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A B S T R A C T

This paper introduces a generalized 3rd-order Spectral Representation Method for the simulation of multi-
dimensional random fields and ergodic multi-variate stochastic processes with asymmetric non-linearities. The
formula for the simulation of general 𝑑-dimensional random fields is presented and the method is applied to
simulate 2D and 3D random fields. The differences between samples generated by the proposed methodology
and the existing classical Spectral Representation Method are analysed. The formula for the simulation of
multi-variate random processes is subsequently developed. An important feature of the methodologies is that
they can be implemented efficiently with the Fast Fourier Transform (FFT), details of which are presented.
Computational savings are shown to grow exponentially with dimensionality as a testament of the scalability
of the simulation methodology. Examples highlighting the salient features of these methodologies are also
presented.
1. Introduction

Stochastic processes and random fields are used extensively in engi-
eering, from studying the dynamics of wind [1,2], ocean waves [3,4],
nd seismic loads [5] on structures to simulation of material mi-
rostructures [6,7]. Because of their importance, numerous methods
ave been developed for the simulation of stochastic processes and
andom fields. Simulation is particularly useful in the context of Monte
arlo simulations of large, complex non-linear systems where analytical
nalysis of the uncertainty in the system is not possible. Moreover,
imulation of stochastic processes and random fields finds applications
eyond simple Monte Carlo simulations and is important for essentially
ny simulation-based uncertainty quantification framework.
Until recently, simulation methods for stochastic processes and

andom fields have been derived only from second-order properties of
he process or field. Consider a standard probability space (𝛺, ,)
where 𝛺 is the sample space,  the sigma algebra of events, and 
probability measure. In these simulation methods, the process/field
ndexed on 𝒙 ∈  is represented in terms of a stochastic expansion of
he general form

(𝒙, 𝜔) ≈ 𝐴̂(𝒙, 𝜔) =
𝑛
∑

𝑖=1
𝜃𝑖(𝜔)𝜓𝑖(𝒙) (1)

here 𝜃𝑖(𝜔), 𝜔 ∈ 𝛺 are independent random variables and 𝜓𝑖(𝒙),𝒙 ∈ 
re deterministic basis functions. Many such stochastic expansions have
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been developed. Among these methods the most popular ones are the
Spectral Representation method (SRM) [8–10] and the Karhunen–Loeve
Expansion (KLE) [11,12]. Each of these methods operates by finding
a set of random variables 𝜃𝑖(𝜔) along with a set of compatible basis
functions 𝜓(𝒙) satisfying 𝐶(𝒙𝟏,𝒙𝟐) = E[𝐴(𝒙𝟏)𝐴(𝒙𝟐)] = E[𝐴̂(𝒙𝟏)𝐴̂(𝒙𝟐)].

For the SRM, 𝜓𝑖(𝒙) are the harmonic functions (Fourier basis) and
𝜃𝑖(𝜔) are random variables whose amplitude is derived from the power
spectrum (Fourier transform of the covariance function 𝐶(𝒙𝟏,𝒙𝟏)). Like-
wise for the K-L expansion, 𝜓𝑖(𝒙) are the eigen-functions of the covari-
ance function and 𝜃𝑖(𝜔) are standard normal random variables scaled
by the square root of the appropriate eigenvalues.

While each of these methods has its advantages, all such methods
have a common disadvantage in that they are only second-order rep-
resentative, i.e they can only match the process up to its covariance
function. Unless acted upon by a nonlinear operator, these fields are
asymptotically Gaussian as the number of terms 𝑛 increases [13]. In
signal processing terms, the stochastic processes and random fields
simulated by the above methods are equivalent to the output of a
linear system acted upon by Gaussian random noise. This simplification
breaks down in case of real world scenarios such as seismic waves
propagating through different strata of soil, non-linear wind loads on
structures, ocean waves acting on an off-shore structural system, or
turbulent flow of a fluid governed by the Navier–Stokes equation.
Thus, the second-order representation inherently limits these methods
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as they fail to match the higher order properties of the stochastic fields,
which dominate the tail behaviour and in turn plays a crucial role in
uncertainty quantification, reliability etc. The stochastic fields gener-
ated from these non-linear systems possess asymmetric non-linear wave
interactions which need to be included in the stochastic expansion,
details of which were first introduced in [14] and are reviewed in the
subsequent sections.

Methods for the simulation of non-Gaussian stochastic fields work
primarily through a non-linear transformation of the stochastic expan-
sion in Eq. (1). One class of such nonlinear transformations works
by introducing correlated random variables with deterministic basis
functions such as Hermite and Legendre polynomials [15,16]. These
stochastic processes match the marginal statistical moments to a certain
order along with the covariance function. Perhaps the most commonly
used method is the explicit Cumulative Distribution Function (CDF)
based transformation [17,18] given by

𝑌 (𝑥) = 𝐹−1(𝛷(𝐴(𝑥))) (2)

where 𝐴(𝑥) is a standard Gaussian random process, 𝛷(⋅) is the standard
ormal CDF and 𝐹−1(⋅) is the inverse CDF of the prescribed non-
aussian distribution. This method is generally referred to as the
translation process’. Efficient algorithms for the translation of scalar,
ector, stationary, and non-stationary stochastic processes simulated by
ither SRM or KLE method have been developed in recent years [2,19–
1]. Another class of methods for simulation of non-Gaussian stochas-
ic processes are based on polynomial-chaos expansions [22]. Also,
avelet-based simulation methodologies have been developed and ap-
lied extensively in the case of non-stationary stochastic processes [23,
4].
In this work, we are interested in the simulation of multidimensional

andom fields and multi-variate stochastic processes (stochastic vector
rocesses). As a brief note, stochastic processes and random fields here
re considered probabilistically equivalent with the only difference
eing that stochastic processes are indexed on time (one-dimensional,
enoted by 𝑡 or 𝜏, with 𝜔 representing frequency under a Fourier
ransform) while random fields are indexed on space (denoted by 𝑥 or
, with 𝜅 representing wave-number under a Fourier transform). Thus,
ulti-dimensional random fields are specifically indexed on multiple
patial dimensions, while stochastic vector processes are composed of
ultiple correlated random processes, generally occurring at different
iscrete spatial locations.
Generally speaking, the simulation of stochastic vector processes

oses the larger technical challenges given its spatial and tempo-
al dependence. Methods for simulation of multi-dimensional random
ields, on the other hand, often follow as a natural extensions of their
ne-dimensional counterparts, although this is not the case for the
igher-order processes we study here. Several methods, dating back
early 50 years, have been proposed for the simulation of multi-
imensional random fields and stochastic vector processes including
ethods for stationary, non-stationary, Gaussian and non-Gaussian
rocesses. Much of this began with the seminal work of Shinozuka
ho proposed the Spectral Representation method (SRM) in the early
970s [25]. Later, in the late 1980s, Mignolet and Spanos [26,27],
n a 2-part paper, introduced the recursive simulation of stationary
ultivariate stochastic processes based on autoregressive moving av-
rages methods. This was followed by numerous works in the 1990s,
hen much of the theory for the SRM was developed. Li and Kareem
28] developed a framework for the simulation of non-stationary multi-
ariate processes with the use of a stochastic decomposition technique
nd later developed a hybrid discrete Fourier Transform and digi-
al filtering approach [29]. With regard to the SRM, Shinozuka and
eodatis developed the theoretical framework for simulation of er-
odic, Gaussian stochastic vector processes [30] and multi-dimensional
aussian random fields [31] in 1996, with subsequent extensions to
on-stationary [5] and non-Gaussian processes [32]. More recently, the
terative Translation Approximation Method (ITAM) has been proposed
 n

2

or the efficient simulation of non-Gaussian stochastic vector translation
rocesses by Shields and Deodatis [33]. Very recently, Liu et al. [34],
roposed a novel method based on the combination of SRM with a
roper orthogonal decomposition for dimension reduction.
As previously mentioned, the existing simulation methods for multi-

imensional random fields and stochastic vector process, even those
ith non-Gaussian marginals, are inherently second-order in that they
apture only the second-order correlation structure of the process/field.
ere, we develop the framework for efficient simulation of non-
aussian multi-dimensional random fields and multi-variate random
rocesses. We specifically consider third-order, asymmetrically non-
inear random processes (i.e. processes that possess quadratic phase in-
eractions leading to an asymmetrically skewed distribution) prescribed
y a known power spectrum and bispectrum. This extends the gen-
ralized third-order spectral representation method proposed in [14]
o multiple spatial dimensions as well as multiple variables and intro-
uces a fast Fourier transform (FFT) implementation of the simulation
lgorithm that greatly improves the computational efficiency.

. Properties of random fields and random vector processes

Prior to introducing any concepts in simulation, it is important
irst to understand several important properties of random fields and
andom vector processes. In the interest of brevity we present only the
pectral properties of random fields in this section. Other properties
uch as stationarity of random fields, cumulants and moments of ran-
om fields along with symmetry of correlation and spectral properties
f random vector processes are discussed in the Appendix.
As discussed in [35,36], it is common and advantageous to work

ith random fields in the Fourier space. For our purposes, the Fourier
omain provides a convenient setting for a nonlinear expansion of
andom fields that can be derived directly from the third-order spectra.
ext, we review the spectral quantities necessary for the third-order
xpansion proposed herein.
The 𝑛th-order polyspectrum of a random field 𝐴(𝑥) is defined as the

Fourier transform of its 𝑛th-order cumulant [35]

𝐶𝐴𝑛 (𝜅1, 𝜅2,… , 𝜅𝑛−1) =
1

(2𝜋)𝑛−1 ∫

∞

−∞
⋯∫

∞

−∞
𝑐𝐴𝑛 (𝜉1, 𝜉2,… , 𝜉𝑛−1)

𝑒𝜄𝜅1𝜉1+𝜅2𝜉2+⋯+𝜅𝑛−1𝜉𝑛−1𝑑𝜉1𝑑𝜉2 … 𝑑𝜉𝑛−1

(3)

The 2nd-order polyspectrum, also called the power spectrum and
the 3rd-order polyspectrum, also called the bispectrum are of impor-
tance in this article. These are defined as follows:

𝑆𝐴(𝜅) = 𝐶𝐴2 (𝜅) =
1
2𝜋 ∫

∞

−∞
𝑐𝐴2 (𝜉)𝑒

−𝜄(𝜅𝜉)𝑑𝜉 (4)

𝐵𝐴(𝜅1, 𝜅2) = 𝐶𝐴3 (𝜅1, 𝜅2) =
1

(2𝜋)2 ∫

∞

−∞ ∫

∞

−∞
𝑐𝐴3 (𝜉1, 𝜉2)𝑒

−𝜄(𝜅1𝜉1+𝜅2𝜉2)𝑑𝜉1𝑑𝜉2

(5)

he power spectrum expresses the power associated with each fre-
uency component in the random field while the bispectrum describes
onlinear interaction between frequency pairs. The power spectrum is
real quantity while a bispectrum can have both real and imaginary
arts. The real part of the bispectrum corresponds to the Fourier
ransform of the symmetric part of the third-order cumulant, whereas
he imaginary part corresponds to the Fourier transform of the anti-
ymmetric part. As discussed by Lii et al. [37] and Elgar and Guza [3],
he real component relates to the skewness of the field, while the
maginary component relates to the skewness of the derivative of the
ield. Meanwhile, the amplitude of the bispectrum represents the degree
f quadratic phase coupling between the wave-numbers 𝜅1 and 𝜅2. A
ore detailed discussion can be found in [14] and [38].
For practical purposes, it is useful to normalize the polyspectrum,

hich introduces the notion of a polycoherence. Although several
ormalizations have been proposed [39–41], the 𝑛th-order squared
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polycoherence is a standard measure of higher-order polyspectra, and
is defined here for stationary random fields as

|𝜌(𝑛)𝐴 (𝜿)|
2
=

|

|

|

|

E
[

∏𝑛−1
𝑘=1 𝑑𝑍(𝜅𝑘)𝑑𝑍∗(

∑𝑛−1
𝑚=1 𝜅𝑚)

]

|

|

|

|

2

E
[

∏𝑛−1
𝑘=1

|

|

𝑑𝑍(𝜅𝑘)||
2
]

E
[

|

|

|

𝑑𝑍(
∑𝑛−1
𝑚=1 𝜅𝑚)

|

|

|

2
] (6)

where 𝑑𝑍(𝜅) are the Fourier coefficients of the generalized random
field and ∗ denotes the complex conjugate. Of particular interest here
is the third-order polycoherence, or bicoherence which can be derived
from Eq. (6) and is given by [39]:

𝑏2𝐴(𝜅1, 𝜅2) =
|𝐵𝐴(𝜅1, 𝜅2)|

2

𝐸[|𝑑𝑍(𝜅1)𝑑𝑍(𝜅2)|
2]𝑆𝐴(𝜅1 + 𝜅2)

(7)

here 𝑑𝑍(𝜅) are the Fourier coefficients of 𝐴(𝑥), 𝐵𝐴(𝜅1, 𝜅2) is the
ispectrum, and 𝑆𝐴(𝜅) is the power spectrum. By Schwartz’ inequality,
his definition of the bicoherence is bounded on [0, 1] which provides
convenient interpretation of the fraction of energy associated with
hase coupling. Further interpretation of the bicoherence can be found
n [14,40,41]. Interestingly, the polycoherence also plays a crucial role
n discriminating between non-linearity and non-stationarity in random
ields [42].

. Spectral representation theorem

Cramer’s spectral representation [43] states that any zero-mean,
eakly stationary random field 𝐴(𝑥) can be expressed in terms of a
pectral process 𝑧(𝜅) through the following Fourier–Stieltjes integral

(𝑥) = ∫

∞

−∞
𝑒𝜄𝜅𝑥𝑑𝑧(𝜅) (8)

here the spectral process 𝑧(𝜅) satisfies certain orthogonality con-
itions [44]. More generally, for a zero-mean, 𝑘th-order stationary
𝑘 ≥ 2) random field 𝐴(𝑥), a spectral process 𝑧(𝜅) can be assigned
hich satisfies Eq. (8), but possesses the following additional 𝑘th-order
rthogonality properties [45]

E[𝑑𝑧(𝜅)] = 0

E[𝑧(𝜅)] = 0

E[|𝑧(𝜅)|2] = 𝐹 (𝜅)

E[|𝑑𝑧(𝜅)|2] = 𝑑𝐹 (𝜅)

E[𝑧(𝜅1)𝑧(𝜅2)𝑧∗(𝜅3)] = 𝛿(𝜅1 + 𝜅2 − 𝜅3)𝐺(𝜅1, 𝜅2)

E[𝑑𝑧(𝜅1)𝑑𝑧(𝜅2)𝑑𝑧∗(𝜅3)] = 𝛿(𝜅1 + 𝜅2 − 𝜅3)𝑑𝐺(𝜅1, 𝜅2)

⋮

E[𝑧(𝜅1)𝑧(𝜅2)… 𝑧∗(𝜅𝑘)] = 𝛿(𝜅1 + 𝜅2 + 𝜅3 …− 𝜅𝑘)𝐹𝑘(𝜅1, 𝜅2, 𝜅3 … 𝜅𝑘−1)

E[𝑑𝑧(𝜅1)𝑑𝑧(𝜅2)… 𝑑𝑧∗(𝜅𝑘)] = 𝛿(𝜅1 + 𝜅2 + 𝜅3 …− 𝜅𝑘)

× 𝑑𝐹𝑘(𝜅1, 𝜅2, 𝜅3 … 𝜅𝑘−1)

(9)

here 𝐹 (𝜅) is the spectral distribution function of 𝑧(𝜅), 𝑑𝐹 (𝜅) is the
pectral density function, 𝐺(𝜅1, 𝜅2) is the bispectral distribution func-
ion, and 𝑑𝐺(𝜅1, 𝜅2) is the bispectral density function. The bispec-
rum relates to the bispectral density 𝑑𝐺(𝜅1, 𝜅2) through 𝑑𝐺(𝜅1, 𝜅2) =
(𝜅1, 𝜅2)𝑑𝜅1𝑑𝜅2. Finally, 𝐹𝑘(𝜅1, 𝜅2,… , 𝜅𝑘−1) and 𝑑𝐹𝑘(𝜅1, 𝜅2,… , 𝜅𝑘−1) are
th-order spectral distribution and density functions, respectively. Gen-
ralizing, the 𝑘th-order spectral density function relates to the 𝑘th-order
olyspectrum in Eq. (3) through 𝑑𝐹𝑘(𝜅1, 𝜅2,… , 𝜅𝑘−1) = 𝐶𝑘(𝜅1, 𝜅2,… ,
𝑘−1)𝑑𝜅1𝑑𝜅2 … 𝑑𝜅𝑘−1.
Following from this higher-order spectral representation, we are

pecifically interested in third-order stationary random fields, for which
he orthogonality conditions in Eq. (9) hold up to order three. For such
andom fields, the process is stationary in its first, second, and third
rder properties (weakly 3rd-order stationary) and can be expressed
sing the spectral representation in Eq. (8) – referred to herein as the
ispectral representation due to the third-order orthogonality and its

xpression in terms of a stationary bispectrum.

3

Finally, we are specifically interested in real-valued random fields,
or which the Cramer spectral representation can be written as

(𝑥) = ∫

∞

−∞
cos(𝜅𝑥)𝑑𝑢(𝜅) + 𝑠𝑖𝑛(𝜅𝑥)𝑑𝑣(𝜅) (10)

he components 𝑑𝑢(𝜅) and 𝑑𝑣(𝜅) are the real and imaginary compo-
ents of the orthogonal increments of 𝑑𝑧(𝜅) respectively. Both 𝑑𝑢(𝜅)
nd 𝑑𝑣(𝜅) possess orthogonal properties similar to 𝑑𝑧(𝜅). A detailed
description of the orthogonality conditions of these components can be
found in [14].

4. Spectral representation methods

Although the general form of the spectral representation was de-
veloped by Cramer, Rice [46] was the first to exploit the spectral
representation for the purposes of simulation, using its discretized form
to simulate one-dimensional, uni-variate Gaussian random processes.
Later formalized for second-order multi-dimensional, multi-variate, and
non-stationary stochastic processes by Shinozuka [8,9], the method be-
came known as the spectral representation method (SRM). Properties of
stochastic processes simulated by the SRM were elaborated in a series of
seminal papers on the method by Shinozuka and Deodatis [10,30,31].

Utilizing second-order orthogonal increments 𝑑𝑢(𝜅) and 𝑑𝑣(𝜅) in Eq.
(10) gives the following form for the second-order SRM to simulate
1-dimensional, uni-variate random fields:

𝐴(𝑥) =
√

2
∞
∑

𝑘=0

√

2𝑆(𝜅𝑘)𝛥𝜅𝑘 cos(𝜅𝑘𝑥 − 𝜙𝑘) (11)

here 𝑆(𝜅𝑘) is the power spectrum of the process and 𝜙𝑘 are in-
dependent uniformly distributed random phase angles in the range
[0, 2𝜋]. Simulation is then conducted by truncating the summation at
an acceptable level, say 𝑚 terms.

Recently, Shields and Kim [14] extended the SRM for simulation
of 3rd-order stationary stochastic processes. Similar to the 2nd-order
SRM, incorporating third-order orthogonal increments 𝑑𝑢(𝜅) and 𝑑𝑣(𝜅)
n Eq. (10) yields the 3rd-order form of the SRM.

𝐴(𝑥) =
√

2
∞
∑

𝑘=0

√

2𝑆𝑃 (𝜅𝑘)𝛥𝜅𝑘 cos(𝜅𝑘𝑥 − 𝜙𝑘)

+
√

2
∞
∑

𝑘=0

𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑘

√

2𝑆(𝜅𝑖 + 𝜅𝑗 )𝛥(𝜅𝑖 + 𝜅𝑗 )|𝑏𝑝(𝜅𝑖, 𝜅𝑗 )|

× cos
(

(𝜅𝑖 + 𝜅𝑗 )𝑥 − (𝜙𝑖 + 𝜙𝑗 + 𝛽(𝜅𝑖, 𝜅𝑗 ))
)

(12)

here 𝑏𝑝(𝜅𝑖, 𝜅𝑗 ) is the partial bicoherence defined as:

2
𝑝(𝜅𝑖, 𝜅𝑗 ) =

∣ 𝐵(𝜅𝑖, 𝜅𝑗 ) ∣2

𝑆𝑃 (𝜅𝑖)𝑆𝑃 (𝜅𝑗 )𝑆(𝜅𝑖 + 𝜅𝑗 )
(13)

𝑆𝑃 (𝜅) is the pure power spectrum (i.e. the component of the power
spectrum remaining after wave interactions are removed) given by:

𝑆𝑃 (𝜅𝑘) = 𝑆(𝜅𝑘)

[

1 −
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑘
𝑏2𝑝(𝜅𝑖, 𝜅𝑗 )

]

(14)

and 𝛽(𝜅𝑖, 𝜅𝑗 ) is the biphase given by:

𝛽(𝜅𝑖, 𝜅𝑗 ) = arctan
ℑ[𝐵(𝜅𝑖, 𝜅𝑗 )]
ℜ[𝐵(𝜅𝑖, 𝜅𝑗 )]

(15)

Here, the first term corresponds to the classical 2nd-order SRM on
the pure power spectrum and the second term models 3rd-order wave
interactions. It has been shown in [14] that simulations generated using
Eq. (12), again using a suitable truncation of 𝑚 terms in the summation,
match both the power spectrum and the bispectrum of the random field.

We also note that the 3rd-order expansion presented herein is not
necessarily unique. It expresses the higher-order process in terms of
random phases. As in the classical 2nd-order SRM, a formulation based
on random amplitudes or other alternative orthogonal increments may
be possible. Moreover, a direct expansion from the higher-order cor-
relation, akin to the KLE, may be possible. We do not explore these
possible alternative formulations.
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𝐵

5. Simulation of multi-dimensional random fields by 3rd-order
spectral representation method

The form of the 3rd-order SRM given in Eq. (12) can be used for
the simulation of one-dimensional, uni-variate (1D-1V) random fields.
In this section, we derive the expression for the simulation of general
𝑑-dimensional (𝑑D-1V) third-order random fields. We first derive the
simulation formula for 2D random fields as it is the most practical to
show and is of particular relevance for many applications. We then
extend it for general 𝑑-dimensional random fields.

5.1. Simulation of 2-dimensional random fields

Let 𝐴(𝑥1, 𝑥2) be a two-dimensional uni-variate random field with
zero mean, 2nd-order autocorrelation function 𝑅2(𝜉1, 𝜉2), bispectrum
(𝜅11, 𝜅21, 𝜅12, 𝜅22), and 3rd-order autocorrelation function 𝑅3(𝜉11, 𝜉21,

𝜉12, 𝜉22). Since we are interested in the simulation of real-valued random
fields, the power spectrum is symmetric about the origin, i.e. 𝑆(𝜿) =
𝑆(−𝜿), and the following symmetries exist in the bispectrum [14]

𝐵(𝜿𝟏,𝜿𝟐) = 𝐵(𝜿𝟐,𝜿𝟏) (16)

𝐵(𝜿𝟏,𝜿𝟐) = 𝐵(−𝜿𝟏,−𝜿𝟐) (17)

𝐵(𝜿𝟏,𝜿𝟐) = 𝐵(−𝜿𝟏 − 𝜿𝟐,𝜿𝟐) (18)

Eqs. (17) and (18) describe two different axes of symmetry along the
origin.

Exploiting these symmetries allows us to replace the power spec-
trum, 𝑆(𝜅1, 𝜅2) defined on the range (−∞ ≤ 𝜅1 ≤ ∞,−∞ ≤ 𝜅2 ≤ ∞)
by 2𝑆(𝜅1, 𝜅2) defined on the range (0 ≤ 𝜅1 ≤ ∞,−∞ ≤ 𝜅2 ≤ ∞)
and replace the bispectrum 𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22) defined on the range
(−∞ ≤ 𝜅11 ≤ ∞,−∞ ≤ 𝜅21 ≤ ∞,−∞ ≤ 𝜅12 ≤ ∞,−∞ ≤ 𝜅22 ≤ ∞)
by 4𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22) defined on the range (0 ≤ 𝜅11 ≤ ∞, 0 ≤ 𝜅21 ≤
∞,−∞ ≤ 𝜅12 ≤ ∞,−∞ ≤ 𝜅22 ≤ ∞).

With these symmetries in place, along with the orthogonality condi-
tions presented in Eq. (9), any real valued 2-dimensional random field
𝐴(𝑥1, 𝑥2) can be expressed in the form

𝐴(𝑥1, 𝑥2) = ∫

∞

−∞ ∫

∞

0
[cos(𝜅1𝑥1 + 𝜅2𝑥2)𝑑𝑢(𝜅1, 𝜅2) + sin(𝜅1𝑥1 + 𝜅2𝑥2)𝑑𝑣(𝜅1, 𝜅2)]

(19)

where processes 𝑢(𝜅1, 𝜅2) and 𝑣(𝜅1, 𝜅2) are defined on the domain 0 <
𝜅1 < ∞,−∞ < 𝜅2 < ∞ and obey the following the orthogonality
conditions [47]:

E[𝑢(𝜅1, 𝜅2)] = E[𝑣(𝜅1, 𝜅2)] = 0 (20)

E[𝑑𝑢(𝜅1, 𝜅2)] = E[𝑑𝑣(𝜅1, 𝜅2)] = 0 (21)

E[𝑢2(𝜅1, 𝜅2)] = E[𝑣2(𝜅1, 𝜅2)] = 𝐹1(𝜅1, 𝜅2)

E[𝑢(𝜅11, 𝜅21)𝑢(𝜅12, 𝜅22)𝑢(𝜅11 + 𝜅12, 𝜅21 + 𝜅22)] =

E[𝑣(𝜅11, 𝜅21)𝑣(𝜅12, 𝜅22)𝑣(𝜅11 + 𝜅12, 𝜅21 + 𝜅22)] = 𝐺1(𝜅11, 𝜅21, 𝜅12, 𝜅22)

E[𝑢(𝜅1, 𝜅2)𝑣(𝜅′1, 𝜅
′
2)] = 0

E[𝑢(𝜅1, 𝜅2)𝑣(𝜅′1, 𝜅
′
2)𝑣(𝜅

′′
1 , 𝜅

′′
2 )] = 0

E[𝑢(𝜅1, 𝜅2)𝑢(𝜅′1, 𝜅
′
2)𝑣(𝜅

′′
1 , 𝜅

′′
2 )] = 0

(22)

E[𝑑𝑢2(𝜅1, 𝜅2)] = E[𝑑𝑣2(𝜅1, 𝜅2)] = 𝑆1(𝜅1, 𝜅2)𝑑𝜅1𝑑𝜅2
E[𝑑𝑢(𝜅1, 𝜅2)𝑑𝑢(𝜅′1, 𝜅

′
2)] = 0 𝑖𝑓𝜅1 ≠ 𝜅′1 𝑜𝑟𝜅2 ≠ 𝜅′2

E[𝑑𝑣(𝜅1, 𝜅2)𝑑𝑣(𝜅′1, 𝜅
′
2)] = 0 𝑖𝑓𝜅1 ≠ 𝜅′1 𝑜𝑟𝜅2 ≠ 𝜅′2

E[𝑑𝑢(𝜅1, 𝜅2)𝑑𝑣(𝜅′1, 𝜅
′
2)] = 0

(23)
4

E[𝑑𝑢(𝜅1, 𝜅2)𝑑𝑢(𝜅′1, 𝜅
′
2)𝑑𝑢(𝜅

′′
1 , 𝜅

′′
2 )] = 2ℜ𝐵(𝜅′1, 𝜅

′′
1 , 𝜅

′
2, 𝜅

′′
2 )

E[𝑑𝑢(𝜅1, 𝜅2)𝑑𝑢(𝜅′1, 𝜅
′
2)𝑑𝑣(𝜅

′′
1 , 𝜅

′′
2 )] = −2ℑ𝐵(𝜅′1, 𝜅

′′
1 , 𝜅

′
2, 𝜅

′′
2 )

E[𝑑𝑢(𝜅1, 𝜅2)𝑑𝑣(𝜅′1, 𝜅
′
2)𝑑𝑢(𝜅

′′
1 , 𝜅

′′
2 )] = −2ℑ𝐵(𝜅′1, 𝜅

′′
1 , 𝜅

′
2, 𝜅

′′
2 )

E[𝑑𝑢(𝜅1, 𝜅2)𝑑𝑣(𝜅′1, 𝜅
′
2)𝑑𝑣(𝜅

′′
1 , 𝜅

′′
2 )] = −2ℜ𝐵(𝜅′1, 𝜅

′′
1 , 𝜅

′
2, 𝜅

′′
2 )

E[𝑑𝑣(𝜅1, 𝜅2)𝑑𝑢(𝜅′1, 𝜅
′
2)𝑑𝑢(𝜅

′′
1 , 𝜅

′′
2 )] = 2ℑ𝐵(𝜅′1, 𝜅

′′
1 , 𝜅

′
2, 𝜅

′′
2 )

E[𝑑𝑣(𝜅1, 𝜅2)𝑑𝑢(𝜅′1, 𝜅
′
2)𝑑𝑣(𝜅

′′
1 , 𝜅

′′
2 )] = 2ℜ𝐵(𝜅′1, 𝜅

′′
1 , 𝜅

′
2, 𝜅

′′
2 )

E[𝑑𝑣(𝜅1, 𝜅2)𝑑𝑣(𝜅′1, 𝜅
′
2)𝑑𝑢(𝜅

′′
1 , 𝜅

′′
2 )] = 2ℜ𝐵(𝜅′1, 𝜅

′′
1 , 𝜅

′
2, 𝜅

′′
2 )

E[𝑑𝑣(𝜅1, 𝜅2)𝑑𝑣(𝜅′1, 𝜅
′
2)𝑑𝑣(𝜅

′′
1 , 𝜅

′′
2 )] = −2ℑ𝐵(𝜅′1, 𝜅

′′
1 , 𝜅

′
2, 𝜅

′′
2 )

if 𝜅1 = 𝜅′1 + 𝜅
′′
1

otherwise 0

(24)

whereℜ and ℑ denote the real and imaginary components respectively.
It can be seen in [44] that Eq. (19) does, indeed represent a stochastic
field with zero mean and 2nd-order and 3rd-order autocorrelation
functions 𝑅2(𝜉1, 𝜉2) and 𝑅3(𝜉11, 𝜉21, 𝜉12, 𝜉22), respectively.

Discretizing Eq. (19), gives

𝐴(𝑥1, 𝑥2) =
∞
∑

𝑛2=−∞

∞
∑

𝑛1=0
[ cos(𝜅1𝑛1𝑥1 + 𝜅2𝑛2𝑥2)𝑑𝑢(𝜅1𝑛1 , 𝜅2𝑛2 )

+ sin(𝜅1𝑛1𝑥1 + 𝜅2𝑛2𝑥2)𝑑𝑣(𝜅1𝑛1 , 𝜅2𝑛2 )] (25)

where 𝜅1𝑛1 = 𝑛1𝛥𝜅1 and 𝜅2𝑛2 = 𝑛2𝛥𝜅2, with sufficiently small finite 𝛥𝜅1
and 𝛥𝜅2. If 𝑑𝑢(𝜅1𝑛1 , 𝜅2𝑛2 ) and 𝑑𝑣(𝜅1𝑛1 , 𝜅2𝑛2 ) are defined as

𝑑𝑢(𝜅1𝑛1 , 𝜅2𝑛2 ) =
√

2𝐴𝑝𝑛1𝑛2 cos𝛷𝑛1𝑛2

+
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛2|≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝑛2

√

2𝐴𝑛1𝑛2𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 )

× cos(𝛷𝑖1𝑖2 +𝛷𝑗1𝑗2 + 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ))

(26)

𝑑𝑣(𝜅1𝑛1 , 𝜅2𝑛2 ) = −
√

2𝐴𝑝𝑛1𝑛2 sin𝛷𝑛1𝑛2

−
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛2|≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝑛2

√

2𝐴𝑛1𝑛2𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 )

× sin(𝛷𝑖1𝑖2 +𝛷𝑗1𝑗2 + 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ))

(27)

where

𝐴𝑝𝑛1𝑛2 =
√

2𝑆𝑝(𝜅1𝑛1 , 𝜅2𝑛2 )𝛥𝜅1𝛥𝜅2 (28)

𝐴𝑛1𝑛2 =
√

2𝑆(𝜅1𝑛1 , 𝜅2𝑛2 )𝛥𝜅1𝛥𝜅2 (29)

𝑆𝑝(𝜅1𝑛1 , 𝜅2𝑛2) = 𝑆(𝜅1𝑛1 , 𝜅2𝑛2)
(

1 −
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛2|≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝑛2

𝑏2𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 )
)

(30)

𝑏2𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ) =
|𝐵(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 )|

2𝛥𝜅1𝛥𝜅2
𝑆𝑝(𝜅1𝑖1 , 𝜅2𝑖2 )𝑆𝑝(𝜅1𝑗1 , 𝜅2𝑗2 )𝑆(𝜅1(𝑖1+𝑗1), 𝜅2(𝑖2+𝑗2))

(31)

and 𝛷𝑛1𝑛2 are independent random phase angles uniformly distributed
in the range [0, 2𝜋], then the resulting 2-dimensional random field is
third-order stationary possessing power spectrum 𝑆(𝜅1, 𝜅2) and bispec-
trum 𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22). It is proven in [44] that the orthogonality
requirements on 𝑑𝑢(𝜅1𝑛1 , 𝜅2𝑛2 ) and 𝑑𝑣(𝜅1𝑛1 , 𝜅2𝑛2 ) are satisfied, and there-
fore that the process is third-order stationary possessing the prescribed
spectra.
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Using the above proposed increments, the following series represen-
ation is obtained

𝐴(𝑥1, 𝑥2) =
∞
∑

𝑛2=−∞

∞
∑

𝑛1=0

[
√

2𝐴𝑝𝑛1𝑛2 cos(𝜅1𝑛1𝑥1 + 𝜅2𝑛2𝑥2 +𝛷𝑛1𝑛2 )

+
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛2|≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝑛2

√

2𝐴𝑛1𝑛2𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 )

cos(𝜅1𝑛1𝑥1 + 𝜅2𝑛2𝑥2 +𝛷𝑖1𝑖2 +𝛷𝑗1𝑗2 + 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ))
]

(32)

y rearranging the terms, we can express the series over only positive
ndices as

𝐴(𝑥1, 𝑥2) =
√

2
∞
∑

𝑛2=0

∞
∑

𝑛1=0

[ √

𝑆𝑝(𝜅1𝑛1 , 𝜅2𝑛2 )𝛥𝜅1𝛥𝜅2 cos(𝜅1𝑛1𝑥1 + 𝜅2𝑛2𝑥2 +𝛷
(1)
𝑛1𝑛2

)

+
√

𝑆𝑝(𝜅𝑛1 ,−𝜅𝑛2 )𝛥𝜅1𝛥𝜅2 cos(𝜅1𝑛1𝑥1 − 𝜅2𝑛2𝑥2 +𝛷
(2)
𝑛1𝑛2

)

+
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

𝑖2≥𝑗2≥0
∑

𝑖2+𝑗2=𝑛2

√

2𝑆(𝜅1𝑛1 , 𝜅2𝑛2 )𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 )

cos(𝜅1𝑛1𝑥1 + 𝜅2𝑛2𝑥2 +𝛷
(1)
𝑖1 𝑖2

+𝛷(1)
𝑗1𝑗2

+ 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ))

+
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

𝑖2≥𝑗2≥0
∑

𝑖2+𝑗2=𝑛2

√

2𝑆(𝜅1𝑛1 ,−𝜅2𝑛2 )𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 ,−𝜅2𝑖2 ,−𝜅2𝑗2 )

cos(𝜅1𝑛1𝑥1 − 𝜅2𝑛2𝑥2 +𝛷
(2)
𝑖1 𝑖2

+𝛷(2)
𝑗1𝑗2

+ 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 ,−𝜅2𝑖2 ,−𝜅2𝑗2 ))

+
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

𝑖2≥𝑗2≥0
∑

𝑖2+𝑗2=𝑛2

√

2𝑆(𝜅1𝑛1 ,−𝜅2𝑖2 + 𝜅2𝑗2 )𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 ,−𝜅2𝑖2 , 𝜅2𝑗2 )

cos(𝜅1𝑛1𝑥1 − 𝜅2𝑖2𝑥2 + 𝜅2𝑗2𝑥2 +𝛷
(2)
𝑖1 𝑖2

+𝛷(1)
𝑗1𝑗2

+ 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 ,−𝜅2𝑖2 , 𝜅2𝑗2 ))

+
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

𝑖2≥𝑗2≥0
∑

𝑖2+𝑗2=𝑛2

√

2𝑆(𝜅1𝑛1 ,+𝜅2𝑖2 − 𝜅2𝑗2 )𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 ,−𝜅2𝑗2 )

cos(𝜅1𝑛1𝑥1 + 𝜅2𝑖2𝑥2 − 𝜅2𝑗2𝑥2 +𝛷
(1)
𝑖1 𝑖2

+𝛷(2)
𝑗1𝑗2

+ 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 ,−𝜅2𝑗2 ))
]

(33)

While Eq. (32) provides a compact notation, Eq. (33) sums only over
ositive indices which may be beneficial for practical implementation.
ote that, since the formula sums over the positive and negative range
f 𝜅2 simultaneously, we need to use two different sets of random phase
ngles which are differentiated using superscripts 𝛷(1) and 𝛷(2).
While Eqs. (32)–(33) provide a theoretical framework for the sim-

lation of 2-dimensional third-order stationary random fields, the infi-
ite series representation of Eq. (32) cannot be implemented in prac-
ice. A practical implementation truncates these summations as

𝐴(𝑥1, 𝑥2) =
𝑁2
∑

𝑛2=−𝑁2

𝑁1
∑

𝑛1=0

[
√

2𝐴𝑝𝑛1𝑛2 cos(𝜅1𝑛1𝑥1 + 𝜅2𝑛2𝑥2 +𝛷𝑛1𝑛2 )

+
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛2|≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝑛2

√

2𝐴𝑛1𝑛2𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 )

cos(𝜅1𝑛1𝑥1 + 𝜅2𝑛2𝑥2 +𝛷𝑖1𝑖2 +𝛷𝑗1𝑗2 + 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ))
]

(34)

here the various terms are defined as in Eqs. (28)–(31), 𝛥𝜅1 = 𝜅1𝑢
𝑁1

nd 𝛥𝜅2 = 𝜅2𝑢
𝑁2

are the cutoff wave-numbers for the 𝑥1 and 𝑥2 axes
espectively, and

(𝜅1, 0) = 𝑆(0, 𝜅2) = 0 for −∞ ≤ 𝜅1 ≤ ∞ and −∞ ≤ 𝜅2 ≤ ∞ (35)

𝐵(𝜅11, 𝜅12, 𝜅21, 0) = 𝐵(𝜅11, 𝜅12, 0, 𝜅22) = 𝐵(𝜅11, 0, 𝜅21, 𝜅22)

= 𝐵(0, 𝜅12, 𝜅21, 𝜅22) = 0

for −∞ ≤ 𝜅11 ≤ ∞ ;−∞ ≤ 𝜅12 ≤ ∞ and −∞ ≤ 𝜅21 ≤ ∞;−∞ ≤ 𝜅22 ≤ ∞

(36)
5

he cutoff wave-numbers are chosen to satisfy the conditions

∫

𝜅1𝑢

0 ∫

𝜅2𝑢

−𝜅2𝑢
𝑆(𝜅1, 𝜅2)𝑑𝜅1𝑑𝜅2 = (1 − 𝜖)∫

∞

0 ∫

∞

−∞
𝑆(𝜅1, 𝜅2)𝑑𝜅1𝑑𝜅2 (37)

nd

∫

𝜅1𝑢

0 ∫

𝜅1𝑢

0 ∫

𝜅2𝑢

−𝜅2𝑢
∫

𝜅2𝑢

−𝜅2𝑢
𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22)𝑑𝜅11𝑑𝜅12𝑑𝜅21𝑑𝜅22

= (1 − 𝜖)∫

𝜅1𝑢

0 ∫

𝜅1𝑢

0 ∫

𝜅2𝑢

−𝜅2𝑢
∫

𝜅2𝑢

−𝜅2𝑢
𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22)𝑑𝜅11𝑑𝜅12𝑑𝜅21𝑑𝜅22

(38)

here 𝜖 ≪ 1. This effectively means that the power spectrum and
he bispectrum above the cutoff wave-numbers are mathematically or
hysically insignificant.
It is straightforward to show that the simulated random fields are

eriodic along the 𝑥1 and 𝑥2 axes with periods 𝐿𝑥1 = 2𝜋
𝛥𝜅1

and 𝐿𝑥2 = 2𝜋
𝛥𝜅2

.
Additionally, the conditions 𝛥𝑥1 ≤ 2𝜋

2𝜅1𝑢
and 𝛥𝑥2 ≤ 2𝜋

2𝜅2𝑢
are imposed

n the spatial increments to prevent aliasing. Lastly, given the finite
runcation of the summations, the values of the field in this expansion
(𝑥1, 𝑥2) are theoretically bounded within the range

[

−
𝑁2
∑

𝑛2=−𝑁2

𝑁1
∑

𝑛1=0
[
√

2𝐴𝑝𝑛1𝑛2 −
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛2|≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝑛2

√

2𝐴𝑛1𝑛2𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 )],

𝑁2
∑

𝑛2=−𝑁2

𝑁1
∑

𝑛1=0
[
√

2𝐴𝑝𝑛1𝑛2 +
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛2|≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝑛2

√

2𝐴𝑛1𝑛2𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 )]
]

(39)

5.2. Simulation of d-dimensional random fields

Let 𝐴(𝑥1, 𝑥2,… , 𝑥𝑑 ) be a 𝑑-dimensional uni-variate (𝑑D-1V) third-
order stationary random field with zero mean, power spectrum
𝑆(𝜅1, 𝜅2,… , 𝜅𝑑 ), 2nd-order autocorrelation function 𝑅2(𝜉1, 𝜉2,… , 𝜉𝑑 ),
bispectrum 𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22, 𝜅31, 𝜅32,… ,… , 𝜅𝑛1, 𝜅𝑛2), and 3rd-order
autocorrelation function 𝑅3(𝜉11, 𝜉12, 𝜉21, 𝜉22, 𝜉31, 𝜉32,… ,… , 𝜉𝑛1, 𝜉𝑛2). For
convenience, let us define the following new vector quantities:

Position vector: 𝑥 = [𝑥1, 𝑥2,… , 𝑥𝑛]𝑇

Separation vector: 𝜉 = [𝜉1, 𝜉2,… , 𝜉𝑛]𝑇

Wave number vector: 𝜅 = [𝜅1, 𝜅2,… , 𝜅𝑛]𝑇

The symmetries in Eqs. (16)–(18) still hold.
The formula for the simulation of general 𝑑-dimensional random

fields follows closely from the 2D case as

𝐴(𝑥) =
𝑁𝑑
∑

𝑛𝑑=−𝑁𝑑

⋯
𝑁2
∑

𝑛2=−𝑁2

𝑁1
∑

𝑛1=0
[
√

2𝐴𝑝𝑛 cos(𝜅 ⋅ 𝑥 +𝛷𝑛)

+
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛2|≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝑛2

⋯
|𝑛𝑑 |≥|𝑖𝑑 |≥|𝑗𝑑 |≥0

∑

𝑖𝑑+𝑗𝑑=𝑛𝑑

√

2𝐴𝑛𝑏𝑝(𝜅𝑖, 𝜅𝑗 )

× cos(𝜅 ⋅ 𝑥 +𝛷𝑖 +𝛷𝑗 + 𝛽(𝜅𝑖, 𝜅𝑗 ))]

(40)

where

𝐴𝑝𝑛 =
√

2𝑆𝑝(𝜅𝑛)𝛥𝜅1𝛥𝜅2 …𝛥𝜅𝑑 , 𝐴𝑛 =
√

2𝑆(𝜅𝑛)𝛥𝜅1𝛥𝜅2 …𝛥𝜅𝑑

𝑆𝑝(𝜅𝑛) = 𝑆(𝜅𝑛)
(

1 −
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛1|≥|𝑖1|≥|𝑗1|≥0
∑

𝑖2+𝑗2=𝑛2

⋯
|𝑛𝑑 |≥|𝑖𝑑 |≥|𝑗𝑑 |≥0

∑

𝑖𝑑+𝑗𝑑=𝑛𝑑

𝑏2𝑝(𝜅𝑖, 𝜅𝑗 )
)

𝑏2𝑝(𝜅𝑖, 𝜅𝑗 ) =
|𝐵(𝜅𝑖, 𝜅𝑗 )|

2𝛥𝜅1𝛥𝜅2 …𝛥𝜅𝑑
𝑆𝑝(𝜅𝑖)𝑆𝑝(𝜅𝑗 )𝑆(𝜅𝑛)

𝜅1𝑛1 = 𝑛1𝛥𝜅1 ; 𝜅2𝑛2 = 𝑛2𝛥𝜅2;… ; 𝜅𝑑𝑛𝑑 = 𝑛𝑑𝛥𝜅𝑑

𝛥𝜅1 =
𝜅1𝑢
𝑁1

; 𝛥𝜅2 =
𝜅2𝑢
𝑁2

;… ;𝛥𝜅𝑑 =
𝜅𝑑𝑢
𝑁𝑑

(41)

and
𝑆(0, 𝜅2,… , 𝜅𝑑 ) = 𝑆(𝜅1, 0,… , 𝜅𝑑 ) = 𝑆(𝜅1, 𝜅2,… , 0) = 0

(42)

for −∞ ≤ 𝜅1 ≤ ∞ −∞ ≤ 𝜅2 ≤ ∞;… ;−∞ ≤ 𝜅𝑑 ≤ ∞
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𝐵(0, 𝜅12,… 𝜅𝑑1, 𝜅𝑑2) = 𝐵(𝜅11, 0,… 𝜅𝑑1, 𝜅𝑑2) = ⋯ = 𝐵(𝜅11, 𝜅12,…0, 𝜅𝑑2)

= 𝐵(𝜅11, 𝜅12,… 𝜅𝑑1, 0) = 0

for −∞ ≤ 𝜅11 ≤ ∞ ;−∞ ≤ 𝜅12 ≤ ∞;… ;−∞ ≤ 𝜅𝑑1 ≤ ∞;−∞ ≤ 𝜅𝑑2 ≤ ∞

(43)

n the above expressions, the overline subscripts denote the iterable
ndex sets 𝑛 = {𝑛1, 𝑛2,… , 𝑛𝑑}, 𝑖 = {𝑖1, 𝑖2,… , 𝑖𝑑}, and 𝑗 = {𝑗1, 𝑗2,… , 𝑗𝑑}.
n particular, 𝛷𝑛 denotes the 𝑑th-order tensor of random phase angles
ndexed as 𝛷𝑛1𝑛2…𝑛𝑑 and 𝐴𝑝𝑛, 𝐴𝑛 denote 𝑑th-order tensors of amplitudes
having components 𝐴𝑝𝑛1𝑛2…𝑛𝑑 , 𝐴𝑛1𝑛2…𝑛𝑑 . Indexing of the wave number
combines the vector overline notations with the overline subscripts
such that 𝜅𝑛 denotes the wave number set (𝜅1𝑛1 , 𝜅2𝑛2 ,… , 𝜅𝑑𝑛𝑑 ). Finally,
𝜅1𝑢, 𝜅2𝑢, . . . and 𝜅𝑑𝑢 are the cutoff wave-numbers for the 𝑥1, 𝑥2 . . .𝑥𝑑
xes respectively, satisfying

∫

𝜅𝑢

−𝜅𝑢
𝑆(𝜅)𝑑𝜅 = (1 − 𝜖)∫

∞

−∞
𝑆(𝜅)𝑑𝜅 (44)

∫

𝜅𝑖𝑢

−𝜅𝑖𝑢
∫

𝜅𝑗𝑢

−𝜅𝑗𝑢

𝐵(𝜅𝑖, 𝜅𝑗 )𝑑𝜅𝑖𝑑𝜅𝑗 = (1 − 𝜖)∫

∞

−∞ ∫

∞

−∞
𝐵(𝜅𝑖, 𝜅𝑗 )𝑑𝜅𝑖𝑑𝜅𝑗 (45)

where 𝜖 ≪ 1.
The simulated random fields are periodic along the 𝑥1, 𝑥2 . . .𝑥𝑑 with

eriod

𝑥1 = 2𝜋
𝛥𝜅1

, 𝐿𝑥2 = 2𝜋
𝛥𝜅2

, … , 𝐿𝑥𝑑 = 2𝜋
𝛥𝜅𝑑

(46)

nd the conditions to prevent aliasing are given as

𝛥𝑥1 ≤
2𝜋
2𝜅1𝑢

, 𝛥𝑥2 ≤
2𝜋
2𝜅2𝑢

, … , 𝛥𝑥𝑑 ≤ 2𝜋
2𝜅𝑑𝑢

(47)

.3. Simulation of quadrant random fields

Quadrant random fields have additional symmetries beyond those
resented above. Specifically, in 2D they are given by

𝑆(𝜅1, 𝜅2) = 𝑆(𝐼1𝜅1, 𝐼2𝜅2) for 𝐼1, 𝐼2 = ±1

𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22) = 𝐵(𝐼11𝜅11, 𝐼12𝜅12, 𝐼21𝜅21, 𝐼22𝜅22)

for 𝐼11, 𝐼12, 𝐼21, 𝐼22 = ±1

(48)

s a result of these additional symmetries, the simulation formula for
D-1V third-order quadrant random fields simplifies to

𝐴(𝑥1, 𝑥2) =
√

2
𝑁2
∑

𝑛2=0

𝑁1
∑

𝑛1=0

√

𝑆𝑝(𝜅1𝑛1 , 𝜅2𝑛2 )𝛥𝜅1𝛥𝜅2

[

cos(𝜅1𝑛1𝑥1 + 𝜅2𝑛2𝑥2 +𝛷
(1)
𝑛1𝑛2

)

+ cos(𝜅1𝑛1𝑥1 − 𝜅2𝑛2𝑥2 +𝛷
(2)
𝑛1𝑛2

)

+
√

2
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

𝑖2≥𝑗2≥0
∑

𝑖2+𝑗2=𝑛2

√

𝑆(𝜅1𝑛1 , 𝜅2𝑛2 )𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 )

[

cos(𝜅1𝑛1𝑥1 + 𝜅2𝑛2𝑥2 +𝛷
(1)
𝑖1 𝑖2

+𝛷(1)
𝑗1𝑗2

+ 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ))

+ cos(𝜅1𝑛1𝑥1 − 𝜅2𝑛2𝑥2 +𝛷
(2)
𝑖1 𝑖2

+𝛷(2)
𝑗1𝑗2

+ 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 ,−𝜅2𝑖2 ,−𝜅2𝑗2 ))

+ cos(𝜅1𝑛1𝑥1 − 𝜅2𝑖2𝑥2 + 𝜅2𝑗2𝑥2 +𝛷
(2)
𝑖1 𝑖2

+𝛷(1)
𝑗1𝑗2

+ 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 ,−𝜅2𝑖2 , 𝜅2𝑗2 ))

+ cos(𝜅1𝑛1𝑥1 + 𝜅2𝑖2𝑥2 − 𝜅2𝑗2𝑥2 +𝛷
(1)
𝑖1 𝑖2

+𝛷(2)
𝑗1𝑗2

+ 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ))
]

]

(49)

where the various terms are defined as before.
The symmetries in the 𝑑-dimensional polyspectra for quadrant ran-

dom fields are given by

𝑆(𝜅1, 𝜅2,… , 𝜅𝑑 ) = 𝑆(𝐼1𝜅1, 𝐼2𝜅2,… , 𝐼𝑑𝜅𝑑 ) for 𝐼1, 𝐼2,… 𝐼𝑑 = ±1

𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22,… ,… , 𝜅𝑑1, 𝜅𝑑2)

= 𝐵(𝐼11𝜅11, 𝐼12𝜅12, 𝐼21𝜅21, 𝐼22𝜅22,… ,… , 𝐼𝑑1𝜅𝑑1, 𝐼𝑑2𝜅𝑑2)
(50)
for 𝐼11, 𝐼12, 𝐼21, 𝐼22,… ,… , 𝐼𝑑1, 𝐼𝑑2 = ±1

6

As a result, the simulation formula for 𝑑D-1V third-order quadrant
random fields simplifies to

𝐴(𝑥1, 𝑥2,… , 𝑥𝑑 ) =
√

2
𝑁𝑑
∑

𝑛𝑑=0
⋯

𝑁2
∑

𝑛2=0

𝑁1
∑

𝑛1=0

[

√

𝑆𝑝(𝜅1𝑛1 , 𝜅2𝑛2 ,… , 𝜅𝑑𝑛𝑑 )𝛥𝜅1𝛥𝜅2 …𝛥𝜅𝑑

∑

𝐼1=1,𝐼2=±1,…,𝐼𝑑=±1
cos(𝐼1𝜅1𝑛1𝑥1 + 𝐼2𝜅2𝑛2𝑥2 +⋯ + 𝐼𝑑𝜅𝑑𝑛𝑑 𝑥3 +𝛷

𝐼1𝐼2…𝐼𝑑
𝑛1𝑛2…𝑛𝑑 )

+
√

2
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

𝑖2≥𝑗2≥0
∑

𝑖2+𝑗2=𝑛2

⋯
𝑖𝑑≥𝑗𝑑≥0
∑

𝑖𝑑+𝑗𝑑=𝑛𝑑

√

𝑆(𝜅1𝑛1 , 𝜅2𝑛2 ,… , 𝜅𝑑𝑛𝑑 )

× 𝑏𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ,… , 𝜅𝑑𝑖𝑑 , 𝜅𝑑𝑗𝑑 )
[

∑

𝐼1=1,𝐼21=±1,𝐼22=±1,…𝐼𝑑1=±1,𝐼𝑑2=±1
cos (𝐼1𝜅1𝑖1𝑥1 + 𝐼21𝜅2𝑖2𝑥2 + 𝐼22𝜅2𝑗2𝑥2 +⋯

+ 𝐼𝑑1𝜅𝑑𝑖𝑑 𝑥𝑑 + 𝐼𝑑2𝜅𝑑𝑗𝑑 𝑥𝑑 +𝛷
𝐼1𝐼21…𝐼𝑑1
𝑖1 𝑖2…𝑖𝑑

+𝛷𝐼1𝐼22…𝐼𝑑2
𝑗1𝑗2…𝑗𝑑

+ 𝛽(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ,… , 𝜅𝑑𝑖𝑑 , 𝜅𝑑𝑗𝑑 ))
]

]

(51)

here

𝑆𝑝(𝜅1𝑛1 , 𝜅2𝑛2 ,… 𝜅𝑑𝑛𝑑 ) = 𝑆(𝜅1𝑛1 , 𝜅2𝑛2 ,… , 𝜅𝑑𝑛𝑑 )
(

1−

𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

𝑖2≥𝑗2≥0
∑

𝑖2+𝑗2=𝑛2

⋯
𝑖𝑑≥𝑗𝑑≥0
∑

𝑖𝑑+𝑗𝑑=𝑛𝑑

𝑏2𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ,… , 𝜅𝑑𝑖𝑑 , 𝜅𝑑𝑗𝑑 )
)

𝑏2𝑝(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖2 , 𝜅2𝑗2 ,… , 𝜅𝑑𝑖𝑑 , 𝜅𝑑𝑗𝑑 ) =

|𝐵(𝜅1𝑖1 , 𝜅1𝑗1 , 𝜅2𝑖1 , 𝜅2𝑗2 ,… , 𝜅𝑑𝑖𝑑 , 𝜅𝑑𝑗𝑑 )|
2𝛥𝜅1𝛥𝜅2 …𝛥𝜅𝑑

𝑆𝑝(𝜅1𝑖1 , 𝜅2𝑖2 ,… , 𝜅𝑑𝑖𝑑 )𝑆𝑝(𝜅1𝑗1 , 𝜅2𝑗2 ,… , 𝜅𝑑𝑗𝑑 )𝑆(𝜅1(𝑖1+𝑗1), 𝜅2(𝑖2+𝑗2),… , 𝜅𝑑(𝑖𝑑+𝑗𝑑 ))

(52)

Note that we forego the overline index set notation in lieu of the
full indicial notation given the introduction of additional summations
associated with the symmetries. For simulation purposes, we further
note that the quadrant random fields require the generation of 2𝑑 sets
of 𝑑th-order tensors of random phase angles.

5.4. Simulation of one-dimensional random fields with FFT

The simulation formulae presented up until now can be used for
simulating random fields, but they grow increasingly computational
intensive with increasing dimension; so much so that simulating 3-
dimensional random fields becomes impractical. Assuming that all
required data such as partial bicoherences, biphase angles, etc. have
been computed a priori, sample function generation for a 1D-1V process
using the truncated form of Eq. (12) has complexity 𝑂(𝑀𝑁). This
complexity increases exponentially for multi-dimensional random fields
to order 𝑂((𝑀𝑁)𝑑 ) where 𝑑 is the dimension of the random field. Here,
we introduce a fast Fourier transform (FFT) based implementation to
reduce the complexity of the simulations.

We first develop an FFT based implementation for simulation of
1D-1V third-order random fields and subsequently extend it to the 2D-
1V and 𝑑D-1V cases. Let us start by writing Eq. (12) in its complete
iscretized form as

𝐴(𝑚𝛥𝑥) =
√

2
∞
∑

𝑛=0

√

√

√

√2𝑆(𝑘𝛥𝜅)𝛥𝜅(1 −
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑛
𝑏2𝑝(𝜅𝑖, 𝜅𝑗 )) cos

(

(𝑛𝛥𝜅)(𝑚𝛥𝑥) − 𝜙𝑘
)

+
√

2
∞
∑

𝑛=0

𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑛

√

2𝑆(𝑛𝛥𝜅)𝛥𝜅|𝑏𝑝(𝜅𝑖, 𝜅𝑗 )|

× cos
(

(𝑛𝛥𝜅)(𝑚𝛥𝑥) − (𝜙𝑖 + 𝜙𝑗 + 𝛽(𝜅𝑖, 𝜅𝑗 ))
)

(53)
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Simplifying the representation from two additive terms to only one
term we get

𝐴(𝑚𝛥𝑥) =
√

2
∞
∑

𝑛=0

√

2𝑆(𝑛𝛥𝜅)𝛥𝜅

[

√

√

√

√(1 −
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑛
𝑏2𝑝(𝜅𝑖, 𝜅𝑗 )) cos

(

(𝑛𝛥𝜅)(𝑚𝛥𝑥) − 𝜙𝑛
)

+
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑛
|𝑏𝑝(𝜅𝑖, 𝜅𝑗 )| cos

(

(𝑛𝛥𝜅)(𝑚𝛥𝑥) − (𝜙𝑖 + 𝜙𝑗 + 𝛽(𝜅𝑖, 𝜅𝑗 ))
)

]

(54)

From Euler’s notation we have that 𝑒𝑖𝜙 = cos𝜙 + 𝜄 sin𝜙, hence cos𝜙 =
ℜ[𝑒𝜄𝜙]. Applying Euler’s notation, we have

𝐴(𝑚𝛥𝑥) =
√

2
∞
∑

𝑛=0

√

2𝑆(𝑛𝛥𝜅)𝛥𝜅

ℜ
[

√

√

√

√(1 −
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑛
𝑏2𝑝(𝜅𝑖, 𝜅𝑗 ))𝑒

𝜄
(

(𝑛𝛥𝜅)(𝑚𝛥𝑥)−𝜙𝑛
)

+
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑘
|𝑏𝑝(𝜅𝑖, 𝜅𝑗 )|𝑒

𝜄
(

(𝑛𝛥𝜅)(𝑚𝛥𝑥)−(𝜙𝑖+𝜙𝑗+𝛽(𝜅𝑖 ,𝜅𝑗 ))
)

]

(55)

which can be factored as

𝐴(𝑚𝛥𝑥) =
√

2
∞
∑

𝑛=0

√

2𝑆(𝑛𝛥𝜅)𝛥𝜅

ℜ
[ (

𝑒𝜄
(

(𝑛𝛥𝜅)(𝑚𝛥𝑥)
)

) (

√

√

√

√(1 −
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑛
𝑏2𝑝(𝜅𝑖, 𝜅𝑗 ))𝑒

−𝜄𝜙𝑛

+
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑛
|𝑏𝑝(𝜅𝑖, 𝜅𝑗 )|𝑒

−𝜄(𝜙𝑖+𝜙𝑗+𝛽(𝜅𝑖 ,𝜅𝑗 ))
)]

(56)

The standard form for implementation of the FFT is given by [48]:

𝐴𝑚 =
𝑁−1
∑

𝑛=0
𝐵𝑛𝑒

−2𝜋𝜄 𝑚𝑛𝑁 (57)

By grouping terms in Eq. (56) as follows,

𝐴(𝑚𝛥𝑥) = ℜ
[

∞
∑

𝑛=0
𝐵𝑛𝑒

𝑖
(

(𝑛𝛥𝜅)(𝑚𝛥𝑥)
)

]

where 𝐵𝑛 =
√

2𝐶𝑛
[

√

√

√

√(1 −
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑛
𝑏2𝑝(𝜅𝑖, 𝜅𝑗 ))𝑒

𝑖𝜙𝑛

+
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑛
|𝑏𝑝(𝜅𝑖, 𝜅𝑗 )|𝑒

𝑖(𝜙𝑖+𝜙𝑗+𝛽(𝜅𝑖 ,𝜅𝑗 ))
]

𝐶𝑛 =
√

2𝑆(𝑛𝛥𝜅)𝛥𝜅

(58)

e see that the simulation formula in Eq. (56) can be expressed in the
ompact form of the FFT operator in Eq. (57).

For illustration of the implementation here, we will adopt the
ollowing shorthand notation. Let 𝑨 = {𝐴𝑚;𝑚 = 0,… 𝑀 − 1} where
𝑚 = 𝐴(𝑚𝛥𝑥) and 𝑩 = {𝐵𝑛; 𝑛 = 0,… , 𝑁 − 1} where 𝐵𝑛 = 𝐵(𝑛𝛥𝜅),
hen the fast Fourier transform will be expressed as 𝑨 = FFT(𝑩).
imilarly, the inverse FFT is denoted 𝑨 = IFFT(𝑩). Practically speaking,
the FFT implementation involves typically a 1

𝑁
normalization term

nd therefore inverse FFT requires a multiplication by 𝑁 . With this
horthand, the simulation formula can be expressed as

= ℜ{𝑁IFFT(𝑩)} (59)
7

.5. Simulation of 𝑑-dimensional random fields with FFT

The fully discretized simulation formula for 𝑑-dimensional random
ields is given as follows:

𝐴(𝑚1𝛥𝑥1, 𝑚2𝛥𝑥2,… , 𝑚𝑑𝛥𝑥𝑑 ) =
𝑁𝑑
∑

𝑛𝑑=−𝑁𝑑

⋯
𝑁2
∑

𝑛2=−𝑁2

𝑁1
∑

𝑛1=0

[
√

2
√

2𝑆𝑝(𝑛1𝛥𝜅1, 𝑛2𝛥𝜅2 … 𝑛𝑑𝛥𝜅𝑑 )𝛥𝜅1𝛥𝜅2 …𝛥𝜅𝑑

cos(𝑛1𝑚1𝛥𝜅1𝛥𝑥1 + 𝑛2𝑚2𝛥𝜅2𝛥𝑥2 … 𝑛𝑑𝑚𝑑𝛥𝜅𝑑𝛥𝑥𝑑 +𝛷𝑛1𝑛2…𝑛𝑑 )

+
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛2|≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝑛2

⋯
|𝑛𝑑 |≥|𝑖𝑑 |≥|𝑗𝑑 |≥0

∑

𝑖𝑑+𝑗𝑑=𝑛𝑑
√

2
√

2𝑆(𝑛1𝛥𝜅1, 𝑛2𝛥𝜅2 … 𝑛𝑑𝛥𝜅𝑑 )𝛥𝜅1𝛥𝜅2 …𝛥𝜅𝑑
𝑏𝑝(𝑖1𝛥𝜅1, 𝑗1𝛥𝜅1, 𝑖2𝛥𝜅2, 𝑗2𝛥𝜅2 …… 𝑖𝑑𝛥𝜅𝑑 , 𝑗𝑑𝛥𝜅𝑑 )

cos (𝑛1𝑚1𝛥𝜅1𝛥𝑥1 + 𝑛2𝑚2𝛥𝜅2𝛥𝑥2 … 𝑛𝑑𝑚𝑑𝛥𝜅𝑑𝛥𝑥𝑑 +𝛷𝑖1𝑖2…𝑖𝑑 +𝛷𝑗1𝑗2…𝑗𝑑+

𝛽(𝑖1𝛥𝜅1, 𝑗1𝛥𝜅1, 𝑖2𝛥𝜅2, 𝑗2𝛥𝜅2,… ,… 𝑖𝑑𝛥𝜅𝑑 , 𝑗𝑑𝛥𝜅𝑑 ))
]

(60)

where (see equation given in Box I).
Following similar steps involved in the development of the FFT

implementation for 1D-1V random field, the simulation formula for 𝑑-
dimensional random fields is given in Box II. This can be simplified to
a form amenable to the FFT implementation as

𝐴(𝑚1𝛥𝑥1, 𝑚2𝛥𝑥2,… , 𝑚𝑑𝛥𝑥𝑑 ) =2
𝑁𝑑
∑

𝑛𝑑=0
⋯

𝑁2
∑

𝑛2=0

𝑁1
∑

𝑛1=0

∑

𝐼1=1,𝐼2=±1,…,𝐼𝑑=±1
[

𝐵𝐼1𝐼2…𝐼𝑑
𝑛1𝑛2…𝑛𝑑 𝑒

𝜄(𝐼1𝑛1𝑚1𝛥𝜅1𝛥𝑥1+𝐼2𝑛2𝑚2𝛥𝜅2𝛥𝑥2+⋯+𝐼𝑑𝑛𝑑𝑚𝑑𝛥𝜅𝑑𝛥𝑥𝑑 )
]

(63)

Again, expressing this in terms of FFT and IFFT operations the following
results:

𝑨 = 2

[

∑

𝐼1=1,𝐼2=±1,…,𝐼𝑑=±1
ℜ{𝑁𝐽FFT𝐼𝑑𝜅𝑑 ◦FFT

𝐼𝑑−1
𝜅𝑑−1◦… ◦FFT𝐼1𝜅1 (𝑩

𝐼1𝐼2…𝐼𝑑 )}

]

(64)

where

𝐽 =
𝑑
∑

𝑗=1
𝐼𝑗 , 𝐼𝑗 = 1 if 𝐼𝑗 = 1, 𝐼𝑗 = 0 otherwise (65)

FFT𝐼𝑗 equals IFFT if 𝐼𝑗 = 1 and FFT if 𝐼𝑗 = −1, and 𝑩𝐼1𝐼2…𝐼𝑑 are the 𝑑th-
order tensors having components 𝐵𝐼1𝐼2…𝐼𝑑

𝑛1𝑛2…𝑛𝑑 in Eq. (63). For example, we
can express the simulation formula in 2D compactly in terms of FFTs
as

𝑨 = 2
[

ℜ{𝑁2(IFFT𝜅2◦IFFT𝜅1 (𝑩
11)) +𝑁(FFT𝜅2◦IFFT𝜅1 (𝑩

1−1))}
]

(66)

where the subscript 𝜅1 or 𝜅2 specifies the axis of the matrix over which
the FFT/IFFT operates. Similarly, the 3-dimensional implementation
takes the following form:

𝑨 =ℜ{𝑁3IFFT𝜅3◦IFFT𝜅2◦IFFT𝜅1 (𝑩
111) +𝑁2FFT𝜅3◦IFFT𝜅2◦IFFT𝜅1 (𝑩

11−1)

+ 𝑁2IFFT𝜅3◦FFT𝜅2◦IFFT𝜅1 (𝑩
1−11) +𝑁FFT𝜅3◦FFT𝜅2◦IFFT𝜅1 (𝑩

1−1−1)}

(67)

In the case of quadrant random fields, the FFT implementation can
be further simplified to

𝐴(𝑚1𝛥𝑥1, 𝑚2𝛥𝑥2,… , 𝑚𝑑𝛥𝑥𝑑 ) = 2
𝑁𝑑
∑

𝑛𝑑=0
⋯

𝑁2
∑

𝑛2=0

𝑁1
∑

𝑛1=0

𝐵𝑛1𝑛2…𝑛𝑑

[

𝑒𝜄(𝑛1𝑚1𝛥𝜅1𝛥𝑥1)(𝑒𝜄(𝑛2𝑚2𝛥𝜅2𝛥𝑥2) + 𝑒−𝜄(𝑛2𝑚2𝛥𝜅2𝛥𝑥2))… (𝑒𝜄(𝑛𝑑𝑚𝑑𝛥𝜅𝑑𝛥𝑥𝑑 )

+ 𝑒−𝜄(𝑛𝑑𝑚𝑑𝛥𝜅𝑑𝛥𝑥𝑑 ))
]

(68)
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𝑆𝑝(𝑛1𝛥𝜅1, 𝑛2𝛥𝜅2,… , 𝑛𝑑𝛥𝜅𝑑 ) = 𝑆(𝑛1𝛥𝜅1, 𝑛2𝛥𝜅2,… , 𝑛𝑑𝛥𝜅𝑑 )

×
(

1 −
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝑛1

|𝑛2|≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝑛2

⋯
|𝑛𝑑 |≥|𝑖𝑑 |≥|𝑗𝑑 |≥0

∑

𝑖𝑑+𝑗𝑑=𝑛𝑑

𝑏2𝑝(𝑖1𝛥𝜅1, 𝑗1𝛥𝜅1, 𝑖2𝛥𝜅2, 𝑗2𝛥𝜅2,… , 𝑖𝑑𝛥𝜅𝑑 , 𝑗𝑑𝛥𝜅𝑑 )
)

𝑏2𝑝(𝑖1𝛥𝜅1, 𝑗1𝛥𝜅1, 𝑖2𝛥𝜅2, 𝑗2𝛥𝜅2,… , 𝑖𝑑𝛥𝜅𝑑 , 𝑗𝑑𝛥𝜅𝑑 ) =
|𝐵(𝑖1𝛥𝜅1, 𝑗1𝛥𝜅1, 𝑖2𝛥𝜅2, 𝑗2𝛥𝜅2,… , 𝑖𝑑𝛥𝜅𝑑 , 𝑗𝑑𝛥𝜅𝑑 )|2𝛥𝜅1𝛥𝜅2 …𝛥𝜅𝑑

𝑆𝑝(𝑖1𝛥𝜅1, 𝑖2𝛥𝜅2,… , 𝑖𝑑𝛥𝜅𝑑 )𝑆𝑝(𝑗1𝛥𝜅1, 𝑗2𝛥𝜅2,… , 𝑗𝑑𝛥𝜅𝑑 )𝑆((𝑖1 + 𝑗1)𝛥𝜅1,… , (𝑖𝑑 + 𝑗𝑑 )𝛥𝜅𝑑 )

(61)

Box I.
𝐴(𝑚1𝛥𝑥1, 𝑚2𝛥𝑥2,… , 𝑚𝑑𝛥𝑥𝑑 ) =

2
𝑁𝑑
∑

𝑛𝑑=0
⋯

𝑁2
∑

𝑛2=0

𝑁1
∑

𝑛1=0

∑

𝐼1=1,𝐼2=±1,…,𝐼𝑑=±1

√

𝑆(𝐼1𝑛1𝛥𝜅1, 𝐼2𝑛2𝛥𝜅2,… , 𝐼𝑑𝑛𝑑𝛥𝜅𝑑 )𝛥𝜅1𝛥𝜅2 …𝛥𝜅𝑑

[

√

√

√

√

√(1 −
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝐼1𝑛1

𝑛2≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝐼2𝑛2

⋯
𝑛𝑑≥|𝑖𝑑 |≥|𝑗𝑑 |≥0

∑

𝑖𝑑+𝑗𝑑=𝐼𝑑𝑛𝑑

𝑏2𝑝(𝑖1𝛥𝜅1, 𝑗1𝛥𝜅1, 𝑖2𝛥𝜅2, 𝑗2𝛥𝜅2,… ,… 𝑖𝑑𝛥𝜅𝑑 , 𝑗𝑑𝛥𝜅𝑑 )𝑒
𝜄𝛷𝐼1𝐼2…𝐼𝑑
𝑛1𝑛2…𝑛𝑑

+
𝑖1≥𝑗1≥0
∑

𝑖1+𝑗1=𝐼1𝑛1

𝑛2≥|𝑖2|≥|𝑗2|≥0
∑

𝑖2+𝑗2=𝐼2𝑛2

⋯
𝑛𝑑≥|𝑖𝑑 |≥|𝑗𝑑 |≥0

∑

𝑖𝑑+𝑗𝑑=𝐼𝑑𝑛𝑑

𝑏𝑝(𝑖1𝛥𝜅1, 𝑗1𝛥𝜅1, 𝑖2𝛥𝜅2, 𝑗2𝛥𝜅2,… ,… 𝑖𝑑𝛥𝜅𝑑 , 𝑗𝑑𝛥𝜅𝑑 )

× 𝑒𝜄(𝛷
𝐼1𝐼2…𝐼𝑑
𝑖1 𝑖2…𝑖𝑑

+𝛷𝐼1𝐼2…𝐼𝑑
𝑗1𝑗2…𝑗𝑑

+𝛽(𝑖1𝛥𝜅1 ,𝑗1𝛥𝜅1 ,𝑖2𝛥𝜅2 ,𝑗2𝛥𝜅2 ,…,…𝑖𝑑𝛥𝜅𝑑 ,𝑗𝑑𝛥𝜅𝑑 ))
]

𝑒𝜄(𝐼1𝑛1𝑚1𝛥𝜅1𝛥𝑥1+𝐼2𝑛2𝑚2𝛥𝜅2𝛥𝑥2+⋯+𝐼𝑑𝑛𝑑𝑚𝑑𝛥𝜅𝑑𝛥𝑥𝑑 )

(62)

Box II.
t
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a
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o

1
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b
p

In terms of FFT and IFFT operators, it takes the following form:

𝑨 = 2

[

∑

𝐼1=1,𝐼2=±1,…,𝐼𝑑=±1
ℜ{𝑁𝐽FFT𝐼𝑑𝜅𝑑 ◦FFT

𝐼𝑑−1
𝜅𝑑−1◦… ◦FFT𝐼1𝜅1 (𝑩)}

]

(69)

where 𝑩 is the 𝑑th-order tensor having terms 𝐵𝑛1𝑛2…𝑛𝑑 in Eq. (68).
Detailed development for the simulation of 2D random fields with the
use of FFT is provided in [44].

5.6. Notes on the use of the FFT technique

It is well known that the application of the FFT technique requires
that certain conditions be satisfied. One such condition relates the
spatial and wave number discretizations as follows:

𝛥𝜅1𝛥𝑥1 =
2𝜋
𝑁1

, 𝛥𝜅2𝛥𝑥2 =
2𝜋
𝑁2

, … , 𝛥𝜅𝑑𝛥𝑥𝑑 = 2𝜋
𝑁𝑑

(70)

his is equivalent to a condition that the spatial domain over which the
amples are generated is always equal to one period.
The general procedure for simulating 𝑑-dimensional third-order

andom fields with the FFT implementation is as follows:

1. Assign the appropriate wave number discretization over the 𝑑 di-
mensions of the power spectrum and the bispectrum. Associated
spatial increments follow from Eq. (70).

2. Ensure that the spatial increments satisfy the conditions in Eq.
(47) to avoid aliasing.

3. Generate the necessary 2𝑑−1, 𝑑th-order random phase tensors
𝜱𝐼1𝐼2…𝐼𝑑 for general fields or a single 𝑑th-order random phase
tensor for quadrant random fields.

4. Compute the 2𝑑−1, 𝑑th-order spectral tensors 𝑩𝐼1𝐼2…𝐼𝑑 for gen-
eral fields or a single 𝑑th-order spectral tensor for quadrant
random fields.

5. Apply FFT and IFFT appropriately along the different axes of the
d-dimensional spectral tensor(s) 𝑩 according to the equations
above.
8

The major advantage of the FFT implementation is computational
expense. Each FFT has well-known complexity of the order 𝑂(𝑀 log𝑁),
whereas each summation of cosines has complexity of the order
𝑂(𝑀𝑁). Because the summations in the original formulation are nested
over each dimension, the complexity grows exponentially with dimen-
sion as 𝑂((𝑀𝑁)𝑑 ). However, as we can see from the above expressions,
he FFT implementation requires only 2𝑑−1𝑑 FFTs and therefore has
omplexity of order 𝑂(𝑑2𝑑−1𝑀 log𝑁) ≪ 𝑂((𝑀𝑁)𝑑 ). For quadrant
andom fields, this is reduced even further having order 𝑂(2𝑑𝑀 log𝑁)
nd therefore only scales linearly with dimension.
The result is a drastic reduction in the computational time, with-

ut which the simulation of multidimensional higher-order random
ields becomes infeasible. To illustrate the savings, Table 1 shows a
omparison of the computation time for the non-FFT and the FFT
mplementations for a 1-dimensional random field for different number
f sample functions generated. On average the FFT calculations are
hree orders of magnitude faster.
While Table 1 illustrates the huge savings for one-dimensional

ields, it is particularly interesting to observe how these computation
imes scale with dimension. Table 2 shows that computation times
or 2- and 3-dimensional random fields using the FFT implementation
emain modest. Note, however, that we do not compare with the sum-
ation of cosines here because these calculations become intractable
or dimensions greater than one. All the simulations are performed on
MacBook Pro 2017 using 3.1 GHz Dual-Core Intel Core i5 CPU and 8
B 2133 MHz LPDDR3 memory.

. Simulation of ergodic multi-variate stochastic processes by 3rd-
rder spectral representation method

Thus far, we have established the equations for the simulation of
D-1V random process and nD-1V random fields. To simulate the 1D-
V stationary stochastic vector process [𝑓1(𝑡), 𝑓2(𝑡),… ....𝑓𝑚(𝑡)]𝑇 , the
ure component of the 2nd-order cross spectral density 𝑆𝑝(𝜔) must
e computed first. In case of a simple 1D-1V stationary stochastic
rocesses, the computation is straightforward, see Eq. (14). However,
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Table 1
Comparison of the computation time for simulation of 1D third-order
random fields using the standard and FFT implementations.
No. of samples Time (s)

Standard FFT

128 14.842 0.0893
512 26.891 0.0957
1024 48.383 0.1399
2048 82.525 0.3750
4096 456.100 1.9270

the pure cross-spectral density for a stochastic vector process is not
trivial, and requires us to resort to Einstein (tensor) notation. The pure
cross-spectral density is thus expressed as

𝑆𝑝𝑎𝑏(𝜔𝑘) = 𝑆𝑎𝑏(𝜔𝑘) −
𝑖≥𝑗>0
∑

𝑖+𝑗=𝑘
𝐵𝑎𝑒𝑓 (𝜔𝑖, 𝜔𝑗 )𝐵∗

𝑏𝑔ℎ(𝜔𝑖, 𝜔𝑗 )𝐺𝑝𝑒(𝜔𝑖)

× 𝐺𝑝𝑔(𝜔𝑖)𝐺𝑞𝑓 (𝜔𝑗 )𝐺𝑞ℎ(𝜔𝑗 )𝛥𝜔2

(71)

here the term 𝐺(𝜔) is the inverse of the decomposed pure cross-
pectral density derived as follows. Similar to the 2nd-order expansion,
he pure cross-spectral density can be decomposed using the eigenvalue
ecomposition as

𝑆(𝑝)(𝜔) = 𝐻(𝜔)𝐻𝑇 ∗(𝜔) (72)

nd having the following properties

𝐻𝑗𝑗 (𝜔) = 𝐻𝑗𝑗 (−𝜔),𝐻𝑗𝑘(𝜔) = 𝐻∗
𝑗𝑘(−𝜔),𝐻𝑗𝑘(𝜔) = |𝐻𝑗𝑘(𝜔)|𝑒

𝜄𝜃𝑗𝑘(𝜔),

𝜃𝑗𝑘(𝜔) = tan−1
(ℑ[𝐻𝑗𝑘(𝜔)]
ℜ[𝐻𝑗𝑘(𝜔)]

) (73)

e then define 𝐺(𝜔) = (𝐻(𝜔))−1, which again can be expressed in polar
oordinates as:

𝐺𝑗𝑘(𝜔) = |𝐺𝑗𝑘(𝜔)|𝑒
𝜄𝜃𝐼𝑗𝑘(𝜔), 𝜃𝐼𝑗𝑘(𝜔) = tan−1

(ℑ[𝐺𝑗𝑘(𝜔)]
ℜ[𝐺𝑗𝑘(𝜔)]

)

(74)

Leveraging these quantities, the stochastic vector process 𝑓𝑎(𝑡); 𝑎 =
1, 2,…𝑚 can be simulated as follows:

𝑓𝑎(𝑡) = 2
𝑁−1
∑

𝑘=0

[

𝑚
∑

𝑙=1
|𝐻𝑎𝑙(𝜔𝑙𝑘)|

√

𝛥𝜔 cos(𝜔𝑙𝑘𝑡 − 𝜃𝑎𝑙(𝜔𝑙𝑘) + 𝜙𝑙𝑘)

+ 2
𝑚
∑

𝑙=1

𝑚
∑

𝑛=1

𝑚
∑

𝑝=1

𝑚
∑

𝑞=1

𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑘
|𝐵𝑎𝑙𝑛(𝜔𝑝𝑖, 𝜔𝑞𝑗 )‖𝐺𝑙𝑝(𝜔𝑝𝑖)‖𝐺𝑛𝑞(𝜔𝑞𝑗 )|𝛥𝜔

cos((𝜔𝑝𝑖 + 𝜔𝑞𝑗 )𝑡 − 𝛽𝑎𝑙𝑛(𝜔𝑝𝑖, 𝜔𝑞𝑗 ) − 𝜃𝐼𝑙𝑝(𝜔𝑝𝑖) − 𝜃
𝐼
𝑛𝑞(𝜔𝑞𝑗 ) + 𝜙𝑝𝑖 + 𝜙𝑞𝑗 )

]

(75)

where

𝛽𝑎𝑙𝑛(𝜔𝑝𝑖, 𝜔𝑞𝑗 ) = tan−1
(ℑ[𝐵𝑎𝑙𝑛(𝜔𝑝𝑖, 𝜔𝑞𝑗 )]
ℜ[𝐵𝑎𝑙𝑛(𝜔𝑝𝑖, 𝜔𝑞𝑗 )]

)

(76)

is the biphase, and

𝜔𝑙𝑘 = 𝑘𝛥𝜔 + 𝑙
2𝑚

𝛥𝜔 + 1
𝑁
𝛥𝜔 (77)

The stochastic vector processes simulated using Eq. (75) satisfy both
ensemble and ergodic properties of the vector process up to the third
order. Further details along with proofs can be found in [49].

6.1. Simulation of stochastic vector processes by FFT

The simulation formula for stochastic vector processes presented
above in Eq. (75) is computationally expensive, but can be accelerated
with the FFT. Again, applying Euler’s formula, 𝑒𝜄𝜙 = cos(𝜙) + 𝜄 sin(𝜙),
 d

9

Table 2
Computational time for the simulation of 2D and 3D third-order random
fields using the FFT implementation. Standard implementation is not
shown because the calculations are impractical on a desktop computer.
No. of samples Time (s)

2D 3D

1 0.224 20.651
16 0.225 21.839
128 0.274 25.600
512 0.375 37.89

such that ℜ[𝑒𝜄𝜙] = cos(𝜙), the simulation formula simplifies to

𝑓𝑎(𝑡) = ℜ
[

2
𝑁−1
∑

𝑘=0
[
𝑚
∑

𝑙=1
|𝐻𝑎𝑙(𝜔𝑙𝑘)|

√

𝛥𝜔𝑒𝜄(𝜔𝑙𝑘𝑡−𝜃𝑎𝑙 (𝜔𝑙𝑘)+𝜙𝑙𝑘)

+
𝑚
∑

𝑙=1

𝑚
∑

𝑛=1

𝑚
∑

𝑝=1

𝑚
∑

𝑞=1

𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑘
|𝐵𝑎𝑙𝑛(𝜔𝑝𝑖, 𝜔𝑞𝑗 )‖𝐺𝑙𝑝(𝜔𝑝𝑖)‖𝐺𝑛𝑞(𝜔𝑞𝑗 )|𝛥𝜔

𝑒𝜄(𝜔𝑝𝑖+𝜔𝑞𝑗 )𝑡−𝛽𝑎𝑙𝑛(𝜔𝑝𝑖 ,𝜔𝑞𝑗 )−𝜃
𝐼
𝑙𝑝(𝜔𝑝𝑖)−𝜃

𝐼
𝑛𝑞 (𝜔𝑞𝑗 )+𝜙𝑝𝑖+𝜙𝑞𝑗 ]

]

(78)

iscretizing the time domain using 𝑡𝑟 = 𝑟𝛥𝑡 and the frequency domain
sing the multi-indexed frequency in Eq. (77) yields

𝑓𝑎(𝑟𝛥𝑡) = ℜ
[

2
𝑁−1
∑

𝑘=0
[
𝑚
∑

𝑙=1
|𝐻𝑎𝑙(𝜔𝑙𝑘)|

√

𝛥𝜔𝑒𝜄(
𝑙𝑟
2𝑚+ 1

𝑁 )𝛥𝜔𝛥𝑡𝑒𝜄(−𝜃𝑎𝑙 (𝜔𝑙𝑘)+𝜙𝑙𝑘)

+
𝑚
∑

𝑙=1

𝑚
∑

𝑛=1

𝑚
∑

𝑝=1

𝑚
∑

𝑞=1

𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑘
|𝐵𝑎𝑙𝑛(𝜔𝑖, 𝜔𝑗 )‖𝐺𝑙𝑝(𝜔𝑖)‖𝐺𝑛𝑞(𝜔𝑗 )|𝛥𝜔

𝑒𝜄(
𝑝𝑟
2𝑚+ 𝑞𝑟

2𝑚+ 2
𝑁 )𝛥𝜔𝛥𝑡𝑒𝜄(−𝛽𝑎𝑙𝑛(𝜔𝑝𝑖 ,𝜔𝑞𝑗 )−𝜃

𝐼
𝑙𝑝(𝜔𝑝𝑖)−𝜃

𝐼
𝑛𝑞 (𝜔𝑞𝑗 )+𝜙𝑝𝑖+𝜙𝑞𝑗 )]𝑒𝜄𝑘𝑟𝛥𝜔𝛥𝑡

]

(79)

Expressing this equation in terms of the standard FFT implementation,
we have

𝑓𝑎(𝑟𝛥𝑡) = ℜ
[

𝑁−1
∑

𝑘=0
𝐶𝑘𝑒

𝜄𝑘𝑟𝛥𝜔𝛥𝑡] (80)

where 𝐶𝑘 is given by

𝐶𝑘 = 2[
𝑚
∑

𝑙=1
|𝐻𝑎𝑙(𝜔𝑙𝑘)|

√

𝛥𝜔𝑒𝜄(−𝜃𝑎𝑙 (𝜔𝑙𝑘)+𝜙𝑙𝑘)

+
𝑖≥𝑗≥0
∑

𝑖+𝑗=𝑘

𝑚
∑

𝑙=1

𝑚
∑

𝑛=1

𝑚
∑

𝑝=1

𝑚
∑

𝑞=1
|𝐵𝑎𝑙𝑛(𝜔𝑝𝑖, 𝜔𝑞𝑗 )‖𝐺𝑙𝑝(𝜔𝑝𝑖)‖𝐺𝑛𝑞(𝜔𝑞𝑗 )|

× 𝛥𝜔𝑒𝜄(−𝛽𝑎𝑙𝑛(𝜔𝑝𝑖 ,𝜔𝑞𝑗 )−𝜃
𝐼
𝑙𝑝(𝜔𝑝𝑖)−𝜃

𝐼
𝑛𝑞 (𝜔𝑞𝑗 )+𝜙𝑝𝑖+𝜙𝑞𝑗 )]

(81)

nd we have the following conditions to ensure the ergodicity and
void aliasing

𝛥𝑡 = 𝑇0 = 𝑚 2𝜋
𝛥𝜔

, 𝛥𝑡 = 2𝜋
𝑚𝛥𝜔

(82)

Simulation by FFT using Eq. (80) and (81) saves considerable compu-
ational expense while retaining the desired ensemble and ergodicity
roperties of the sample functions.

. Numerical examples

In this section, we present examples of the simulation of skewed
- and 3-dimensional random fields from prescribed power spectra and
ispectra. These examples, although purely mathematical in nature and
ot corresponding to any physically meaningful random field, have
een developed to call attention to specific features of the proposed
ethodology. Finally, we also present an example of the simulation of
stochastic vector process.

.1. Comparison of 2-dimensional 2nd- and 3rd-order random fields

The first example compares the simulation of a 2-dimensional ran-
om field by the 2nd-order SRM and the 3rd-order SRM. The prescribed
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Fig. 1. 2-dimensional power spectrum.

ower spectrum is given by

(𝜅1, 𝜅2) =
40
𝜋

exp−1
2
(𝜅21 + 𝜅22 ) for 𝜅1, 𝜅2 ≥ 0 (83)

nd is plotted in Fig. 1, yielding a random field with zero mean and
ariance 75. Notice that the power spectrum is radially symmetric. The
rescribed bispectrum for the 3rd-order random field is given by

ℜ𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22) = ℑ𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22)

= 210
𝜋2

exp−(𝜅211 + 𝜅
2
12 + 𝜅

2
21 + 𝜅

2
22)

for 𝜅11, 𝜅12, 𝜅21, 𝜅22 ≥ 0

(84)

isualization of the 2-dimensional bispectrum, which is a 4th-order ten-
or, is not trivial. Of particular note is that the bispectrum is symmetric
cross all dimensions, i.e. it has the same rate of decay along each
xis. This implies that the coupling of the waves is the same in both
imensions.
One thousand samples of the 2nd- and 3rd-order random fields are

imulated using the SRM with the following parameters.

𝑥1 = 𝛥𝑥2 = 0.7853, 𝛥𝜅1 = 𝛥𝜅2 = 0.03125,

1 = 𝑁2 = 128, 𝑀1 =𝑀2 = 256 (85)

he cutoff frequency is 𝜅𝑢 = 4 rad/sec and the value of 𝜖 from Eqs.
37)–(38) is determined as

∫

4

0 ∫

4

−4
𝑆(𝜅1, 𝜅2)𝑑𝜅1𝑑𝜅2 = (1 − 𝜖)∫

∞

0 ∫

∞

−∞
𝑆(𝜅1, 𝜅2)𝑑𝜅1𝑑𝜅2

2∫

4

0 ∫

4

0
𝑆(𝜅1, 𝜅2)𝑑𝜅1𝑑𝜅2 = 2(1 − 𝜖)∫

∞

0 ∫

∞

0
𝑆(𝜅1, 𝜅2)𝑑𝜅1𝑑𝜅2

𝜖 = 0.00012668

(86)

Plots of representative 2nd- and 3rd-order sample realizations hav-
ng identical phase angles are presented in Fig. 2. On initial inspection,
oth sample realizations look similar. However a closer inspection of
he samples and their statistical properties reveals interesting charac-
eristics. The difference between the sample realizations of the 2nd-
nd 3rd-order random fields is shown in Fig. 2(c). The plot clearly
hows that there are significant differences between the two sample
ealizations. These differences arise from asymmetry introduced by
he proposed methodology. Also note that the differences are oriented
long a arctan(1) = 45◦ and arctan(−1) = −45◦ angle relative to the
and 𝑥 axes. This arises because the form of the bispectrum is
1 2 f

10
Table 3
Example 1: Target and estimated moments of random fields generated
by the 2nd and 3rd-order SRM.
Moments Target 3rd-order 2nd-order

Mean 0.00 −0.001 −0.001
Variance 80 81.99 81.98
Skewness 0.22 0.2079 0.0004

identical in both the 𝑥1 and 𝑥2 directions. Consequently, the length-
cale associated with third-order correlations in the 𝑥1 and 𝑥2 axes are
he same — resulting in the 45◦ and −45◦ ‘‘bands’’ of skewness.
Statistical properties, estimated from the 1000 sample realizations,

re presented in Table 3, illustrating the ability of the proposed method-
logy to match the theoretical properties up to third-order. The original
RM, on the other hand, matches the properties of the process only
p to second-order. Fig. 3 further shows the convergence of variance
nd skewness of the 2D samples generated with increasing number
f samples. We see that there is some small discrepancy between the
heoretical and simulated statistics, even after 1000 samples. Much
f this discrepancy can be attributed to the frequency discretization.
ig. 3 shows the convergence of variance and skewness with increasing
umber of frequency intervals with constant cutoff frequency 𝜅1𝑢 =
2𝑢 = 4 rad/sec, which maintains a theoretical accuracy given in Eq.
86).

.2. 2-dimensional random fields with different bispectra

In the second example, we modify the bispectrum such that wave
nteractions occur on different length-scales in the 𝜅1 and 𝜅2 directions
nd illustrate how the asymmetric features of random field differ with
hese relative length-scales. We generate two sets of random fields with
he same power spectrum given above in Eq. (83) and shown in Fig. 1.
owever, we consider two different bispectra as follows

ℜ𝐵1(𝜅11, 𝜅12, 𝜅21, 𝜅22) = ℑ𝐵1(𝜅11, 𝜅12, 𝜅21, 𝜅22)

= 500
𝜋2

exp−(10𝜅211 + 𝜅
2
12 + 10𝜅221 + 𝜅

2
22)

(87)

ℜ𝐵2(𝜅11, 𝜅12, 𝜅21, 𝜅22) = ℑ𝐵2(𝜅11, 𝜅12, 𝜅21, 𝜅22)

= 500
𝜋2

exp−(𝜅211 + 10𝜅212 + 𝜅
2
21 + 10𝜅222)

(88)

Again, visualization of the 2-dimensional bispectra is not included.
The first bispectrum shows accelerated decay along the 𝑥1 axis

whereas the second bispectrum has accelerated decay along the 𝑥2 axis.
amples are again simulated using the FFT implementation of the 3rd-
rder SRM. Plots of two sample realizations having the same discretiza-
ion and random phase angles as Example 1 for direct comparison with
he 2nd-order, are presented in Fig. 5.
Again, to the naked eye, the 3rd-order sample realizations look

imilar to the second-order. But taking the difference between the
ample realizations of 2nd- and 3rd-order fields (Fig. 6), we now see
hat the asymmetric features are elongated along particular axes. In
he case of 𝐵1, the asymmetric features lie most prominently along the
1 axis where the decay in bispectrum is more rapid. Interestingly, the
symmetric features occur at an angle approximately arctan(

√

10) ≈ 73◦

nd arctan(−
√

10) ≈ −73◦ from the 𝑥2 axis (or arctan(
√

0.1) ≈ 18◦ and
arctan(−

√

0.1) ≈ −18◦ from the 𝑥1 axis) indicative of a 10:1 aspect ratio
f the nonlinear features. The inverse is true for 𝐵2.
Lastly, we generated 1000 samples of the 2nd- and 3rd-order ran-

om fields and the statistical properties of the sample realizations are
resented in Table 4. Again, all of the random fields possess approx-
mately the correct mean and variance. However, only the 3rd-order
RM samples possess the correct skewness. Moreover, they possess the
ull bispectra but this cannot be visualized.
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Fig. 2. 3-dimensional random fields simulated by the (a) 2nd-order SRM, (b) 3rd-order SRM and (c) Difference between the 2nd and 3rd SRM.
Fig. 3. Convergence of variance and skewness with increasing number of samples.
Fig. 4. Convergence of variance and skewness with increasing number of wavenumber intervals.
a
b

Table 4
Target and estimated moments of random fields generated by the 2nd
and 3rd order SRM.
Moments Target 3rd-order, 𝐵1 3rd-order, 𝐵2 2nd-order

Mean 0.00 0.0044 0.0044 0.0044
Variance 80 81.990 81.975 81.996
Skewness 0.052 0.04897 0.04846 0.0005

7.3. Comparison of 3-dimensional 2nd- and 3rd-order random fields

In this example, we compare simulations of 3-dimensional random
fields having a prescribed power spectrum (2nd-order) and power
spectrum and bispectrum (3rd-order). Both random fields have a power
11
spectrum given by:

𝑆(𝜅1, 𝜅2, 𝜅3) =
20

√

2𝜋
exp−1

2
(𝜅21 + 𝜅22 + 𝜅23 ) (89)

nd plotted in Fig. 7. The third-order random field has bispectrum given
y

ℜ𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22, 𝜅31, 𝜅32) = ℑ𝐵(𝜅11, 𝜅12, 𝜅21, 𝜅22, 𝜅31, 𝜅32)

= 22
2𝜋

exp−(𝜅211 + 𝜅
2
12 + 𝜅

2
21 + 𝜅

2
22 + 𝜅

2
31 + 𝜅

2
32)

(90)

Visualization of this 3-dimensional bispectrum, which is a 6th-order
tensor is not trivial and is therefore not presented here.

One thousand samples with the following discretization were simu-
lated

𝛥𝑥1 = 𝛥𝑥2 = 𝛥𝑥3 = 0.625, 𝛥𝜅1 = 𝛥𝜅2 = 𝛥𝜅2 = 0.314
(91)
𝑁1 = 𝑁2 = 𝑁3 = 16, 𝑀1 =𝑀2 =𝑀3 = 32
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Fig. 5. 2-dimensional random fields generated from the two bispectra using the 3rd-order SRM.
Fig. 6. Difference between samples generated by BSRM and SRM simulations for both the bispectra.
Table 5
Target and estimated moments of random fields generated by the 2nd
and 3rd order SRM.
Moments Target 3rd-order 2nd-order

Mean 0.00 0.0364 0.0364
Variance 179.0812 178.9807 178.9271
Skewness 0.02107 0.02205 0.00081

Plots of representative sample realizations of the 2nd- and 3rd-order
random fields, having identical phase angles, are presented in Fig. 8.
s in the 2-dimensional case, the sample realizations look similar.
he difference between the 2nd- and 3rd-order sample realizations is
hown in Fig. 8(c). This difference is the result of the asymmetric non-
aussianity introduced by the bispectrum. Here, similar to example 1,
he asymmetric features in the difference plot are inclined along a 45◦

nd −45◦ angle along on each plane (𝑥1−𝑥2, 𝑥1−𝑥3, and 𝑥2−𝑥3) of the
ample realization. The similarity of the bispectra across all dimensions
ives rise to this.

Sample statistics are given in Table 5 from the 1000 simulations,
hich demonstrates the ability of the 3rd-order simulations to match
he moments up to the skewness. The samples also possess the pre-
cribed bispectrum, but it is not feasible to illustrate this.
12
7.4. 3-dimensional random fields with different bispectra

Next, we investigate the effects of variations in the bispectrum in 3-
dimensional random fields. The random fields simulated here possess
the power spectrum from Eq. 7 and illustrated in Fig. 7. We then
generate 3rd-order random fields with 3 different bispectra given by

ℜ𝐵1(𝜅11, 𝜅12, 𝜅13, 𝜅21, 𝜅22, 𝜅23) = ℑ𝐵1(𝜅11, 𝜅12, 𝜅13, 𝜅21, 𝜅22, 𝜅23)

= 300
2𝜋

exp−(10𝜅211 + 𝜅
2
12 + 𝜅

2
13 + 10𝜅221 + 𝜅

2
22 + 𝜅

2
23)

(92)

ℜ𝐵2(𝜅11, 𝜅12, 𝜅13, 𝜅21, 𝜅22, 𝜅23) = ℑ𝐵2(𝜅11, 𝜅12, 𝜅13, 𝜅21, 𝜅22, 𝜅23)

= 300
2𝜋

exp−(𝜅211 + 10𝜅212 + 𝜅
2
13 + 𝜅

2
21 + 10𝜅222 + 𝜅

2
23)

(93)

ℜ𝐵3(𝜅11, 𝜅12, 𝜅13, 𝜅21, 𝜅22, 𝜅23) = ℑ𝐵3(𝜅11, 𝜅12, 𝜅13, 𝜅21, 𝜅22, 𝜅23)

= 300
2𝜋

exp−(𝜅211 + 𝜅
2
12 + 10𝜅213 + 𝜅

2
21 + 𝜅

2
22 + 10𝜅223)

(94)

each having the bispectrum decay at a higher rate along a specific axis.
For example, the bispectrum 𝐵1 decays more rapidly along the 𝑥1 axis
(𝜅11 and 𝜅21).

Plots of the sample realizations from the 3rd-order SRM, having
identical phase angles as those in the previous example, are presented
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Fig. 7. 3-dimensional power spectrum.

n Fig. 9. As in previous examples, the random field realizations look
ery similar. Fig. 10 shows the difference between these samples and
he 2nd-order field simulated in Fig. 8(a). Here we see that by taking
he difference between the samples generated by the 2nd- and 3rd-
rder Spectral Representation Methods, we have asymmetric features
(

13
Table 6
Target and estimated moments of random fields generated by the 2nd and 3rd order
SRM.
Moments Target 3rd-order, 𝐵1 3rd-order, 𝐵2 3rd-order, 𝐵3 2nd-order

Mean 0.00 0.0364 0.0364 0.0364 0.0364
Variance 179.0812 178.9703 178.9787 178.9605 178.9270
Skewness 0.00580 0.00680 0.00682 0.00661 0.0008

elongated along different axes. Specifically, for realizations with bis-
pectrum 𝐵1 have features that are elongated along the 𝑥1-axis, thus
the asymmetric features lie along angles of arctan(

√

10) ≈ 73◦ and
arctan(−

√

10) ≈ −73◦ in the 𝑥1 − 𝑥3 and 𝑥1 − 𝑥2 planes and the features
are diagonal (45◦) in the 𝑥2 − 𝑥3 plane. Likewise, features from 𝐵2 are
longated in 𝑥1 and 𝐵3 are elongated in 𝑥3.
Lastly, 1000 samples with discretization given in Eq. (91) were

imulated and the statistics of the resulting random fields were calcu-
ated as shown in Table 6. Again, the third-order samples are shown to
ossess the appropriate 2nd- and 3rd-order statistics. They also possess
he proper bispectra, this cannot be feasibly illustrated.

.5. Comparison of 2nd and 3rd-order stochastic vector process

In the final example, we present the simulation of a tri-variate
tochastic vector process representing wind turbulent velocity fluctua-
ions. This example is modified from [30]. Consider three components
f the simulated vector process denoted by 𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡), describing
he wind velocity fluctuations at three vertical points in a wind profile

points 1,2 and 3 in Fig. 11).
Fig. 8. 3-dimensional random fields simulated by the (a) 2nd-order SRM, (b) 3rd-order SRM and (c) Difference between the 2nd and 3rd SRM.
Fig. 9. 3-dimensional random fields generated using 3 different bispectra.
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b
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Fig. 10. Difference between 3-dimensional random fields generated using the 2nd- and 3rd-order spectral representation methods.
The components of the 2nd-order cross power spectrum are given
y

𝑆𝑗𝑗 (𝜔) = 𝑆𝑗 (𝜔) 𝑗 = 1, 2, 3

𝑆𝑗𝑘(𝜔) =
√

𝑆𝑗 (𝜔)𝑆𝑘(𝜔)𝛾𝑗𝑘(𝜔) 𝑗, 𝑘 = 1, 2, 3 𝑗 ≠ 𝑘
(95)

where 𝑆𝑗 (𝜔) is the power spectrum of process 𝑓𝑗 (𝑡) and 𝛾𝑗𝑘(𝜔) is the co-
herence function between processes 𝑓𝑗 (𝑡) and 𝑓𝑘(𝑡). The form suggested
by Kaimal [50] is selected to model the 2nd-order cross spectrum of
the wind fluctuations and is given by

𝑆(𝑧, 𝜔) = 1
2
200
2𝜋

𝑢2∗
𝑧

𝑈 (𝑧)
1

[1 + 50 𝜔𝑧
2𝜋𝑈 (𝑧) ]

5
2

(96)

where 𝑧 = height above the ground (in m); 𝑢∗ = shear velocity of the
flow (in m/s); and 𝑈 (𝑧) = mean wind speed at the height 𝑧 (in m/s).
The model suggested in Davenport [51] is selected for the coherence
function between the wind velocity fluctuations at different heights
given by:

𝛾(𝛥𝑧, 𝜔) = exp
[−𝜔
2𝜋

𝐶𝑧𝛥𝑧
1
2 [𝑈 (𝑧1) + 𝑈 (𝑧2)]

]

(97)

where 𝑈 (𝑧1) and 𝑈 (𝑧2) are the mean wind speeds at heights 𝑧1 and
2 respectively, 𝛥𝑧 = |𝑧1 − 𝑧2|, and 𝐶𝑧 is a constant equal to 10. The
specific parameter values are obtained from [30] yielding a cross power
spectral density given by

𝑆11 =
38.3

(1 + 6.19𝜔)
5
3

, 𝑆22 =
43.3

(1 + 6.98𝜔)
5
3

, 𝑆33 =
135

(1 + 21.8𝜔)
5
3

(98)

and the corresponding coherence functions given by

𝛾12(𝜔) = 𝑒−0.1757𝜔, 𝛾13(𝜔) = 𝑒−3.478𝜔, 𝛾23(𝜔) = 𝑒−3.292𝜔 (99)

The spectra and coherences are shown in Fig. 12.
The diagonal components of the 3rd-order cross-spectrum (cross-

ispectrum) are assumed to take the following form:

𝐵111(𝑤1, 𝑤2) =
50

(1 + 6.19 ∗ (𝑤1 +𝑤2))
5
3

𝐵222(𝑤1, 𝑤2) =
50

(1 + 6.98 ∗ (𝑤1 +𝑤2))
5
3

𝐵333(𝑤1, 𝑤2) =
50

(1 + 21.8 ∗ (𝑤1 +𝑤2))
5
3

(100)

while the off-diagonal terms are given by

𝐵 (𝑤 ,𝑤 ) = 3
√

𝐵 (𝑤 ,𝑤 )𝐵 (𝑤 ,𝑤 )𝐵 (𝑤 ,𝑤 )𝛾 (101)
𝑖𝑗𝑘 1 2 𝑖𝑖𝑖 1 2 𝑗𝑗𝑗 1 2 𝑘𝑘𝑘 1 2 𝑖𝑗𝑘

14
Fig. 11. Configuration of the wind velocity points along a vertical wind profile.

where 𝛾𝑖𝑗𝑘 are the third-order coherence functions (or bi-coherences)
given by

𝛾112(𝑤1, 𝑤2) = 𝑒−0.171(𝑤1+𝑤2), 𝛾122(𝑤1, 𝑤2) = 𝑒−0.357(𝑤1+𝑤2),

𝛾113(𝑤1, 𝑤2) = 𝑒−1.287(𝑤1+𝑤2), 𝛾133(𝑤1, 𝑤2) = 𝑒−1.589(𝑤1+𝑤2),

𝛾123(𝑤1, 𝑤2) = 𝑒−3.473(𝑤1+𝑤2), 𝛾223(𝑤1, 𝑤2) = 𝑒−2.659(𝑤1+𝑤2)

𝛾233(𝑤1, 𝑤2) = 𝑒−2.775(𝑤1+𝑤2)

(102)

Sample functions of this tri-variate stochastic wind velocity process
are simulated using Eqs. (80) and (81) with the FFT technique. The
upper cutoff frequency and the number of frequency discretizations are
given by

𝜔𝑢 = 2 rad∕𝑠; 𝑁𝜔 = 100 (103)

which results in the following frequency and time discretizations:

𝛥𝜔 = 0.02 rad∕𝑠; 𝛥𝑡 = 1.57 𝑠𝑒𝑐; 𝑇0 = 314.15 𝑠𝑒𝑐 (104)

A single realization of each vector component is plotted in Fig. 13,
which also shows comparisons with sample functions generated using
the 2nd-order SRM (having the same random phase angles). To ver-
ify that the simulations do, indeed, possess the prescribed statistical
properties, the 1st, 2nd and 3rd-order ensemble properties from 1000
simulation are summarized in Tables 7–9. Note that we do not produce
plots of the spectral quantities because these are difficult to visualize.
From these tables, we see that the first and second-order ensemble
moments are very close to the target for both the second and third-order

simulations. However, the second-order simulations cannot match the
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Fig. 12. Power spectra and coherence functions for a tri-variate wind velocity stochastic vector process.
Fig. 13. Velocity histories at points 1 (left), 2 (middle) and 3 (right).
Fig. 14. Convergence of variance with increasing number of samples at points 1 (left), 2 (middle) and 3 (right).
Table 7
First order statistics of the simulated vector process.
Moments 3rd-order 2nd-order Target

E[𝑓1(𝑡)] −0.00143 −0.00143 0.00
E[𝑓2(𝑡)] −0.00147 −0.00147 0.00
E[𝑓3(𝑡)] −0.00279 −0.00279 0.00

Table 8
Second order statistics of the simulated vector process.
Moments 3rd-order 2nd-order Target

E[𝑓 2
1 (𝑡)] 14.541 14.538 14.539

E[𝑓 2
2 (𝑡)] 14.722 14.720 14.722

E[𝑓 2
3 (𝑡)] 14.724 14.723 14.723

E[𝑓1(𝑡)𝑓2(𝑡)] 13.698 13.697 13.698
E[𝑓1(𝑡)𝑓3(𝑡)] 7.628 7.627 7.628
E[𝑓2(𝑡)𝑓3(𝑡)] 8.006 8.004 8.005

target third-order moments (Table 9). The third-order simulations,
on the other hand, match all moments up to third-order with high
accuracy.
15
Table 9
Third order statistics of the simulated vector process.
Moments 3rd-order 2nd-order Target

E[𝑓 3
1 (𝑡)] 4.880 0.012 4.801

E[𝑓 3
2 (𝑡)] 3.870 0.004 3.825

E[𝑓 3
3 (𝑡)] 0.337 −0.010 0.368

E[𝑓1(𝑡)𝑓 2
2 (𝑡)] 3.938 −0.051 3.939

E[𝑓1(𝑡)𝑓 2
3 (𝑡)] 3.218 −0.054 3.231

E[𝑓2(𝑡)𝑓 2
1 (𝑡)] 0.931 −0.048 0.981

E[𝑓2(𝑡)𝑓 2
3 (𝑡)] 0.297 −0.058 0.391

E[𝑓3(𝑡)𝑓 2
1 (𝑡)] 0.435 −0.057 0.513

E[𝑓3(𝑡)𝑓 2
2 (𝑡)] 0.140 −0.065 0.247

E[𝑓1(𝑡)𝑓2(𝑡)𝑓3(𝑡)] 0.355 −0.050 0.425

Finally, we present the convergence of variance and skewness with
increasing number of samples and increasing number of frequency
discretizations in Figs. 14–17.
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Fig. 15. Convergence of skewness with increasing number of samples at points 1 (left), 2 (middle) and 3 (right).
Fig. 16. Convergence of variance with increasing number of frequency discretizations at points 1 (left), 2 (middle) and 3 (right).
Fig. 17. Convergence of skewness with increasing number of frequency discretizations at points 1 (top), 2 (middle) and 3 (bottom).
. Conclusions

In this paper, the 3rd-order Spectral Representation Method has
een extended for the simulation of multi-dimensional random fields
nd ergodic, multi-variate stochastic processes. A fast Fourier trans-
orm implementation of the 3rd-order SRM has also been presented,
hich leads to enormous computational gains — making the generation
f multi dimensional fields and multi variate processes feasible for
mplementation on a desktop computer. Numerical examples for the
imulation of 2D and 3D random fields and the simulation of a tri-
ariate wind velocity stochastic process are provided, which highlight
he effectiveness of the proposed methodology.

. Software

The simulation methods discussed herein have been programmed in
ython and are available in the open-source uncertainty quantification
oftware UQpy [52].
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Appendix. Additional properties of random fields and random
vector processes

A.1. Stationary random fields

Random fields that are invariant across the indexing variable are
referred to as stationary. For the development of the proposed method-
ology we present 2 generalized notions of stationarity: strongly and
weakly stationary [53].

A random field 𝐴(𝑥) is considered strongly 𝑘th-order stationary if
the probability measure up to 𝑘th-order is invariant to a shift in
index. Let 𝐹𝐴(𝑥1 ,𝑥2 ,…𝑥𝑘)(𝑎1, 𝑎2,… , 𝑎𝑘, 𝑥1, 𝑥2,… 𝑥𝑘) denote the 𝑘th-order
joint cumulative distribution function of 𝐴(𝑥) defined below as

𝐹𝐴(𝑥1 ,𝑥2 ,…𝑥𝑘)(𝑎1, 𝑎2,… , 𝑎𝑘, 𝑥1, 𝑥2,… , 𝑥𝑘)

≜ 𝑃 [𝐴(𝑥1) < 𝑎1, 𝐴(𝑥2) < 𝑎2,… , 𝐴(𝑥𝑘) < 𝑎𝑘] (A.1)
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The random field is strongly 𝑘th-order stationary if

𝐹𝐴(𝑥1 ,𝑥2 ,…𝑥𝑘)(𝑎1, 𝑎2,… , 𝑎𝑘, 𝑥1, 𝑥2,… , 𝑥𝑘) =

𝐹𝐴(𝑥1+𝜉,𝑥2+𝜉,…𝑥𝑘+𝜉)(𝑎1, 𝑎2,… , 𝑎𝑘, 𝑥1 + 𝜉, 𝑥2 + 𝜉,… , 𝑥𝑘 + 𝜉), ∀𝜉 ∈ R

(A.2)

Again, it follows that all measures of order lower than 𝑘 are similarly
invariant to a shift in index and that all characteristics of the 𝑘th-order
joint distribution are independent of 𝜉. A random field is considered
strongly stationary if Eq. (A.2) holds for all orders 𝑘.

A random field 𝐴(𝑥) is considered to be weakly 𝑘th-order stationary
if the following conditions are met

𝑚𝐴𝑛 (𝑥1,… , 𝑥𝑛−1) = 𝑚𝐴𝑛 (𝑥1 + 𝜉,… , 𝑥𝑛−1 + 𝜉) ∀𝑛 ≤ 𝑘

E[|𝐴(𝑥)|𝑛] < ∞ ∀𝑛 ≤ 𝑘
(A.3)

where 𝑚𝐴𝑛 (⋅) is the 𝑛th-order moment function defined in Eq. (A.5)
below. For the special case of weakly 2nd-order stationary (typically
referred to simply as weakly stationary), these conditions are:

𝑚𝐴(𝑥) = 𝑚𝐴(𝑥 + 𝜉) ∀𝜉 ∈ R

𝐶𝐴,𝐴(𝑥1, 𝑥2) = 𝐶𝐴,𝐴(𝑥1 − 𝑥2, 0) ∀𝑡1, 𝑡2 ∈ R

E[|𝐴(𝑥)|2] < ∞

(A.4)

where 𝑚𝐴(𝑥) = E[𝐴(𝑥)] represents the mean function and 𝐶𝐴,𝐴(𝑥1, 𝑥2) =
E[(𝐴(𝑥1)−𝑚𝐴(𝑥1))(𝐴(𝑥2)−𝑚𝐴(𝑥2))] represents the auto-covariance func-
tion. It is interesting to note that strong 𝑘th-order stationarity implies
weak 𝑘th-order stationarity, whereas the converse is not necessarily
true. Weakly stationary random fields are particularly important here
because existing simulation methods are capable only of generating
weakly 2nd-order stationary non-Gaussian random fields (Gaussian
random fields are strongly stationary due to the properties of Gaussian
distributions). That is, because existing expansions are derived from
2nd-order properties of the random field (i.e. power spectrum or two-
point correlation), the simulated fields are, by construction, weakly
stationary.

Of particular interest in this work is the notion of the weak 3rd-
order stationarity, which implies that the bispectrum is invariant. As
we will see, random fields generated according to the proposed method
are weakly 3rd-order stationary.

A.2. Cumulants and moments of random fields

When a random field is Gaussian, the full joint probability density
of the random field can be easily computed from the mean and auto-
correlation function, but this is not generally true for more general
cases. Nonetheless, for practical purposes, many random fields are char-
acterized through some subset of properties of the field — typically its
moments, cumulants, or spectra. These properties are briefly reviewed
in the following. We note however that, given the classical moment
problem, the full probability density of the random field is identifiable
from the moments only when Carleman’s Condition is satisfied — that
is only when the infinite moment series has positive radius of conver-
gence [54]. Consequently, moments (cumulants/spectra) provide only
a limited view of the random field since we realistically cannot expect
to know infinite moments, nor can we be assured that Carleman’s
Condition will hold.

Moments and cumulants of random variables and random vectors
are not discussed here for brevity. The interested reader is referred
to [14]. The 𝑛th-order moment of a stationary random field 𝐴(𝑥) is
given by

𝑚𝐴(𝜉 ,… , 𝜉 ) = E[𝐴(𝑥)𝐴(𝑥 + 𝜉 )…𝐴(𝑥 + 𝜉 )]. (A.5)
𝑛 1 𝑛−1 1 𝑛−1

17
The cumulants of a stationary random field, meanwhile, can be ex-
pressed in terms of the moments by applying [55]

𝑐𝑘1 ,𝑘2 ,…,𝑘𝑛 = 𝑐[𝑋𝑘1
1 , 𝑋

𝑘2
2 ,… , 𝑋𝑘𝑛

𝑛 ]

=
∑

(−1)𝑝−1(𝑝 − 1)!𝐸
[
∏

𝑖∈𝑠1

𝑋𝑖
]

𝐸
[
∏

𝑖∈𝑠2

𝑋𝑖
]

…𝐸
[
∏

𝑖∈𝑠𝑝

𝑋𝑖
] (A.6)

yielding the following first three cumulants:

𝑐𝐴1 = 𝑚𝐴1
𝑐𝐴2 (𝜉) = 𝑚𝐴2 (𝜉) − 𝑚

𝐴
1

𝑐𝐴3 (𝜉1, 𝜉2) = 𝑚𝐴3 (𝜉1, 𝜉2) − 𝑚
𝐴
1 [𝑚

𝐴
2 (𝜉1) + 𝑚

𝐴
2 (𝜉2) + 𝑚

𝐴
2 (𝜉2 − 𝜉1)] + 2(𝑚𝐴1 )

3

⋮

(A.7)

Notice that when 𝐴(𝑥) is a zero mean process (𝑚𝐴1 = 0), the first
three moments and cumulants are equivalent, but they differ for orders
(𝑛 ≥ 4). Non-zero higher-order cumulants indicate non-Gaussianity. In
particular, odd-order cumulants give rise to asymmetric non-linearities
whereas even-order cumulants give rise to symmetric non-linearities.
Further details on the moment and cumulant properties of fields can
be found in [14,35].

A.3. Properties of stochastic vector processes

Consider a one-dimensional, m-variate (1D-mV) 3rd-order station-
ary stochastic vector process 𝒇 (𝑡) with components [𝑓1(𝑡), 𝑓2(𝑡),… 𝑓𝑚(𝑡)]
having zero mean for each component, E[𝑓𝑗 (𝑡)] = 0 for 𝑗 = 1, 2,… , 𝑚.
The second-order correlation function of this stochastic vector process
is given by 𝑅𝑖𝑗 (𝜏) = E[𝑓𝑖(𝑡)𝑓𝑗 (𝑡 + 𝜏)] for 𝑖, 𝑗 = 1, 2,… , 𝑚. Similarly, the
third-order correlation function is given by E[𝑓𝑖(𝑡)𝑓𝑗 (𝑡+ 𝜏1)𝑓𝑘(𝑡+ 𝜏2)] =
𝑅(3)
𝑖𝑗𝑘(𝜏1, 𝜏2) for 𝑖, 𝑗, 𝑘 = 1, 2,… , 𝑚. Additional details regarding the shape

and size of the second and third-order auto-correlation functions can
be found in [49].

For real-valued, third-order stationary stochastic vector processes,
the following second-order symmetry relationships hold,

𝑅𝑖𝑗 (𝜏) = 𝑅𝑖𝑗 (−𝜏), 𝑖, 𝑗 = 1, 2,… , 𝑚 ;𝑅𝑖𝑗 (𝜏) = 𝑅𝑗𝑖(𝜏), 𝑖, 𝑗 = 1, 2,… , 𝑚

(A.8)

and the following third-order symmetry conditions hold,

𝑅(3)
𝑖𝑗𝑘(𝜏1, 𝜏2) = 𝑅(3)

𝑖𝑗𝑘(𝜏2, 𝜏1), 𝑖, 𝑗, 𝑘 = 1, 2,… , 𝑚

𝑅(3)
𝑖𝑗𝑘(𝜏1, 𝜏2) = 𝑅(3)

𝑖𝑗𝑘(−𝜏1,−𝜏2), 𝑖, 𝑗, 𝑘 = 1, 2,… , 𝑚

𝑅(3)
𝑖𝑗𝑘(𝜏1, 𝜏2) = 𝑅(3)

𝑖𝑗𝑘(−𝜏1,−𝜏1 − 𝜏2), 𝑖, 𝑗, 𝑘 = 1, 2,… , 𝑚

𝑅(3)
𝑖𝑗𝑘(𝜏1, 𝜏2) = 𝑅(3)

𝑖𝑘𝑗 (𝜏1, 𝜏2) = 𝑅(3)
𝑗𝑖𝑘(𝜏1, 𝜏2) = 𝑅(3)

𝑗𝑘𝑖(𝜏1, 𝜏2)

= 𝑅(3)
𝑘𝑖𝑗 (𝜏1, 𝜏2) = 𝑅(3)

𝑘𝑗𝑖(𝜏1, 𝜏2), 𝑖, 𝑗, 𝑘 = 1, 2,… , 𝑚

(A.9)

The moment properties of the stochastic vector properties relate
to their spectral properties through the forward and inverse Wiener-
Khintchine transformations. The third-order cross spectral density can
be obtained from the third-order cross auto-correlation function as
follows:

𝐵𝑖𝑗𝑘(𝜔1, 𝜔2) =
1

(2𝜋)2 ∫

∞

−∞
𝑅(3)
𝑖𝑗𝑘(𝜏1, 𝜏2)𝑒

−𝜄(𝜔1𝜏1+𝜔2𝜏2)𝑑𝜏1𝑑𝜏2

for 𝑖, 𝑗, 𝑘 = 1, 2,… , 𝑚
(A.10)

where 𝐵𝑖𝑗𝑘(𝜔1, 𝜔2) is the third-order cross spectral density. Relations
between other moments and spectra can be obtained similarly and can
be specifically found in [49]. Additional details regarding the size and
shape of the second and third order cross-spectral density can also be
found in [49].
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The second and third order cross spectral density functions are

omplex valued in general and the following symmetry conditions hold

𝑆𝑗𝑗 (𝜔) = 𝑆𝑗𝑗 (−𝜔), 𝑗 = 1, 2,…𝑚

𝑆𝑖𝑗 (𝜔) = 𝑆∗
𝑖𝑗 (−𝜔), 𝑖, 𝑗 = 1, 2,…𝑚; 𝑖 ≠ 𝑗

𝑆𝑖𝑗 (𝜔) = 𝑆∗
𝑗𝑖(𝜔), 𝑖, 𝑗 = 1, 2,…𝑚; 𝑖 ≠ 𝑗

(A.11)

𝐵𝑗𝑗𝑗 (𝜔1, 𝜔2) = 𝐵𝑗𝑗𝑗 (𝜔2, 𝜔1);𝐵𝑗𝑘𝑙(𝜔1, 𝜔2) = 𝐵∗
𝑗𝑘𝑙(𝜔2, 𝜔1) (A.12)
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