Journal of Computational Science 47 (2020) 101204

ELSEVIER

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Contents lists available at ScienceDirect = o

Check for

UQpy: A general purpose Python package and development environment @&

for uncertainty quantification

Audrey Olivier, Dimitris G. Giovanis, B.S. Aakash, Mohit Chauhan, Lohit Vandanapu,

Michael D. Shields *

Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, United States

ARTICLE INFO ABSTRACT

Keywords:

Uncertainty quantification
Computational modeling
High-performance computing
Python

Software

This paper presents the UQpy software toolbox, an open-source Python package for general uncertainty quan-
tification (UQ) in mathematical and physical systems. The software serves as both a user-ready toolbox that
includes many of the latest methods for UQ in computational modeling and a convenient development envi-
ronment for Python programmers advancing the field of UQ. The paper presents an introduction to the software’s
architecture and existing capabilities, divided in the code in a set of modules centered around different UQ tasks
such as sampling methods, generation of random processes and random fields, probabilistic inverse modeling,
reliability analysis, surrogate modeling, and active learning. The paper also highlights the importance of the
RunModel module, which is used to drive simulations in the uncertainty analyses performed in UQpy. This
module conveniently allows the user to define computational models directly in Python, or to run simulations
from a third-party software in serial or in parallel. To illustrate the various capabilities, two examples are tracked
throughout the paper and analyzed repeatedly for various UQ tasks. The first is a Python model solving a
nonlinear structural dynamics problem, used to illustrate UQpy’s capabilities in sampling and forward propa-
gation of high dimensional random vectors (stochastic processes), and probabilistic inference. The second model
is a third-party Abaqus finite element model solving the thermomechanical response of a beam structure. This
example is used to illustrate UQpy’s capabilities in variance reduction sampling techniques, reliability analysis,

surrogate modeling and active learning techniques.

1. Introduction: UQpy purpose and workflow

Uncertainty quantification (UQ) is the science of quantifying, char-
acterizing, and reducing uncertainty in computational and real world
systems. It finds applications in various fields of science and engineer-
ing, such as stochastic mechanics and structural reliability [1,2],
multi-scale modeling [3], biological systems [4], climate modeling [5]
or hydrology [6-9]. This paper presents UQpy, an open-source, general
purpose Python package for modeling uncertainty in physical and
mathematical systems. The UQpy package is available for download
from Github [10], along with all Python scripts necessary to run the
examples presented in the manuscript [11], which are also included as
supplementary materials. The code is organized as a set of modules
centered around core capabilities in UQ, each represented by a box in
Fig. 1. The modules build from foundational probabilistic operations to
advanced methodologies where each module contains various classes
that can easily invoke one another and can be combined to perform

* Corresponding author.

https://doi.org/10.1016/j.jocs.2020.101204

complex UQ tasks, as will be demonstrated throughout the manuscript.
This object-oriented architecture also allows the user to easily add new
capabilities. This is illustrated in Fig. 1 by the addition of new modules
for advanced analysis, but extension of existing modules is similarly
straightforward and does not require intrusion with existing classes and
functions, as discussed in more detail below.

This flexible package can be utilized in various ways, depending on
the user’s goals, Python coding proficiency and desired level of inter-
action with the code. On one-hand, UQpy can be used in a “black-box”
fashion as it provides a range of user-ready algorithms that can be easily
imported into the user’s Python environment and invoked to perform
various UQ tasks such as forward uncertainty propagation, inverse
learning or estimation of failure probabilities to name only a few, with
minimal interaction with the code itself. On the other hand, it is fully
open-source and was designed with a conveniently extensible, object-
oriented architecture. Considering this flexibility, it is useful to think
of UQpy in two ways: 1. As a UQ toolbox for the casual or advanced user;

Received 23 February 2020; Received in revised form 29 July 2020; Accepted 13 August 2020

Available online 24 August 2020
1877-7503/© 2020 Elsevier B.V. All rights reserved.

www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2020.101204
https://doi.org/10.1016/j.jocs.2020.101204
https://doi.org/10.1016/j.jocs.2020.101204
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2020.101204&domain=pdf

A. Olivier et al.

Reliability

Advanced

analysis Estimate rare-event

probabilities

Computational model
evaluation

Basic probabilistic
operations

Transformations

Transform samples

Inference
Learn parameters and models
from data

SampleMethods

Sample realizations of

Journal of Computational Science 47 (2020) 101204

Surrogates
Build surrogates, meta-
models, or emulators

New Modules
Dimension Reduction, etc.

RunModel

Run simulations of Python
models or third-party software

StochasticProcess
Sample realizations of
stochastic processes and

random variables fields

Support modules ‘

Fig. 1. UQpy modules organized from their most fundamental to those for advanced modeling. Moving upward in the figure, the modules at higher levels generally

leverage those at the lower levels.

2. As a development environment through which to advance the field of
UQ in computational modeling.

Before getting into the code, it is important to recognize that several
codes currently exist for UQ and perhaps shed some light on what sets
UQpy apart. The following paragraphs aim to provide a review of Python
based and non-Python based toolboxes for general UQ, though recog-
nizing that it may not provide a fully exhaustive list. In particular, it is
noted that numerous Python codes exist that focus on one specific aspect
of UQ, such as MCMC, and our review does not include many of these
tools. Instead, we aim to review those tools that are general and incor-
porate a broad range of UQ functionalities.

Some codes, such as the Computational Stochastic Structural Anal-
ysis (COSSAN) software [12] began development as early as 1992.
COSSAN development has continued to present day and the software has
now split into two components. OpenCossan is an open-source Matlab
toolbox for UQ that, like UQpy, is available for download via Github.
COSSAN-X meanwhile comprises a set of compiled toolboxes for various
tasks in UQ. Another widely used and powerful Matlab toolbox is the
UQLab software [13] developed by the Chair of Risk, Reliability, and
Uncertainty Quantification at ETH Zurich. The Engineering Risk Anal-
ysis Group at the Technical University of Munich has also developed a
variety of MATLAB and Python tools for various UQ tasks [14]. Other
Matlab toolboxes that are available are filling specific niches within UQ
such as the SUrrogate MOdeling (SUMO) toolbox [15] and the Finite
Element Reliability Using Matlab (FERUM) toolbox [16]. Various
packages are also available for the R statistical software including
DiceDesign, DiceKriging, and DiceOptim [17,18], the mistral package
[19] for reliability analysis, and the sensitivity package [20].

Among the developed software, some commercial and/or industrial
codes have also begun to arise. Perhaps the most widely used UQ soft-
ware is the Dakota package [21] developed by Sandia National Labo-
ratories (SNL). Dakota is an open-source C++ package with many
advanced features that is widely used across the US government labs.
Also developed at SNL is the C++/Python UQ Toolkit (UQTk) [22].
Additional notable UQ packages include the Open source Treatment of
Uncertainty, Risk 'N Statistics (Open TURNS) C++ package [23], the
NESSUS packaged developed by Southwest Research Institute [24] and
the SMARTUQ package.

The primary motivation for developing UQpy is the lack of compre-
hensive UQ package specifically for the Python language, which is
extensively used for scientific computing. While extensive packages are
available in Matlab, C++, and R, only relatively few disparate codes
were previously available in Python. These tools were either for specific
niche applications, were catered to specific methodologies, or were only
partially Python-based (e.g. having a Python interface). The Uncer-
tainPy code [25], for example, is catered specifically to applications in
computational neuroscience. pyROM [26] is an open source Python

computational framework that implements model reduction techniques.
Chaospy [27], meanwhile, performs UQ using polynomial chaos ex-
pansions, which makes it an important contribution but not a general
toolbox. In fact, the existence of Chaospy is one reason that polynomial
chaos has not yet been implemented in UQpy, although it is expected to
be added in the near future. A number of Python packages are tailored
for inverse uncertainty quantification, such as SPUX [28] or ABCpy [29]
which provide Python implementations of Bayesian calibration algo-
rithms or SPOTpy that implements a number of algorithms for statistical
parameter optimization. Packages such as the MIT Uncertainty Quan-
tification (MUQ), Open TURNS, Korali [30] and UQTk toolboxes do
include a variety of tools and algorithms for general purpose uncertainty
quantification, however they are not exclusive Python packages. Instead
they are either mixed Python/C++ codes or C++ codes with a Python
interface, and thus are not particularly well-suited for Python develop-
ment of new UQ methodologies and algorithms. Finally, the UQ-PyL
package [31] is a fully Python-based software platform that includes
various UQ tasks tailored to quantifying and reducing model un-
certainties associated with model parameters. UQpy’s scope is some-
what broader as it allows for modeling of a wider range of uncertainties
via stochastic processes/fields for instance. Also, though new algorithms
can be added to the UQ-PyL package by creating new python scripts,
UQpy’s object oriented architecture is better suited for development
purposes, as will be shown throughout the manuscript. UQpy is therefore
intended to be a fully general UQ toolbox and development environment
for Python. As such, it combines many of the most widely used and
advanced methodologies in an architecture that can be imported
directly into the user’s Python environment, can seamlessly link to any
third-party computational model, is conveniently extensible for devel-
opment of new methodologies, and is capable of harnessing high per-
formance computing resources.

The following provides a brief overview of the code (specifically
Version 3), and how it can be adopted by interested users to perform
readily available UQ tasks or utilized by more advanced users for UQ
development activities.

1.1. UQpy as a toolbox

UQpy has a wide-range of built-in capabilities that are ready to use.
These capabilities are divided into a set of modules, each centered
around a common objective, as illustrated in Fig. 1. Utilization of UQpy
is built upon fundamental probabilistic operations and the evaluation of
computational models via the RunModel module, which drives all
simulations in the uncertainty analysis. RunModel allows the user to
define the model directly in Python (in which case the model is imported
into the user’s Python environment) or to run simulations from a third-
party software. Many other modules, therefore, rely on this RunModel

A. Olivier et al.

SampleMethods
class MCS:

class LHS:
criterion in supported criteria or user-defined callable

class MCMC:
class MH(MCMC):

def run_one_iteration()
class NewMetropolis(MCMC):

def run_one_iteration()

class NewSampler:

Fig. 2. Illustration of code modifications to add classes and methods to
UQpy modules.

object to perform simulations required by the various UQ tasks. In this
context, UQpy can be non-intrusively wrapped around any user soft-
ware, enhancing it to enable consideration of uncertainties. The Run-
Model module is discussed in more detail in Section 2.

Built around the RunModel module are six modules for UQ func-
tionalities ranging from fundamental operations (lower level) to
advanced methodologies (upper level). Within the modules, each spe-
cific functionality is implemented as a class. For example, the Sam-
pleMethods module contains a set of classes designed to draw samples,
randomly or deterministically, from a specified parameter space. This
module includes classes ranging from simple Monte Carlo sampling
(sampleMethods.MCS) to advanced Markov chain Monte Carlo
methods (SampleMethods.MCMC). A complete list of modules and
classes in the current release (Version 3.0) is provided in Appendix A.
Note that additional modules are under development as discussed in
Appendix B. Through this modular architecture, the user can easily take
advantage of UQpy to perform a variety of UQ tasks of various
complexity. The user may be interested in simple functionalities that
leverage a single class of UQpy, e.g., sampling realizations of a stochastic
process via StochasticProcess.SRM. More importantly though, the
user can use UQpy to perform much more complex UQ tasks that
internally leverage various UQpy modules. For instance, the Sample-
Methods . RSS class performs adaptive sampling of random variables by
iteratively leveraging the RunModel and Surrogates.Kriging
classes, while the Reliability.SubsetSimulation class internally
leverages the RunModel and SampleMethods.MCMC classes to
compute rare-event probabilities. Additionally, thanks to their modular
nature, the user can “daisy-chain” various classes of the software to cater
existing capabilities to their specific needs.

Those interested in using UQpy as a UQ toolbox have a variety of
options to install the software as discussed in the software documenta-
tion [32].

1.2. UQpy as a development environment

Perhaps more importantly, from a scientific and research perspec-
tive, UQpy is specifically designed to serve as a platform for developing
new UQ methodologies and algorithms. Firstly, contrary to packages
that are not fully Python-based, UQpy can very easily inter-operate with
other Python code, from widely used packages such as Numpy and
Scipy for mathematical operations or Matplotlib for plotting, to
more specialized packages for modeling (e.g., SftePy [33] for finite

Journal of Computational Science 47 (2020) 101204

element modeling, scikit-learn for machine learning and surrogate
modeling). Furthermore, its modularized, object-oriented architecture is
designed such that extensions or modifications to the code can easily be
performed to tackle a wider range of problems. Such extensions can be
implemented in various ways, either through development of new
modules (see Fig. 1) or through the extension of existing modules with
new classes and/or functions - as illustrated conceptually in Fig. 2 for
extensions to the SampleMethods module.

The code is designed such that its extension requires minimal
intrusion with existing classes and functions. In the simplest case, new
capabilities are implemented by simply adding a new class to an existing
module as illustrated by the NewSampler class in Fig. 2. Any such new
class can leverage the full suite of existing capabilities in UQpy. Where
appropriate, the code relies on inheritance concepts that greatly facili-
tate development of new methods. In such cases, the parent class con-
trols the framework and defines generic attributes and methods that are
shared across all sub-classes. Specific algorithms are created by creating
child classes that implement new methods or over-write only those
methods of the parent class that the user wishes to change. In this
fashion, a developer who wishes to add a new algorithm need not modify
any of the existing code, only add a class that inherits from the parent
class, as illustrated by the NewMetropolis sub-class of the parent
MCMC class in Fig. 2. This specific case is elaborated in greater detail in
Section 3.1.2. In other instances, the code allows replacing supported
functionalities with custom functions. An example in the SampleMe-
thods module is the LHS class, where four criteria are currently sup-
ported for pairing the samples. However a user can also provide a
custom function that pairs the samples, thus non-intrusively enhancing
the existing code in a straightforward manner.

Because a primary objective of this work is to illustrate how UQpy
serves as a development environment for UQ research, additional details
will be provided throughout the text below to specifically illustrate how
new developments can be made in the various modules. Those interested
in developing with UQpy are encouraged to install the software from
Github using a developer install as described in the software docu-
mentation [32].

1.3. Structure of the paper

The structure of the paper follows the structure of the software. UQpy
currently has nine modules, seven primary modules for probabilistic
modeling and two support modules, as shown in Fig. 1. We begin in
Section 2 by introducing the RunModel module, which is at the core of
UQpy, and enables almost all modeling activities — deterministic or
probabilistic. Sections 3-6 are focused on the various capabilities in
probabilistic modeling currently implemented in UQpy. This starts at the
foundation of the software (bottom of Fig. 1) with the SampleMethods
and StochasticProcess modules for simulation-based uncertainty
propagation in Section 3. The more advanced methods (top of Fig. 1) are
discussed in Sections 4-6. Section 4 deals with probabilistic inverse
modeling through the Inference module. In Section 5, we present the
Reliability module for rare-event simulation and probability of
failure estimation. Finally, surrogate modeling and active learning ca-
pabilities are presented using the Surrogates module in Section 6.
Two additional modules, the Distributions module for defining
probability distribution objects and the Transformations module for
transforming random variables are described in Appendices C and D.
The Utilities module is not discussed in this paper. It is also
important to mention that this manuscript is not intended to provide a
detailed description of all UQpy functionalities and programming fea-
tures. For this the reader is referred to the UQpy documentation [32]. It
is aimed instead at providing an overview of the breadth of tasks that
can be performed with this package, an introduction to its utilization
and code framework, and a guide for researchers aiming to use it as a
development tool. All the codes written within the manuscript are
provided as supplementary materials, or can be downloaded from

A. Olivier et al.

GitHub [11].

Finally, in order to illustrate the various UQpy capabilities, we track
two examples continuously throughout the paper. These two examples
intentionally describe relatively simple models as they serve only to
illustrate the various functionalities of UQpy. Much more complex
models can be, and have been, integrated within this framework. One
example is a structural dynamics model written completely in Python to
demonstrate how UQpy works within the Python environment to
execute Python models for UQ purposes. The second example is an
Abaqus finite element model performing thermomechanical analysis of
a beam. This example demonstrates the use of UQpy for models built
using third-party software. These examples are introduced in Section 2
and are used throughout the paper.

2. Driving simulations: the RunModel module
2.1. Introduction

Many tasks in UQ, from forward uncertainty propagation to inverse
learning, require running forward simulations of a computational model
h(-) at various points in the space of input uncertainties X. The forward
model can be generically represented as:

Y = h(X), (€]

where Y is the output quantity of interest (Qol). In forward uncertainty
propagation for instance, samples x) € R%,i = 1 : N are drawn from the
known distribution p(X) and the distribution of Y (or its moments) is
inferred from outputs of the forward simulations y® = h(x?).

In UQpy, forward simulations are initiated via the RunModel mod-
ule. This module can interact with Python computational models as well
as third-party software, allowing great flexibility in the definition of the
forward model h(-). If RunModel is used in combination with a Python
computational model, the user must simply provide the filename of a ‘.
py’ file that contains the forward model function h(-). In this case, the
model is directly imported into the user’s Python environment and
executed (it must be written in Python3). When running with a third-
party software model, RunModel interfaces with the model through
text-based input files and serves as the “driver” to initiate the necessary
calculations. Examples of both types of applications are provided
hereafter.

The jobs initiated by RunModel can be executed either in series or in
parallel, allowing distribution of multiple jobs over multiple processes.
The attribute ntasks is used to specify if series or parallel execution of
jobs is desired. For parallelization across a single compute node or
workstation, RunModel employs the multiprocessing Python
package when run in combination with a Python computational model,
and GNU parallel [34] when running a third-party software model. In
the case of cluster computing with a third-party software model, Run-
Model uses GNU parallel to execute jobs in parallel over multiple
cores on multiple compute nodes. This allows execution of jobs where
the model is itself parallelized. But the supported options to request
computational resources for such jobs are currently limited. Interested
users are referred to the UQpy documentation [32] for more details.
More support for execution of jobs on clusters will be rolled out in a
future release. The software does not currently support parallel pro-
cessing of Python models over multiple compute nodes.

Several examples for this paper, in particular those related to the
structural fire example presented in Section 2.3, were executed using the
Maryland Advanced Research Computing Center for third party (e.g.
Abaqus) models requiring high performance computing.

An object of the class RunModel is instantiated as follows:

Journal of Computational Science 47 (2020) 101204
The minimum required and optional attributes of the RunModel

from UQpy.RunModel import RunModel
model = RunModel (model_script, input_template,
ntasks, ...)

class (e.g., model_script, input_template, ntasks, ...) depend
on the desired workflow — Python vs. third party-software and serial vs.
parallel execution. Detailed examples of various workflows and the
corresponding input attributes will be provided in the following sec-
tions. In order to instantiate one or several forward simulations, the run
method is invoked as:

where samples is an array of at least two dimensions, with shape (N,

model .run(samples)

d, ...), that contains samples of the input random variables x ~ p(X).
The convention adopted by RunModel is that the first index, N, is the
number of samples and the second index, d, is the number of variables in
each sample. Each of these d variables can be of arbitrary dimension, and
hence samples can be of arbitrary dimension. N forward runs are then
executed and the output quantities of interest y) are stored as an attri-
bute goi_1list (list of length N) of the RunModel object. The i" sample
x® and corresponding Qol y® = h(x®) can thus be accessed as:

The run method can be invoked several times, in which case the

x_i = model.samples[il]
y_i = model.qoi_list[i]

samples and Qols will by default be appended to existing values, unless
input append_samples is set to False in which case existing values are
overwritten. The user can also provide samples directly when instanti-
ating the RunModel object, i.e.,

In this case, the run method is called during initialization and both

model = RunModel(samples, model_script,
input_template, ntasks, ...)

the samples and Qols are stored as previously described.

In the following sections, two examples are provided to illustrate the
usage of the RunModel module and its various workflows. First, a
simple Python model that solves the dynamics equation of a highly
nonlinear single-degree-of-freedom system is presented. Then a more
complex finite element model is described that illustrates the combi-
nation of RunModel with a third party software (Abaqus in this case).

2.2. Python computational model

This section illustrates how RunModel executes a Python computa-
tional model. The underlying physical problem deals with the dynamical
behavior of a highly nonlinear single-degree-of-freedom (SDOF) system
(see Fig. 3). The dynamical behavior of this Bouc-Wen model of hys-
teresis [35] can be represented by the following system of equations (the
mass is assumed known asm = 1):

Z(t) + cz(t) + k r(r) = —ii, (2a)

F(0) = 2= BIIr 0" (1) = 2 (1) Ir())", (2b)

A. Olivier et al.

where z, r are the displacement and hysteresis variables respectively and
1i is the ground acceleration that serves as input to the model. The model
is parameterized by its stiffness k, damping ¢ and Bouc-Wen parameters
n,f,y, which govern the shape of the hysteresis loop. Alternatively, the

Bouc-Wen model can be reparameterized using the three parameters n,

ro = N [ﬁy, 6= %

Uncertainties in this system originate from two distinct sources:
stochasticity of the input ground acceleration, and randomness in the
model parameters. Various UQ tasks can be performed with this model.
Here, forward propagation of multiple sources of uncertainties,
including high dimensional random vectors (stochastic processes), is
illustrated in Section 3.2 and parameter learning and model selection
from data are illustrated in Section 4. Two distinct models will be
considered for these two tasks.

The first model considers input uncertainty in both the model pa-
rameters [k, o, §,n| (assuming no damping, ¢ = 0), and the input ground
motion acceleration #(t). The input X thus consists in five random var-
iables (d = 5) of heterogeneous data types: four random scalars of model
parameters and a stochastic process that models the input excitation.
The quantity of interest Y is the time-dependent displacement response
of the system. In UQpy, when defining a RunModel object that calls a
Python computational model, the user must provide as input mod-
el_script, which is a string containing the name of the Python file
that contains the model h(-). This Python model must be defined as
either a class or a function with specific formatting rules, and the user is
referred to the UQpy documentation [32] for more details. In the case
considered herein, all Python functions related to this example are
written in a single file ‘utils_dynamics.py’. In particular, the function
‘sdof_boucwen_prop’ takes in as first input a sample consisting of one
realization of the model parameters and one realization of the stochastic
process,’ solves the dynamics equations in Eq. (2) forward in time and
returns the corresponding displacement. An abridged version of this
function follows.

def sdof_boucwen_prop(samples, ...):
Compute displacement QoI for a sdof Bouc-
Wen model, considering uncertainty in both
model parameters and input excitation
params = np.concatenate (samples [0, :4])
input_acceleration = samples[0, -1]
displacement = solve_dynamics(params,
input_acceleration)
return displacement

When defining the RunModel object, the name of the specific
function within the model_script that executes the model should be
provided as the model_object_name input. In this case, the RunMo-
del object is then instantiated as follows:

dyn_model_prop = RunModel (model_script="’

utils_dynamics.py’, model_object_name=’
sdof_boucwen_prop’, var_names=[’k’, ’r0’, ?
delta’, ’n’, ’input_accel’], ntasks=1, ...)

The input parameter ntasks is set to 1, specifying that execution of

this model is to be performed serially (not in parallel). Setting ntasks to

! The RunModel module also supports vectorized computations for Python
computational models; the model script would then accept several samples at
once and return all associated Qols.

Journal of Computational Science 47 (2020) 101204

an integer greater than 1 would trigger the parallel workflow where
ntasks are run concurrently.

The second model will be used for parameter estimation/model se-
lection, and is thus defined to deal solely with uncertainties in the sys-
tem parameters, i.e. X = [k, 1o, 8, n] (assuming no damping, ¢ = 0). The
input excitation #(t) is assumed known, it is a (scaled) version of the El-
Centro earthquake ground motion, downloaded from [36]. The abridged
function that computes the displacement Qol is written as follows:

def sdof_boucwen_infce(samples, scale_factor=1.,
0 8
Compute displacement QoI for a sdof Bouc-
Wen model, excitation is a scaled version of
El-Centro ground motion.

params = samples[0, :]
input_acceleration = scale_factor *
el_centro_data

displacement = solve_dynamics (params,

input_acceleration)
return displacement

The above function takes in an additional parameter scale_-
factor, which can thus be fixed outside of the ‘dynamics_utils.py’ file.
A value for this additional input must be provided when instantiating
the RunModel object, as follows:

scale_factor = 0.1

dyn_model_infce = RunModel (model_script="’
utils_dynamics.py’, model_object_name=’
sdof_boucwen_infce’, var_names=[’k’, ’r0’, ’
delta’, ’n’], ntasks=4, scale_factor=
scale_factor, ...)

The user can thus pass in any additional input that is used by the
model h(-) that computes the Qol, allowing great flexibility in defining
such models. Notice also that ntasks=4 in this RunModel object,
invoking parallel computing when the run method is called. Notice also
that in this setting, the input uncertainty is assumed to be composed of
four scalar random variables (d = 4), as indicated by the variable names
var_names.

Both RunModel objects previously defined can then be used to
execute the corresponding forward model, by calling the run method.
The input samples must be such that len(samples)=N and len
(samples [0]) =d. For instance, to run the second model for a given set
of parameters k = 1 cN/cm, rp = 2 cm, § = 0.9 and n = 3, one calls:

samples = np.array([1.0, 2.0, 0.9, 3.0]).reshape
(1, 4))

dyn_model_infce.run(samples=samples)

The Qol for this one run is accessed via:

qoi = dyn_model_infce.qoi_list [0]

2.3. Third-party software computational model

This section presents how RunModel can be used to drive simula-
tions of a model that is not in Python, with the help of an example. Such
a model can be of any kind (e.g. commercial software or locally

A. Olivier et al.

compiled software) and requires only that the software provide an ASCII
text-based input file through which the user defines the calculation and
its parameters. In the example provided here, the deflection of a uni-
formly loaded beam subjected to fire-induced temperature change is
simulated in the commercial finite element analysis software Abaqus
[37]. The problem is detailed in Fig. 4, and the geometry is simplified
from [38]. In particular, we investigate the influence of the fire load
density and the room-temperature material yield strength (considering
elastic-perfectly plastic material response) on the deflection of the
midpoint of the beam as it undergoes a temperature change defined by
the parametric curve [39] in Fig. 4, with a linear yield strength degra-
dation curve also shown in Fig. 4. Given that the calculation is per-
formed using numerical time integration, the relationship between the
inputs (fire load density and yield strength) and outputs (deflection)
cannot be expressed in closed form. Adopting the generic representation
in Eq. (1), each execution of the model h(-), thus takes a sample of two
uncertain scalar parameters as input X, and returns the difference be-
tween the maximum allowable displacement (d,) and the maximum
displacement of the midpoint of the beam (d,,) as the output, i.e., Y =

d, — dpp. The maximum allowable displacement is one of the criteria
used to assess load-bearing capacity of the beam and is computed asd, =
ﬁéh, where L is the length of the beam, and h is the depth of the
cross-section of the beam [40]. For the dimensions shown in Fig. 4,
dy ~ 7.14 cm.

The two required inputs when defining the RunModel object for this
workflow are the name of the model_script, and the name of the
input_template. In addition to these two required inputs, in this
example, the name of an output_script is provided for post-
processing. Unlike the Python workflow, the model_script is not the
computational model itself. Instead, the model_script is a Python
script (in the form of a function or class) with commands necessary to
execute the third-party model. The input_template is a text file
which contains placeholders demarcated by angle brackets < - > with
the variable names inside. Standard Python indexing is supported inside
the place-holders. RunModel scans the input_template file and re-
places the placeholders with the corresponding sample values of the
input variables. For example, the placeholder <var[0] [2]> in the
template file will cause the corresponding component of var to be
placed at that location in the input file. For the computational model in
the example, the variable names used are gtd for the fire load density,
and fy for the yield strength. Since these are different from the default
variable names used by RunModel, they have to be passed as an input
when defining the RunModel object. Finally, the output_script will
be executed by RunModel to retrieve the quantity of interest and save it
in the attribute goi_1list of the RunModel object for postprocessing
and adaptivity/learning.

The RunModel object is defined as follows:

abaqus_sfe_model = RunModel (model_script="’
abaqus_fire_analysis.py’, input_template=’
abaqus_input.py’, output_script=’
extract_abaqus_output.py’, var_names=[’qtd’,
28791 5 0ao)d

and can be used to execute the third-party software model by passing
samples of the random variables as inputs to the run method as
follows:

abaqus_sfe_model.run(samples=samples)

After execution of the model, the outputs corresponding to each
sample are saved as a list in the attribute goi_1list of the RunModel
object.

Journal of Computational Science 47 (2020) 101204

outputs = abaqus_sfe_model.qoi_list

This model will be used in later sections of the paper to demonstrate
Monte Carlo simulation and the stratified sampling variance reduction
method in Section 3.1.1. Reliability estimation capabilities of UQpy will
be demonstrated with this model using FORM in Section 5.1, and using
subset simulation in Section 5.2. Adaptive sampling capabilities in UQpy
such as Adaptive-Kriging MCS will also be demonstrated using this
model, in Section 6.2. Since this model is moderately computationally
expensive, a surrogate model will be trained to represent the perfor-
mance function from this model, in Section 6.3.

3. Forward propagation of uncertainties
3.1. Sampling random variables: the SampleMethods module

In forward simulation, one wants to study how uncertainties in in-
puts X, with known probability density p(X), propagate through the
computational model h(-) and affect the output quantities of interest Y.
Propagation of uncertainties generally requires evaluating the compu-
tational model at various points x) of the input space. The Sample-
Methods module contains several classes to sample realizations x(!) of
random variable (RV) X. Methods such as simple Monte Carlo sampling
(MCS) are available, along with variance reduction sampling techniques
such as Latin Hypercube Sampling (LHS) [41,42], stratified sampling
(STS) [41], and some adaptive variations of these (e.g. refined stratified
sampling, RSS) [43,44], which require the distribution of the RVs to be
known in advance. The module also contains classes to sample from
distributions that are known up to a constant, such as Markov Chain
Monte Carlo algorithms and Importance Sampling.

Sampling schemes available in the SampleMethods module, such
as MCS, LHS, STS, and RSS, can be used to generate independent
random draws from a specified probability distribution or distributions.
The Distributions module of UQpy (Appendix C) is utilized by the
SampleMethods module to define probability distributions. This
module includes a variety of univariate and multi-variate distributions;
it also supports user-defined distributions and multi-variate distribu-
tions defined via their marginals, possibly with a copula to introduce
dependence between components. Another option to induce correlation
between the components of random vectors is to use the Trans-
formations module, described in Appendix D.

In the following sections, we describe the primary sampling methods
that are available in UQpy. The emphasis here is placed on their
implementation in the software and their use for uncertainty propaga-
tion. For this reason, we do not specifically describe each method in
detail. For such descriptions, references are provided. Additionally, we
further discuss several of these methods in the following section in the
context of probabilistic inverse problems. Again, here the focus is on
forward propagation.

3.1.1. Combining SampleMethods and RunModel to propagate
uncertainties

For general uncertainty propagation, samples generated using the
SampleMethods module can be passed as inputs to the run method of
a RunModel object. To illustrate this point, we consider two different
sampling schemes to generate random inputs for the third-party Abaqus
thermomechanical model described in Section 2.3. Consider that the fire
load density is modeled as a uniformly distributed random variable on
the range 50-450 MJ/m? and the yield strength at room temperature is
modeled as a normally distributed random variable with a mean value of
250 MPa and a coefficient of variation of 7%. To draw samples from
these distributions using any of the sampling schemes available in UQpy,
distribution objects are first created:

A. Olivier et al.

from UQpy.Distributions import Normal, Uniform
distl = Uniform(loc=50, scale=400)

dist2 = Normal (loc=250e6, scale=17.5e6)

dists = [distl, dist2]

Samples of these parameters can be drawn using Monte Carlo sam-
pling (the MCS class) as follows:

from UQpy.SampleMethods import MCS

x_mcs = MCS(dist_object=dists, random_state
=1234567890)

x_mcs.run(nsamples=1024)

Similarly, samples of these random variables can be drawn using
stratified sampling (the STS class) as follows:

from UQpy.SampleMethods import RectangularStrata,
RectangularSTS

strata = RectangularStrata(nstrata=[32, 32])

x_sts = RectangularSTS(dist_object=dists,
strata_object=strata, random_state
=1234567890)

x_sts.run(nsamples_per_stratum=1)

In each case, we draw 1024 samples. For MCS these samples are
randomly drawn according to the given distributions. For STS, the two-
dimensional domain is discretized into 32 x 32 disjoint square strata of
equal probability and one sample is drawn from each stratum. UQpy
supports several types of geometric stratifications (rectangular, voronoi,
delaunay), and user-defined stratifications can easily be implemented
via sub-classing. The random_state input allows the user to seed the
pseudo-random number generator and obtain reproducible results. This
random_state input is included wherever needed in the code and used
throughout the examples presented in the manuscript.

The third-party model can be executed for each of these sample sets
as follows, for MCS:

abaqus_sfe_model.run(samples=x_mcs.samples)

For sTsS:

abaqus_sfe_model.run(samples=x_sts.samples)

Recall that the RunModel object abaqus_sfe_model has been
previously initialized in Section 2.3.

Fig. 5 shows the samples generated using both MCS and STS. The
finite element model was evaluated at these points to calculate the
maximum deflection of the midpoint of the beam. This deflection is
compared to a deflection tolerance of 7.14 cm, and the sample markers
in Fig. 5 are colored blue if the computed deflection does not exceed this
threshold, and are colored red if the deflection exceeds the threshold. In
the latter case, the beam is considered to have failed. Therefore, prop-
agating samples through the model in this manner allows estimation of
the probability of failure of the beam, which is estimated by Monte Carlo
simulation to be 3.3% using 10,000 samples (not shown). We will return
to this problem of failure probability estimation in the context of reli-
ability analysis in Section 5.

Journal of Computational Science 47 (2020) 101204

3.1.2. Markov chain Monte Carlo algorithms and importance sampling
The SampleMethods module of UQpy also includes algorithms for
Markov chain Monte Carlo (MCMC) and importance sampling (IS).
These algorithms are used to sample from probability distributions p(X)
that are either difficult to sample from or may only be known up to a

constant, i.e., p(X) = NTX), where p(X) can be evaluated but C is unknown
— as is the case when using Bayes’ theorem for instance. The MCMC and
IS classes can be used as stand-alone tools for sampling from p(X), but
they are also invoked by other classes in UQpy to perform advanced UQ
tasks, such as Bayesian estimation (Inference module) or estimation
of failure probability via Subset Simulation (Reliability module).
These are specifically discussed in Sections 4 and 5, respectively.

MCMC algorithms build a Markov chain that has the desired target
distribution p(X) as its equilibrium distribution, thus states of the chain
are samples of the desired distribution. There are numerous MCMC al-
gorithms, and a comprehensive review of these algorithms is beyond our
scope. The reader is referred to e.g. [45] for an introduction to some
MCMC algorithms and [46] for more theory about MCMC methods.
Currently, UQpy includes the following MCMC algorithms, where each
algorithm is implemented as a class that inherits from a parent MCMC
class:

e Metropolis-Hastings (MH): (MH class) The most well-known algo-
rithm, MH samples a candidate x* from a previous state x;_; using a
user-defined proposal distribution x* ~ J(-|x¢_1) and accepts it with

Pt Tl ax*)

1) TOFPRicr)?

probability a = min{ 1}. In UQpy, the user can run

several chains in parallel by providing multiple seed points.
Component-wise Modified Metropolis-Hastings (MMH): (MMH class)
In MMH [47], sample components are accepted or rejected according
to the MH acceptance/rejection scheme in one dimension at a time. If
the target pdf can be factorized into a product of one-dimensional
distributions, the MMH can be used.

Delayed Rejection Adaptive Metropolis (DRAM): (DRAM class) The
DRAM method [48] combines the delayed-rejection principle with
adaptation of the proposal covariance matrix in an MH accept-
ance/rejection scheme.

DiffeRential Evolution Adaptive Metropolis (DREAM) (DREAM class)
The DREAM algorithm [49,50] runs several MH chains simulta-
neously and automatically tunes the scale and orientation of the
proposal distribution in randomized subspaces during the search.
Affine Invariance Ensemble Sampler with Stretch Moves (Stretch)
(Stretch class) The Stretch sampler [51,52] leverages an
affine-invariant property in a scheme that propagates an ensemble of
walkers.

In the interest of brevity, all of the available algorithms will not be
illustrated here.

In UQpy, the target distribution p(X) is defined as a callable that
computes p(x) or Inp(x) (the latter is preferred for stability reasons) for a
given ndarray x of shape (N,d). Whenever possible, the log pdf of several
samples is evaluated at once, for example when several chains are run in
parallel. The target function callable can also take in any number of
positional arguments. For instance, in order to sample from a 2D Rose-
nbrock function, the following callable is created:

def log_pdf_target(x, param):
return -(100*(x[:, 11-x[:, 01%*2)**2+(1-x[:,
0]) **2) /param

The target function callable is provided to the MCMC class as input
pdf_target or log_pdf_target. All additional positional argu-
ments are provided as a tuple in input args_target, the special Py-
thon syntax *args is used within the code to transfer these positional

A. Olivier et al.

Displacement (Qol)

Scaled El-Centro ground acceleration

Journal of Computational Science 47 (2020) 101204

Bouc-Wen model response

2(t)

Random
model
parameters

k,c

input acceleration G(t) [cm-s?]
°

restoring force kr(t) [cN]
°

10 15 20

time [s]

Stochastic input: [
ground acceleration ii(t)

25

30 35 40 -1 0 1 2 3 4 5

displacement z(t) [cm]

Fig. 3. Dynamics example: Left: physical system and sources of uncertainty; middle: El Centro ground acceleration as input excitation; right: system response for a

given realization of the input excitation and system parameters.

arguments to the target callable. Any MCMC class takes in several addi-
tional arguments such as nburn (the number of samples to discard for
burn-in), jump (the thinning parameter), and seed (the starting state
(s)). Certain inputs are algorithm-specific; the MH algorithm for instance
utilizes a user-defined proposal distribution. The user is referred to the
UQpy documentation [32] for a more complete description of the input
arguments to the various MCMC classes.

To sample from the above Rosenbrock distribution using the
Metropolis-Hastings algorithm, the MCMC sampler is initialized and run
as follows:

Additional positional arguments of the target
callable

args_rosenbrock (20,)

Define the proposal distribution

proposal JointInd (marginals=[Normal (scale=0.
Normal (scale=2.)1])

Create the MH object and sample

from UQpy.SampleMethods import MH

sampler MH(log_pdf_target=log_pdf_target,
args_target=args_rosenbrock, dimension=2,
nchains=1, nburn=500, jump=100, proposal=
proposal, ...)

sampler .run(nsamples=500)

5)’

Input nsamples represents the number of samples saved by the
algorithm after discarding burn-in and thinning. If the user provides
nsamples when initializing the class, the run method is directly called
at initialization. Fig. 6a shows the resulting samples drawn from this
Rosenbrock function using the MH algorithm.

The MCMC class was developed in such a way that new advanced
algorithms can be quite easily integrated within the existing framework,
thus allowing researchers to implement their novel algorithms, compare
them with existing methods, and make them available to the research
community. As previously mentioned, each MCMC algorithm is imple-
mented as a class that inherits from a parent MCMC class. This parent
class initializes the generic inputs that are shared across all algorithms,
such as the target pdf, burn-in and so on. It defines the main run method
that runs the chain forward and stores the samples; this method is also
shared across all algorithms. The run method relies on a run_o-
ne_iteration method to run one state of the chain: it takes in as in-
puts the current state current_state and its log-pdf
current_log_pdf and returns the new state and its log-pdf value.
This run_one_iteration method contains the core MCMC algorithm,
and it is thus being over-written by each new subclass that codes a
specific algorithm. Adding a new algorithm can therefore be easily done
— as illustrated schematically in the code section below — by defining a
new class that inherits from MCMC, initializing any algorithm-specific
input within the _init_ function and over-writing the

run_one_iteration method that propagates the chain forward. This
setup avoids any interaction with the existing code.

Existing base MCMC class,
attributes and methods
class MCMC:
def __init__(self, pdf_target,
initialize generic inputs
def run(self, nsamples):
run iterations and save samples
for i in range(mnsamples):
current_state
self.run_one_iteration(
current_state)
self.samples[i]

defines gemneric

nburn, ...):

current_state

User-defined MCMC sampler
class NewMetropolis (MCMC):
def __init__(self, pdf_target,
new_input, ...):
initialize generic and algorithm
specific inputs
super () .__init__(pdf_target, nburn, ...)
custom_initialization(new_input)
run_one_iteration(self, current_state):
run one iteration of new Metropolis
algorithm, compute new state
return new_state

nburn,

def

Finally, one can also sample from a distribution that is known only to a

scale factor (p(X) :’@) via self-normalized importance sampling (IS). In

IS, one draws samples x) from a proposal distribution z(X) that is easy to
sample from, then weights the samples to account for the discrepancy
between the sampling and target distributions. The weights are
computed as w® =p(xD)/z(x?), then normalized to sum up to 1 so that
the weighted set of samples defines an appropriate probability distribu-
tion. In UQpy, the user defines the target pdf with inputs log_pdf_-
target or pdf_target as in the MCMC class. The proposal must be
provided as a Distribution object that has an rvs method and a
log_pdf or pdf methods. Fig. 6b shows an importance sampling esti-
mation of the Rosenbrock function, obtained via the following code:

proposal JointInd (marginals=[Uniform(loc=-4.5,
scale=11.), Gamma(a=1.5, loc=-1, scale=8.)])

from UQpy.SampleMethods import IS

sampler IS(log_pdf_target=log_pdf_target,
args_target=args_target, proposal=proposal)

sampler .run(nsamples=4000)

A. Olivier et al.

Note that IS is also used as a popular variance reduction scheme that
is commonly employed in reliability analysis. The IS class can be easily
integrated in IS-based reliability methods, although this is not explicitly
illustrated here.

3.2. Simulation of stochastic processes and random fields: the
StochasticProcess module

3.2.1. The StochasticProcess module

A stochastic process, or random field, is defined as a set of random
variables defined on an indexed set. When the indexed set is defined as
points in time, the stochastic processes describes the stochastic evolu-
tion of a time-dependent system. When the indexed set represents points
on the Euclidean space, stochastic processes are more commonly
referred to as random fields. Here, we use the term stochastic process to
represent both since they are mathematically equivalent. Stochastic
processes find applications in numerous disciplines ranging from
biology, physics, neuroscience, signal processing, finance, and statistical
mechanics, to computational mechanics which is the context here.
Stochastic processes are especially useful in the analysis of complex non-
linear systems where simulation is essential for analysing the system.
Simulation of stochastic processes generally utilizes an expansion of the
following form:

A(r) = ZM: Ci(@)6,(1), 3)

where C;(w) are a set of random variables and 6(t) are deterministic basis
functions. Arguably, the two most widely used methods for the simu-
lation of stochastic processes are the spectral representation method
(SRM) [53,54] and the Karhunen-Loeve expansion (KLE) [55,56], both
of which are implemented in UQpy. The two methods differ in their
prescribed basis 6(t). The SRM utilizes a Fourier basis while the KLE
derives its basis as the eigenfunctions of the covariance function.

The existing implementations of the SRM and KLE, given in the SRM
and KLE classes, are used to generate Gaussian stochastic processes in
which the random variables in the SRM are independent random phase
angles uniformly distributed on [0, 27|, and in the KLE the random
variables are independent standard normal.

For the simulation of non-Gaussian processes, UQpy provides two
methods. The first method simulates translation processes [57] in which
an underlying Gaussian power spectral density (for SRM) or covariance
function (for KLE) and a marginal non-Gaussian distribution are defined.
In UQpy, this is performed using the Translation class. When defining
a translation process, it is common to define the non-Gaussian power
spectral density (or covariance function) and the marginal non-Gaussian
distribution. However, simulation of translation processes requires an
underlying Gaussian power spectral density/covariance function. To
identify this underlying Gaussian process, UQpy utilizes the iterative
translation approximation method (ITAM) [58] to overcome the issue of
translation process incompatibility. The InverseTranslation class
performs this iterative algorithm and can be used in support of simulation
of non-Gaussian translation processes utilizing either the SRM or KLE.

The second method, referred to as the bispectral representation
method (BSRM) and implemented in the BSRM class, is the 3rd-order
generalization of the SRM derived in [59] in which the stochastic pro-
cess is expanded from both the power spectrum and the bispectrum of
the process.

Journal of Computational Science 47 (2020) 101204

UQpy also supports the simulation of Gaussian multi-dimensional
random fields and multi-variate random processes using the SRM class
as well as multi-dimensional non-Gaussian random fields using the BSRM
class. Non-Gaussian multi-dimensional random fields and multi-variate
random processes can be simulated using the Translation class. In
future releases we anticipate extending the capabilities for simulation of
Gaussian and non-Gaussian and non-stationary random processes, as
well as introducing a new class for the simulation of Gaussian and non-
Gaussian stochastic waves [60].

Here, we illustrate how to simulate a 1-dimensional, uni-variate
stationary Gaussian random process using the SRM class and then
show how to simulate a 1-dimensional, uni-variate stationary non-
Gaussian random process using the InverseTranslation and KLE
classes.

To simulate using the SRV, the user must specify the discretized
power spectral density as well as the time and frequency discretizations.
For the examples shown here, the power spectrum and discretizations
are given by:

130
S<CU> = Twze’s‘“,

Aw = 0.01,
, = 1.28rad/sec,

4

where S is the power spectrum, Aw is the frequency discretization and w,,
is the upper cutoff frequency. An abridged code to simulate 1000 re-
alizations of this random process follows:

from UQpy.StochasticProcess import SRM
SRM_object = SRM(nsamples=1000, power_spectrum=S,
time_interval=dt, frequency_interval=dw,
number_time_intervals=nt,
number_frequency_intervals=nw, random_state
=1234)
samples = SRM_object.samples

where S is an array containing the discretized power spectrum. The
specified power spectral density and two sample realizations of the
random process are shown in Fig. 7a and b.

For simulation with the KLE class, the user must specify the dis-
cretized autocorrelation function and the length of the time discretiza-
tion. Additionally, the number of eigenvalues to be used in the
expansion can be specified as well. For brevity, this case will not be
illustrated here.

Next, we translate the samples along with the power spectrum of the
Gaussian process to a lognormal process using the Translation class.
The translated lognormal power spectrum is shown along with the
Gaussian power spectrum in Fig. 7a and samples are plotted in Fig. 7c.
Subsequently, we re-identify the underlying Gaussian power spectrum
which, upon translation, would yield the lognormal power spectrum
using the InverseTranslation class (i.e. using the ITAM). The actual
Gaussian and the identified Gaussian power spectra are plotted in Fig. 8.
As we can see, these power spectra align nearly perfectly.

A brief outline of the code to execute the translation and inverse
translation is shown below.

A. Olivier et al.

from UQpy.StochasticProcess import Translation,
InverseTranslation
from UQpy.Distributions import Lognormal

dist_object = Lognormal(0.5, 0, np.exp(0.5))

Translate_object = Translation(dist_object=
dist_object, time_interval=dt,
frequency_interval=dw, number_time_intervals=
nt, number_frequency_intervals=nw,
power_spectrum_gaussian=S, samples_gaussian=
samples)

samples_ng = Translate_object.
samples_non_gaussian

S_ng = Translate_object.
power_spectrum_non_gaussian

R_ng = Translate_object.
correlation_function_non_gaussian

Inverse_translate_object = InverseTranslation(
dist_object=dist_object, time_interval=dt,
frequency_interval=dw, number_time_intervals=
nt, number_frequency_intervals=nw,
correlation_function_non_gaussian=R_ng,
samples_non_gaussian=samples_ng)

R_g_inv = Inverse_translate_object.
correlation_function_gaussian
S_g_inv = Inverse_translate_object.

power_spectrum_gaussian

3.2.2. Propagation of heterogeneous uncertainties using RunModel

This section illustrates how to propagate multiple sources of un-
certainties, including random variables and high-dimensional stochastic
processes, through a computational model with RunModel. Recall that
the RunModel object for propagation of combined model parameters
and input excitation uncertainties through a nonlinear SDOF dynamical
system has been created in Section 2. To propagate uncertainties, the
user must simply call the run method, giving to it as input the samples
composed of both realizations of random model parameters and re-
alizations of the stochastic process generated previously via SRM. Here,
we emphasize that RunModel requires that samples have a shape of (N,
d) where N is the number of samples and d is the number of variables.
However, each variable need not be a scalar. In the example provided
here, the samples are passed in as five variables (k, r0, delta, n,
accel) where the first four variables are scalars and the final variable is
an array containing the generated random process. This convention al-
lows UQpy to employ standard Python indexing for high-dimensional
variables. For example, within the calls to the computational model
executed by RunModel one could extract a specific component of the
variable accel. Abridged code is provided below for simulations with
both Gaussian and lognormal excitation. Sample dynamic responses are
presented in Fig. 9.

Generate realizations of model parameters, for
instance using MCS
samples_k, samples_r0, samples_delta, samples_n =
MCS (...)
Run model for Gaussian excitation, overwrite
all previous samples and qois
samples = [[k, r0O, delta, n, accel] for k, r0,
delta, n, accel in zip(samples_k, samples_rO,
samples_delta, samples_n, samples_g)]
dyn_model_prop.run(samples=samples,
append_samples=False)
Run model for log normal excitation, overwrite
all previous samples and qois
samples = [[k, r0O, delta, n, accel] for k, rO0,
delta, n, accel in zip(samples_k, samples_rO,
samples_delta, samples_n, samples_ng)]
dyn_model_prop.run(samples=samples,
append_samples=False)

Journal of Computational Science 47 (2020) 101204
4. Probabilistic inverse learning: the Inference module
4.1. Introduction and structure

The goal in inference can be twofold: given some data D, estimate the
parameters of a model and/or assess the performance of a set of candidate
models (i.e. model selection). UQpy supports various algorithms for
parameter estimation and model selection, as summarized in Fig. 10.

In the following, it is assumed that the probabilistic model for
inference is of the form:

D ~ h(X) +e, (5)

where h(X) is a parametric computational model with parameters X that
is executed via RunModel and the error ¢ is assumed to be Gaussian with
zero mean. D in this case is a one-dimensional numpy ndarray of shape
(np,). UQpy supports a wider variety of inference problems, such as non-
Gaussian error models, learning the parameters of a probability distri-
bution defined by an object of the Distribution class, or problems
specified by a user-defined likelihood function. Due to limited space
however, the present manuscript focuses on the generic problem defined
by Eq. (5), and the interested reader is referred to the UQpy documen-
tation [32] for details about the more advanced capabilities of the
Inference module. It is to be noted though that, at the time of this
article, UQpy only supports off-line methods for inference, i.e., the whole
data set must be provided up-front. Sequential methods may be
considered for future release.

A model in the form of Eq. (5) is defined in the Inference module
by an object of the InferenceModel class. In the InferenceModel
class, the computational model h(-) is defined as a parameterized
RunModel object, ¢ is specified by its covariance, and (for Bayesian
methods) a prior for the parameter vector is specified as an object of the
Distribution class. The main role of the InferenceModel object is
to evaluate the log likelihood function of the data for the model, inp(D|
x@)i=1: N or the scaled log posterior, Inp(D|x")p(x?),i=1: N for
Bayesian estimation. To do so, the InferenceModel possesses an
evaluate_log_likelihood method (evaluate_log_posterior
for Bayesian estimation), which takes as inputs a data vector D denoted
data and a 2D numpy ndarray params of N parameter vectors x),i =
1 : N. This calculation involves simulation of the model via RunModel
and leverages its parallel execution when N >1. The eval-
uate_log_likelihood method (evaluate_log posterior for
Bayesian estimation) is at the core of the Inference module; it is
invoked by all its remaining classes to perform parameter learning and
model selection. Although discussed here in the context of a Gaussian
error, we further emphasize that, for more general cases, the user can
provide a custom non-Gaussian log-likelihood function.

In the following sections, the capabilities of the Inference module
will be illustrated on the dynamics computational model presented in
Section 2 (dyn_model_infce RunModel object). The data D used for
inference consists of a displacement time-series of total duration 40s,
sampled at 50 Hz. This data was generated synthetically from a Bouc-
Wen model with k = 1 cN/cm, rp = 2.5cm, § = 0.9, n = 3, and small
viscous damping, thus introducing some modeling error since the model
used for inference assumes no damping. 5% root-mean-square (RMS)
Gaussian noise was also added to the data to simulate measurement
noise. The vector of parameters to be estimated is thus X = [k, 1o, 6,n],
with prior defined as follows (shown in Fig. 11):

var_names = [’k’, ’r0’, ’delta’, ’n’]

from UQpy.Distributions import JointInd, Uniform,
Lognormal

prior = JointInd(marginals=[Uniform(loc=0.5,
scale=2.5), Lognormal(s=0.5, loc=1., scale

=2.), Lognormal(s=0.8, loc=0.5, scale=2.),
Uniform(loc=1.1, scale=8.9)])

A. Olivier et al.

Journal of Computational Science 47 (2020) 101204

Uniform load of 35 mm |
3500 N/m
35 mm
) m > Cross section
Br fyr
E f
y f 5
[¢]
@
QO
25
3
«Q
_|
t T .
0cC 1200 C

Temperature history of the beam

temperature

Variation of yield stress and
Young’s modulus with

Temperature dependent material
behavior

Fig. 4. Structural fire engineering example: Top - simply supported beam with uniform load and elevated temperature. Bottom from left to right — sample tem-
perature histories defined by parametric fire curves, temperature-dependence of the yield strength and Young’s modulus, and temperature-dependent elastic

perfectly plastic stress-strain relations.

The InferenceModel object is then created as:

from UQpy.Inference import InferenceModel

inf_model_bw = InferenceModel (nparams=4,
runmodel_object=dyn_model_infce,
error_covariance=variance_noise,
name=’BoucWen’)

prior=prior,

where variance_noise is assumed to be known as 5% of the RMS
of the data. Using this InferenceModel object, we now turn our
attention to parameter estimation for the model.

4.2. Parameter estimation

Parameter estimation techniques aim to determine the parameters
governing a computational model based on observed noisy data, and
quantify uncertainties associated with these parameters due to mea-
surement errors. The interested reader is referred to e.g. [45] for a
thorough introduction to parameter estimation using frequentist and
Bayesian approaches. In this section, we describe the two forms of
parameter estimation available in UQpy: maximum likelihood estima-
tion and Bayesian parameter estimation.

4.2.1. Maximum likelihood estimation: the MLEstimation class
In a frequentist approach, the parameter value that makes the
measured data most likely is the maximum likelihood estimate:

©

In UQpy, the MLEstimation class of the Inference module
computes this maximum likelihood (ML) estimate. The MLEstimation
class operates on an InferenceModel object (described above) and a
data vector to maximize the likelihood function using a specified opti-
mizer (default is scipy.optimize.minimize). The user can also
leverage advanced global optimization functions by providing an opti-
mizer function as input optimizer to the MLEstimation class. The
reader is referred to the UQpy documentation [32] for details about the

xvL = argmaxy p(D|x).

11

requirements of this optimizer function; the example that follows le-
verages the basin-hopping global optimization scheme (see scipy.
optimize.basinhopping).

To obtain the maximum likelihood parameter estimates for the dy-
namics problem previously presented, an MLEstimation object is
created as follows:

from UQpy.Inference import MLEstimation

ml_estimator = MLEstimation(inference_model=
inf_model_bw, data=data_noisy, optimizer=
basinhopping, niter_success=10, ...)

where niter_success is an input parameter of the scipy.
optimize.basinhopping function. The optimization procedure is
instantiated by providing an initial guess x0 to the run method” as
follows:

ml_estimator .run(x0=[1.7, 3.2, 3.3, 5.5])

The values of the fitted parameters and the value of the maximum log
likelihood are stored as attributes of the object, m1_estimator.mle
and ml_estimator.max_log_like respectively. For this example,
the MLE is given by:

print (ml_estimator.mle)
>> [0.9987461 2.65146952 1.03224652 2.65229821]

4.2.2. Bayesian parameter estimation: the
BayesParameterEstimation class

In the Bayesian paradigm, parameters are treated as random vari-
ables with associated pdfs that represent the state of knowledge about
that parameter. The prior pdf p(X) incorporates information available to

2 For all inference classes, if x0 (or nsamples in Bayesian estimation) is
provided when creating the object, the m1_estimation is directly called
when instantiating the object.

A. Olivier et al.

the user prior to observing data. It is updated upon observing data D
using Bayes’ theorem to yield the posterior pdf as:

pDX)p(X)
p(D)

In UQpy, the BayesParameterEstimation class draws samples
from the posterior pdf using MCMC or IS by calling an MCMC or IS class
from the SampleMethods module. The BayesParameter-
Estimation class leverages the InferenceModel object and a data
vector to compute the scaled posterior (numerator of Eq. (7)), and uses
this in the specified sampling_class (IS oranMCMC subclass,i.e. MH,
Stretch, ...) to draw samples from the posterior. For the model
considered herein, the BayesParameterEstimation object is
created as follows:

p(X|D) = @

from UQpy.Inference import
BayesParameterEstimation

from UQpy.SampleMethods import Stretch

be = BayesParameterEstimation(data=data_noisy,
inference_model=inf_model_bw, sampling_class=
Stretch, seed=seed, scale=2)

where seed and scale are inputs to the Stretch class. In this
example, the affine-invariant ensemble sampler with stretch moves is
utilized for MCMC, starting with 16 walkers initially drawn in a region
near the ML estimate.

Samples from the posterior are drawn by calling the run method as
follows:

be.run(nsamples=5000)

which simply calls the run method of the MCMC (or IS) sampler. The
user can thus continue drawing new samples by calling the run method
several times.

Outputs of the class BayesParameterEstimation are samples
from the posterior pdf (weighted samples in the case of IS). Results of the
Bayesian estimation for the dynamics model are shown in Fig. 11,
highlighting the uncertainties in the model parameters inferred from the
data.

4.3. Model selection

4.3.1. Problem statement

Model selection refers to the task of statistically selecting a model
from a set of candidate models, given some data. In the following, the
noisy data previously described is used to identify the ‘correct” dynamics
equation governing the SDOF system from noisy displacement data. The
candidate models are:

e a linear model governed by a stiffness parameter k [cN/cm] and
viscous damping parameter c [cN/m]®;

e an elastic-perfectly plastic model, parameterized by X = {k,z2,,c}
where k is the stiffness parameter, z, [cm] is the yield displacement,
and c is the damping coefficient;

e a Bouc-Wen model of hysteresis without damping as previously
described, parameterized by X = {k,ro,8,n}.

Model selection can be performed by minimizing a chosen infor-

mation theoretic criterion, or in a Bayesian fashion by computing the

3 The unit cN/m is chosen for the damping parameter so as to keep all pa-
rameters in the same order of magnitude.

12

Journal of Computational Science 47 (2020) 101204

posterior probability of each candidate model. The interested reader is
referred to e.g. [61] for more theory and applications in stochastic dy-
namics. UQpy supports both approaches for model selection, however in
its current version the Bayesian model selection class uses a simplistic
formula for computation of the model evidence, which needs to be
improved upon to yield more reliable results. For the problem presented
herein, only the information theoretic approach will be illustrated.

Model selection methods in UQpy require the user to provide a list of
candidate models, where all candidate models are objects of the
InferenceModel class. For the problem at hand, the linear and elas-
toplastic models must be defined in addition to the Bouc-Wen model
previously studied as follows:

Define the elastic inference model

dyn_linear = RunModel (model_script="’
utils_dynamics.py’, model_object_name=’
sdof_linear_infce’, var_names=[’k’, ’c’],
scale_factor=scale, ...)

inf_model_linear = InferenceModel(nparams=2,
runmodel_object=dyn_linear,
variance_noise, name=’linear’)

Define the elastoplastic inference model in a
similar fashion

dyn_elastoplastic = RunModel(...)

inf_model_elastoplastic = InferenceModel(
runmodel_object=dyn_elastoplastic, ...)

Define the list of candidate models

candidate_models = [inf_model_linear,
inf_model_elastoplastic, inf_model_bw]

error_covariance=

4.3.2. Information theoretic model selection: the InfoModelSelection
class

In this approach, an information theoretic criterion is computed for
all candidate models. The model that minimizes the chosen criterion is
selected as the ‘best’ model given the data. UQpy implements three
criteria — the Bayesian information criterion (BIC) [62], the Akaike in-
formation criterion (AIC) [63], and the Akaike criterion with correction
for small data sets (AICc) [64,65]. The AIC for instance is defined as:

AIC = —2InL + 8)

datafitterm

2d
<~

penaltyagainst
modelcomplexity

where d is the number of parameters characterizing the model and T =
p(D|xmy) is the maximum value of the likelihood function.

In UQpy, this procedure is performed using the InfoModelSe-
lection class. It takes as required inputs a list of InferenceModel
objects and a data vector. The InfoModelSelection class leverages
the MLEstimation class to perform maximum likelihood estimation
for each model and compute L. Inputs to MLEst imation are provided
to InfoModelSelection as lists of length equal to the number of
models. For the example at hand, the InfoModelSelection object is
created as follows:

from UQpy.Inference import InfoModelSelection

optimizer = [basinhoppingl] * 3

niter_success = [15, 15, 10]

selector = InfoModelSelection(candidate_models=
candidate_models, data=data_noisy, criteriomn=
’AIC’, optimizer=optimizer, niter_success=
niter_success, ...)

Creating this object also instantiates a MLEstimation object for
each model, stored in a list selector.ml_estimators.

The model selection procedure is performed when calling the run
method of the InfoModelSelection object as follows:

A. Olivier et al.

[f1.7,
5.5]1]
selector.run(x0=x0)

x0 = ol g (e p BoBp tolly [lalp 8By Sady

The lists of output criterion values and model probabilities are stored
as attributes selector.criterion_values and selector.prob-
abilities respectively. In the present case, the results of the model
selection procedure are as follows:

>> Model linear: AIC value = 821888, probability
= 0.00

>> Model elastoplastic: AIC value = 1783,
probability = 0.00

>> Model BoucWen: AIC value = -2402, probability
= 1.00

The model that minimizes the AIC criterion is the Bouc-Wen model of
hysteresis, which was expected as it was used to synthetically generate
the data. This can also be qualitatively assessed by running simulations
of the three systems with the fitted ML parameters, stored as attributes of
the MLEstimation objects. For instance, the ML estimate of the first
model (linear) can be accessed as:

mle_linear = selector.ml_estimators[0].mle

Fig. 12 illustrates this model comparison: the top row compares the
simulated displacement with the noisy data while the bottom row shows
the restoring force vs. displacement (hysteresis loops) curves for all
three models.

4.3.3. Bayesian model selection: the BayesModelSelection class

UQpy also supports a Bayesian approach to model selection via its
BayesModelSelection class. This class is structured in a similar
fashion as the InfoModelSelection class, i.e., it leverages the
BayesParameterEstimation class to perform Bayesian parameter
estimation for all candidate models. Results of the Bayesian parameter
estimation are then used to compute the model evidence p(D|m;) for all
candidate models m;, along with the models’ posterior probability
P(m;|D)xp(D|m;)P(m;). However, careful consideration must be given to
this evidence computation. Currently UQpy only supports computation
of the model evidence via the harmonic mean method [66], which is
known to yield evidence estimates with large variance. This computa-
tion will be improved upon in future releases of UQpy.

5. Probability of failure and rare-event analysis: the
Reliability module

Reliability refers to a system’s probability of satisfying its intended
performance measures under a variety of uncertainties. For structural
reliability, the system corresponds to a structure under e.g. material,
environmental and loading uncertainty. Mathematically it is defined as
the complement of the probability of failure Py. In its simplest form, the
probability of failure Py is calculated through the performance function
g(X), given the uncertain parameters X, as

©)]

p(x)dx,

Py = P(g(X) < 0) = /

{g(X)=<0}

where P[] is the probability measure and p(x) is the joint pdf of the
parameters X. UQpy provides different methods for approximating the
integral in Eq. (9) and estimating the reliability of a system. Here, we
specifically discuss two approaches that are implemented in the

13

Journal of Computational Science 47 (2020) 101204

Reliability module. The first approach, implemented in the Tay-
lorSeries class, is based on a Taylor series expansion of the limit
surface, g(X) = 0 and includes two methods: the first order reliability
method (FORM) and the second order reliability methods (SORM)
[67-71]. The second approach is the simulation-based subset simulation
method [47] implemented in the SubsetSimulation class. Note that
other reliability analysis methods are available in UQpy, but these are
not exclusive to the Reliability module. Various classes in the
SampleMethods class can be used for Monte Carlo simulation-based
reliability analysis, including for example the IS class for importance
sampling. Additionally, surrogate-model based approaches such as the
AKMCS class for adaptive Kriging in the SampleMethods module can be
used to estimate Py. This is discussed further in Section 6.2.

The Reliability module is illustrated using the structural fire
example described in Section 2.3. Again, the fire load density is modeled
as a uniformly distributed random variable X; on the range 50-450 MJ/
m? and the yield strength at room temperature is modeled as a normally
distributed random variable X, with a mean value of 250 MPa and a
coefficient of variation of 7%, (standard deviation = 17.5 MPa). Failure
occurs when the deflection at the midpoint of the beam exceeds the
maximum allowable deflection, Py = P(g(X) < 0), i.e., the model com-
putes the performance function g(X) = dn(X1,X2) — dg, where X = [X3,
X,] is the vector of the two uncorrelated random variables. The reference
solution for the probability of failure is calculated using MCS (see Sec-
tion 3.1.1) to be Py = 3.3%. Note that a high probability of failure is
selected for ease of illustration. The reliability analysis methods illus-
trated here are capable of solving problems with much smaller proba-
bility of failure.

5.1. Expansion-based reliability analysis: the TaylorSeries class

The TaylorSeries class is used to approximate the performance
function g(U) through its Taylor series expansion, where U ~ A/ (0, 1),
locally at the design point U* defined as the point of maximum proba-
bility along the limit surface g(U) = 0. More specifically, the base
TaylorSeries class possesses two sub-classes, FORM and SORM, that
construct first-order and second-order expansions respectively. For
brevity, we discuss only FORM and note that the application of SORM
follows directly. In FORM, the performance function is approximated by

g(U) ~ g(U*) + Vg(U*)(U - U, 10
where Vg(U*) is the gradient of g(U) evaluated at U*. The probability
failure is given by Pffom = ®(— Byy.), where ®@(-) is the standard normal
cumulative distribution function and f; = ||[U*|| is the norm of the
design point known as the Hasofer-Lind reliability index [72,69,71].

The FORM is assumed to operate on standard normal random vari-
ables, which means that a nonlinear iso-probabilistic transformation
from the physical variables X ~ p(x) to uncorrelated standard normal
random variables U ~ N (0,1) is required. In UQpy this transformation is
performed with the Nataf class in the Trans formations module (for
details see Appendix D). Moreover, the evaluation of the necessary
gradients of the model (RunModel object) are performed using a central
finite difference approximation.

A FORM object contains the the probability distribution models of the
random parameters as objects of the Distribution class and the
computational model as an object of the RunModel class, and is
instantiated as follows:

from UQpy.Reliability import FORM

Instantiating FORM

Q = FORM(dist_object=dists,
abaqus_sfe_model)

runmodel_object=

A. Olivier et al.

320

P
N N w
(=)} o] o
o o o

Yield strength (MPa)
N N
IN] PN
o o

N
o
o

180

100 150 200 250 300 350

Fire load density (M)/m?)

400 450

(a) MCS

Journal of Computational Science 47 (2020) 101204

320
L]
L]
300 i . . L.
° 0 o d ’ .
© . ° . ! .
% 280 .:
8 J 5% o
©260 E %
IR0 VG g;'f%
@)
2240] SR BB 's_ k{(' o A3 (L
% 5'8 . o}’;{.&". o0 -..":’"'lé.:;" 3?: ! ¥
SIS IRE Pt B YR Tt LR AL Y
° .0 S .'- () ° . LIPS Ay e ®
° o® ° ° O. ® ° I8 . ®e o ° .
200 -—l . .
50 100 150 200 250 300 350 400 450

Fire load density (M)/m?)

(b) STS

Fig. 5. 1024 samples generated using (a) the MCS class and (b) STS class. For samples shown in blue, maximum deflection at the midspan of the beam does not
exceed the deflection tolerance of 7.14 cm. For samples shown in red, maximum midspan deflection exceeds the deflection tolerance. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

The specific definitions of dists and abagus_sfe_model are
presented in Sections 3.1.1 and 2.3, respectively. After instantiating the
FORM class, the run method is called to execute FORM starting at a
specified seed point in the parameter space (seed_x) or in the uncor-
related standard normal space (seed_u). If a seed is not provided, the
algorithm will automatically start from the origin in the standard normal
space.

Run FORM
Q.run(seed_u=np.array([1,

11)

The design point for this problem was estimated to be U* = (1.6, —
0.6), corresponding to point X* = (429.68,2.37¢8) in the parameter
space. The design point and the corresponding approximate limit surface
are shown in Fig. 13. The probability of failure with FORM was found to
be Py = 4.2% which is close to the probability of failure estimated from
Monte Carlo simulation (3.3%).

5.2. Simulation-based reliability analysis: the SubsetSimulation
class

Subset simulation [47], is a simulation-based reliability analysis
method that efficiently estimates small failure probabilities by
expressing them as a product of larger, intermediate conditional prob-
abilities. That is, the probability of failure Py is expressed as:

m—1

Py :P(Fl)HP(Ff+1\Fi)~,

i=1

1D

where m is the number of conditional levels and, generally the proba-
bility of each conditional level P(F;;1|F;) is reasonably large (i.e.
0(1071)) such that it can be statistically estimated by performing Monte
Carlo simulations with a relatively small number of samples. The Monte
Carlo simulations on each conditional level are conducted using various
MCMC algorithms that condition on the samples lying in each condi-
tional region, studies of which can be found in the recent literature, e.g.
[73,74]. In UQpy, the SubsetSimulation class can employ any of the

14

MCMC algorithms, in-built or custom, that are available as child classes
of the MCMC class. This is achieved by directly passing the class and its
relevant inputs into the SubsetSimulation object.

To run subset simulation, it is necessary to define the model object
using the RunModel class as before, and also to define the Distri-
bution object for the probability distribution of the input parameters.
Again, using the structural fire example, these are given as follows:

abaqus_sfe_model = RunModel (model_script=’
abaqus_subset_sfe_model_script.py’,
input_template=’abaqus_input_subset_sfe.py’,
output_script="’
extract_abaqus_output_subset_sfe.py’,
var_names=[’qtd’, ’fy’]l, ...)

dist = MVNormal (mean=np.zeros(2), cov=np.eye(2))

Because subset simulation is traditionally performed using uncorre-
lated standard normal random variables, the above RunModel object
has been defined to take, as input, transformed standard normal random
variables. Note that this is for convenience in illustration only and is not
required. Subset simulation is then executed using the MMH class as
follows:

from UQpy.Reliability import SubsetSimulation

from UQpy.SampleMethods import MMH

x_ss = SubsetSimulation(mcmc_class=MMH,
runmodel_object=abaqus_sfe_model,
p_cond=0.1, nsamples_ss=1000, log_pdf_target=
dist.log_pdf, dimension=2, nchains=100, ...)

and the probability of failure is obtained from the attribute x_ss.
pf. One execution of this code yields an estimated probability of failure
of 3.34%. In this example, the algorithm is designed such that each
conditional probability P(F;) = 0.1. Therefore, the algorithm converges
using only two levels with the samples shown in Fig. 14.

A. Olivier et al.

35
30 A
25 A

20 k

154

‘.,
Sa

X2

101

X1

(a) 500 MCMC samples

Journal of Computational Science 47 (2020) 101204

351
301
25 A

204

X2

151

101) Q)

(b) 4000 weighted samples from IS - opacity is propor-
tional to the sample weight

Fig. 6. Using the MCMC and IS classes to draw samples from the Rosenbrock distribution.

6. Surrogate modeling and active learning

The construction of fast-running surrogate models (aka meta-models,
emulators, or response surfaces) is an important component of UQ. It
enables the rapid approximation of model outputs at new parameter
values for which a typically expensive, high fidelity physics-based
calculation has not been performed. This facilitates UQ for both for-
ward and inverse problems. Additionally, surrogate models are impor-
tant for active machine learning for uncertainty analyses.

Recognizing the importance of surrogate models, the Surrogates
class of UQpy currently has two classes that enable surrogate model
construction. The first is the stochastic reduced order model (SROM),
implemented in the SROM class. SROMs, developed by Grigoriu [75],
approximate the distribution of the output of a stochastic model by
optimally fitting sample weights to the model evaluations. For brevity,
the SROM class is not discussed further here. The second is the Kriging
class, which implements Gaussian process regression or Kriging surro-
gates. In the sections below, we discuss the construction of Kriging
models with the Kriging class and their use in active learning, spe-
cifically for adaptive Kriging with various learning functions and
adaptive Monte Carlo analyses.

6.1. Gaussian process regression/kriging: the Kriging class

Kriging is an interpolation technique in which the interpolant is
assumed to be the sum of a regression model and a realization of
Gaussian random process as

Y(x) = F(x;8) + Z(x). (12

The regression model, 7, is a linear combination of p chosen basis
functions having parameters f;,i = 1, ...,p. The Gaussian random pro-
cess, Z(x), has mean zero and covariance defined through a correlation
matrix, R(x®, x0; 9), having hyperparameters 9 estimated from a set of
sample training points. That is:

F(x;) =Bifi(x) + -+ B (x) = F(x)P,
EZ(xNZ(x)] = 6*R(x,x);).

The regression coefficients and Gaussian process variance are estimated
by solving a generalized-least square problem (C~(Y — Ff) = 0, where
C~! is the Cholesky decomposition of R) such that,

p = (F'/R'F)F'R 'Y,

(o)

where F is the matrix of basis function evaluations at the training points,

o 1 .
2 _ (y — FgYR!
ot =Y —Fp)

15

R is the correlation matrix also evaluated at the training points, and Y’
are the training data (i.e. model evaluations). For a detailed description
refer to [76]. The Kriging hyperparameters are estimated by solving the
maximum likelihood problem. Since the output is assumed to follow a
multivariate Gaussian distribution (Y ~ NV(FB, 6>R)), the marginal
log-likelihood can be defined as,

log(p(Y|f',0",6)) a3

1 N N
= —Elog(|R|) —Elog(me) — 7
Once the hyperparameters are known, the regression coefficients and
process variance are updated and the Best Linear Unbiased Predictor
(BLUP) of the model can be computed at new sample points as:

T =f)'F + ()R (Y = Fp),
and the variance of the estimator is computed as:

% =0 (1 —r(x) R'r(x) + u(x)" (FTR'F)'u(x)),

y(x)
where r(x) is the correlation matrix between the new prediction point x
and the existing training points and u(x) = FTR™r(x) — f(x).

To employ the Kriging class, the user first needs to define regres-
sion and correlation models to initiate the object. All correlation models
in UQpy are assumed to take a product form as:

d
Rij = R(x, x0; 0) = HRk(x,Ei) — xg);é?).
k=1

Multiple in-built regression and correlation models are available as lis-
ted in Table 1.

The Kriging class also allows for user-defined regression and cor-
relation functions. These can be passed to the reg_model and
corr_model arguments as callable functions, making extension of the
Kriging class straightforward. The user is referred to the UQpy docu-
mentation [32] for a detailed explanation.

Here, we define a Kriging object that will be employed throughout
this section as follows:

from UQpy.Surrogates import Kriging

metamodel Kriging(reg_model=’Linear’,
corr_model=’Exponential’, nopt=1,
corr_model_params=[1, 1], random_state=2)

where nopt controls the number of times the maximum likelihood
problem is solved with different random starting points when the
training is performed.

Next, the Kriging model must be trained using the available data.

A. Olivier et al.

Let {(xM, yM), ..., (x™ y®™)} be the training data, where x?) € R? and
y® € RY for all i € {1,...,N}. In this step, the Kriging.fit method is
used to solve the maximum likelihood problem (Eq. (13)) to estimate the
hyperparameters, 6, and the subsequent least squares fit for g and o.
These parameters are saved in the corr_model_params attribute and
can be updated by subsequent calls to the fit method as additional data
are provided. Given training data, X and Y, provided as numpy arrays or
lists, the training is performed as follows:

metamodel.fit (samples=X, values=Y)

After training the surrogate model, the object can be used to
approximate the model at new, untrained sample points. The Kriging
class object has two methods for prediction. Kriging.predict
returns the prediction and its standard deviation at specified sample
points and Kriging.jacobian returns the gradient of the model at
specified sample points. This is illustrated as follows:

y, y_sd = metamodel.predict(x=new_samples),
return_std=True)
grad = metamodel. jacobian(x=new_samples)

6.2. Adaptive kriging: the AKMCS class

The previous section introduces the user to the basics of constructing
a Kriging object, training it, and using it for prediction. Here, we
illustrate how it can be used adaptively for various active learning
problems. For these adaptive Kriging models, we generally adopt the
terminology Adaptive Kriging with Monte Carlo simulation (AKMCS)
from [77] although the methods included here are referred to in the
literature under different names depending on the learning function that
is employed. In the SampleMethods module, the AKMCS class provides
five in-built learning functions, shown in Table 2, to tackle problems
ranging from reliability analysis, to optimization and global fit. The
AKMCS class also accepts user-defined learning functions, thus providing
an easy way to develop new methods within this active learning context.

The workflow of the AKMCS class is straightforward. To initialize it,
the user provides an initial set of samples, a Distribution object to
generate learning set of samples, the RunModel object for model
execution, a Kriging object, and sets the relevant parameters. For
example, to initialize AKMCS for reliability analysis of the structural fire
finite element model in Abaqus, the commands are as follows:

from UQpy.SampleMethods import RectangularStrata,
RectangularSTS, AKMCS

strata = RectangularStrata(mstrata=[5, 5])

x_sts = RectangularSTS(dist_object=dists,
strata_object=strata, nsamples_per_stratum=1,
random_state=1)

akmcs = AKMCS (samples=x_sts.samples,
run_model_object=abaqus_sfe_model,
krig_object=metamodel, nlearn=10"5,
learning_function=’U’, dist_object=dists,
random_state=3)

Upon initialization, the AKMCS class will execute the model at the
provided sample points and train the Kriging object. In each iteration,
the LHS class is used to generate nlearn random samples at which the
learning function (learning_function) is evaluated. Based on the
learning function evaluations, new samples are selected for model

16

Journal of Computational Science 47 (2020) 101204

evaluation using the specified RunModel object. This learning process is
carried out by calling the run method as follows:

akmcs .run(nsamples=100)

where nsamples is the final total number of model evaluations (not
the number of additional model evaluations).

Fig. 15(a) illustrates the samples generated using the AKMCS class for
the structural fire reliability problem. The initial STS samples are shown
in black and the AKMCS samples are shown in blue. Circles (solid and
hollow) are used for samples with maximum displacement within the
tolerance, i.e. safe samples, and x’s are used for samples whose
displacement exceeds the tolerance, i.e. in the failure region. Also, the
safe region (as defined by the Kriging model) is shaded with green and
the failure region is shaded with red. As expected from the ‘U’ learning
function, samples are generated close to the limit surface separating the
failure and safe domains. Fig. 15(b) shows the probability of failure
estimate after each sample is added compared with the probability of
failure estimate from 10,000 MCS (i.e. 3.3%) samples.

As previously mentioned, the AKMCS class allows the user to define
their own learning function, thus allowing straightforward extensions of
the existing framework. This architecture is used in various places
withing the UQpy code, such as within the SampleMethods . LHS class
to define novel sampling criteria, or within the Inference.Infer-
enceModel class to utilize user-defined likelihood functions. This ar-
chitecture can be illustrated schematically in the context of the AKMCS
class as follows:

Existing AKMCS framework
class AKMCS:

def __init__(self, learning_function, ...):
initialization of class attributes
self.learning_function =
learning_function
def run(nsamples, ...):
if self.learning_function in [’U’,
’Weighted-U’, ’EFF’, ’EIF’, ’EIGF’]:

run AK-MCS design based on
supported learning functionmns
self.samples =

else:
run AK-MCS design based on
custom learning function
self.samples =

Define custom learning function and integrate
within existing framework
def custom_learning_function(surr, pop, ...):
compute selected samples from pop and
indicator for stopping criterion based
on surrogate model surr
return selected_pop, learning_fun_value,
indicator_stop
akmcs = AKMCS(learning_function=
custom_learning_function, nsamples=10, ...)

Here, the user only needs to write the function associated with their
custom learning function to accept a surrogate model (having a .
predict method), a population of points at which to evaluate the
learning function and other neccesary parameters. No intrusion with the
AKMCS class is necessary.

A. Olivier et al.

o
o

Journal of Computational Science 47 (2020) 101204

—— Gaussian 3
0.7 ---- non-Gaussian

""" N 2
§ 0.6
? 0.5 1
2 &
§0.4 g olll I
203] 2 |
E] -}
£o2{ /

force fit)
~

0.4 0.6 0.8

frequency w

(a)

1.0

20

40
time

(b)

60 80 100 40 60

time

(¢)

80 100

Fig. 7. (a) Gaussian and non-Gaussian power spectra. (b) Sample realizations of a Gaussian stochastic processes simulated using the SRM class. (c) Sample re-
alizations of a lognormal translation process simulated using the SRM and Translation classes.

.
[

—— Gaussian
---- Gaussian Approx.

e
N

o
o

o
]

I
>

o

Power spectrum S(w)
w

e
[N)

0.2 0.4 0.6 0.8

frequency w

1.0 1.2

Fig. 8. True Gaussian power spectrum and the Gaussian power spectrum
identified from the lognormal power spectrum using the Inverse-
Translation class.

6.3. Refined stratified sampling: the RSS class
Refined stratified sampling (RSS) [43] and gradient enhanced

refined stratified sampling (GE-RSS) [44] build upon stratified sampling
designs to generate new samples either randomly (RSS) or based on

Response for Gaussian time histories

displacement z(t)

20 40

time

(a)

60 80 100

variation in the model output (GE-RSS). In each of these methods, strata
are selected from an existing stratified design and divided according to a
specified refinement criterion. A new sample is then drawn randomly
within the new stratum. See [43,44] for algorithmic details.

In the SampleMethods module, the RSS class can execute either
RSS or GE-RSS to extend the design. The RSS class has two child classes
(i.e. RectangularRSS and VoronoiRSS), which generates samples in
rectangular and voronoi stratification. Here, we illustrate the GE-RSS
method as an active learning method for voronoi stratification that le-
verages gradients estimated using the XKriging class. Because Vor-
onoiRSS operates on stratified designs, the user must first create an
initial VoronoiSTS object. If the user specifies only the VoronoiSTs
object, then VoronoiRSS is initialized. If the user also specifies a
RunModel object and a Kriging object, then GE-RSS is employed as
follows:

from UQpy.SampleMethods import VoronoiStrata,
VoronoiSTS, VoronoiRSS

strata VoronoiStrata(nseeds=15, dimension=2)
x_sts VoronoiSTS (dist_object=dists,

strata_object=strata, nsamples_per_stratum=1,

random_state=1)

VoronoiRSS (sample_object=x_sts,
run_model_object=abaqus_sfe_model,
krig_object=metamodel, random_state=3)

rss

Response for non-Gaussian time histories

displacement z(t)

20 40

time

(b)

60 80

Fig. 9. Two realizations of the response of the SDOF Bouc Wen dynamics model to (a) Gaussian and (b) lognormal excitation.

17

A. Olivier et al.

Journal of Computational Science 47 (2020) 101204

Once the RSS class has been initiated, the user can extend the sample

design by invoking the run method and providing the total number of
samples (not the number of samples to add) as follows:

rss.run(nsamples=100)

given model.

Parameter Estimation
Learn x from data D for a

Model Selection
Select best model among set
of candidate models.

An example of samples generated using the RSS class to execute 100
samples using GE-RSS with Voronoi stratification and a Kriging surro-
gate model for gradient estimation for the structural fire finite element
model is shown in Fig. 16. Fig. 16(a) shows a 3-dimensional plot of the
Kriging surrogate, along with the STS samples (black dots) and RSS

Define an inference model m - class InferenceModel
- nonlinear Gaussian-error model: D~h(X) + &, where h is built using RunModel,
- probability model: D~m(- ; X), 7 defined using the Distribution class,

- defined likelihood fi ion...
Frequentist approach Bayesian approach
(Maxlmum likelihood \ (Estlmate posterior pdf)
Xy, = argmax p(D|x) p(x|D) x p(DIX)p(x)
Numerical maximization of log- Sampling methods: MCMC, IS.
likelihood.
kclass MLEstimation) \CIass BayesParameterEstimation)

calls

(Informatlon theoretic criteria h (Esﬁmate model posterior probabllitv\

P(my|D) o p(D|m;)P(m;)
Computation of evidence p(D|m;)
uses posterior samples from MCMC.

Find model that minimizes criterion.
criterion
o« —log p(DIm;, qu.) + penalty

\class InfoModelSelection) \Clnss BayesModelSelection Y,
Fig. 10. Overview of the Inference module.
variable = k variable = rg variable = 6 variable = n
0.4
0.4 0.3 0.100
w 0.3 1 - « w“
° © 0.31 ° 5 0.075 1
a a Q 0.2 a
5027 5021 & 5 0.050
5 5 8014 5
0.1 0.1 : 0.025
0'0 A T T T T T 0'0 L T T T T 0'0 -l T T T 0'000 1 T T T
0 1 2 4 0 2 4 6 -5 0 5 10 0 5 10
k ro] n
150 i e ML estimate
I posterior from MCMC
¢ 100+
50
0-— T
098 100 1.02
2.70 4 304
© 2.65 \ 201
2.60 101
T T T 0 T
098 1.00 1.02 2.6 2.7
1.15 1.15
- 4
1.10 1.101 9 15
0 1.05 1.05 - 10
1.00 4 1.00 4 5|
0.95 0.95
T T T T T 0-
098 1.00 1.02 2.6 2.7 1.0 1.1
2.8 2.8 2.8 15
’ R s
2.7 2.7 1 2.7 1 104
<
2.6 2.6 2.6 1 5
251+ T . 2.5 T . 2.5 T T 0 -
098 1.00 1.02 2.6 2.7 1.0 1.1 25 26 27 28
ro 6 n

Fig. 11. Illustration of Bayesian parameter estimation for the Bouc-Wen model. Top: parameter prior probability densities (having independent marginals) for
Bayesian analysis. Bottom: results of the parameter estimation for the Bouc-Wen hysteresis model from noisy displacement data.

18

A. Olivier et al. Journal of Computational Science 47 (2020) 101204

Model: linear Model: elastoplastic Model: BoucWen
5 5
— 4 - f i - A‘ -
€ £ ¢ % Il EY b ﬁ A
=2 L H A n
- 2 = 3 i o 3 " ’
g g i ! i g i I ! |‘ i
2 I 2 h
E o £ I] { ‘ £ i ! [’
]] } oo v] H o Y
] o 1 i] o 1]
kS | B { B | ¥
Q-2 (B \ 7 a o J a o J
] \ Vi 1 : 2 0
° N1 Vo noisy data ® ., noisy data °, noisy data
-4 \) model response h(xm.) ~=-model response h(xm.) -=--- model response h(xm.)
—2 -2
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
time [s] time [s] time [s]
—— true behavior 0 =7 aege===T
model response h(xm) 2 2

restoring force [cN]

restoring force [cN]
°

restoring force [cN]
°

true behavior
---- model response h(xu)

--- model response h(xm.)

-2 [2 4 -1 0 1 2 3 4 5 -1 0 1 2 3 4 H
displacement [cm] displacement [cm] displacement [cm]

Fig. 12. Comparison of three SDOF dynamical models estimated from noisy displacement data, the model responses are obtained by running a simulation with the
ML parameter estimate.

3.50.1€8 Physical space 3; Standard Normal space
3.25
3.00]

42,50

-

2.00

175

100 200 300 400
Qtd

(a) (b) (c)

Fig. 13. (a) Joint probability density function for the two random variables. Illustration of the design point and the FORM limit surface in (b) the physical parameter
space and (c) the standard normal space.

Fig. 14. Samples drawn using the SubsetSimulation class in UQpy with 1000 samples in each level. Samples are shown in (a) the parameter space, and (b) the
standard normal space. The red markers indicate samples in the first level and blue markers show the samples in the second level. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

19

A. Olivier et al.

Table 1

Built-in correlation and regression models for the Kriging class. Note: & = x,((i)

for spline correlation functions.

{
—x{

Journal of Computational Science 47 (2020) 101204

), ¢ = min{1, 6|5|} for cubic and spherical correlation functions and ¢ = 6|6 |

Correlation model (corr_model)

Regression model (reg_model)

Name Ri(6,6k) Name F(x) = [f1(x),f2(x),...]
‘Exponential’ exp(— Ok|0k|) ‘Constant’ fi(x) =
‘Gaussian’ exp(— 6cd7)
‘Linear’ max{0,1 — O|dx|} ‘Linear’ filx) = 1,f2(x) =x1,....fan1 (X) =xq
‘Cubic’ 1-30+28
‘Spherical’ 1—- 1.5+ 05{% fi(x) =1,f2(x) = x1,f3(x) = x2, ...,
Jar1(6) = Xa, far2(6) = X3 fara(x) = X1 Xz, s
2 % 13 2
. 1 -15¢j +30%¢j for0 < ¢ <0.2 ‘Quadratic’ foai1 (%) = x1Xa, fags2(X) = X5, fadrs(X) = XoX3, ..,
‘Spline 1251 — p)® for02< ¢ <1
0 for gy, > 1 foaX) =xa%a, - (@ 4 1)(d+ 2) =X
2
Table 2

Existing AKMCS learning functions. Notes on notation: y(x) = Kriging surrogate model; a;(x) = Kriging standard deviation; ®(-) = Standard Normal CDF; ¢(x) =

Standard Normal PDF; f,;; = Current minimum value; x* = closest point to the present sample.

Learning function Argument Objective Equation
U-function [77] U Reliability y(x
T
y
Weighted U-function [78] ‘Weighted- Reliability) maxy[p(x)] — p(x) U
v T maxe[p(x
b))
Expected Feasibility Function ‘EFF’ Reliability 5 —0~(x) — y(x) 0~(x) — ¥(x) = —0~(x) — ¥(x)
= y(x) y y(x)
EFF(x) =y (x)[29()—@ -)= 65(x)[2¢ = o(-
(79] 2w T e o R o=
5(x) = y(x) —05(x)y(x) o5(x) = (%)
|+ o5 (x)[@(-
o5(%) Y o5(%) o5(%)
Expected Improvement ‘EIF’ Optimization ~ Smin — Y(x) Smin — Y (x)
Function [80] EIF(0) = (fnin = ¥ () 05(x))+ O‘}\(X‘)(/}(a;(x))
Expected Improvement for ‘EIGF’ Global Fit EIGF(x) = (¥(x) — y(x"))? + 62(x)
Global Fit [81] 7
Failed initial samples % Failed new samples
@ Not failed initial samples Not failed new samples
300 N

. 0.0350 AN \J‘//”\/\ AN AN
© 280 0.0325
= o ° o g
< 260 L J ° ° 5 0.0300
) ° ° ° °® s \‘
5] ° ° 500275 ‘
= 240 ° ° O z
@ ° ° 00250 w‘
kel % g
9 & |
<220 . ° 0.0225 |

° |

200 0.0200) AKMCS results
50 100 150 200 250 300 350 400 450

Fire load density

(a)

40 50 70

Number of samples

(b)

80 90 100

Fig. 15. (a) AKMCS samples delineating the failure and safe domains; and (b) probability of failure at each iteration of the AKMCS class.

samples (green dots). Fig. 16(b) illustrate the Voronoi stratification of
parameter space (black boundaries represent Voronoi cells) and the
corresponding Delaunay triangulation (orange boundaries). Notice that
the GE-RSS method focuses samples in the region of the parameter space
with high variation in model output.

20

7. Concluding remarks

This paper presented the UQpy software toolbox for uncertainty
quantification (UQ) in Python. The software serves as both a user-ready
toolbox that includes many of the latest methods for UQ in

A. Olivier et al.

Kriging interpolate
@ Initial samples
® New samples

Displacement

Journal of Computational Science 47 (2020) 101204

w w
S N
S =]

N
@
o

Yield strength (MPa)

@ Initial samples
® New samples

100

200

300 400

Fire load density

Fig. 16. (a) 3D scatter plot of the RSS samples with their model evaluations and the Kriging surrogate model, (b) Voronoi stratification (black) and Delaunay
triangulation (orange) of the parameter space. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

Table 3
Current UQpy capabilities organized by Module and Class structure.
Module Class Description Introduced
RunModel RunModel Execute computational model 1.0.0
Distributions See Appendix C Define distribution objects in UQpy 2.0.0
SampleMethods AKMCS Adaptive Kriging with Monte Carlo Simulation 3.0.0
Is Importance Sampling 1.3.0
LHS Latin Hypercube Sampling 1.1.0
MCMC, MH, MMH, DRAM, DREAM, Stretch Markov Chain Monte Carlo 1.1.0
MCS Monte Carlo Sampling 1.1.0
RSS Refined Stratified Sampling 2.0.0
Simplex Uniform Sampling over a simplex element 2.0.0
Strata Defines a Strata object for STS/RSS 1.0.0
STS Stratified Sampling 1.1.0
Transformations Correlate Induces correlation in standard normal samples 1.0.0
Decorrelate Removes correlation in standard normal samples. 1.0.0
Nataf Transform non-Gaussian samples to standard normal 1.0.0
Transform standard normal samples to a prescribed distribution
Calculates the distortion of the non-Gaussian correlation matrix
Calculates the distortion of the Gaussian correlation matrix
Surrogates Kriging Gaussian Process Regression (Kriging) 2.0.0
SROM Stochastic Reduced Order Model 1.0.0
Reliability SubsetSimulation Subset Simulation 1.0.0
TaylorSeries, FORM, SORM First Order Reliability Method (FORM) 2.0.0
Second Order Reliability Method (SORM)
Inference BayesModelSelection Bayesian Model Selection 2.0.0
BayesParameterEstimation Bayesian Parameter Estimation 2.0.0
InferenceModel Model Definition for Inference 2.0.0
InfoModelSelection Information Theoretic Model Selection (AIC/BIC) 2.0.0
MLEstimation Maximum Likelihood Parameter Estimation 2.0.0
StochasticProcess BSRM Bispectral Representation Method 2.0.0
InverseTranslation Iterative Translation Approximation Method 2.0.0
KLE Karhunen-Loéve Expansion 2.0.0
SRM Spectral Representation Method 2.0.0
Translation Translation Process 2.0.0
Utilities None A collection of methods used across modules 2.0.0

computational modeling and a convenient development environment
for Python programmers advancing the field of UQ. The paper presents
an introduction to the software’s existing capabilities in forward prop-
agation of uncertainties and sampling methods, generation of random
processes and random fields, probabilistic inverse modeling including

parameter estimation and model selection, reliability analysis, surrogate
modeling, and active learning. The paper is not intended to be a
comprehensive “deep-dive” into the software. For this, the reader is
referred to the UQpy documentation [32]. Instead it is intended to
highlight the structure of the code, many of its capabilities, its

21

A. Olivier et al.

Table 4
Available distributions in UQpy.

Journal of Computational Science 47 (2020) 101204

Available distributions in UQpy
Subclasses of DistributionContinuouslD

Distribution Class name Parameters and default values
Beta Beta [a, b, loc=0., scale=1.]
a, beRyy
Cauchy Cauchy loc=0., scale=1.]
Chi-Squared ChiSquare df, loc=0., scale=1.
Exponential Exponential loc=0., scale=1.
common parameterization with lambda=1/scale

Gamma Gamma a, loc=0., scale=1.

a€Ry
Generalized Extreme Value GenExtreme c, loc=0., scale=1.

c €Rxo
Inverse Gaussian InvGauss mu, loc=0, scale=1]

mu € Rxo
Laplace Laplace loc=0., scale=1.
Levy Levy loc=0., scale=1.
Logistic Logistic loc=0., scale-1.
Lognormal Lognormal s, loc=0., scale=1.

common parameterization s=o, scale=exp(u)
Maxwell-Boltzmann Maxwell loc=0., scale=1.
Normal (Gaussian) Normal loc=0., scale=1.
loc=u, scale=c

Pareto Pareto b, loc=0., scale=1.

b € Ry
Rayleigh Rayleigh loc=0., scale=1.
Truncated Normal TruncNorm a, b, loc=0., scale=1.

cliplow — cliphigh —
a:(P ”), b= g Ll loc=u, scale=c
o (2
Uniform Uniform loc=0., scale=1.
lower and upper bounds are [loc, loc+scale]
Subclasses of DistributionDiscretelD
Binomial Binomial n, p, loc=0.
n €N, p € [0,1]

Poisson Poisson mu, loc=0.

Subclasses of DistributionND

MVNormal
Multinomial

Multivariate Normal
Multinomial

mean, cov=1.
n, p
neNp,pli]l €[0,1]and Y p[i]=1

applications in computational modeling, and most importantly its ca-
pacity to serve as a platform for UQ methodology development in Py-
thon. Emphasis is placed on the structure/architecture of the code as this
provides the reader with valuable insights into how to develop new
methodology within the code. In particular, the paper highlights the
RunModel model, which serves as a generic interface to models of all
kinds and is used to drive simulations and uncertainty analyses per-
formed in UQpy. To illustrate the various capabilities, two examples are
tracked throughout the paper and analyzed repeatedly using different
methods. The first is a Python model solving a nonlinear structural dy-
namics problem using explicit time integration. The second is a
third-party Abaqus model solving the thermomechanical response of a
beam structure.

The developments presented herein relate specifically to UQpy
Version 3, which is available for download from GitHub [10]. All the
scripts running the various examples are provided as supplementary
materials and can also be downloaded from GitHub [11].

Author contributions

Audrey Olivier: Conceptualization, methodology, software, valida-
tion, data curation, writing — original draft, visualization. Dimitris G.

22

Giovanis: Conceptualization, methodology, software, validation,
writing — review & editing, visualization. B.S. Aakash: Methodology,
software, validation, writing — review & editing, visualization. Mohit
Chauhan: Methodology, software, validation, writing — review & edit-
ing, visualization. Lohit Vandanapu: Methodology, software, validation,
writing — review & editing, visualization. Michael D. Shields: Concep-
tualization, methodology, software, resources, writing — review & edit-
ing, supervision, project administration, funding acquisition.

Conflict of interest

The authors declare that there is no conflict of interest.

Declaration of Competing Interest
The authors report no declarations of interest.
Acknowledgements
Development of the UQpy software has been indirectly supported by

several agencies that have generously supported work related to its core
functionalities including the Office of Naval Research (Award numbers

A. Olivier et al. Journal of Computational Science 47 (2020) 101204

NO00014-15-1-2754, N00014-16-1-2582, and N00014-18-1-2644), Na- presented in the manuscript were executed using computational re-
tional Science Foundation (Award number 1652044), Army Research sources at the Maryland Advanced Research Computing Center
Laboratory (Award number W911NF-12-2-0022), and the Department (MARCO).

of Energy (Award number DE-SC0020428). Also, part of the examples

Appendix A. UQpy modules and classes

A complete list of modules and classes available in Version 3.0 is provided in Table 3.

Appendix B. UQpy extensions in progress

UQpy is a rapidly evolving code and new components are being added continually. The following modules are currently under development, but
are not ready for release. Note, however, that some source code can be found on the open UQpy Github repository.

e DimensionReduction: Perform linear or nonlinear dimension reduction for high-dimensional problems. Will be released with Version 3.
e Sensitivity: Perform global and local sensitivity analysis.
e Collocation: Stochastic collocation methods.

Additionally, within the existing and new modules a number of new classes and methods are under development or are anticipated in the near
future, including the following:

Surrogates.PCE: Polynomial chaos expansion based surrogate models.
DimensionReduction.Grassmann: Grassmann manifold projection-based dimension reduction.
DimensionReduction.DiffusionMaps: Nonlinear dimension reduction with diffusion maps.
DimensionReduction.LinearBasis: Linear dimension reduction of a high-dimensional array using SVD or HO-SVD.
Sensitivity.Morris: Computation of sensitivity indices via the method of Morris.
Sensitivity.Sobol: Estimation of Sobol sensitivity indices.

Collocation.SparseGrid: Sparse-grid stochastic collocation.

Collocation.MultiElement: Multi-element stochastic collocation.

Collocation.Simplex: Simplex stochastic collocation.

SampleMethods . QMC: Quasi-Monte Carlo sampling.

SampleMethods . PSS: Partially stratified sampling.

SampleMethods.LSS: Latinized stratified sampling.

SampleMethods . SparseGrid: Sparse-grid structured points for numerical integration.

These new modules and classes will further enable the implementation and development of more advanced algorithms such as adaptive stochastic
collocation methods, dimension-reduction, and Monte Carlo sampling. Please note that the list above is subject to change in future releases.

Appendix C. Defining probability distribution objects in UQpy: the Distributions module

Being a largely probabilistic code, many tasks in UQpy rely on probability distributions. The Distributions module is used to define probability
distribution objects. These objects possess various methods that allow the user to: compute the probability density function (pdf method), cumulative
distribution function (cdf), the logarithm of the pdf (1og_pdf), return the moments (moments), draw independent samples (rvs) and fit the pa-
rameters of the model from data (fit).

The Distributions module is built upon four base classes that are used to construct specific distributions via subclassing, thus allowing the user
to easily build custom distributions that can be integrated within the existing UQpy framework. The Distribution class is the parent class to all
distribution classes, DistributionContinuouslD and DistributionDiscretelD are the base classes for univariate continuous and discrete
distributions respectively, while the Di stributionND class is the base class for multivariate distributions. These base classes cannot be used directly
as a distribution, instead they define certain methods that are common to all distributions, such as the get_params and update_params methods
that allow the user to return/update the parameters of a distribution for instance. A specific distribution is created via subclassing of the base classes —
UQpy implements a number of well-known distributions as shown in Table 4, with parameters that adhere to those defined in the scipy.stats
package. In order to instantiate a univariate normal distribution object for instance, the commands are as follows:

I from UQpy.Distributions import Normal
2 pl = Normal(loc=0., scale=2.)

UQpy also allows to create multivariate distributions from its marginals, potentially adding dependence via a copula, through its classes JointInd
and JointCopula. Both these classes are subclasses of the DistributionND base class, and a user could easily create other custom classes that
define distributions as a combination (sum, product etc.) of existing distributions. The following code instantiates a bi-variate distribution object with
standard normal marginals and Gumbel copula dependence:

23

A. Olivier et al. Journal of Computational Science 47 (2020) 101204

I from UQpy.Distributions import Normal, Gumbel, JointCopula
2 p2 = JointCopula(marginals=[Normal(), Normal()], copula=Gumbel (theta=2.))

Its methods are called as follows:

1 pdf_values = p2.pdf (x=x)

In the statement above, the input x must be a 2D ndarray of shape (N, d), where d is the dimension of the distribution and N is the number of points
at which to evaluate the pdf. A detailed description of the Distribution methods and their parameters can be found in UQpy’s documentation [32].
As previously mentioned, custom distributions can be easily built via direct subclassing of the appropriate base classes. For example, the user can
define the distribution Rosenbrock with the pdf and log_pdf methods as follows:
I from UQpy.Distributions import DistributionND
> class Rosenbrock(DistributionND):
def __init__(self, p=20.):
A super () . __init__(p=p)
5 def pdf (self, x):
6 return np.exp(-(100*(x[:, 1]1-x[:, 01**2)**2+(1-x[:, 0])**2)/self.params[’p
1)
7 def log_pdf (self, x):
8 return -(100*%(x[:, 1]-x[:,0]**2)**2+(1-x[:,0]) **2/self.params[’p’]

The custom Rosenbrock Distribution object is then instantiated as follows:

1 p3 = Rosenbrock(p=20)

and the pdf method can be invoked as follows:

1 pdf3 = p3.pdf (x=x)

Appendix D. Isoprobabilistic transformations: the Transformations module

UQpy includes widely used isoprobabilistic transformations, most notably the Nataf transformation [82] to transform arbitrarily distributed
random variables to standard normal variables. That is, given a random vector x having marginal cdfs F;(x;), the Nataf transformation can be employed
to map to a correlated standard normal random vector z. Similarly, the inverse Nataf transformation can be used to map from z—x. Through a linear
transformation, z can then be mapped to an uncorrelated standard normal random vector U, and vice versa. This is illustrated as follows:

Nataf’ Decorrelate
X ~ (Fj <Xi> ‘i:l.“.,lﬂ R= |:§U:|) Inv. Nataf z~N <07 Ro = |:p11:|> Correlate v o

The Nataf transformation is very useful when conducting probabilistic modeling, for example when performing reliability analysis using first and
second order reliability methods (FORM/SORM). The mapping of the i component of x to the normal space z is achieved through the transformation
z; = ® (F(x;)), where ®(-) is the standard normal cumulative distribution function. The mapping from z—x results in a correlation distortion that can
be solved through following integral:

+00 +00 X — U X — ,M
fij = / / (_ﬂl> < J J > ('gz(zhZj<7pij.)(:lzl»d2j7 (15)
—o J-o o 9]

where y; and o; are the mean and standard deviation of random variable x;, respectively and ¢,(-, -, p) is the bivariate standard normal probability
density function with correlation coefficient p;; [57]. UQpy computes this integral numerically using a standard quadratic two-dimensional Gaus-

s-Legendre integration scheme. However, the inverse expression, i.e. identifying the Gaussian correlation p;; from a known non-Gaussian correlation &;
in the mapping from x—z is not defined in closed-form. This inverse correlation distortion therefore requires the use of an iterative procedure. The
Nataf class utilizes the Iterative Translation Approximation Method (ITAM) [58]. This method identifies an underlying correlated Gaussian random
vector that, when mapped to the non-Gaussian distribution produces a non-Gaussian correlation that is as close as possible to the prescribed value
considering the potential for Nataf incompatibility [58]. Several methods are available in the Nataf class of the Transformations module to
perform these transformations. A Nataf object for a two-dimensional random vector x with non-Gaussian marginal distributions defined by dist1
and dist2, is instantiated as:

24

A. Olivier et al. Journal of Computational Science 47 (2020) 101204

I from UQpy.Transformations import Nataf

2 #Instantiate a Nataf transformation object

; nataf_obj = Nataf (dist_object=[distl,dist2], corr_x=Rx)
1 #or

5 nataf_obj = Nataf(dist_object=[distl,dist2], corr_z=Rz)

The returned nataf_obj object computes the distorted correlation matrix in the standard normal space corr_z (estimated with the dis-
tortion_x2z method with parameters beta, itam_errorl and i tam_error2 that are specific to the ITAM method - see documentation [32]), if
corr_x is given, or the distorted correlation matrix in the parameter space corr_x (estimated with the distortion_z2x method) if corr_z is
given. After instantiating the Nataf object we can sample from the joint pdf of the random vector x with the method rvs as:

I x = nataf_obj.rvs(nsamples)

where nsamples is the number of samples to be drawn and then, transform the set x to standard normal samples using the method trans-
form_x2z as:

1 z = nataf_obj.transform_x2z(x, jacobian=True)

where jacobian is the Jacobian of the transformation (returned if True). Finally, the inverse Nataf transformation, which is widely used in
reliability analysis using FORM, can be performed with the method transform_z2x as:

I x = nataf_obj.transform_z2x(z, jacobian=True)

in order to transform a set z of correlated standard normal samples to non-Gaussian samples x.
The Transformations module also allows to induce or remove correlation from a standard normal vector with the classes Correlate and
Decorrelate, respectively. A set of uncorrelated normal variables u can be made to possess correlation Rz as follows:

1 from UQpy.Transformations import Correlate
2 z = Correlate(u, Rz).samples_z

The correlated standard normal random vector z is obtained from u as z = Hou, where Hj is the lower-triangular Cholesky decomposition of matrix
R, = [pii], such that HOH(I = Ro. Similarly, correlation can be removed as follows:

I from UQpy.Transformations import Decorrelate
2 u = Decorrelate(z, Rz).samples_u

The uncorrelated standard normal random vector u is obtained from z as u = Hy'z.

Appendix E. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jocs.2020.101204.

References mitigation of image resolution limitations, J. Comput. Sci. 31 (2019) 137-150,
https://doi.org/10.1016/j.jocs.2019.01.004.

[5] R. Archibald, M. Chakoumakos, T. Zhuang, Characterizing the elements of earth’s
radiative budget: applying uncertainty quantification to the CESM, J. Comput. Sci.
5 (2014) 85-89, https://doi.org/10.1016/j.jocs.2013.03.001.

[6] D.M. Tartakovsky, Assessment and management of risk in subsurface hydrology: a
review and perspective, Adv. Water Resour. 51 (2013) 247-260, https://doi.org/
10.1016/j.advwatres.2012.04.007.

[7] J.A. Vrugt, C.J.F. ter Braak, M.P. Clark, J.M. Hyman, B.A. Robinson, Treatment of
input uncertainty in hydrologic modeling: doing hydrology backward with Markov
chain Monte Carlo simulation, Adv. Water Resour. 51 (2013) 247-260, https://doi.
org/10.1029/2007WR006720.

[1] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab.
Eng. Syst. Saf. 93 (2008) 964-979, https://doi.org/10.1016/j.ress.2007.04.002.

[2] B. Sudret, Meta-models for structural reliability and uncertainty quantification, in:
Asian-Pacific Symposium on Structural Reliability and Its Applications, Singapore,
2012, pp. 1-24.

[3] A. Nikishova, A.G. Hoekstra, Semi-intrusive uncertainty propagation for multiscale
models, J. Comput. Sci. 35 (2019) 80-90, https://doi.org/10.1016/j.
j0cs.2019.06.007.

[4] J. Sturdy, J.K. Kjernlie, H.M. Nydal, V.G. Eck, L.R. Hellevik, Uncertainty
quantification of computational coronary stenosis assessment and model based

25

https://doi.org/10.1016/j.jocs.2020.101204
https://doi.org/10.1016/j.ress.2007.04.002
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0010
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0010
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0010
https://doi.org/10.1016/j.jocs.2019.06.007
https://doi.org/10.1016/j.jocs.2019.06.007
https://doi.org/10.1016/j.jocs.2019.01.004
https://doi.org/10.1016/j.jocs.2013.03.001
https://doi.org/10.1016/j.advwatres.2012.04.007
https://doi.org/10.1016/j.advwatres.2012.04.007
https://doi.org/10.1029/2007WR006720
https://doi.org/10.1029/2007WR006720

A. Olivier et al.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

N. Linde, D. Ginsbourger, J. Irving, F. Nobile, A. Doucet, On uncertainty
quantification in hydrogeology and hydrogeophysics, Adv. Water Resour. 110
(2017) 166-181, https://doi.org/10.1016/j.advwatres.2017.10.014.

A. Rafiei Emam, M. Kappas, S. Fassnacht, N.H.K. Linh, Uncertainty analysis of
hydrological modeling in a tropical area using different algorithms, Front. Earth
Sci. 12 (2018) 661-671, https://doi.org/10.1007/s11707-018-0695-y.

Shields Uncertainty Research Group, UQpy — uncertainty quantification with
python. https://github.com/SURGroup/UQpy. (Accessed 24 July 2020).

Shields Uncertainty Research Group, Jupyter example scripts, supplementary
materials to UQpy manuscript. https://github.com/SURGroup/UQpy_paper.
(Accessed 24 July 2020).

G.I. Schuéller, H.J. Pradlwarter, Computational stochastic structural analysis
(COSSAN) - a software tool, Struct. Saf. 28 (1-2) (2006) 68-82, https://doi.org/
10.1016/j.strusafe.2005.03.005.

S. Marelli, B. Sudret, UQLab: a framework for uncertainty quantification in Matlab.
Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management,
2014, pp. 2554-2563.

Software — Engineering Risk Analysis Group — Technical University of Munich. htt
ps://www.bgu.tum.de/era/software/. (Accessed 11 June 2020).

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, K. Crombecq, A surrogate
modeling and adaptive sampling toolbox for computer based design, J. Mach.
Learn. Res. 11 (2010) 2051-2055.

J. Bourinet, C. Mattrand, V. Dubourg, A review of recent features and
improvements added to FERUM software, Proc. of the 10th International
Conference on Structural Safety and Reliability (ICOSSAR’09) (2009).

D. Dupuy, C. Helbert, J. Franco, DiceDesign and DiceEval: two R packages for
design and analysis of computer experiments, J. Stat. Softw. 65 (11) (2015) 1-38,
https://doi.org/10.18637/jss.v065.i11.

O. Roustant, D. Ginsbourger, Y. Deville, DiceKriging, DiceOptim: two R packages
for the analysis of computer experiments by kriging-based metamodeling and
optimization, J. Stat. Softw. 51 (1) (2012) 1-55, https://doi.org/10.18637 /jss.
v051.i01.

C. Walter, G. Defaux, B. Iooss, V. Mouroussamy, Package ‘mistral’, 2014.

B. Iooss, A. Janon, G. Pujol, Package ‘sensitivity’, 2015.

B.M. Adams, W. Bohnhoff, K. Dalbey, J. Eddy, M. Eldred, D. Gay, K. Haskell, P.
D. Hough, L.P. Swiler, DAKOTA, a Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty Quantification, and
Sensitivity Analysis: Version 5.0 User’s Manual, Sandia National Laboratories,
Tech. Rep. SAND2010-2183, 2009.

B. Debusschere, K. Sargsyan, C. Safta, K. Chowdhary, Uncertainty quantification
toolkit (UQTk). Handbook of Uncertainty Quantification, 2016, pp. 1-21.

M. Baudin, A. Dutfoy, B. Iooss, A.-L. Popelin, OpenTURNS: an industrial software
for uncertainty quantification in simulation. Handbook of Uncertainty
Quantification, 2017, pp. 2001-2038.

B.H. Thacker, D.S. Riha, S.H. Fitch, L.J. Huyse, J.B. Pleming, Probabilistic
engineering analysis using the NESSUS software, Struct. Saf. 28 (1-2) (2006)
83-107, https://doi.org/10.1016/j.strusafe.2004.11.003.

S. Tennge, G. Halnes, G.T. Einevoll, Uncertainpy: a python toolbox for uncertainty
quantification and sensitivity analysis in computational neuroscience, Front.
Neuroinform. 12 (2018) 49, https://doi.org/10.3389/fninf.2018.00049.

V. Puzyrev, M. Ghommem, S. Meka, pyROM: a computational framework for
reduced order modeling, J. Comput. Sci. 30 (2019) 157-173, https://doi.org/
10.1016/j.jocs.2018.12.004.

J. Feinberg, H.P. Langtangen, Chaospy: an open source tool for designing methods
of uncertainty quantification, J. Comput. Sci. 11 (2015) 46-57, https://doi.org/
10.1016/j.jocs.2015.08.008.

J. Sukys, M. Kattwinkel, SPUX: Scalable Particle Markov Chain Monte Carlo for
Uncertainty Quantification in Stochastic Ecological Models, 2018, pp. 159-168,
https://doi.org/10.3233/978-1-61499-843-3-159.

R. Dutta, M. Schoengens, L. Pacchiardi, A. Ummadisingu, N. Widmer, P. Kunzli, J.-
P. Onnela, A. Mira, ABCpy: An High-Performance Computing Perspective to
Approximate Bayesian Computation, 2020 arXiv:1711.04694.

S.M. Martin, D. Walchli, G. Arampatzis, P. Koumoutsakos, Korali: A High-
Performance Computing Framework for Stochastic Optimization and Bayesian
Uncertainty Quantification, 2020 arXiv:2005.13457.

C. Wang, Q. Duan, C.H. Tong, Z. Di, W. Gong, A GUI platform for uncertainty
quantification of complex dynamical models, Environ. Model. Softw. 76 (2016)
1-12, https://doi.org/10.1016/j.envsoft.2015.11.004.

Shields Uncertainty Research Group, Johns Hopkins University, UQpy
Documentation. https://uqpyproject.readthedocs.io/. (Accessed 11 June 2020).
R. Cimrman, V. Lukes, E. Rohan, Multiscale finite element calculations in Python
using SfePy, Adv. Comput. Math. (2019), https://doi.org/10.1007/s10444-019-
09666-0.

O. Tange, GNU Parallel 2018, 2018, https://doi.org/10.5281/zenodo.1146014.
M. Ismail, F. Ikhouane, J. Rodellar, The hysteresis Bouc-Wen model, a survey,
Arch. Comput. Methods Eng. 16 (2) (2009) 161-188, https://doi.org/10.1007/
s11831-009-9031-8.

Center for Engineering Strong Motion Data, El Centro Earthquake of 18 May 1940,
2017. . (Accessed 29 May 2020), https://strongmotioncenter.org/.

26

[37]
[38]
[39]

[40]
[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

Journal of Computational Science 47 (2020) 101204

ABAQUS, ABAQUS Documentation, Dassault Systemes Simulia Corp, United States,
2019.

M. Gillie, Analysis of heated structures: nature and modelling benchmarks, Fire Saf.
J. 44 (5) (2009) 673-680, https://doi.org/10.1016/].firesaf.2009.01.003.

CEN, EN 1991-1-2: Eurocode 1: Actions on Structures — Part 1-2: General Actions —
Actions on Structures Exposed to Fire, 2002.

CEN, EN 1363-1: Fire Resistance Tests. Part 1: General Requirements, 2012.
M.D. McKay, R.J. Beckman, W.J. Conover, Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code,
Technometrics 21 (2) (1979) 239-245, https://doi.org/10.1080/
00401706.1979.10489755.

M.D. Shields, J. Zhang, The generalization of Latin hypercube sampling, Reliab.
Eng. Syst. Saf. 148 (2016) 96-108, https://doi.org/10.1016/j.ress.2015.12.002.
M.D. Shields, K. Teferra, A. Hapij, R.P. Daddazio, Refined stratified sampling for
efficient Monte Carlo based uncertainty quantification, Reliab. Eng. Syst. Saf. 142
(2015) 310-325, https://doi.org/10.1016/j.ress.2015.05.023.

M.D. Shields, Adaptive Monte Carlo analysis for strongly nonlinear stochastic
systems, Reliab. Eng. Syst. Saf. 175 (2018) 207-224, https://doi.org/10.1016/j.
ress.2018.03.018.

R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications,
Society for Industrial and Applied Mathematics, 2014.

A. Gelman, H.S. Stern, J.B. Carlin, D.B. Dunson, A. Vehtari, D.B. Rubin, Bayesian
Data Analysis, Chapman and Hall/CRC, 2013.

S.-K. Au, J.L. Beck, Estimation of small failure probabilities in high dimensions by
subset simulation, Probab. Eng. Mech. 16 (4) (2001) 263-277, https://doi.org/
10.1016/50266-8920(01)00019-4.

H. Haario, M. Laine, A. Mira, E. Saksman, DRAM: efficient adaptive MCMC, Stat.
Comput. 16 (4) (2006) 339-354, https://doi.org/10.1007/s11222-006-9438-0.

J. Vrugt, C. Braak, C. Diks, B. Robinson, J. Hyman, D. Higdon, Accelerating Markov
chain Monte Carlo simulation by differential evolution with self-adaptive
randomized subspace sampling, Int. J. Nonlinear Sci. Numer. Simul. 10 (3) (2009)
273-290.

J.A. Vrugt, Markov chain Monte Carlo simulation using the DREAM software
package: theory, concepts, and MATLAB implementation, Environ. Model. Softw.
75 (2016) 273-316, https://doi.org/10.1016/j.envsoft.2015.08.013.

J. Goodman, J. Weare, Ensemble samplers with affine invariance, Commun. Appl.
Math. Comput. Sci. 5 (1) (2010) 65-80, https://doi.org/10.2140/
camcos.2010.5.65.

D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman, emcee: The MCMC
Hammer, Publ. Astron. Soc. Pac. 125 (925) (2013) 306-312, https://doi.org/
10.1086/670067.

M. Shinozuka, C.-M. Jan, Digital simulation of random processes and its
applications, J. Sound Vib. 25 (1) (1972) 111-128, https://doi.org/10.1016/0022-
460X(72)90600-1.

M. Shinozuka, G. Deodatis, Simulation of stochastic processes by spectral
representation, Appl. Mech. Rev. 44 (4) (1991) 191-204, https://doi.org/10.1115/
1.3119501.

K. Phoon, S. Huang, S. Quek, Simulation of second-order processes using
Karhunen-Loeve expansion, Comput. Struct. 80 (12) (2002) 1049-1060, https://
doi.org/10.1016/S0045-7949(02)00064-0.

W. Betz, 1. Papaioannou, D. Straub, Numerical methods for the discretization of
random fields by means of the Karhunen-Loéve expansion, Comput. Methods Appl.
Mech. Eng. 271 (2014) 109-129, https://doi.org/10.1016/j.cma.2013.12.010.
M. Grigoriu, Applied Non-Gaussian Processes: Examples, Theory, Simulation,
Linear Random Vibration, and MATLAB Solutions, Prentice Hall, 1995.

M. Shields, G. Deodatis, P. Bocchini, A simple and efficient methodology to
approximate a general non-Gaussian stationary stochastic process by a translation
process, Probab. Eng. Mech. 26 (4) (2011) 511-519, https://doi.org/10.1016/].
probengmech.2011.04.003.

M.D. Shields, H. Kim, Simulation of higher-order stochastic processes by spectral
representation, Probab. Eng. Mech. 47 (2017) 1-15, https://doi.org/10.1016/j.
probengmech.2016.11.001.

B.A. Benowitz, G. Deodatis, Simulation of wind velocities on long span structures: a
novel stochastic wave based model, J. Wind Eng. Ind. Aerodyn. 147 (2015)
154-163, https://doi.org/10.1016/j.jweia.2015.10.004.

J.L. Beck, K.-V. Yuen, Model selection using response measurements: Bayesian
probabilistic approach, J. Eng. Mech. 130 (2) (2004) 192-203, https://doi.org/
10.1061/(ASCE)0733-9399(2004)130:2(192.

A.E. Raftery, Bayesian model selection in social research, Sociol. Methodol. 25
(1995) 111-164, https://doi.org/10.2307/271063.

H. Akaike, A new look at the statistical model identification. Selected Papers of
Hirotugu Akaike, Springer, 1974, pp. 215-222.

C.M. Hurvich, C.-L. Tsai, Regression and time series model selection in small
samples, Biometrika 76 (2) (1989) 297-307, https://doi.org/10.1093/biomet/
76.2.297.

C.M. Hurvich, C.-L. Tsai, Model selection for extended quasi-likelihood models in
small samples, Biometrics (1995) 1077-1084, https://doi.org/10.2307/2533006.

https://doi.org/10.1016/j.advwatres.2017.10.014
https://doi.org/10.1007/s11707-018-0695-y
https://github.com/SURGroup/UQpy
https://github.com/SURGroup/UQpy_paper
https://doi.org/10.1016/j.strusafe.2005.03.005
https://doi.org/10.1016/j.strusafe.2005.03.005
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0065
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0065
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0065
https://www.bgu.tum.de/era/software/
https://www.bgu.tum.de/era/software/
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0075
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0075
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0075
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0080
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0080
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0080
https://doi.org/10.18637/jss.v065.i11
https://doi.org/10.18637/jss.v051.i01
https://doi.org/10.18637/jss.v051.i01
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0095
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0100
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0105
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0105
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0105
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0105
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0105
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0110
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0110
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0115
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0115
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0115
https://doi.org/10.1016/j.strusafe.2004.11.003
https://doi.org/10.3389/fninf.2018.00049
https://doi.org/10.1016/j.jocs.2018.12.004
https://doi.org/10.1016/j.jocs.2018.12.004
https://doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.3233/978-1-61499-843-3-159
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0145
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0145
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0145
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0150
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0150
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0150
https://doi.org/10.1016/j.envsoft.2015.11.004
https://uqpyproject.readthedocs.io/
https://doi.org/10.1007/s10444-019-09666-0
https://doi.org/10.1007/s10444-019-09666-0
https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.1007/s11831-009-9031-8
https://doi.org/10.1007/s11831-009-9031-8
https://strongmotioncenter.org/
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0185
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0185
https://doi.org/10.1016/j.firesaf.2009.01.003
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0195
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0195
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0200
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1016/j.ress.2015.12.002
https://doi.org/10.1016/j.ress.2015.05.023
https://doi.org/10.1016/j.ress.2018.03.018
https://doi.org/10.1016/j.ress.2018.03.018
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0225
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0225
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0230
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0230
https://doi.org/10.1016/S0266-8920(01)00019-4
https://doi.org/10.1016/S0266-8920(01)00019-4
https://doi.org/10.1007/s11222-006-9438-0
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0245
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0245
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0245
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0245
https://doi.org/10.1016/j.envsoft.2015.08.013
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1016/0022-460X(72)90600-1
https://doi.org/10.1016/0022-460X(72)90600-1
https://doi.org/10.1115/1.3119501
https://doi.org/10.1115/1.3119501
https://doi.org/10.1016/S0045-7949(02)00064-0
https://doi.org/10.1016/S0045-7949(02)00064-0
https://doi.org/10.1016/j.cma.2013.12.010
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0285
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0285
https://doi.org/10.1016/j.probengmech.2011.04.003
https://doi.org/10.1016/j.probengmech.2011.04.003
https://doi.org/10.1016/j.probengmech.2016.11.001
https://doi.org/10.1016/j.probengmech.2016.11.001
https://doi.org/10.1016/j.jweia.2015.10.004
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(192
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(192
https://doi.org/10.2307/271063
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0315
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0315
https://doi.org/10.1093/biomet/76.2.297
https://doi.org/10.1093/biomet/76.2.297
https://doi.org/10.2307/2533006

A. Olivier et al.

[66]

671
[68]
[69]
[70]
[71]

[72]

[73]

[74]

[75]

[76]

771

[78]

[79]

[80]

[81]

[82]

A. Raftery, M. Newton, J. Satagopan, P. Krivitsky, Estimating the integrated
likelihood via posterior simulation using the harmonic mean identity, Bayesian
Stat. 8 (2007) 1-45.

C. Cornell, A probability-based structural code, J. ACI 66 (1969) 974-985, https://
doi.org/10.14359/7446.

O. Ditlevsen, Structural Reliability and the Invariance Problem, Report No. 22,
University of Waterloo, Solid Mechanics Division, Waterloo, Canada, 1973.

A.-M. Hasofer, N.-C. Lind, An exact and invariant first-order reliability format,

J. Eng. Mech. 100 (1974) 111-121.

O. Ditlevsen, Model uncertainty in structural reliability, Struct. Saf. 1 (1) (1982)
73-86, https://doi.org/10.1016/0167-4730(82)90016-9.

K. Breitung, Asymptotic approximations for probability integrals, Probab. Eng.
Mech. 4 (4) (1989) 187-190, https://doi.org/10.1016/0266-8920(89)90024-6.
R. Rackwitz, B. Fiessler, Structural reliability under combined load sequences,
Comput. Struct. 9 (5) (1978) 489-494, https://doi.org/10.1016/0045-7949(78)
90046-9.

1. Papaioannou, W. Betz, K. Zwirglmaier, D. Straub, MCMC algorithms for subset
simulation, Probab. Eng. Mech. 41 (2015) 89-103, https://doi.org/10.1016/j.
probengmech.2015.06.006.

M.D. Shields, D. Giovanis, V. Sundar, Subset simulation for problems with strongly
non-Gaussian, highly anisotropic, and degenerate distributions, Comput. Struct.
(2020) (in review, provisionally accepted).

M. Grigoriu, Reduced order models for random functions. Application to stochastic
problems, Appl. Math. Model. 33 (1) (2009) 161-175, https://doi.org/10.1016/j.
apm.2007.10.023.

B.W. Santner, T.W. Notz, The Design and Analysis of Computer Experiments,
Springer, New York, NY, 2003.

B. Echard, N. Gayton, M. Lemaire, AK-MCS: an active learning reliability method
combining kriging and monte carlo simulation, Struct. Saf. 33 (2) (2011) 145-154,
https://doi.org/10.1016/j.strusafe.2011.01.002.

V. Sundar, M.D. Shields, Reliability analysis using adaptive kriging surrogates with
multimodel inference, ASCE-ASME J. Risk Uncertain. Eng. Syst. A: Civ. Eng. 5 (2)
(2019) 04019004, https://doi.org/10.1061/AJRUA6.0001005.

B.J. Bichon, M.S. Eldred, L.P. Swiler, S. Mahadevan, J.M. McFarland, Efficient
global reliability analysis for nonlinear implicit performance functions, AIAA J. 46
(10) (2008) 2459-2468, https://doi.org/10.2514/1.34321.

D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization of expensive
black-box functions, J. Glob. Optim. 13 (4) (1998) 455-492, https://doi.org/
10.1023/A:1008306431147.

C.Q. Lam, Sequential Adaptive Designs in Computer Experiments for Response
Surface Model Fit (Ph.D. thesis), The Ohio State University, 2008.

R. Lebrun, A. Dutfoy, An innovating analysis of the Nataf transformation from the
copula viewpoint, Probab. Eng. Mech. 24 (3) (2009) 312-320, https://doi.org/
10.1016/j.probengmech.2008.08.001.

Audrey Olivier holds a Diplome d’Ingénieur from Ecole Cen-
trale de Nantes, France, and a Ph.D. from the Dept. of Civil
Engineering and Engineering Mechanics at Columbia Univer-
sity (2017). She is currently a Postdoctoral Fellow in the
Hopkins Extreme Materials Institute at Johns Hopkins Uni-
versity. Dr. Olivier’s research interests lie at the junction of
physical modeling and data analysis and their application to
system monitoring and enhanced computational mechanics.
She has worked on the development of efficient inverse un-
certainty quantification tools for structural health monitoring
applications, or the development of machine learning algo-
rithms for materials modeling.

Dimitris Giovanis is an Assistant Research Professor in the
Department of Civil and Systems Engineering at Johns Hopkins
University. He joined the University in 2016 as a Postdoctoral
fellow. He earned his five-year Diploma in Civil Engineering,
his M.Sc. in Computational Mechanics from the Department of
Chemical Engineering and his Ph.D. in Civil Engineering from
the National Technical University of Athens in Greece. His
primary research interests are data-driven uncertainty quanti-
fication (UQ) approaches for mathematically characterizing
parametric and model-form uncertainties, that will inform
decision making and eventually lead to the design of high
performance physical and structural systems.

Journal of Computational Science 47 (2020) 101204

B. S. Aakash is a Ph.D. student in the Department of Civil and
Systems Engineering at Johns Hopkins University. He holds a
Master’s degree in Civil Engineering from the Indian Institute
of Science, after which he was employed for two years in the
Geomechanics Research Laboratory at the Indian Institute of
Science. Aakash’s research focuses on the development of a
Bayesian approach to the treatment of model form uncertainty,
with applications in structural fire engineering.

Mohit S. Chauhan is a graduate student in the Dept. of Civil
and Systems Engineering at Johns Hopkins University. He
joined the Ph.D. program under in 2017. He has completed his
undergraduate studies in Civil Engineering and received his
Masters in Structural Engineering from Indian Institute of
Technology, Kanpur (IITK) in 2017. As a graduate student at
IITK, he has worked in the field of Structural Health Moni-
toring. At Hopkins, he conducts research to develop algorithms
for computationally expensive models that learns samples
adaptively to tackle problems related to variance reduction and
sensitivity analysis.

Lohit Vandanapu is a Graduate Student in the Dept. of Civil
and Systems Engineering at Johns Hopkins University. His
research primarily focuses on developing frameworks for
simulation of higher-order stochastic processes and its appli-
cations in various fields of science and engineering. He
received his Bachelor of Technology in Civil Engineering from

%5 Indian Institute of Technology, Roorkee in 2017.

Michael D. Shields is an Associate Professor in the Dept. of
Civil and Systems Engineering at Johns Hopkins University.
Prof. Shields conducts methodological research in uncertainty
quantification and stochastic simulation for problems in
computational mechanics. He received his Ph.D. in Civil En-
gineering and Engineering Mechanics from Columbia Univer-
sity in 2010 after which he was employed as a Research
Engineer in applied computational mechanics at Weidlinger
Associates, Inc. He joined the faculty at JHU in 2013. For his
work in UQ, Prof. Shields has been awarded the ONR Young
Investigator Award, the NSF CAREER Award, and the DOE
Early Career Award.

http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0330
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0330
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0330
https://doi.org/10.14359/7446
https://doi.org/10.14359/7446
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0340
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0340
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0345
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0345
https://doi.org/10.1016/0167-4730(82)90016-9
https://doi.org/10.1016/0266-8920(89)90024-6
https://doi.org/10.1016/0045-7949(78)90046-9
https://doi.org/10.1016/0045-7949(78)90046-9
https://doi.org/10.1016/j.probengmech.2015.06.006
https://doi.org/10.1016/j.probengmech.2015.06.006
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0370
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0370
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0370
https://doi.org/10.1016/j.apm.2007.10.023
https://doi.org/10.1016/j.apm.2007.10.023
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0380
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0380
https://doi.org/10.1016/j.strusafe.2011.01.002
https://doi.org/10.1061/AJRUA6.0001005
https://doi.org/10.2514/1.34321
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0405
http://refhub.elsevier.com/S1877-7503(20)30505-6/sbref0405
https://doi.org/10.1016/j.probengmech.2008.08.001
https://doi.org/10.1016/j.probengmech.2008.08.001

	UQpy: A general purpose Python package and development environment for uncertainty quantification
	1 Introduction: UQpy purpose and workflow
	1.1 UQpy as a toolbox
	1.2 UQpy as a development environment
	1.3 Structure of the paper

	2 Driving simulations: the RunModel module
	2.1 Introduction
	2.2 Python computational model
	2.3 Third-party software computational model

	3 Forward propagation of uncertainties
	3.1 Sampling random variables: the SampleMethods module
	3.1.1 Combining SampleMethods and RunModel to propagate uncertainties
	3.1.2 Markov chain Monte Carlo algorithms and importance sampling

	3.2 Simulation of stochastic processes and random fields: the StochasticProcess module
	3.2.1 The StochasticProcess module
	3.2.2 Propagation of heterogeneous uncertainties using RunModel

	4 Probabilistic inverse learning: the Inference module
	4.1 Introduction and structure
	4.2 Parameter estimation
	4.2.1 Maximum likelihood estimation: the MLEstimation class
	4.2.2 Bayesian parameter estimation: the BayesParameterEstimation class

	4.3 Model selection
	4.3.1 Problem statement
	4.3.2 Information theoretic model selection: the InfoModelSelection class
	4.3.3 Bayesian model selection: the BayesModelSelection class

	5 Probability of failure and rare-event analysis: the Reliability module
	5.1 Expansion-based reliability analysis: the TaylorSeries class
	5.2 Simulation-based reliability analysis: the SubsetSimulation class

	6 Surrogate modeling and active learning
	6.1 Gaussian process regression/kriging: the Kriging class
	6.2 Adaptive kriging: the AKMCS class
	6.3 Refined stratified sampling: the RSS class

	7 Concluding remarks
	Author contributions
	Conflict of interest
	Declaration of Competing Interest
	Acknowledgements
	Appendix A UQpy modules and classes
	Appendix B UQpy extensions in progress
	Appendix C Defining probability distribution objects in UQpy: the Distributions module
	Appendix D Isoprobabilistic transformations: the Transformations module
	Appendix E Supplementary data
	References

