A@f0] 0.355 —0.050 0.425
ELf (0 f3(0)] 8.006 8.004 8.005

target third-order moments (Table 9). The third-order simulations,
on the other hand, match all moments up to third-order with high
accuracy.

15

Finally, we present the convergence of variance and skewness with
increasing number of samples and increasing number of frequency
discretizations in Figs. 14-17.
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Fig. 17. Convergence of skewness with increasing number of frequency discretizations at points 1 (top), 2 (middle) and 3 (bottom).

8. Conclusions

In this paper, the 3rd-order Spectral Representation Method has
been extended for the simulation of multi-dimensional random fields
and ergodic, multi-variate stochastic processes. A fast Fourier trans-
form implementation of the 3rd-order SRM has also been presented,
which leads to enormous computational gains — making the generation
of multi dimensional fields and multi variate processes feasible for
implementation on a desktop computer. Numerical examples for the
simulation of 2D and 3D random fields and the simulation of a tri-
variate wind velocity stochastic process are provided, which highlight
the effectiveness of the proposed methodology.

9. Software

The simulation methods discussed herein have been programmed in
Python and are available in the open-source uncertainty quantification
software UQpy [52].
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Appendix. Additional properties of random fields and random
vector processes

A.1. Stationary random fields

Random fields that are invariant across the indexing variable are
referred to as stationary. For the development of the proposed method-
ology we present 2 generalized notions of stationarity: strongly and
weakly stationary [53].

A random field A(x) is considered strongly kth-order stationary if
the probability measure up to kth-order is invariant to a shift in
index. Let Fyn, x,,...x,)(@1,d2: -+, Ak, X1, X, ... X)) denote the kth-order
joint cumulative distribution function of A(x) defined below as

Fpe)xg,x)(@15 @0, o5 Qg X1 X0, 0005 Xp)

2 PlA(x)) < a}, A(xy) < @y, ..., A(x}) < a;] (A1)
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The random field is strongly kth-order stationary if

Fpe ) (@15 825 oo Qs X1 X0, o0 X ) =

Facrexyren ro(@ 0 aioxp +Ex + &, x +8), VEER

(A.2)

Again, it follows that all measures of order lower than k are similarly
invariant to a shift in index and that all characteristics of the kth-order
joint distribution are independent of £. A random field is considered
strongly stationary if Eq. (A.2) holds for all orders k.

A random field A(x) is considered to be weakly kth-order stationary
if the following conditions are met

X)) = mA & X +E) Vn<k
E[|[AX)|"1 <o Vn<k

A
my(xy, ...

(A.3)

where mf(~) is the nth-order moment function defined in Eq. (A.5)
below. For the special case of weakly 2nd-order stationary (typically
referred to simply as weakly stationary), these conditions are:
my(x)=my(x+&) VEER

Cya(x1,x7) = Cy 4(x; — x,,0) Vi, 1, €R

E[JA)I*] < o0

(A4

where m4(x) = E[A(x)] represents the mean function and C, 4(x.x,) =
E[(A(x;)—m4(x))(A(x,) —m4(x,))] represents the auto-covariance func-
tion. It is interesting to note that strong kth-order stationarity implies
weak kth-order stationarity, whereas the converse is not necessarily
true. Weakly stationary random fields are particularly important here
because existing simulation methods are capable only of generating
weakly 2nd-order stationary non-Gaussian random fields (Gaussian
random fields are strongly stationary due to the properties of Gaussian
distributions). That is, because existing expansions are derived from
2nd-order properties of the random field (i.e. power spectrum or two-
point correlation), the simulated fields are, by construction, weakly
stationary.

Of particular interest in this work is the notion of the weak 3rd-
order stationarity, which implies that the bispectrum is invariant. As
we will see, random fields generated according to the proposed method
are weakly 3rd-order stationary.

A.2. Cumulants and moments of random fields

When a random field is Gaussian, the full joint probability density
of the random field can be easily computed from the mean and auto-
correlation function, but this is not generally true for more general
cases. Nonetheless, for practical purposes, many random fields are char-
acterized through some subset of properties of the field — typically its
moments, cumulants, or spectra. These properties are briefly reviewed
in the following. We note however that, given the classical moment
problem, the full probability density of the random field is identifiable
from the moments only when Carleman’s Condition is satisfied — that
is only when the infinite moment series has positive radius of conver-
gence [54]. Consequently, moments (cumulants/spectra) provide only
a limited view of the random field since we realistically cannot expect
to know infinite moments, nor can we be assured that Carleman’s
Condition will hold.

Moments and cumulants of random variables and random vectors
are not discussed here for brevity. The interested reader is referred
to [14]. The nth-order moment of a stationary random field A(x) is
given by

m:(él, vy )) = E[A)AX + &) ... Ax + &, D] (A.5)
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The cumulants of a stationary random field, meanwhile, can be ex-
pressed in terms of the moments by applying [55]

_ ki ko k
Chy gk, = CLX T X0 X"

= 20t e-0E[[T x]E[[]x] - E[]] x]

i€s) i€sy i€s)

(A.6)

yielding the following first three cumulants:

A_ A
1 =m

&) =m} (&) —m}

(€1, &) = mi(&). &) — mPIm) (&) + m} (&) + my (& — &) +2(m ')’

c

(A7)

Notice that when A(x) is a zero mean process (mf = 0), the first
three moments and cumulants are equivalent, but they differ for orders
(n > 4). Non-zero higher-order cumulants indicate non-Gaussianity. In
particular, odd-order cumulants give rise to asymmetric non-linearities
whereas even-order cumulants give rise to symmetric non-linearities.
Further details on the moment and cumulant properties of fields can
be found in [14,35].

A.3. Properties of stochastic vector processes

Consider a one-dimensional, m-variate (1D-mV) 3rd-order station-
ary stochastic vector process f(r) with components [f;(?), f,(1), ... f(D]
having zero mean for each component, E[f;(#)] = 0 for j = 1,2,...,m.
The second-order correlation function of this stochastic vector process
is given by R;;(z) = E[f,(t)f;(t + ©)] for i,j = 1,2,...,m. Similarly, the
third-order correlation function is given by E[f;(1)f;(t + 7)) f,(t + )] =
Rgi(rl , 1) for i, j,k =1,2,...,m. Additional details regarding the shape
and size of the second and third-order auto-correlation functions can
be found in [49].

For real-valued, third-order stationary stochastic vector processes,
the following second-order symmetry relationships hold,

R;j(7) = R;j(-7), i,j=1,2,....m;R;;(t) = R;;(7), i,j=1,2,....m
(A.8)
and the following third-order symmetry conditions hold,
3 3 .
RO (1,70) = RO (5,71, ivjsk = 1,2,0om
3 3 .
RI(.jl)c(rl,rz) = Rf,j}c(—rl, -0), L, j,k=12,....m
R® (t1,71p) = R® (=71, -1 —71), L, j,k=1,2,....m (A.9)

ijk

3) 3)
RO\(71.7) = R (71,7y) =

3) 3 ..
= R (1.1 = RO (r1.7p), injik = 12, om

ijk

3) 3
R\ (r1.7) = R (71,7)

The moment properties of the stochastic vector properties relate
to their spectral properties through the forward and inverse Wiener-
Khintchine transformations. The third-order cross spectral density can
be obtained from the third-order cross auto-correlation function as
follows:

[s+]
B,‘jk(wl L)) = 1 / R(3) (z,, Tz)e—z(wl 7 +w2r2)dTl dr,
—o0

@x)? ik

fori,j,k=1,2,...,m

(A.10)

where B, (w,®,) is the third-order cross spectral density. Relations
between other moments and spectra can be obtained similarly and can
be specifically found in [49]. Additional details regarding the size and
shape of the second and third order cross-spectral density can also be
found in [49].
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The second and third order cross spectral density functions are
complex valued in general and the following symmetry conditions hold

Sjj@) =S)(-w), j=1,2,..m

Sy(@) = S0}, 1= 1.2, .c.m; i # ]

(A11)

Sij(w) = S;(CU)’ Li=12,..m i#j

Bjjj(@),@)) = B} (), 0)); By (@), ;) = B}y (2, 0y)

(A12)
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