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ABSTRACT
Data-intensive applications fueled the evolution of log struc-
tured merge (LSM) based key-value engines that employ the
out-of-place paradigm to support high ingestion rates with
low read/write interference. These benefits, however, come
at the cost of treating deletes as a second-class citizen. A delete
inserts a tombstone that invalidates older instances of the
deleted key. State-of-the-art LSM engines do not provide
guarantees as to how fast a tombstone will propagate to per-
sist the deletion. Further, LSM engines only support deletion
on the sort key. To delete on another attribute (e.g., times-
tamp), the entire tree is read and re-written. We highlight
that fast persistent deletion without affecting read perfor-
mance is key to support: (i) streaming systems operating on
a window of data, (ii) privacy with latency guarantees on the
right-to-be-forgotten, and (iii) en masse cloud deployment
of data systems that makes storage a precious resource.
To address these challenges, in this paper, we build a

new key-value storage engine, Lethe, that uses a very small
amount of additional metadata, a set of new delete-aware
compaction policies, and a new physical data layout that
weaves the sort and the delete key order. We show that Lethe
supports any user-defined threshold for the delete persis-
tence latency offering higher read throughput (1.17 − 1.4×)
and lower space amplification (2.1 − 9.8×), with a modest
increase in write amplification (between 4% and 25%). In ad-
dition, Lethe supports efficient range deletes on a secondary
delete key by dropping entire data pages without sacrificing
read performance nor employing a costly full tree merge.

1 INTRODUCTION
Systems are Optimized for Fast Data Ingestion.Modern
data systems process an unprecedented amount of data gen-
erated by a variety of applications that include data analytics,
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Figure 1: (A) Lethe strikes an optimal balance between
the latency/performance for timely delete persistence
in LSM-trees, and (B) supports timely delete persis-
tence by navigating the latency/cost tradeoff.

stream processing, Internet of Things and 5G [18, 30]. Cloud-
based latency-sensitive applications like live video stream-
ing [40], real-time health monitoring [55], e-commerce trans-
actions [39], social network analysis [59], and online gam-
ing [49], generate large volumes of data at a high veloc-
ity that requires hybrid transactional/analytical processing
(HTAP) [7, 51, 54]. Thus, for the past decade, one of the main
data management research challenges has been to design
data systems that can sustain fast data ingestion rate and
process queries at low latency [3, 9, 54]. To achieve this, mod-
ern data stores reduce read/write interference by employing
out-of-place ingestion [11, 12, 21, 38, 44, 46, 56, 63].
LSM-based Key-Value Stores. The classical out-of-place
design is the log-structured merge (LSM) tree. LSM-trees
buffer incoming data entries in main memory, and periodi-
cally flush this buffer as an immutable sorted run on durable
storage [21, 50, 53, 57, 64]. In turn, as more sorted runs accu-
mulate, they are iteratively sort-merged to form fewer yet
larger sorted runs. This process, termed compaction, reduces
the number of sorted runs accessed during a read query
with amortized merging cost. Every compaction sort-merges
existing sorted runs from consecutive levels and discards
any invalid entries. LSM-trees are adopted by several mod-
ern systems including LevelDB [36] and BigTable [17] at
Google, RocksDB [29] at Facebook, X-Engine [39] at Alibaba,
Voldemort [48] at LinkedIn, Dynamo [25] at Amazon, Cas-
sandra [5], HBase [6], and Accumulo [4] at Apache, and
bLSM [61] and cLSM [35] at Yahoo. Relational data systems
have been increasingly adopting LSM-style of updates. My-
Rocks [28] uses RocksDB as storage engine and SQLite4 [62]
has experimented with LSM-trees in its storage layer, while
columnar systems use LSM-style updates [20, 44, 63, 70].
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The Challenge: Out-of-place Deletes. LSM engines use
the out-of-place paradigm for any write operation, includ-
ing ingestion (inserts), modification (updates), and deletion
(deletes). As a result, a delete (update) is implemented by
inserting additional meta-data that logically invalidates the
older target entries [16]. We refer to this process as logical
deletes (updates). Both logical deletes and updates show a
complex three-way tradeoff [13], however, logical deletes
have wider implications in terms of (i) space amplification,
(ii) read cost, (iii) write amplification, and (iv) privacy con-
siderations, and hence, is the primary focus of this work.
In particular, a logical delete, inserts a tombstone that in-

validates all the older entries for a given key, with the expec-
tation that, eventually, they will be persistently deleted. In
practice, the delete persistence latency is driven by (a) the sys-
tem design choices and (b) workload characteristics. Neither
can be fully controlled during execution, therefore, providing
latency guarantees for persistent deletion in state-of-the-art
LSM engines is nearly impossible. In fact, LSM-trees have a
potentially unbounded delete persistence latency. In order to
limit it, current designs employ a costly full-tree compaction
that interferes with read performance and write amplifica-
tion, and results in performance unpredictability [39].
Deletes in LSM-trees. LSM-trees are employed as the stor-
age layer for relational systems [28], streaming systems [2,
41, 65], and pure key-value storage [52, 68]. As a result, an
LSM delete operation may be triggered by various log-
ical operations, not limited to user-driven deletes. For
example, deletes are triggered by workloads that involve pe-
riodic data migration [58], streaming operations on a running
window [39, 43], or entail cleanup during data migration [58].
In particular, dropping tables in an LSM-tree with multiple
column families is realized through a range delete opera-
tion [58]. Another frequent example is data collections sorted
on creation timestamp. In that case, a classical out-of-place
update is not enough since the key (timestamp) will also
change. Hence, every update translates to a delete followed
by the insertion of the new version [15]. Below, we distill
the common concepts of two frequent delete use-cases.
Scenario 1: An e-commerce company EComp stores its

order details sorted by order_id in an LSM-tree, and needs
to delete the order history for a particular user. Within the
system, this delete request is translated to a set of point and
range deletes on the sort key, i.e., order_id .

Scenario 2: A data company DComp stores its operational
data in an LSM-tree with document_id as the sort key. As
most of the data are relevant only for D days, DComp wants
to delete all data with a timestamp that is older than D days
(and archive them). At the same time, DComp frequently ac-
cesses the documents usingdocument_id , hence, the sort key
(document_id) is different from the delete key (timestamp).

Why State of the Art is not Enough? LSM engines can-
not efficiently support EComp from the first scenario for
two reasons. First, as deletes insert tombstones (retaining
the physical entries), they increase space amplification.
Second, retaining superfluous entries in the tree adversely
affects read performance because read queries have to
discard potentially large collections of invalid entries, which
further “pollute” the filter metadata [39], and increasewrite
amplification because invalid entries are repeatedly com-
pacted. Further, LSM engines are ill-suited for DComp from
the second scenario because they cannot efficiently support a
range deletion in a delete key other than the sort key (termed
secondary range deletes). Instead, they employ a full tree
compaction, which causes an excessive number of waste-
ful I/Os while reading, merging, and re-writing the sorted
files of the entire tree [39].

Delete persistence latency. In order to be able to report that
a delete persisted, the corresponding tombstone has to reach
the last level of the tree through iterative compactions to
discard all invalidated entries. The time elapsed between the
insertion of the tombstone in the tree and the completion of
the last-level compaction is termed delete persistence latency.
LSM logical deletes do not provide delete persistence
latency guarantees, hence EComp cannot offer such guar-
antees to its users. In order to add a hard limit on delete
persistence latency, current designs employ a costly full
tree compaction as well.

Deletion as privacy. Having unbounded delete persistence
latency may lead to a breach of privacy. For example, it was
recently reported that Twitter retains user messages years
after they have been deleted, even after user accounts have
been deactivated [67]. With the new data privacy protection
acts like GDPR [34] and CCPA [1], the end-to-end data life-
cycle has new privacy challenges to address [26, 60]. With
user-rights, such as the right-to-be-forgotten coming into
play, persistent deletion within a fixed threshold is critical.

“Full tree compactions should be avoided”
In our interactions with engineers working on LSM-based
production systems, we learned that periodic deletes of a
large fraction of data based on timestamp are very frequent.
To quote an engineer working on XEngine [39], “Applica-
tions may keep data for different durations (e.g., 7 or 30 days)
for their own purposes. But they all have this requirement
for deletes every day. For example, they may keep data for
30 days, and daily delete data that turned 31-days old, effec-
tively purging 1/30 of the database every day.” This deletion
is performed with a full tree compaction. To further quote
the same team, “Forcing compactions to set a delete latency
threshold, leads to significant increase in compaction frequency,
and the observed I/O utilization often peaks. This quickly intro-
duces performance pains.” For large data companies, deleting
1/7 or 1/30 of their database, accounts for several GBs or
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TBs that is required to be persistently removed daily. The
current approach of employing full-tree compactions is sub-
optimal as it (1) causes high latency spikes, and (2) increases
write amplification. The goal of this work is to address these
challenges while retaining the benefits of LSM design.
The Solution: Lethe.We propose Lethe1, a new LSM-based
key-value store that offers efficient deletes without compro-
mising the benefits of LSM-trees. Lethe pushes the boundary
of the traditional LSM design space by adding delete persis-
tence as a new design goal, and is able to meet user require-
ments for delete persistence latency. Figures 1 (A) and (B)
show a qualitative comparison between state-of-the-art LSM
engines [5, 6, 29, 36, 68] and Lethe with respect to the effi-
ciency and cost of timely persistent deletes. Lethe introduces
two new LSM design components: FADE and KiWi.

FADE (FastDeletion) is a new family of compaction strate-
gies that prioritize files for compaction based on (a) the num-
ber of invalidated entries contained, (b) the age of the oldest
tombstone, and (c) the range overlap with other files. FADE
uses this information to decide when to trigger a compaction
on which files, to purge invalid entries within a threshold.

KiWi (Key Weaving Storage Layout) is a new continuum
of physical layouts that allows for tunable secondary range
deletes without causing latency spikes, by introducing the
notion of delete tiles. An LSM-tree level consists of several
sorted files that logically form a sorted run. KiWi augments
the design of each file with several delete tiles, each contain-
ing several data pages. A delete tile is sorted on the secondary
(delete) key, while each data page remains internally sorted
on the sort key. Having Bloom filters at the page level, and
fence pointers for both the sort key and the secondary delete
key, KiWi facilitates secondary range deletes by dropping
entire pages from the delete tiles, with a constant factor in-
crease in false positives. Maintaining the pages sorted on
the sort key also means that once a page is in memory, read
queries maintain the same efficiency as the state of the art.

Putting everything together, Lethe is the first LSM engine
to our knowledge that offers efficient deletes while improv-
ing read performance, supports user-defined delete latency
thresholds, and enables practical secondary range deletes.
Contributions. Our contributions are as follows:
• We analyze out-of-place deletes w.r.t. read performance,
space and write amplification, and user privacy.

• We introduce FADE that bounds delete persistence latency
without hurting performance and resource consumption.

• We introduce KeyWeaving Storage Layout, the first layout
that supports efficient secondary range deletes.

• We present the design of Lethe that integrates FADE and
KiWi in a state-of-the-art LSM engine and enables fast

1Lethe, the Greek mythological river of oblivion, signifies efficient deletion.

deletes with a tunable balance between delete persistence
latency and the overall performance of the system.

• Wedemonstrate that Lethe offers delete latency guarantees,
having up to 1.4× higher read throughput. The higher read
throughput is attributed to the significantly lower space
amplification (up to 9.8× for only 10% deletes) because it
purges invalid entries faster. These benefits come at the
cost of 4%-25% higher write amplification.

• Finally, we demonstrate that Lethe is the first LSM engine
to support efficient secondary range deletes at the expense
of increased read cost, and we show how to tune Lethe to
amortize this cost based on the workload.

2 LSM BACKGROUND
Basics. LSM-trees store key-value pairs, where a key refers
to a unique object identifier, and the data associated with it, is
referred to as value. For relational data, the primary key acts
as the key, and the remaining attributes in a tuple constitute
the value. As entries are sorted and accessed by the key, we
refer to it as the sort key. For an LSM-tree with L levels, we
assume that its first level (Level 0) is an in-memory buffer
and the remaining levels (Level 1 to L − 1) are disk-resident.
We adopt notation from the literature [21, 50].
Buffering Inserts andUpdates. Inserts, updates, or deletes
are buffered in memory. A delete (update) to a key that exists
in the buffer, deletes (replaces) the older key in-place, oth-
erwise the delete (update) remains in memory to invalidate
any existing instances of the key on the disk-resident part
of the tree. Once the buffer reaches its capacity, the entries
are sorted by key to form an immutable sorted run and are
flushed to the first disk-level (Level 1). When a disk-level
reaches its capacity, all runs within that level are sort-merged
and pushed to the next level. To bound the number of levels
in a tree, runs are arranged in exponentially growing levels
on disk. The capacity of Level i (i ≥ 1) is greater than that of
Level i − 1 by a factor of T , termed the size ratio of the tree.
Compaction Policies: Leveling and Tiering. Classically,
LSM-trees support two merging policies: leveling and tiering.
In leveling, each level may have at most one run, and every
time a run in Level i − 1 (i ≥ 1) is moved to Level i , it is
greedily sort-merged with the run from Level i , if it exists.
With tiering, every level must accumulate T runs before
they are sort-merged. During a sort-merge (compaction),
entries with a matching key are consolidated and only the
most recent valid entry is retained [27, 53]. Recently hybrid
compaction policies fuse leveling and tiering in a single tree
to strike a balance between the read and write throughput
based on workload specifications [23, 24].

Partial Compaction. To amortize latency spikes from com-
pactions in larger levels, state-of-the-art LSM engines orga-
nize runs into smaller files, and perform compactions at the
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granularity of files instead of levels [27]. If Level i grows be-
yond a threshold, a compaction is triggered and one file from
Level i is chosen to be partially compacted with files from
Level i + 1 that have an overlapping key-range. Deciding
which file to compact depends on the storage engine design.
For instance, to optimize write throughput, we select files
from Level i with minimal overlap with files in Level i + 1,
to minimize both write amplification and compaction time.
Querying LSM-Trees. A point lookup begins at the mem-
ory buffer and traverses the tree from the smallest disk-level
to the largest one. For tiering, within a level, a lookup moves
from the most to the least recent tier. The lookup terminates
when it finds the first matching entry. A range lookup returns
the most recent versions of the target keys by sort-merging
the qualifying key ranges across all runs in the tree.
Optimizing Lookups. Read performance is optimized us-
ing Bloom filters (BFs) and fence pointers. In the worst case,
a lookup needs to probe every run. To reduce this cost, LSM
engines use one BF per run in main memory [21, 29]. Bloom
filters allow a lookup to skip probing a run altogether if the
filter-lookup returns negative. In practice, for efficient stor-
age, BFs are maintained at the granularity of files [27]. Fence
pointers store the smallest key per disk page in memory [21],
to quickly identify which page(s) to read for a lookup, and
perform up to one I/O per run for point lookups.

3 THE IMPACT OF DELETES
We now describe the design space of deletes in LSM-trees.

3.1 Delete Design Space
In LSM-trees an entry at Level i is alwaysmore recent than an
entry with the same key at Level j , if j > i . LSM-trees exploit
this to logically delete using tombstones that supersede older
entries with a matching key. The left part of Figure 3 shows
a leveled LSM-tree, the structure of a key-value pair, and a
tombstone. A key-value contains typically many attributes
as part of the value, and a tombstone consists of the (deleted)
key and the tombstone flag.

3.1.1 Primary Deletes. We discuss deletes on the sort key.
Point Deletes insert a tombstone against the key to be
deleted (Figure 2). Within memory buffer, the tombstone
replaces in-place any older entry with a matching key. On
disk, the tombstones are stored within a run in sorted or-
der along with other key-value pairs. During compaction,
a tombstone deletes older entries with the same key and is
retained as there might be more (older) entries with the same
delete key in subsequent compactions (Fig. 2). A tombstone
is discarded during its compaction with the last level of the
tree, making the logical delete persistent.
Range Deletes in LSM-trees are common, however, they
cause performance problems. Range deletes generate special

(A) Leveling (B) Tiering

Figure 2: In an LSM-tree, for every tombstone, there
can be (A) one matching entry per level for leveling or
(B) one matching entry per tier per level (T per level)
for tiering, where T = 3 in this example.

range tombstones that are stored in a separate range tomb-
stone block within files [29]. During data access, a histogram
storing deleted ranges is maintained in memory which has
to be accessed by every point query slowing down read ac-
cesses [15, 58]. Similar to point deletes, range deletes are
persisted when the files that contain them are compacted
with the last level, leaving potentially unbounded persistence
latency. Thus, in practice, a complete full tree compaction
is periodically employed to ensure delete persistence [39].
During such compactions, all reads and writes to the data
store are stalled, which results in latency spikes.
Persistence Latency. The latency for persisting a logical
delete depends on the workload and the data size. The middle
part of Figure 3 illustrates the operation “delete all entries with
ID = k”. Within the system, the operation inserts a tombstone,
k∗, that logically invalidates k. On disk, entries with key k
may be located at any level between 1 and L. Thus, to ensure
delete persistence, k∗ must participate in L compactions, one
at each level of the tree. Since compactions are triggered
when a level reaches a nominal capacity, the rate of unique
insertions is effectively driving the compactions. The size of
a level grows exponentially with T , therefore, a taller tree
requires exponentially more unique insertions to propagate
a tombstone to the last level. Hence, the delete persistence
latency depends on (i) the rate of unique insertions and (ii)
the current height of a tree.
AdversarialWorkloads.Tombstonesmay be recycled in in-
termediate levels of the tree leading to unbounded delete per-
sistence latency and perpetual retention of invalid entries [15].
For example, a workload that mostly modifies hot data (in
the first few levels) will grow the tree very slowly, keeping its
structure mostly static. Another example is a workload with
interleaved inserts and deletes, with the deletes issued on a
few recently inserted entries that are at the smaller levels. In
both cases, a newly inserted tombstone may be recycled in
compactions high up the tree that consolidate entries rather
than propagate towards the last level.
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Figure 3: The design space of deletes in LSM-trees.

3.1.2 Secondary Deletes. We refer to deletes based on an
attribute other than the sort key as secondary deletes. The
most common type of secondary deletes is a secondary
range delete. Consider the operation “delete all entries that
are older than D days”, similar to the second scenario from
the introduction. In the left part of Figure 3, we highlight the
sort key (ID) and the delete key (timestamp) of a key-value
pair. As the entries in a tree are sorted on the sort key, an
entry with a qualifying delete key may be anywhere in the
tree, and this delete pattern is not efficiently supported.
3.1.3 Limitations of the State of the Art. In state-of-the-
art LSM engines, deletes are considered as “second-class cit-
izens”. In practice, to ensure time-bounded persistence of
logical deletes and to facilitate secondary range deletes, data
stores resort to periodic full-tree compaction [19, 39]. How-
ever, this is an extremely expensive solution as it involves
superfluous disk I/Os, increases write amplification and re-
sults in latency spikes. To reduce excessive I/Os, RocksDB
implements a file selection policy based on the number of
tombstones [29]. This reduces the amount of invalid entries,
but it does not offer persistent delete latency guarantees.

3.2 Implications of Out-of-place Deletes
Next, we quantify the implications of out-of-place deletes on
read performance, and space and write amplification.
Model Details. We assume an LSM-tree with size ratio T ,
that stores N entries across L + 1 levels. The size of the
memory buffer isM = P ·B ·E, where P is the number of disk
pages in the buffer, B is the number of entries per page, and
E is the average size of an entry. The capacity of this tree
is
∑L

i=0M · T i , where M · T i is the capacity of Level i . The
N entries inserted in the tree includes δp point tombstones
and δr range tombstones that have an average selective of σ .
Table 1 shows all the parameters used in our modeling.

3.2.1 Space Amplification. Deletes increase space ampli-
fication by (i) the tombstones and (ii) the invalidated entries
(for every key, there might be several invalid versions). Space
amplification increases storage cost and the overhead for
data organization (sorting) and processing (read I/Os during
compaction). Commercial databases often report space am-
plification of about 11% [58], however, this corresponds to
T = 10, a single point in the vast design continuum.
Analysis. Following prior work [23], we define space am-
plification as the ratio between the size of superfluous en-
tries and the size of the unique entries in the tree, samp =
csize(N )−csize(U )

csize(U ) , where csize(N) is the cumulative size of
all entries and csize(U ) is the cumulative size of all unique
entries. Note that samp ∈ [0,∞), and that if all inserted keys
are unique there is no space amplification.
Without Deletes. Assume a workload with inserts and up-
dates (but no deletes) for a leveled LSM-tree. In the worst
case, all entries in levels up to L − 1 can be updates for the
entries in Level L, leading to space amplificationO(1/T ). For
a tiered LSM-tree, the worst case is when the tiers of a level
overlap, and the first L − 1 levels contain updates for Level L.
This leads to space amplification O(T ).
With Deletes. If the size of a tombstone is the same as the
size of a key-value entry, the asymptotic worst-case space
amplification remains the same as that with updates for lev-
eling. However, in practice, a tombstone is orders of magni-
tude smaller than a key-value entry. We introduce the tomb-
stone size ratio λ = size(tombstone)

size(key-value) ≈
size(key)

size(key)+size(value) , where
size(key) and size(value) is the average size of a key and
an entry, respectively. λ is bounded by (0, 1], and a smaller
λ implies that a few bytes (for tombstones) can invalidate
more bytes (for key-values) and lead to larger space amplifi-
cation given by O

(
(1−λ)·N+1

λ ·T

)
. For tiering, in the worst case,
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tombstones in the recent-most tier can invalidate all entries
in that level, resulting in space amplification O

( N
1−λ

)
.

3.2.2 Read Performance. Point tombstones are hashed
to the BFs the same way as valid keys, and thus, increase
the false positive rate (FPR) for the filters as well as the
I/O cost for point lookups. Also, deleted entries cause range
queries to scan invalid data before finding qualifying keys.
Consider that a range delete with 0.5% selectivity over a
100GB database invalidates 500MB, which might have to be
scanned (and discarded) during query execution.
Analysis: Point Lookups. A point lookup probes one (or
more) BF before performing any disk I/O. The FPR of a BF
depends on the number of bits allocated to the filter in the
memory (m) and the number of entries (N ) hashed into the
filter, and is given by e−m/N ·(ln(2))2 . For leveling, the aver-
age worst-case point lookup cost on non-existing entries is
O(e−m/N ), and for tiering, the cost becomesO(T ·e−m/N ) [21].
For lookups on existing entries, this cost increases by 1 as
the lookup has to probe at least one page. Since tombstones
are hashed into the BFs, retaining tombstones and invalid
entries increases their FPR, thus hurting point lookups.
Analysis: Range Lookups. A range query on the sort key
reads and merges all qualifying disk pages. The I/O cost of
a short range query accessing one page per level is O(L) for
leveling and O(L ·T ) for tiering. The I/O cost for long range
lookups depends on the selectivity of the lookup range, and is
O(s ·N /B) for leveling andO(s ·T ·N /B) for tiering. When an-
swering range queries, tombstones and invalid entries have
to be read and discarded, slowing down the range queries.

3.2.3 Write Amplification. Before being consolidated, an
invalid entry may participate in multiple compactions. Re-
peatedly compacting invalid entries increases write ampli-
fication, which is particularly undesirable for installations
that the durable storage has limited write endurance [58].
Analysis.We define write amplification,wamp as the ratio
of the total bytes written on disk that correspond to unmod-
ified entries to the total bytes written corresponding to new
or modified entries, wamp =

csize(N +)−csize(N )
csize(N ) . N + is the

number of all the entries written to disk including the entries
re-written as unmodified after a compaction. For leveling,
every entry participates on average in T /2 compactions per
level which makes N + = N · L ·T /2. For tiering, every entry
is written on disk once per level, implying N + = N · L. Thus,
wamp for leveled and tiered LSM-trees are given by O(L ·T )
and O(T ), respectively. Note that, as the data size increases,
entries participate in more compactions unmodified includ-
ing invalid entries further increasing write amplification.

3.2.4 Persistence Latency and Data Privacy. The lack
of guarantees in persistence latency has severe implications
on data privacy.With new data privacy protection acts [1, 34]

Sym. Description Reference value
N # of entries inserted in tree (including tombstones) 220 entries
T size ratio of tree 10
L number of tree-levels on disk with N entries 3 levels
P size of memory buffer in disk pages 512 disk pages
B number of entries in a disk page 4 entries
E average size of a key-value entry 1024 bytes
M memory buffer size 16MB
δp number of point deletes issued 3 × 105 entries
δr number of range deletes issued 103 entries
σ average selectivity of range deletes 5 × 10−4
Nδ approx. # of entries after persisting deletes -
λ tombstone size / average key-value size 0.1
I ingestion rate of unique entries in tree 1024 entries/sec
s selectivity of a long range lookup -
Lδ number of tree-levels on disk with Nδ entries -
m total main memory allocated to BFs 10MB
h number of disk pages per delete tile 16 disk pages

Table 1: Lethe parameters.

and the increased protection of rights like the right-to-be-
forgotten, data companies are legally obliged to persistently
delete data offering guarantees [26] and rethink the end-to-
end data lifecycle [60].
Analysis.We define delete persistence latency as the worst-
case time required, following the insertion of a tombstone,
to ensure that the tree is void of any entry with a matching
(older) key to that of the tombstone. This time depends on
the insertion rate of unique key-value entries (I ) and the
height of the tree (L− 1), and is the time needed to insert the
minimum number of unique keys that is sufficient to trigger
enough compactions. For leveling, delete persistence latency
isO

(
T L−1 ·P ·B

I

)
and for tiering isO

(
T L ·P ·B

I

)
. This shows that

for an LSM-tree with large number of entries (T L) that is
built by an update-intensive workload, the delete persistence
latency can be remarkably high.

3.3 Implications of the Storage Layout
Every file of an LSM-tree is sorted using the sort key. While
this supports read, update, and delete queries on the sort key
it cannot support operations on a secondary attribute.
Secondary Range Deletes on a delete key that is different
from the sort key can only be supported by eagerly per-
forming a full tree compaction, because there is no way to
identify the affected files. This stalls all write operations,
causing huge latency spikes. The cost incurred by a sec-
ondary range delete depends on the total number of data
pages on disk, and is independent of the selectivity of the
range delete operation. Irrespective of the merging strategy,
this cost is O(N /B), where B is the page size.

4 PERSISTING DELETES: LETHE
Design Goals. Lethe aims (i) to provide persistence guaran-
tees for point and range deletes and (ii) to enable practical
secondary range deletes. We achieve the first design goal
by introducing FADE, a family of delete-aware compaction
strategies. We achieve the second goal by introducing Key
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Weaving Storage Layout, a new continuum of physical data
layouts that arranges entries on disk in an interweaved fash-
ion based on both the sort and the delete key.

4.1 FADE
We first introduce the FADE family of compaction strategies
that ensures that all tombstones are persisted within a delete
persistence threshold (Dth ). Dth is typically specified by the
application or user [26, 60] as part of the service level agree-
ment (SLA) that concerns the data retention policy. All data
streams bound by the same data retention SLA, have the
same delete persistence latency.
4.1.1 Overview. Compactions in LSM-trees influence their
behavior by dictating their space amplification, write am-
plification, point and range read performance, and delete
persistence latency. FADE uses additional information about
the age of a file’s tombstones and the estimated invalidated
entries per tombstone to ensure that every tombstone will
adhere to the user/application-provided Dth by assigning to
every file a time-to-live (TTL). As long as Dth is respected,
FADE offers different strategies for secondary optimization
goals including minimizing write amplification, minimizing
space amplification, or maximizing system throughput.
4.1.2 Time-to-Live. To ensure that all delete operations
issued on an LSM-tree are persisted before Dth , FADE prop-
agates each tombstone through all intermediate levels to
the last level within that threshold from its insertion. FADE
achieves this by assigning a smaller TTL for every file in
every level di , such that

∑L−1
i=0 di = Dth . A simple TTL allo-

cation is to use di = Dth/L. While this may guarantee that a
tombstone reaches the last level within Dth , it also leads to
increased compaction time and resource starvation as larger
levels have exponentially more files, hence, a large number
of files may exhaust their TTL simultaneously. Instead, we
assign exponentially increasing TTL per level to guarantee
that files expire at a constant rate per time unit.
Computing dididi . For a tree with size ratio T , we set the TTL
for level i to be di = T · di−1, ∀i ∈ {1,L − 1} and d0 =
Dth · T−1

T L−1−1 . Note that both the TTL and the capacity per
level increase exponentially for larger levels of the tree.
Updating dididi . For a given tree height every file is assigned
a TTL depending on the level it is being compacted into.
As more data entries are inserted, the tree might grow in
height. At that point, the TTLs throughout the tree have to
be updated. The cost of calculating di is low, hence, FADE
re-calculates di after every buffer flush. Step 1 in Figure 4 (A)
shows how to update di when a new level is added.
4.1.3 FADE Metadata. Tombstones for point deletes are
stored along with valid key-value pairs, and range tomb-
stones are stored in a separate block. In addition to the tomb-
stones, FADE requires the values of two metrics per file: (i)

the age of the oldest tombstone contained (amax ) and (ii) the
estimated invalidation count (b) of the file tombstones. After
every flush, a file is assigned with its current amax and b.
In practice, LSM-engines store file metadata including

(i) the file creation timestamp, and (ii) the distribution of
the entries per file in the form of a histogram. For exam-
ple, RocksDB assigns a monotonically increasing insertion-
driven sequence number (seqnum) to all entries, and stores
the number of entries (num_entries) and point tombstones
(num_deletes) for every file. FADE takes advantage of this
existing metadata. It uses seqnum to compute amax and uses
num_entries and num_deletes to compute b. Thus, in prac-
tice FADE leaves no metadata footprint.
Computing amax . The amax of a file f , termed amax

f , is the
age of the oldest (point or range) tombstone contained in a
file, and is calculated using the difference between the current
system time and time the oldest tombstone of that file was
inserted in the memory buffer. File without tombstones have
amax
f = 0. Storing amax

f requires one timestamp (8 bytes) per
file, a negligible overhead.
Computingbbb. The estimated number of invalidated entries
by the tombstones of a file f , termed bf , is calculated using
(i) the exact count of point tombstones in the file (pf ) and (ii)
an estimation of the entries of the entire database invalidated
by the range tombstones of the file (rdf ), as bf = pf + rdf . It
is not possible to accurately calculate rdf without accessing
the entire database, hence, we estimate this value using the
system-wide histograms that are already maintained by the
data store. The value of bf is computed on-the-fly without
needing any additional metadata.
Updating amax and bbb. Similarly to all file metadata, amax

and b are first computed when a file is created after a buffer
flush. Thereafter, for newly compacted files, amax and b are
recomputed before they are written back to disk. When a
compaction simply moves a file from one disk level to the
next without physical sort-merging (i.e., when there are no
overlapping keys), b remains unchanged and amax is recal-
culated based on the time of the latest compaction. Note that
since all metadata is in memory, this does not cause an I/O.
4.1.4 CompactionPolicies. Compactions ensure that both
insert and read costs are amortized. For every compaction,
there are two policies to be decided: the compaction trigger
policy and the file selection policy. State-of-the-art LSM en-
gines initiate a compaction when a level is saturated (i.e.,
larger than a nominal size threshold) and either pick a file
at random, or the one with the smallest overlap with the
subsequent level to minimize the merging cost.
Compaction Trigger. FADE augments the state-of-the-art
by triggering a compaction, not only when a level is satu-
rated, but also when a file has an expired TTL. FADE triggers
a compaction in a level that has at least one file with expired
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//Update d[i] if a new level is added to the tree

// T = size ratio; level_count = levels in tree
// D_th = delete persistence threshold
double x = D_th * T / pow ( T, level_count - 1 );
if ( new_level_added ( ) ) {
    for ( int i = 0; i < level_count; ++i ) {
        d[i] = x * pow ( T, i );
        if ( i > 0 )
            d[i] += d[i-1];
    }
}

*

FADE: enforcing a finite bound for delete persistence latency

initial state selecting files for compaction performing compaction  *

tombstones

TTL-expired tombstones

logically deleted entries 

Figure 4: FADE persists tombstones within the delete persistence threshold, thus, improving overall performance.

TTL regardless of its saturation. If no TTL has expired, but a
level is saturated, a compaction in that level is triggered.
File Selection. FADE decides which files to compact based
on the trigger that invoked it. It has three modes: (i) the
saturation-driven trigger and overlap-driven file selection (SO),
which is similar to the state of the art and optimizes for write
amplification, (ii) the saturation-driven trigger and delete-
driven file selection (SD), which selects the file with the high-
est b to ensure that as many tombstones as possible are
compacted and to optimize for space amplification, and (iii)
the delete-driven trigger and delete-driven file selection (DD),
which selects a file with an expired tombstone to adhere to
Dth . A tie in SD and DD is broken by picking the file that
contains the oldest tombstone, and a tie in SO by picking the
file with the most tombstones. In case of a tie among levels,
the smallest level is chosen for compaction to avoid write
stalls during compaction. For a tie among files of the same
level, FADE chooses the file with the most tombstones.

4.1.5 Implications on Performance. FADE guarantees
that all point and range tombstones are persisted by the time
their lifetime reaches Dth (∀f , amax

f < Dth ). We refer to the
size of the tree as N and to the size of the tree that has all
entries persisted within Dth as Nδ .
Space amplification. FADE removes tombstones and logi-
cally invalidated entries from the tree on a rolling basis by
compacting them in a time-bound fashion. By doing so, it
diminishes the space amplification caused by out-of-place
deletes, limiting samp to O(1/T ) for leveling and O(T ) for
tiering, even for a workload with deletes.
Write amplification. Ensuring delete persistence within
Dth , forces compactions on files with expired TTLs. There-
fore, during a workload execution, initially FADE leads to
momentary spikes in write amplification. The initial high
write amplification, however, is amortized over time. By ea-
gerly compacting tombstones, FADE purges most invalidated

entries. Thus, future compactions involve fewer invalidated
entries, leading to smaller write amplification which is com-
parable to the state of the art, as we show in Section 5.
Read performance. FADE has a marginally positive ef-
fect on read performance. By compacting invalidated en-
tries and point tombstones, FADE reduces the number of
entries hashed in the BFs, leading to smaller overall FPR
for a given amount of available memory, hence, the cost for
point lookups on existing and non-existing keys is improved
asymptotically (Table 2). In the case that Nδ entries can be
stored in Lδ < L levels on disk, the lookup cost will benefit
by accessing fewer levels. Long range lookup cost is driven
by the selectivity of the query, and this cost is lower for FADE
as timely persistence of deletes causes the query iterator to
scan fewer invalidated entries.
PersistenceGuarantees. FADE ensures that all tombstones
inserted into an LSM-tree and flushed to the disk will always
be compacted with the last level within the user-defined
Dth threshold. Any tombstone retained in the write-ahead
log (WAL) is consistently purged if the WAL is purged at a
periodicity that is shorter than Dth , which is typically the
case in practice. Otherwise, we use a dedicated routine that
checks all live WALs that are older than Dth , copies all live
records to a new WAL, and discards the records in the older
WAL that made it to the disk.
Practical Values for Dt h . The delete persistence threshold
of different applications vary widely. In commercial systems,
LSM-engines are forced to perform a full tree compaction
every 7, 30, or 60 days based on the SLA requirements [39].
BlindDeletes.A tombstone against a key that does not exist
or is already invalidated causes a blind delete. Blind deletes
ingest tombstones against keys that do not exist in a tree,
and these superfluous tombstones affect the performance of
point and range queries [39]. To avoid blind deletes, FADE
probes the corresponding BF and inserts a tombstone only if
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Metric State-of-the-art [21, 23] FADE Key Weaving Storage Layout Lethe
Leveling Tiering Leveling Tiering Leveling Tiering Leveling Tiering

Entries in tree O(N ) O(N ) O(Nδ ) ▲ O(Nδ ) ▲ O(N ) • O(N ) • O(Nδ ) ▲ O(Nδ ) ▲

Space amplification without deletes O(1/T ) O(T ) O(1/T ) • O(T ) • O(1/T ) • O(T ) • O(1/T ) • O(T ) •

Space amplification with deletes O
(
(1−λ)·N+1

λ ·T

)
O
( N
1−λ

)
O (1/T ) ▲ O(T ) ▲ O

(
(1−λ)·N
λ ·T

)
• O

( N
1−λ

)
• O(1/T ) ▲ O(T ) ▲

Total bytes written to disk O(N · E · L ·T ) O(N · E · L) O(Nδ · E · Lδ ·T ) ▲ O(Nδ · E · Lδ ) ▲ O(N · E · L ·T ) • O(N · E · L) • O(Nδ · E · Lδ ·T ) ▲ O(Nδ · E · Lδ ) ▲

Write amplification O(L ·T ) O(L) O(L ·T ) • O(L) • O(L ·T ) • O(L) • O(L ·T ) • O(L) •

Delete persistence latency O
(
T L−1 ·P ·B

I

)
O
(
T L ·P ·B

I

)
O(Dth) ▲ O(Dth) ▲ O

(
T L−1 ·P ·B

I

)
• O

(
T L ·P ·B

I

)
• O(Dth) ▲ O(Dth) ▲

Zero result point lookup cost O(e−m/N ) O(e−m/N ·T ) O(e−m/Nδ ) ▲ O(e−m/Nδ ·T ) ▲ O(h · e−m/N ) ▼ O(h · e−m/N ·T ) ▼ O(h · e−m/Nδ ) ♦ O(h · e−m/Nδ ·T ) ♦

Non-zero result point lookup cost O(1) O(1 + e−m/N ·T ) O(1) • O(1 + e−m/Nδ ·T ) ▲ O(1 + h · e−m/N ) ▼ O(1 + h · e−m/N ·T ) ▼ O(1 + h · e−m/Nδ ) ♦ O(1 + h · e−m/Nδ ·T ) ♦

Short range point lookup cost O(L) O(L ·T ) O(Lδ ) ▲ O(Lδ ·T ) ▲ O(h · L) ▼ O(h · L ·T ) ▼ O(h · Lδ ) ♦ O(h · Lδ ·T ) ♦

Long range point lookup cost O( s ·NB ) O(T ·s ·N
B ) O( s ·Nδ

B ) ▲ O(T ·s ·Nδ
B ) ▲ O( s ·NB ) • O(T ·s ·N

B ) • O( s ·Nδ
B ) ▲ O(T ·s ·Nδ

B ) ▲

Insert/Update cost O( L ·TB ) O( LB ) O( Lδ ·TB ) ▲ O( LδB ) ▲ O( L ·TB ) • O( LB ) • O( Lδ ·TB ) ▲ O( LδB ) ▲

Secondary range delete cost O(N /B) O(N /B) O(Nδ /B) ▲ O(Nδ /B) ▲ O
( N
B ·h

)
▲ O

( N
B ·h

)
▲ O

(
Nδ
B ·h

)
♦ O

(
Nδ
B ·h

)
♦

Main memory footprint m + N · k
B m + N · k

B m + Nδ ·

(
k
B +

c
B ·P

)
▼ m + Nδ ·

(
k
B +

c
B ·P

)
▼ m + N ·

( 1
B ·h

)
▲ m + N ·

( 1
B ·h

)
▲ m + Nδ ·

(
k
B ·h +

c
B ·P

)
♦ m + Nδ ·

(
k
B ·h +

c
B ·P

)
♦

Table 2: Comparative analysis of state of the art and FADE (▲ = better, ▼ = worse, • = same, ♦ = tunable).

the filter probe returns positive. This way, FADE drastically
reduces the number of blind deletes.
4.2 Key Weaving Storage Layout (KiWi)
To facilitate secondary range deletes, we introduce KiWi, a
continuum of physical storage layouts the arranges the data
on disk in an interweaved sorted order on the sort key and
delete key. KiWi supports secondary range deletes without
performing a full-tree compaction, at the cost of minimal
extra metadata and a tunable penalty on read performance.
4.2.1 The Layout. Figure 5 presents the internal structure
of KiWi. Essentially, KiWi adds one new layer in the storage
layout of LSM trees. In particular, in addition to the levels
of the tree, the files of a level, and the page of a file, we now
introduce delete tiles that belong to a file and consist of pages.
In the following discussion, we use S to denote the sort key
and D for the delete key.
Level Layout. The structure of the levels remains the same
as in state-of-the-art LSM trees. Every level is a collection
of files containing non-overlapping ranges of S. The order
between files in a level followsS. Formally, if i < j , all entries
in file i have smaller S than those in file j.
File Layout. The contents of the file are delete tiles, which
are collections of pages. Delete tiles contain non-overlapping
ranges of S, hence from the perspective of the file, the order
of the delete tiles also follows S. Formally, if k < l , all entries
in delete tile k have smaller S than those in file l .
Delete Tile Layout.Contrary to above, the pages of a delete
tile are sorted on D. Formally, for p < q, page p of a given
delete tile contains entries with smallerD than page q, while
we have no information about S. Organizing the contents
of a tile ordered on the delete key D allows us to quickly
execute range deletes because the entries under deletion are
always clustered within contiguous pages of each tile, which
can be dropped in their entirety.
Page layout. The order of entries within each page does not
affect the performance of secondary range deletes, however,

it significantly affects lookup cost, once a page is fetched to
memory. To facilitate quick in-memory searches within a
page [66], we sort the entries of each page based on S.

4.2.2 Facilitating Secondary Range Deletes. KiWi ex-
ploits the fact that within a delete tile, the disk pages are
sorted on the delete key. Hence, the entries targeted by a sec-
ondary range delete populate contiguous pages of each tile
(in the general case of every tile of the tree). The benefit of
this approach is that these pages can be dropped without hav-
ing to be read and updated. Rather, they are removed from
the otherwise immutable file and released to be reclaimed by
the underlying file system.We call this a full page drop. Pages
containing entries at the edge of the delete range, might also
contain some valid entries. These pages are loaded and the
valid entries are identified with a tight for-loop on D (since
they are sorted on S). The cost of reading and re-writing
these pages is the I/O cost of secondary range deletes with
KiWi when compared with a full-tree compaction for the
state of the art. We call these partial page drops, and con-
stitute a small fraction of in-place editing, which is limited
to zero or one page per delete tile. Subsequent compactions
will create files and delete tiles with the pre-selected sizes.

4.2.3 Tuning and Metadata. We now discuss the tuning
knobs and the metadata of KiWi.
Delete Tile Granularity. Every file contains a number of
delete tiles, and each tile contains a number of pages. The
basic tuning knob of KiWi is the number of pages per delete
tile (h), which affects the granularity of delete ranges that
can be supported. For a file with P disk pages, the number
of delete tiles per file is P/h. The smallest granularity of a
delete tile is when it consists of only a single disk page, i.e.,
for h = 1. In fact, h = 1 creates the same layout as the state
of the art, as all contents are sorted on S and every range
delete needs to update all data pages. As h increases, delete
ranges with delete fraction close to 1/h will be executed
mostly by full drops. On the other hand, for higher h read
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Figure 5: KeyWeaving Storage Layout stores data in an interweaved fashion on the sort and delete key to facilitate
efficient secondary range deletes without hurting read performance.

performance is affected. The optimal decision for h depends
on the workload (frequency of lookups and range deletes),
and the tuning (memory allocated to BFs and size ratio).
BloomFilters and Fence Pointers.Wenext discuss Bloom
filters and fence pointers in the context of KiWi.

Bloom filters. KiWi maintains BFs on S at the granularity
of disk page. Maintaining separate BFs per page requires no
BF reconstruction for full page drops, and light-weight CPU
cost for partial page drops. The same overall FPR is achieved
with the same memory consumption when having one BF
per page, since a delete tile contains no duplicates [10].
Fence pointers. KiWi maintains fence pointers on S that

keep track of the smallest sort key for every delete tile. Fence
pointers on S, aided by the BFs, accelerate lookups. To sup-
port secondary range deletes, for every delete tile, KiWi
maintains in memory a separate fence pointer structure on
D. We refer to this as delete fence pointers. The delete fence
pointers store the smallest D of every page enabling full
page drops of the corresponding pages without loading and
searching the contents of a delete tile.
Memory Overhead.While KiWi does not require any ad-
ditional memory for BFs, it maintains two fence pointer
structures – one on S per delete tile and one on D per page.
Since the state of the art maintains fence pointers on S per
page, the space overhead for KiWi is the additional metadata
per tile. Assuming sizeo f (S) and sizeo f (D) are the sizes in
bytes for S and D respectively, the space overhead is:

KiW imem − SoAmem =
N
B ·h · sizeo f (S) + N

B · sizeo f (D) − N
B · sizeo f (S) =

#delete_tiles · (sizeo f (S) + h · (sizeo f (D) − sizeo f (S)))

Note that if sizeo f (S) = sizeo f (D) the overhead is only one
sort key per tile, and if sizeo f (D) < sizeo f (S), KiWi might
lead to less overall size of metadata.
4.2.4 CPUOverhead. KiWi navigates an intrinsic tradeoff
between the CPU cost for additional hashing for Bloom filters

and the I/O cost associated with data movement to and from
disk. For non-zero result point queries, KiWi performs L ·h/4
times more hash calculations compared to the state of the
art, and L · h times in case of zero-result point queries. In
practice, commercial LSM engines, such as RocksDB, use
only a single MurmurHash hash digest to calculate which
Bloom filter bits to set [58, 69]. This reduces the overall
cost of hash calculation by almost one order of magnitude.
We measured the time to hash a single 64-bit key using the
MurmurHash to be 80ns , which is significantly smaller than
the SSD access latency of 100µs. This allows Lethe to strike
a navigable tradeoff between the CPU and I/O costs, and for
the optimal value of h, Lethe achieves a significantly superior
overall performance as compared to the state of the art.

4.2.5 Implications on Performance. KiWi offers a tun-
able tradeoff between the cost for secondary range deletes
and that of lookups, but does not influencewrite performance
(including space and write amplifications).
Point Lookup. A point read follows the same search algo-
rithm as in the state of the art [22]. In every level, a lookup
searches the fence pointers (on S) to locate the delete tile
that may contain the search key. Once a delete tile is located,
the BF for each delete tile page is probed. If a probe returns
positive, the page is read to memory and binary searched,
since the page is sorted on S. If the key is found, the query
terminates. If not, the I/O was due to a false positive, and
the next page of the tile is fetched. The I/O cost for a query
on an existing entry is O(1 + h · e−m/N ) for leveling and
O(1 +T · h · e−m/N ) for tiering. For a zero-result lookup the
expected cost isO(h ·e−m/N ) andO(h ·e−m/N ·T ) respectively.
Range Lookup. In general, a range lookupmay span several
delete tiles spread in one or more consecutive files. KiWi
affects the performance of range lookups only at the terminal
delete tiles that contain the bounds on the range – all delete
tiles in between that are subsumed by the range always need
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to be read to memory. For the terminal delete tiles, the lookup
needs to scan on average h/2 more pages per tile instead
of only the qualifying pages. Thus, the cost for short range
lookups for KiWi becomesO(h ·L) for leveling andO(h ·L ·T )
for tiering. For long range lookups, the increase in cost gets
amortized over the number of qualifying delete tiles, and
remains the same asymptotically, i.e., O( s ·NB ) and O(T ·s ·N

B )

for leveling and tiering, respectively.
Secondary Range Lookups. With the interweaved layout,
KiWi can also support efficient range lookups on the delete
key. While state-of-the-art LSM engines need to maintain
a secondary index on the delete key, they still pay a heavy
cost for scanning across many scattered pages. KiWi utilizes
the ordering of the data on the delete key and can realize
secondary range queries at a much lower I/O cost.

4.2.6 Navigable Design. A fundamental design goal for
KiWi is to navigate the tradeoff between the cost of sec-
ondary range deletes and lookups. KiWi offers a navigable
continuum of storage layouts that can be tuned to obtain the
optimal value for h based on the workload characteristics
and performance requirements. Assuming that the workload
can be described by the fractions of (a) point queries with
zero-result fEPQ , (b) point queries with non-zero result fPQ ,
(c) short range queries fSRQ , (d) long range queries fLRQ
with selectivity s , (e) secondary range deletes fSRD , and (f)
insertions fI , then we can compare the cost of this workload
for Lethe and the state of the art.

CostLethe ≤ CostSoA ⇒ fEPQ · F PR · h + fPQ · (1 + ·F PR · h) +

fSRQ · Lδ · h + fLRQ · s · N /B + fSRD · N /(B · h) + fI · loдT (N /B) ≤

fEPQ · F PR + fPQ · (1 + ·F PR) + fSRQ · L · +fLRQ · s ·
N
B
+

fSRD · N /B + fI · loдT (N /B) ⇒

(fEPQ + fPQ ) · F PR · h + fSRQ · Lδ · h + fSRD · N /(B · h) ≤

(fEPQ + fPQ ) · F PR + fSRQ · L + fSRD · N /B (1)

If we divide both sides of Eq. 1 with fSRD wewill get the costs
with respect to the relative frequencies of each operation
with respect to the range deletes.
(1) ⇒ (fEPQ + fPQ )/fSRD · F PR · (h − 1) + fSRQ /fSRD · (Lδ · h − L) ≤

N /B · (h − 1)/h (assuming Lδ ≈ L)

⇒
fEPQ + fPQ

fSRD
· F PR +

fSRQ
fSRD

· L ≤
N
B

·
1
h

(2)

Using Eq. 2we navigate the secondary range delete vs. lookup
performance tradeoff to find the best layout.

4.3 Lethe
Lethe puts together the benefits of FADE and KiWi to better
support deletes in LSM-trees. Lethe offers tunable perfor-
mance that combines the space amplification, read perfor-
mance, write amplification, with the point and range delete
performance of a system. The key tuning knobs are (i) the
delete persistence threshold (Dth ) and (ii) delete tile gran-
ularity (h). The delete persistence threshold is specified as

part of the data retention SLA, and Lethe sets the TTL for
the tree-levels to ensure timely persistence.

For a workload with secondary range deletes, Lethe tunes
the storage layout to find the optimal value for the delete tile
granularity using the frequency of read operations relative
to the frequency of secondary range deletes. The optimal
value of h is given by solving Eq. 2 with respect to h.

h ≤
N

B
·

1
fEPQ+fPQ

fSRD
· FPR +

fSRQ
fSRD

· L
(3)

For example, for a 400GB database and 4KB page size, if
between two range deletes we execute 50M point queries of
any type, 10K short range queries, and have FPR ≈ 0.02 and
T = 10, using Eq. 3, we have the optimal value of h as:

h ≤
400GB/4KB

5 · 107 · 2 · 10−2 + 104 · loд10( 400GB
4KB )

=
108

106 + 8 · 104
≈ 102.

Implementation. Lethe is implemented on top of RocksDB
which is an open-source LSM-based key-value store widely
used in the industry [27, 29]. The current implementation
of RocksDB is implemented as leveling (only Level 1 is im-
plemented as tiered to avoid write-stalls) and has a fixed
size ratio (defaults to 10). We develop a new API for Lethe
to have fine-grained control on the infrastructure. The API
allows us to initiate compactions in RocksDB based on cus-
tom triggers and design custom file picking policies during
compactions. RocksDB already stores metadata for every file,
which includes the number of entries and deletes per files.
We further store aдe as the only additional information per
file. The delete persistence threshold is taken as a user-input
at setup time and is used to dynamically set the level-TTLs.

5 EVALUATION
We evaluate Lethe against state-of-the-art LSM-tree designs
for a range of workloads with deletes and different delete
persistence thresholds.
Experimental Setup. We use a server with two Intel Xeon
Gold 6230 2.1GHz processors each having 20 cores with
virtualization enabled and with 27.5MB L3 cache, 384GB of
RDIMM main memory at 2933MHz and 240GB SSD.
Default Setup. Unless otherwise mentioned the experimen-
tal setup consists of an initially empty database with inges-
tion rate at 210 entries per second. The size of each entry is
1KB, and the entries are uniformly and randomly distributed
across the key domain and are inserted in random order. The
size of the memory buffer is 1MB (implemented as a skiplist).
The size ratio for the database is set to 10, and for the Bloom
filters in memory, we use 10 bits per entry. To determine
the raw performance, write operations are considered to
have a lower priority than compactions. For all experiments
performed, the implementation for Lethe differed from the
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RocksDB setup in terms of only the compaction trigger and
file picking policy. We have both block cache and direct I/O
enabled and the WAL disabled. Deletes are issued only on
keys that have been inserted in the database and are uni-
formly distributed within the workload. We insert 1GB data
in the database with compactions given a higher priority
than writes. The delete persistence threshold is set to 16.67%,
25%, and 50% of the experiment’s run-time. This experiment
mimics the behavior of a long-running workload. The delete
persistence threshold values chosen for experimentation are
representative of practical applications, where the threshold
is 2months (16.67%), 3months (25%), 6months (50%), respec-
tively, for a commercial database running for 1 year [26]. All
lookups are issued after the whole database is populated.
Metrics. The compaction related performance metrics in-
cluding (i) total number of compactions performed, (ii) total
bytes compacted, (iii) number of tombstones present in a tree,
and the (iv) age of files containing tombstones are measured
by taking a snapshot of the database after the experiment.
Space and write amplification are then computed using the
equations from Sections 3.2.1 and 3.2.3.
Workload. Given the lack of delete benchmarks, we de-
signed a synthetic workload generator, which produces a
variation of YCSB Workload A, with 50% general updates
and 50% point lookups. In our experiments, we vary the
percentage of deletes between 2% to 10% of the ingestion.

5.1 Achieving Timely Delete Persistence
Lethe Reduces Space Amplification. We first show that
Lethe significantly reduces space amplification by persisting
deletes timely. We set up this experiment by varying the
percentage of deletes in a workload for both RocksDB and
Lethe, for three different delete persistence thresholds. The
plot is shown in Figure 6 (A). For a workload with no deletes,
the performances of Lethe and RocksDB are identical. This is
because in the absence of deletes, Lethe performs compactions
triggered by level-saturation, choosing files with minimal
overlap. In the presence of deletes, driven by the delete persis-
tence threshold (Dth ), Lethe compacts files more frequently
to ensure compliance with the threshold. It deletes the log-
ically invalidated entries persistently, and in the process,
diminishes the space amplification in the database. Even
when Dth is set to 50% of the workload execution duration,
Lethe reduces space amplification by about 48%. For shorter
Dth , the improvements in space amplification are further
pronounced by Lethe.
Lethe Performs FewerCompactions. Figures 6 (B) and (C)
show that Lethe performs fewer compactions as compared to
RocksDB, but compacts more data during every compaction.
Lethe performs compactions on a rolling basis based on Dth .
After each experiment, Lethe was found to have fewer files

on disk as compared to RocksDB. This is because, Lethe
compacts invalidated entries in a greedy manner, and for a
workload with even a small fraction (2%) of deletes, it reduces
the number of compactions performed by 45%, as shown in
Figure 6 (B). However, while compacting files with expired
TTLs, the chosen file may overlap with a relatively higher
number of files from the target level, and thus Lethe compacts
4.5% more data when Dth is set as 50% of the experiment’s
run-time, as shown in Figure 6 (C).
Lethe Achieves Better Read Throughput. In this experi-
ment, we show that Lethe offers a superior read performance
as compared to RocksDB. For this experiment, we populate
the database with 1GB data and then issue point lookups
on existing entries. Note that the lookups may be on entries
have been deleted by a tombstone after they were inserted.
Withmore deletes in the workload, the number of invalidated
entries (including tombstones) hashed into the BFs increases.
Lethe purges these superfluous entries by persisting them
in a time-bound manner, and thus, cleans up the BFs and
improves their FPR. A lookup on a persistently deleted key
returns negative without performing a disk I/O to read a
tombstone. Overall, Figure 6 (D) shows that Lethe improves
lookup performance by up to 17% for workloads with deletes.
Lethe Ensures Timely Delete Persistence. Figure 6 (E)
shows the distribution of the tombstones ages at the end
of the experiment to demonstrate that Lethe ensures timely
persistent deletion. The X-axis shows the age of all files that
contain tombstones, and the Y-axis shows the cumulative
number of tombstones at the instant of the snapshot with
the age corresponding to the X-axis value or smaller. The
goal of Lethe is to have fewer tombstones of smaller age
than the state of the art, with all tombstones having age
less than Dth We show that in comparison with RocksDB,
Lethe persists between 40% and 80% more tombstones, and
does so while honoring the delete persistence threshold. For
Dth= 50% of the experiment’s run-time, while RocksDB has
∼ 40, 000 tombstones (i.e., ∼ 40% of all tombstones inserted)
distributed among files that are older thanDth , Lethe persists
all deletes within the threshold.
Write Amplification gets Amortized for Lethe. This ex-
periment demonstrates that the higher write amplification
caused by the initial eager merging of Lethe is amortized over
time. For Lethe, we set Dth to 60 seconds and take snapshots
at an interval of 180 seconds during the execution of the
experiments. At every snapshot, we measure the cumulative
bytes written over the past intervals. We measure the same
metric for RockDB (that does not support setting a Dth ), and
use it to normalize the bytes written. We plot the normal-
ized bytes written against time (across snapshots) in Figure
6 (F). We observe that due to eager merging, Lethe writes
1.4× more data compared to RocksDB in the first snapshot.
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Figure 6: Lethe improves space amplification (A) and performs fewer larger compactions (B, C) to persist deletes
timely (E). In the process, it improves read throughput (D). The higher write amplification in Lethe gets amortized
over time (F), which allows Lethe to scale similarly to RocksDB (G). (H) through (L) show Lethe’s ability to navigate
the design space of storage layouts and choose the optimal delete tile size to strike a balance between the lookup
and secondary range delete performance to maximize the overall throughput.

However, by persisting invalid entries upfront, Lethe purges
superfluous entries from the tree, and hence, compacts fewer
entries during subsequent compactions. This reduces the
normalized writes by Lethe over time. At the end of the
experiment, we observe that Lethe writes only 0.7% more
data as compared to RocksDB. In this experiment, we set
the Dth to be 15× smaller than the experiment duration to
model the worst case. In practice, insertions in LSM engines
continue for much longer (even perpetually) and Dth is set
to a small constant duration. In this scenario Lethe’s write
amplification will be quickly amortized.
Lethe Scales Similarly to the State of the Art. This ex-
periment shows that Lethe and the state of the art follow
the same performance trends as data volume grows. We
set up this experiment with the default configuration, and
we vary data size. In addition to YCSB Workload A, which
is used to compute the mixed workload latency, we use a
write-only workload to measure write latency. Figure 6 (G),
shows the average latency for both workloads with data
size on the X-axis. We observe that the write latency for
RocksDB and Lethe is not affected by data size. Due to the

initial increased write amplification of Lethe, its write la-
tency is 0.1-3% higher than that of RocksDB. For the mixed
workload, however, Lethe improves the average latency by
0.5-4%. This improvement is primarily due to the higher read
throughput achieved by Lethe, as shown in Figure 6 (D). For
smaller data sizes, most data entries are stored in memory or
the first disk level, which reduces read latency significantly.

5.2 Secondary Range Deletes
Next, we evaluate secondary range deletes on Lethe.
Setup.Unless otherwise mentioned, the workload comprises
0.001% secondary range delete operations along with 1%
range queries and 50% point queries. Each file has 256 pages
and the size of every page is 4KB.
Lethe Achieves Superior Delete Performance. Figures
6 (H) through (L) show that Lethe offers superior overall
performance by storing the data on disk using KiWi. For
the first experiment, we vary the selectivity of a secondary
range delete operation, i.e., the fraction of the database that
is deleted, and measure the number of pages that can be fully
dropped during the operation. Full page drops do not require
reading the page to memory, and thus, a higher value along
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the Y-axis is desirable. We repeat the experiment for different
delete tile granularity (h). As the selectivity of the secondary
range delete operation increases the number of full page
drops decreases. This problem is further exacerbated for
smaller delete tile granularity.
Although a higher value for h is desirable for reducing

the I/O requirement for secondary range deletes, it bears a
tradeoff with the lookup performance, as shown in Figure
6 (I). The cost of zero-result and non-zero result lookups
increases linearly with an increase in the tile size. Thus, the
optimal value for h is driven by the workload composition.
Choosing theOptimal Storage Layout. Figure 6 (J) shows
Lethe’s ability to navigate the continuum of storage layout
and offer superior overall performance by determining the
optimal storage layout. For a workload with a secondary
range delete to lookup ratio of 2 × 10−6 (i.e., 1 secondary
range delete per 0.5M lookups), as the selectivity of the sec-
ondary range delete operation changes, the optimal way of
storing data on disk changes. For selectivity 0.01%, the classi-
cal storage layout (withh = 1) provides optimal performance.
As the selectivity increases, the design choice changes, and
we observe that for selectivity 0.05% storing 64 disk pages
per delete tile (h = 64) attains the optimal performance.
Analyzing the CPU-I/O Tradeoff. In this experiment, we
show the tradeoff between the CPU and I/O costs for Lethe.
The workload for this experiment has 50% point queries and
1% range query with selectivity of 0.001%, 49% inserts, and
a single secondary range delete. We run this workload on a
preloaded database of size ∼90GB (i.e., 210 inserts/sec for 24
hours). We have a single secondary range delete operation
that deletes 1/7th of the database (mimics the behavior of
deleting all data older than 7 days). We measure the total
time spent for hash computation for filter probes and the
total time spent for I/Os to the disk.

Figure 6 (K) plots the total time spent in hashing and I/O
access for both Lethe and RocksDB while varying delete tile
size. The embedded figure shows that the hashing cost in-
creases linearly with h. However, as the time to hash entries
is 3 orders of magnitude smaller than the disk access latency
and only point queries benefit from Bloom filters, the disk
access time dominates the workload execution time. By de-
sign, Lethe computes the optimal value of h, which in this
case is 8. For h = 8, the I/O cost for Lethe is 76% lower than
that in RocksDB. This comes at the price of a 5× increase
in the hashing cost, which is completely hidden behind the
massive benefits in total number of I/Os.
Effects ofCorrelation between SortKey andDeleteKey.
Figure 6 (L) shows the effect of correlation between the sort
key and the delete key. We run this experiment for two work-
loads. For the first workload, where there is no correlation

between the sort and delete keys, the impact of the inter-
weaved storage layout is prominent. As we increase h the
range delete cost drops drastically (because a larger fraction
of pages can be fully dropped) at the expense of the cost of
range queries. For the second workload, which has positive
correlation between sort and delete key (≈1), delete tiles have
no impact on performance. For such a case, the classical LSM
storage layout (i.e., h = 1) becomes optimal.

6 RELATEDWORK
Deletion in Relational Systems. Past work on data dele-
tion on relational systems focuses on bulk deletes [14, 31, 47].
Efficient bulk deletion relies on similar techniques as effi-
cient reads: sorting or hashing data to quickly locate, and
ideally collocate, the entries to be deleted. Efficient deletion
has also been studied in the context of spatial data [45] and
view maintenance [8]. Contrary to past work, Lethe aims to
support a user-provided delete persistence latency threshold.
Self-Destructing Data. In addition, past research has pro-
posed to automatically make data disappear when specific
conditions are met. Vanish is a scheme that ensures that
all copies of certain data become unreadable after a user-
specified time, without any specific action on the part of a
user [32, 33]. Kersten [42] and Heinis [37] have proposed
the concept of forgetting in data systems through biology-
inspiredmechanisms as away to bettermanage storage space
and for efficient data analysis capabilities, as the data gen-
eration trends continue to increase. Contrary to this, Lethe
supports timely data deletion that is set by users/applications.

7 CONCLUSION
In this work, we show that state-of-the-art LSM-based key-
value stores perform suboptimally for workloads with even
a small proportion of deletes, and that the delete persistence
latency in these data stores are potentially unbounded. To
address this, we build Lethe, a new LSM-based engine that
introduces a new family of compaction strategies FADE and
KiWi, a continuum of physical data storage layouts. FADE
enforces delete persistence within a user-defined threshold
while increasing read throughput and reducing space amplifi-
cation, at the expense of a modest increase in write amplifica-
tion. KiWi offers efficient secondary range deletes, which can
be tuned to outperform state of the art for a given workload.
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