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A B S T R A C T   

This paper presents the UQpy software toolbox, an open-source Python package for general uncertainty quan
tification (UQ) in mathematical and physical systems. The software serves as both a user-ready toolbox that 
includes many of the latest methods for UQ in computational modeling and a convenient development envi
ronment for Python programmers advancing the field of UQ. The paper presents an introduction to the software’s 
architecture and existing capabilities, divided in the code in a set of modules centered around different UQ tasks 
such as sampling methods, generation of random processes and random fields, probabilistic inverse modeling, 
reliability analysis, surrogate modeling, and active learning. The paper also highlights the importance of the 
RunModel module, which is used to drive simulations in the uncertainty analyses performed in UQpy. This 
module conveniently allows the user to define computational models directly in Python, or to run simulations 
from a third-party software in serial or in parallel. To illustrate the various capabilities, two examples are tracked 
throughout the paper and analyzed repeatedly for various UQ tasks. The first is a Python model solving a 
nonlinear structural dynamics problem, used to illustrate UQpy’s capabilities in sampling and forward propa
gation of high dimensional random vectors (stochastic processes), and probabilistic inference. The second model 
is a third-party Abaqus finite element model solving the thermomechanical response of a beam structure. This 
example is used to illustrate UQpy’s capabilities in variance reduction sampling techniques, reliability analysis, 
surrogate modeling and active learning techniques.   

1. Introduction: UQpy purpose and workflow 

Uncertainty quantification (UQ) is the science of quantifying, char
acterizing, and reducing uncertainty in computational and real world 
systems. It finds applications in various fields of science and engineer
ing, such as stochastic mechanics and structural reliability [1,2], 
multi-scale modeling [3], biological systems [4], climate modeling [5] 
or hydrology [6–9]. This paper presents UQpy, an open-source, general 
purpose Python package for modeling uncertainty in physical and 
mathematical systems. The UQpy package is available for download 
from Github [10], along with all Python scripts necessary to run the 
examples presented in the manuscript [11], which are also included as 
supplementary materials. The code is organized as a set of modules 
centered around core capabilities in UQ, each represented by a box in 
Fig. 1. The modules build from foundational probabilistic operations to 
advanced methodologies where each module contains various classes 
that can easily invoke one another and can be combined to perform 

complex UQ tasks, as will be demonstrated throughout the manuscript. 
This object-oriented architecture also allows the user to easily add new 
capabilities. This is illustrated in Fig. 1 by the addition of new modules 
for advanced analysis, but extension of existing modules is similarly 
straightforward and does not require intrusion with existing classes and 
functions, as discussed in more detail below. 

This flexible package can be utilized in various ways, depending on 
the user’s goals, Python coding proficiency and desired level of inter
action with the code. On one-hand, UQpy can be used in a “black-box” 
fashion as it provides a range of user-ready algorithms that can be easily 
imported into the user’s Python environment and invoked to perform 
various UQ tasks such as forward uncertainty propagation, inverse 
learning or estimation of failure probabilities to name only a few, with 
minimal interaction with the code itself. On the other hand, it is fully 
open-source and was designed with a conveniently extensible, object- 
oriented architecture. Considering this flexibility, it is useful to think 
of UQpy in two ways: 1. As a UQ toolbox for the casual or advanced user; 
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2. As a development environment through which to advance the field of 
UQ in computational modeling. 

Before getting into the code, it is important to recognize that several 
codes currently exist for UQ and perhaps shed some light on what sets 
UQpy apart. The following paragraphs aim to provide a review of Python 
based and non-Python based toolboxes for general UQ, though recog
nizing that it may not provide a fully exhaustive list. In particular, it is 
noted that numerous Python codes exist that focus on one specific aspect 
of UQ, such as MCMC, and our review does not include many of these 
tools. Instead, we aim to review those tools that are general and incor
porate a broad range of UQ functionalities. 

Some codes, such as the Computational Stochastic Structural Anal
ysis (COSSAN) software [12] began development as early as 1992. 
COSSAN development has continued to present day and the software has 
now split into two components. OpenCossan is an open-source Matlab 
toolbox for UQ that, like UQpy, is available for download via Github. 
COSSAN-X meanwhile comprises a set of compiled toolboxes for various 
tasks in UQ. Another widely used and powerful Matlab toolbox is the 
UQLab software [13] developed by the Chair of Risk, Reliability, and 
Uncertainty Quantification at ETH Zurich. The Engineering Risk Anal
ysis Group at the Technical University of Munich has also developed a 
variety of MATLAB and Python tools for various UQ tasks [14]. Other 
Matlab toolboxes that are available are filling specific niches within UQ 
such as the SUrrogate MOdeling (SUMO) toolbox [15] and the Finite 
Element Reliability Using Matlab (FERUM) toolbox [16]. Various 
packages are also available for the R statistical software including 
DiceDesign, DiceKriging, and DiceOptim [17,18], the mistral package 
[19] for reliability analysis, and the sensitivity package [20]. 

Among the developed software, some commercial and/or industrial 
codes have also begun to arise. Perhaps the most widely used UQ soft
ware is the Dakota package [21] developed by Sandia National Labo
ratories (SNL). Dakota is an open-source C++ package with many 
advanced features that is widely used across the US government labs. 
Also developed at SNL is the C++/Python UQ Toolkit (UQTk) [22]. 
Additional notable UQ packages include the Open source Treatment of 
Uncertainty, Risk ’N Statistics (Open TURNS) C++ package [23], the 
NESSUS packaged developed by Southwest Research Institute [24] and 
the SMARTUQ package. 

The primary motivation for developing UQpy is the lack of compre
hensive UQ package specifically for the Python language, which is 
extensively used for scientific computing. While extensive packages are 
available in Matlab, C++, and R, only relatively few disparate codes 
were previously available in Python. These tools were either for specific 
niche applications, were catered to specific methodologies, or were only 
partially Python-based (e.g. having a Python interface). The Uncer
tainPy code [25], for example, is catered specifically to applications in 
computational neuroscience. pyROM [26] is an open source Python 

computational framework that implements model reduction techniques. 
Chaospy [27], meanwhile, performs UQ using polynomial chaos ex
pansions, which makes it an important contribution but not a general 
toolbox. In fact, the existence of Chaospy is one reason that polynomial 
chaos has not yet been implemented in UQpy, although it is expected to 
be added in the near future. A number of Python packages are tailored 
for inverse uncertainty quantification, such as SPUX [28] or ABCpy [29] 
which provide Python implementations of Bayesian calibration algo
rithms or SPOTpy that implements a number of algorithms for statistical 
parameter optimization. Packages such as the MIT Uncertainty Quan
tification (MUQ), Open TURNS, Korali [30] and UQTk toolboxes do 
include a variety of tools and algorithms for general purpose uncertainty 
quantification, however they are not exclusive Python packages. Instead 
they are either mixed Python/C++ codes or C++ codes with a Python 
interface, and thus are not particularly well-suited for Python develop
ment of new UQ methodologies and algorithms. Finally, the UQ-PyL 
package [31] is a fully Python-based software platform that includes 
various UQ tasks tailored to quantifying and reducing model un
certainties associated with model parameters. UQpy’s scope is some
what broader as it allows for modeling of a wider range of uncertainties 
via stochastic processes/fields for instance. Also, though new algorithms 
can be added to the UQ-PyL package by creating new python scripts, 
UQpy’s object oriented architecture is better suited for development 
purposes, as will be shown throughout the manuscript. UQpy is therefore 
intended to be a fully general UQ toolbox and development environment 
for Python. As such, it combines many of the most widely used and 
advanced methodologies in an architecture that can be imported 
directly into the user’s Python environment, can seamlessly link to any 
third-party computational model, is conveniently extensible for devel
opment of new methodologies, and is capable of harnessing high per
formance computing resources. 

The following provides a brief overview of the code (specifically 
Version 3), and how it can be adopted by interested users to perform 
readily available UQ tasks or utilized by more advanced users for UQ 
development activities. 

1.1. UQpy as a toolbox 

UQpy has a wide-range of built-in capabilities that are ready to use. 
These capabilities are divided into a set of modules, each centered 
around a common objective, as illustrated in Fig. 1. Utilization of UQpy 
is built upon fundamental probabilistic operations and the evaluation of 
computational models via the RunModel module, which drives all 
simulations in the uncertainty analysis. RunModel allows the user to 
define the model directly in Python (in which case the model is imported 
into the user’s Python environment) or to run simulations from a third- 
party software. Many other modules, therefore, rely on this RunModel 

Fig. 1. UQpy modules organized from their most fundamental to those for advanced modeling. Moving upward in the figure, the modules at higher levels generally 
leverage those at the lower levels. 
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object to perform simulations required by the various UQ tasks. In this 
context, UQpy can be non-intrusively wrapped around any user soft
ware, enhancing it to enable consideration of uncertainties. The Run
Model module is discussed in more detail in Section 2. 

Built around the RunModel module are six modules for UQ func
tionalities ranging from fundamental operations (lower level) to 
advanced methodologies (upper level). Within the modules, each spe
cific functionality is implemented as a class. For example, the Sam
pleMethods module contains a set of classes designed to draw samples, 
randomly or deterministically, from a specified parameter space. This 
module includes classes ranging from simple Monte Carlo sampling 
(SampleMethods.MCS) to advanced Markov chain Monte Carlo 
methods (SampleMethods.MCMC). A complete list of modules and 
classes in the current release (Version 3.0) is provided in Appendix A. 
Note that additional modules are under development as discussed in 
Appendix B. Through this modular architecture, the user can easily take 
advantage of UQpy to perform a variety of UQ tasks of various 
complexity. The user may be interested in simple functionalities that 
leverage a single class of UQpy, e.g., sampling realizations of a stochastic 
process via StochasticProcess.SRM. More importantly though, the 
user can use UQpy to perform much more complex UQ tasks that 
internally leverage various UQpy modules. For instance, the Sample
Methods.RSS class performs adaptive sampling of random variables by 
iteratively leveraging the RunModel and Surrogates.Kriging 
classes, while the Reliability.SubsetSimulation class internally 
leverages the RunModel and SampleMethods.MCMC classes to 
compute rare-event probabilities. Additionally, thanks to their modular 
nature, the user can “daisy-chain” various classes of the software to cater 
existing capabilities to their specific needs. 

Those interested in using UQpy as a UQ toolbox have a variety of 
options to install the software as discussed in the software documenta
tion [32]. 

1.2. UQpy as a development environment 

Perhaps more importantly, from a scientific and research perspec
tive, UQpy is specifically designed to serve as a platform for developing 
new UQ methodologies and algorithms. Firstly, contrary to packages 
that are not fully Python-based, UQpy can very easily inter-operate with 
other Python code, from widely used packages such as Numpy and 
Scipy for mathematical operations or Matplotlib for plotting, to 
more specialized packages for modeling (e.g., SfePy [33] for finite 

element modeling, scikit-learn for machine learning and surrogate 
modeling). Furthermore, its modularized, object-oriented architecture is 
designed such that extensions or modifications to the code can easily be 
performed to tackle a wider range of problems. Such extensions can be 
implemented in various ways, either through development of new 
modules (see Fig. 1) or through the extension of existing modules with 
new classes and/or functions – as illustrated conceptually in Fig. 2 for 
extensions to the SampleMethods module. 

The code is designed such that its extension requires minimal 
intrusion with existing classes and functions. In the simplest case, new 
capabilities are implemented by simply adding a new class to an existing 
module as illustrated by the NewSampler class in Fig. 2. Any such new 
class can leverage the full suite of existing capabilities in UQpy. Where 
appropriate, the code relies on inheritance concepts that greatly facili
tate development of new methods. In such cases, the parent class con
trols the framework and defines generic attributes and methods that are 
shared across all sub-classes. Specific algorithms are created by creating 
child classes that implement new methods or over-write only those 
methods of the parent class that the user wishes to change. In this 
fashion, a developer who wishes to add a new algorithm need not modify 
any of the existing code, only add a class that inherits from the parent 
class, as illustrated by the NewMetropolis sub-class of the parent 
MCMC class in Fig. 2. This specific case is elaborated in greater detail in 
Section 3.1.2. In other instances, the code allows replacing supported 
functionalities with custom functions. An example in the SampleMe
thods module is the LHS class, where four criteria are currently sup
ported for pairing the samples. However a user can also provide a 
custom function that pairs the samples, thus non-intrusively enhancing 
the existing code in a straightforward manner. 

Because a primary objective of this work is to illustrate how UQpy 
serves as a development environment for UQ research, additional details 
will be provided throughout the text below to specifically illustrate how 
new developments can be made in the various modules. Those interested 
in developing with UQpy are encouraged to install the software from 
Github using a developer install as described in the software docu
mentation [32]. 

1.3. Structure of the paper 

The structure of the paper follows the structure of the software. UQpy 
currently has nine modules, seven primary modules for probabilistic 
modeling and two support modules, as shown in Fig. 1. We begin in 
Section 2 by introducing the RunModel module, which is at the core of 
UQpy, and enables almost all modeling activities – deterministic or 
probabilistic. Sections 3–6 are focused on the various capabilities in 
probabilistic modeling currently implemented in UQpy. This starts at the 
foundation of the software (bottom of Fig. 1) with the SampleMethods 
and StochasticProcess modules for simulation-based uncertainty 
propagation in Section 3. The more advanced methods (top of Fig. 1) are 
discussed in Sections 4–6. Section 4 deals with probabilistic inverse 
modeling through the Inference module. In Section 5, we present the 
Reliability module for rare-event simulation and probability of 
failure estimation. Finally, surrogate modeling and active learning ca
pabilities are presented using the Surrogates module in Section 6. 
Two additional modules, the Distributions module for defining 
probability distribution objects and the Transformations module for 
transforming random variables are described in Appendices C and D. 
The Utilities module is not discussed in this paper. It is also 
important to mention that this manuscript is not intended to provide a 
detailed description of all UQpy functionalities and programming fea
tures. For this the reader is referred to the UQpy documentation [32]. It 
is aimed instead at providing an overview of the breadth of tasks that 
can be performed with this package, an introduction to its utilization 
and code framework, and a guide for researchers aiming to use it as a 
development tool. All the codes written within the manuscript are 
provided as supplementary materials, or can be downloaded from 

Fig. 2. Illustration of code modifications to add classes and methods to 
UQpy modules. 
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GitHub [11]. 
Finally, in order to illustrate the various UQpy capabilities, we track 

two examples continuously throughout the paper. These two examples 
intentionally describe relatively simple models as they serve only to 
illustrate the various functionalities of UQpy. Much more complex 
models can be, and have been, integrated within this framework. One 
example is a structural dynamics model written completely in Python to 
demonstrate how UQpy works within the Python environment to 
execute Python models for UQ purposes. The second example is an 
Abaqus finite element model performing thermomechanical analysis of 
a beam. This example demonstrates the use of UQpy for models built 
using third-party software. These examples are introduced in Section 2 
and are used throughout the paper. 

2. Driving simulations: the RunModel module 

2.1. Introduction 

Many tasks in UQ, from forward uncertainty propagation to inverse 
learning, require running forward simulations of a computational model 
h(⋅) at various points in the space of input uncertainties X. The forward 
model can be generically represented as: 

Y = h(X), (1)  

where Y is the output quantity of interest (QoI). In forward uncertainty 
propagation for instance, samples x(i) ∈ ℝd, i = 1 : N are drawn from the 
known distribution p(X) and the distribution of Y (or its moments) is 
inferred from outputs of the forward simulations y(i) = h(x(i)). 

In UQpy, forward simulations are initiated via the RunModel mod
ule. This module can interact with Python computational models as well 
as third-party software, allowing great flexibility in the definition of the 
forward model h(⋅). If RunModel is used in combination with a Python 
computational model, the user must simply provide the filename of a ‘. 
py’ file that contains the forward model function h(⋅). In this case, the 
model is directly imported into the user’s Python environment and 
executed (it must be written in Python3). When running with a third- 
party software model, RunModel interfaces with the model through 
text-based input files and serves as the “driver” to initiate the necessary 
calculations. Examples of both types of applications are provided 
hereafter. 

The jobs initiated by RunModel can be executed either in series or in 
parallel, allowing distribution of multiple jobs over multiple processes. 
The attribute ntasks is used to specify if series or parallel execution of 
jobs is desired. For parallelization across a single compute node or 
workstation, RunModel employs the multiprocessing Python 
package when run in combination with a Python computational model, 
and GNU parallel [34] when running a third-party software model. In 
the case of cluster computing with a third-party software model, Run
Model uses GNU parallel to execute jobs in parallel over multiple 
cores on multiple compute nodes. This allows execution of jobs where 
the model is itself parallelized. But the supported options to request 
computational resources for such jobs are currently limited. Interested 
users are referred to the UQpy documentation [32] for more details. 
More support for execution of jobs on clusters will be rolled out in a 
future release. The software does not currently support parallel pro
cessing of Python models over multiple compute nodes. 

Several examples for this paper, in particular those related to the 
structural fire example presented in Section 2.3, were executed using the 
Maryland Advanced Research Computing Center for third party (e.g. 
Abaqus) models requiring high performance computing. 

An object of the class RunModel is instantiated as follows: 

The minimum required and optional attributes of the RunModel 

class (e.g., model_script, input_template, ntasks, …) depend 
on the desired workflow – Python vs. third party-software and serial vs. 
parallel execution. Detailed examples of various workflows and the 
corresponding input attributes will be provided in the following sec
tions. In order to instantiate one or several forward simulations, the run 
method is invoked as: 

where samples is an array of at least two dimensions, with shape (N,

d, …), that contains samples of the input random variables x(i) ∼ p(X). 
The convention adopted by RunModel is that the first index, N, is the 
number of samples and the second index, d, is the number of variables in 
each sample. Each of these d variables can be of arbitrary dimension, and 
hence samples can be of arbitrary dimension. N forward runs are then 
executed and the output quantities of interest y(i) are stored as an attri
bute qoi_list (list of length N) of the RunModel object. The ith sample 
x(i) and corresponding QoI y(i) = h(x(i)) can thus be accessed as: 

The run method can be invoked several times, in which case the 

samples and QoIs will by default be appended to existing values, unless 
input append_samples is set to False in which case existing values are 
overwritten. The user can also provide samples directly when instanti
ating the RunModel object, i.e., 

In this case, the run method is called during initialization and both 

the samples and QoIs are stored as previously described. 
In the following sections, two examples are provided to illustrate the 

usage of the RunModel module and its various workflows. First, a 
simple Python model that solves the dynamics equation of a highly 
nonlinear single-degree-of-freedom system is presented. Then a more 
complex finite element model is described that illustrates the combi
nation of RunModel with a third party software (Abaqus in this case). 

2.2. Python computational model 

This section illustrates how RunModel executes a Python computa
tional model. The underlying physical problem deals with the dynamical 
behavior of a highly nonlinear single-degree-of-freedom (SDOF) system 
(see Fig. 3). The dynamical behavior of this Bouc-Wen model of hys
teresis [35] can be represented by the following system of equations (the 
mass is assumed known as m = 1): 

z̈(t) + cż(t) + k r(t) = −ü, (2a)  

ṙ
(
t
)

= ż − β|ż(t)||r(t)|
n−1r

(
t
)

− γż
(
t
)
|r(t)|

n
, (2b) 
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where z, r are the displacement and hysteresis variables respectively and 
ü is the ground acceleration that serves as input to the model. The model 
is parameterized by its stiffness k, damping c and Bouc-Wen parameters 
n, β, γ, which govern the shape of the hysteresis loop. Alternatively, the 
Bouc-Wen model can be reparameterized using the three parameters n,

r0 =
̅̅̅̅̅̅
1

β+γ
n

√
, δ = β

β+γ. 

Uncertainties in this system originate from two distinct sources: 
stochasticity of the input ground acceleration, and randomness in the 
model parameters. Various UQ tasks can be performed with this model. 
Here, forward propagation of multiple sources of uncertainties, 
including high dimensional random vectors (stochastic processes), is 
illustrated in Section 3.2 and parameter learning and model selection 
from data are illustrated in Section 4. Two distinct models will be 
considered for these two tasks. 

The first model considers input uncertainty in both the model pa
rameters [k, r0, δ, n] (assuming no damping, c = 0), and the input ground 
motion acceleration ü(t). The input X thus consists in five random var
iables (d = 5) of heterogeneous data types: four random scalars of model 
parameters and a stochastic process that models the input excitation. 
The quantity of interest Y is the time-dependent displacement response 
of the system. In UQpy, when defining a RunModel object that calls a 
Python computational model, the user must provide as input mod
el_script, which is a string containing the name of the Python file 
that contains the model h(⋅). This Python model must be defined as 
either a class or a function with specific formatting rules, and the user is 
referred to the UQpy documentation [32] for more details. In the case 
considered herein, all Python functions related to this example are 
written in a single file ‘utils_dynamics.py’. In particular, the function 
‘sdof_boucwen_prop’ takes in as first input a sample consisting of one 
realization of the model parameters and one realization of the stochastic 
process,1 solves the dynamics equations in Eq. (2) forward in time and 
returns the corresponding displacement. An abridged version of this 
function follows. 

When defining the RunModel object, the name of the specific 
function within the model_script that executes the model should be 
provided as the model_object_name input. In this case, the RunMo
del object is then instantiated as follows: 

The input parameter ntasks is set to 1, specifying that execution of 
this model is to be performed serially (not in parallel). Setting ntasks to 

an integer greater than 1 would trigger the parallel workflow where 
ntasks are run concurrently. 

The second model will be used for parameter estimation/model se
lection, and is thus defined to deal solely with uncertainties in the sys
tem parameters, i.e. X = [k, r0, δ, n] (assuming no damping, c = 0). The 
input excitation ü(t) is assumed known, it is a (scaled) version of the El- 
Centro earthquake ground motion, downloaded from [36]. The abridged 
function that computes the displacement QoI is written as follows: 

The above function takes in an additional parameter scale_
factor, which can thus be fixed outside of the ‘dynamics_utils.py’ file. 
A value for this additional input must be provided when instantiating 
the RunModel object, as follows: 

The user can thus pass in any additional input that is used by the 
model h(⋅) that computes the QoI, allowing great flexibility in defining 
such models. Notice also that ntasks=4 in this RunModel object, 
invoking parallel computing when the run method is called. Notice also 
that in this setting, the input uncertainty is assumed to be composed of 
four scalar random variables (d = 4), as indicated by the variable names 
var_names. 

Both RunModel objects previously defined can then be used to 
execute the corresponding forward model, by calling the run method. 
The input samples must be such that len(samples)=N and len 
(samples[0])=d. For instance, to run the second model for a given set 
of parameters k = 1 cN/cm, r0 = 2 cm, δ = 0.9 and n = 3, one calls: 

The QoI for this one run is accessed via: 

2.3. Third-party software computational model 

This section presents how RunModel can be used to drive simula
tions of a model that is not in Python, with the help of an example. Such 
a model can be of any kind (e.g. commercial software or locally 

1 The RunModel module also supports vectorized computations for Python 
computational models; the model script would then accept several samples at 
once and return all associated QoIs. 
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compiled software) and requires only that the software provide an ASCII 
text-based input file through which the user defines the calculation and 
its parameters. In the example provided here, the deflection of a uni
formly loaded beam subjected to fire-induced temperature change is 
simulated in the commercial finite element analysis software Abaqus 
[37]. The problem is detailed in Fig. 4, and the geometry is simplified 
from [38]. In particular, we investigate the influence of the fire load 
density and the room-temperature material yield strength (considering 
elastic-perfectly plastic material response) on the deflection of the 
midpoint of the beam as it undergoes a temperature change defined by 
the parametric curve [39] in Fig. 4, with a linear yield strength degra
dation curve also shown in Fig. 4. Given that the calculation is per
formed using numerical time integration, the relationship between the 
inputs (fire load density and yield strength) and outputs (deflection) 
cannot be expressed in closed form. Adopting the generic representation 
in Eq. (1), each execution of the model h(⋅), thus takes a sample of two 
uncertain scalar parameters as input X, and returns the difference be
tween the maximum allowable displacement (da) and the maximum 
displacement of the midpoint of the beam (dm) as the output, i.e., Y =

da − dm. The maximum allowable displacement is one of the criteria 
used to assess load-bearing capacity of the beam and is computed as da =

L2

400h, where L is the length of the beam, and h is the depth of the 
cross-section of the beam [40]. For the dimensions shown in Fig. 4, 
da ≈ 7.14 cm. 

The two required inputs when defining the RunModel object for this 
workflow are the name of the model_script, and the name of the 
input_template. In addition to these two required inputs, in this 
example, the name of an output_script is provided for post
processing. Unlike the Python workflow, the model_script is not the 
computational model itself. Instead, the model_script is a Python 
script (in the form of a function or class) with commands necessary to 
execute the third-party model. The input_template is a text file 
which contains placeholders demarcated by angle brackets < ⋅ > with 
the variable names inside. Standard Python indexing is supported inside 
the place-holders. RunModel scans the input_template file and re
places the placeholders with the corresponding sample values of the 
input variables. For example, the placeholder <var[0][2]> in the 
template file will cause the corresponding component of var to be 
placed at that location in the input file. For the computational model in 
the example, the variable names used are qtd for the fire load density, 
and fy for the yield strength. Since these are different from the default 
variable names used by RunModel, they have to be passed as an input 
when defining the RunModel object. Finally, the output_script will 
be executed by RunModel to retrieve the quantity of interest and save it 
in the attribute qoi_list of the RunModel object for postprocessing 
and adaptivity/learning. 

The RunModel object is defined as follows: 

and can be used to execute the third-party software model by passing 
samples of the random variables as inputs to the run method as 
follows: 

After execution of the model, the outputs corresponding to each 
sample are saved as a list in the attribute qoi_list of the RunModel 
object.  

This model will be used in later sections of the paper to demonstrate 
Monte Carlo simulation and the stratified sampling variance reduction 
method in Section 3.1.1. Reliability estimation capabilities of UQpy will 
be demonstrated with this model using FORM in Section 5.1, and using 
subset simulation in Section 5.2. Adaptive sampling capabilities in UQpy 
such as Adaptive-Kriging MCS will also be demonstrated using this 
model, in Section 6.2. Since this model is moderately computationally 
expensive, a surrogate model will be trained to represent the perfor
mance function from this model, in Section 6.3. 

3. Forward propagation of uncertainties 

3.1. Sampling random variables: the SampleMethods module 

In forward simulation, one wants to study how uncertainties in in
puts X, with known probability density p(X), propagate through the 
computational model h(⋅) and affect the output quantities of interest Y. 
Propagation of uncertainties generally requires evaluating the compu
tational model at various points x(i) of the input space. The Sample
Methods module contains several classes to sample realizations x(i) of 
random variable (RV) X. Methods such as simple Monte Carlo sampling 
(MCS) are available, along with variance reduction sampling techniques 
such as Latin Hypercube Sampling (LHS) [41,42], stratified sampling 
(STS) [41], and some adaptive variations of these (e.g. refined stratified 
sampling, RSS) [43,44], which require the distribution of the RVs to be 
known in advance. The module also contains classes to sample from 
distributions that are known up to a constant, such as Markov Chain 
Monte Carlo algorithms and Importance Sampling. 

Sampling schemes available in the SampleMethods module, such 
as MCS, LHS, STS, and RSS, can be used to generate independent 
random draws from a specified probability distribution or distributions. 
The Distributions module of UQpy (Appendix C) is utilized by the 
SampleMethods module to define probability distributions. This 
module includes a variety of univariate and multi-variate distributions; 
it also supports user-defined distributions and multi-variate distribu
tions defined via their marginals, possibly with a copula to introduce 
dependence between components. Another option to induce correlation 
between the components of random vectors is to use the Trans
formations module, described in Appendix D. 

In the following sections, we describe the primary sampling methods 
that are available in UQpy. The emphasis here is placed on their 
implementation in the software and their use for uncertainty propaga
tion. For this reason, we do not specifically describe each method in 
detail. For such descriptions, references are provided. Additionally, we 
further discuss several of these methods in the following section in the 
context of probabilistic inverse problems. Again, here the focus is on 
forward propagation. 

3.1.1. Combining SampleMethods and RunModel to propagate 
uncertainties 

For general uncertainty propagation, samples generated using the 
SampleMethods module can be passed as inputs to the run method of 
a RunModel object. To illustrate this point, we consider two different 
sampling schemes to generate random inputs for the third-party Abaqus 
thermomechanical model described in Section 2.3. Consider that the fire 
load density is modeled as a uniformly distributed random variable on 
the range 50–450 MJ/m2 and the yield strength at room temperature is 
modeled as a normally distributed random variable with a mean value of 
250 MPa and a coefficient of variation of 7%. To draw samples from 
these distributions using any of the sampling schemes available in UQpy, 
distribution objects are first created: 
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Samples of these parameters can be drawn using Monte Carlo sam
pling (the MCS class) as follows: 

Similarly, samples of these random variables can be drawn using 
stratified sampling (the STS class) as follows: 

In each case, we draw 1024 samples. For MCS these samples are 
randomly drawn according to the given distributions. For STS, the two- 
dimensional domain is discretized into 32 × 32 disjoint square strata of 
equal probability and one sample is drawn from each stratum. UQpy 
supports several types of geometric stratifications (rectangular, voronoi, 
delaunay), and user-defined stratifications can easily be implemented 
via sub-classing. The random_state input allows the user to seed the 
pseudo-random number generator and obtain reproducible results. This 
random_state input is included wherever needed in the code and used 
throughout the examples presented in the manuscript. 

The third-party model can be executed for each of these sample sets 
as follows, for MCS: 

For STS: 

Recall that the RunModel object abaqus_sfe_model has been 
previously initialized in Section 2.3. 

Fig. 5 shows the samples generated using both MCS and STS. The 
finite element model was evaluated at these points to calculate the 
maximum deflection of the midpoint of the beam. This deflection is 
compared to a deflection tolerance of 7.14 cm, and the sample markers 
in Fig. 5 are colored blue if the computed deflection does not exceed this 
threshold, and are colored red if the deflection exceeds the threshold. In 
the latter case, the beam is considered to have failed. Therefore, prop
agating samples through the model in this manner allows estimation of 
the probability of failure of the beam, which is estimated by Monte Carlo 
simulation to be 3.3% using 10,000 samples (not shown). We will return 
to this problem of failure probability estimation in the context of reli
ability analysis in Section 5. 

3.1.2. Markov chain Monte Carlo algorithms and importance sampling 
The SampleMethods module of UQpy also includes algorithms for 

Markov chain Monte Carlo (MCMC) and importance sampling (IS). 
These algorithms are used to sample from probability distributions p(X)

that are either difficult to sample from or may only be known up to a 

constant, i.e., p(X) =
p̃(X)

C , where ̃p(X) can be evaluated but C is unknown 
– as is the case when using Bayes’ theorem for instance. The MCMC and 
IS classes can be used as stand-alone tools for sampling from p(X), but 
they are also invoked by other classes in UQpy to perform advanced UQ 
tasks, such as Bayesian estimation (Inference module) or estimation 
of failure probability via Subset Simulation (Reliability module). 
These are specifically discussed in Sections 4 and 5, respectively. 

MCMC algorithms build a Markov chain that has the desired target 
distribution p(X) as its equilibrium distribution, thus states of the chain 
are samples of the desired distribution. There are numerous MCMC al
gorithms, and a comprehensive review of these algorithms is beyond our 
scope. The reader is referred to e.g. [45] for an introduction to some 
MCMC algorithms and [46] for more theory about MCMC methods. 
Currently, UQpy includes the following MCMC algorithms, where each 
algorithm is implemented as a class that inherits from a parent MCMC 
class: 

• Metropolis-Hastings (MH): (MH class) The most well-known algo
rithm, MH samples a candidate x★ from a previous state xk−1 using a 
user-defined proposal distribution x★ ∼ J(⋅|xk−1) and accepts it with 

probability α = min
{

p̃(x★)

p̃(xk−1)
⋅J(xk−1 |x★)

J(x★|xk−1)
, 1

}

. In UQpy, the user can run 

several chains in parallel by providing multiple seed points.  
• Component-wise Modified Metropolis-Hastings (MMH): (MMH class) 

In MMH [47], sample components are accepted or rejected according 
to the MH acceptance/rejection scheme in one dimension at a time. If 
the target pdf can be factorized into a product of one-dimensional 
distributions, the MMH can be used.  

• Delayed Rejection Adaptive Metropolis (DRAM): (DRAM class) The 
DRAM method [48] combines the delayed-rejection principle with 
adaptation of the proposal covariance matrix in an MH accept
ance/rejection scheme.  

• DiffeRential Evolution Adaptive Metropolis (DREAM) (DREAM class) 
The DREAM algorithm [49,50] runs several MH chains simulta
neously and automatically tunes the scale and orientation of the 
proposal distribution in randomized subspaces during the search.  

• Affine Invariance Ensemble Sampler with Stretch Moves (Stretch) 
(Stretch class) The Stretch sampler [51,52] leverages an 
affine-invariant property in a scheme that propagates an ensemble of 
walkers. 

In the interest of brevity, all of the available algorithms will not be 
illustrated here. 

In UQpy, the target distribution p(X) is defined as a callable that 
computes ̃p(x) or lnp̃(x) (the latter is preferred for stability reasons) for a 
given ndarray x of shape (N,d). Whenever possible, the log pdf of several 
samples is evaluated at once, for example when several chains are run in 
parallel. The target function callable can also take in any number of 
positional arguments. For instance, in order to sample from a 2D Rose
nbrock function, the following callable is created: 

The target function callable is provided to the MCMC class as input 
pdf_target or log_pdf_target. All additional positional argu
ments are provided as a tuple in input args_target, the special Py
thon syntax ★args is used within the code to transfer these positional 
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arguments to the target callable. Any MCMC class takes in several addi
tional arguments such as nburn (the number of samples to discard for 
burn-in), jump (the thinning parameter), and seed (the starting state 
(s)). Certain inputs are algorithm-specific; the MH algorithm for instance 
utilizes a user-defined proposal distribution. The user is referred to the 
UQpy documentation [32] for a more complete description of the input 
arguments to the various MCMC classes. 

To sample from the above Rosenbrock distribution using the 
Metropolis-Hastings algorithm, the MCMC sampler is initialized and run 
as follows: 

Input nsamples represents the number of samples saved by the 
algorithm after discarding burn-in and thinning. If the user provides 
nsamples when initializing the class, the run method is directly called 
at initialization. Fig. 6a shows the resulting samples drawn from this 
Rosenbrock function using the MH algorithm. 

The MCMC class was developed in such a way that new advanced 
algorithms can be quite easily integrated within the existing framework, 
thus allowing researchers to implement their novel algorithms, compare 
them with existing methods, and make them available to the research 
community. As previously mentioned, each MCMC algorithm is imple
mented as a class that inherits from a parent MCMC class. This parent 
class initializes the generic inputs that are shared across all algorithms, 
such as the target pdf, burn-in and so on. It defines the main run method 
that runs the chain forward and stores the samples; this method is also 
shared across all algorithms. The run method relies on a run_o
ne_iteration method to run one state of the chain: it takes in as in
puts the current state current_state and its log-pdf 
current_log_pdf and returns the new state and its log-pdf value. 
This run_one_iteration method contains the core MCMC algorithm, 
and it is thus being over-written by each new subclass that codes a 
specific algorithm. Adding a new algorithm can therefore be easily done 
– as illustrated schematically in the code section below – by defining a 
new class that inherits from MCMC, initializing any algorithm-specific 
input within the __init__ function and over-writing the 

run_one_iteration method that propagates the chain forward. This 
setup avoids any interaction with the existing code.  

Finally, one can also sample from a distribution that is known only to a 

scale factor (p(X) =
p̃(X)

C ) via self-normalized importance sampling (IS). In 
IS, one draws samples x(i) from a proposal distribution π(X) that is easy to 
sample from, then weights the samples to account for the discrepancy 
between the sampling and target distributions. The weights are 
computed as w(i) = p̃(x(i))/π(x(i)), then normalized to sum up to 1 so that 
the weighted set of samples defines an appropriate probability distribu
tion. In UQpy, the user defines the target pdf with inputs log_pdf_
target or pdf_target as in the MCMC class. The proposal must be 
provided as a Distribution object that has an rvs method and a 
log_pdf or pdf methods. Fig. 6b shows an importance sampling esti
mation of the Rosenbrock function, obtained via the following code: 

Fig. 3. Dynamics example: Left: physical system and sources of uncertainty; middle: El Centro ground acceleration as input excitation; right: system response for a 
given realization of the input excitation and system parameters. 
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Note that IS is also used as a popular variance reduction scheme that 
is commonly employed in reliability analysis. The IS class can be easily 
integrated in IS-based reliability methods, although this is not explicitly 
illustrated here. 

3.2. Simulation of stochastic processes and random fields: the 
StochasticProcess module 

3.2.1. The StochasticProcess module 
A stochastic process, or random field, is defined as a set of random 

variables defined on an indexed set. When the indexed set is defined as 
points in time, the stochastic processes describes the stochastic evolu
tion of a time-dependent system. When the indexed set represents points 
on the Euclidean space, stochastic processes are more commonly 
referred to as random fields. Here, we use the term stochastic process to 
represent both since they are mathematically equivalent. Stochastic 
processes find applications in numerous disciplines ranging from 
biology, physics, neuroscience, signal processing, finance, and statistical 
mechanics, to computational mechanics which is the context here. 
Stochastic processes are especially useful in the analysis of complex non- 
linear systems where simulation is essential for analysing the system. 
Simulation of stochastic processes generally utilizes an expansion of the 
following form: 

A(t) =
∑M

i=1
Ci(ω)θi(t), (3)  

where Ci(ω) are a set of random variables and θ(t) are deterministic basis 
functions. Arguably, the two most widely used methods for the simu
lation of stochastic processes are the spectral representation method 
(SRM) [53,54] and the Karhunen-Loeve expansion (KLE) [55,56], both 
of which are implemented in UQpy. The two methods differ in their 
prescribed basis θ(t). The SRM utilizes a Fourier basis while the KLE 
derives its basis as the eigenfunctions of the covariance function. 

The existing implementations of the SRM and KLE, given in the SRM 
and KLE classes, are used to generate Gaussian stochastic processes in 
which the random variables in the SRM are independent random phase 
angles uniformly distributed on [0, 2π], and in the KLE the random 
variables are independent standard normal. 

For the simulation of non-Gaussian processes, UQpy provides two 
methods. The first method simulates translation processes [57] in which 
an underlying Gaussian power spectral density (for SRM) or covariance 
function (for KLE) and a marginal non-Gaussian distribution are defined. 
In UQpy, this is performed using the Translation class. When defining 
a translation process, it is common to define the non-Gaussian power 
spectral density (or covariance function) and the marginal non-Gaussian 
distribution. However, simulation of translation processes requires an 
underlying Gaussian power spectral density/covariance function. To 
identify this underlying Gaussian process, UQpy utilizes the iterative 
translation approximation method (ITAM) [58] to overcome the issue of 
translation process incompatibility. The InverseTranslation class 
performs this iterative algorithm and can be used in support of simulation 
of non-Gaussian translation processes utilizing either the SRM or KLE. 

The second method, referred to as the bispectral representation 
method (BSRM) and implemented in the BSRM class, is the 3rd-order 
generalization of the SRM derived in [59] in which the stochastic pro
cess is expanded from both the power spectrum and the bispectrum of 
the process. 

UQpy also supports the simulation of Gaussian multi-dimensional 
random fields and multi-variate random processes using the SRM class 
as well as multi-dimensional non-Gaussian random fields using the BSRM 
class. Non-Gaussian multi-dimensional random fields and multi-variate 
random processes can be simulated using the Translation class. In 
future releases we anticipate extending the capabilities for simulation of 
Gaussian and non-Gaussian and non-stationary random processes, as 
well as introducing a new class for the simulation of Gaussian and non- 
Gaussian stochastic waves [60]. 

Here, we illustrate how to simulate a 1-dimensional, uni-variate 
stationary Gaussian random process using the SRM class and then 
show how to simulate a 1-dimensional, uni-variate stationary non- 
Gaussian random process using the InverseTranslation and KLE 
classes. 

To simulate using the SRM, the user must specify the discretized 
power spectral density as well as the time and frequency discretizations. 
For the examples shown here, the power spectrum and discretizations 
are given by: 

S
(

ω
)

=
130
4

ω2e−5ω,

Δω = 0.01,

ωu = 1.28rad/sec,

(4)  

where S is the power spectrum, Δω is the frequency discretization and ωu 
is the upper cutoff frequency. An abridged code to simulate 1000 re
alizations of this random process follows: 

where S is an array containing the discretized power spectrum. The 
specified power spectral density and two sample realizations of the 
random process are shown in Fig. 7a and b. 

For simulation with the KLE class, the user must specify the dis
cretized autocorrelation function and the length of the time discretiza
tion. Additionally, the number of eigenvalues to be used in the 
expansion can be specified as well. For brevity, this case will not be 
illustrated here. 

Next, we translate the samples along with the power spectrum of the 
Gaussian process to a lognormal process using the Translation class. 
The translated lognormal power spectrum is shown along with the 
Gaussian power spectrum in Fig. 7a and samples are plotted in Fig. 7c. 
Subsequently, we re-identify the underlying Gaussian power spectrum 
which, upon translation, would yield the lognormal power spectrum 
using the InverseTranslation class (i.e. using the ITAM). The actual 
Gaussian and the identified Gaussian power spectra are plotted in Fig. 8. 
As we can see, these power spectra align nearly perfectly. 

A brief outline of the code to execute the translation and inverse 
translation is shown below. 
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3.2.2. Propagation of heterogeneous uncertainties using RunModel 
This section illustrates how to propagate multiple sources of un

certainties, including random variables and high-dimensional stochastic 
processes, through a computational model with RunModel. Recall that 
the RunModel object for propagation of combined model parameters 
and input excitation uncertainties through a nonlinear SDOF dynamical 
system has been created in Section 2. To propagate uncertainties, the 
user must simply call the run method, giving to it as input the samples 
composed of both realizations of random model parameters and re
alizations of the stochastic process generated previously via SRM. Here, 
we emphasize that RunModel requires that samples have a shape of (N,

d) where N is the number of samples and d is the number of variables. 
However, each variable need not be a scalar. In the example provided 
here, the samples are passed in as five variables (k, r0, delta, n, 
accel) where the first four variables are scalars and the final variable is 
an array containing the generated random process. This convention al
lows UQpy to employ standard Python indexing for high-dimensional 
variables. For example, within the calls to the computational model 
executed by RunModel one could extract a specific component of the 
variable accel. Abridged code is provided below for simulations with 
both Gaussian and lognormal excitation. Sample dynamic responses are 
presented in Fig. 9. 

4. Probabilistic inverse learning: the Inference module 

4.1. Introduction and structure 

The goal in inference can be twofold: given some data D, estimate the 
parameters of a model and/or assess the performance of a set of candidate 
models (i.e. model selection). UQpy supports various algorithms for 
parameter estimation and model selection, as summarized in Fig. 10. 

In the following, it is assumed that the probabilistic model for 
inference is of the form: 

D ∼ h(X) + ϵ, (5)  

where h(X) is a parametric computational model with parameters X that 
is executed via RunModel and the error ε is assumed to be Gaussian with 
zero mean. D in this case is a one-dimensional numpy ndarray of shape 
(nD,). UQpy supports a wider variety of inference problems, such as non- 
Gaussian error models, learning the parameters of a probability distri
bution defined by an object of the Distribution class, or problems 
specified by a user-defined likelihood function. Due to limited space 
however, the present manuscript focuses on the generic problem defined 
by Eq. (5), and the interested reader is referred to the UQpy documen
tation [32] for details about the more advanced capabilities of the 
Inference module. It is to be noted though that, at the time of this 
article, UQpy only supports off-line methods for inference, i.e., the whole 
data set must be provided up-front. Sequential methods may be 
considered for future release. 

A model in the form of Eq. (5) is defined in the Inference module 
by an object of the InferenceModel class. In the InferenceModel 
class, the computational model h(⋅) is defined as a parameterized 
RunModel object, ε is specified by its covariance, and (for Bayesian 
methods) a prior for the parameter vector is specified as an object of the 
Distribution class. The main role of the InferenceModel object is 
to evaluate the log likelihood function of the data for the model, lnp(D|

x(i)), i = 1 : N or the scaled log posterior, lnp(D|x(i))p(x(i)), i = 1 : N for 
Bayesian estimation. To do so, the InferenceModel possesses an 
evaluate_log_likelihood method (evaluate_log_posterior 
for Bayesian estimation), which takes as inputs a data vector D denoted 
data and a 2D numpy ndarray params of N parameter vectors x(i), i =

1 : N. This calculation involves simulation of the model via RunModel 
and leverages its parallel execution when N > 1. The eval

uate_log_likelihood method (evaluate_log_posterior for 
Bayesian estimation) is at the core of the Inference module; it is 
invoked by all its remaining classes to perform parameter learning and 
model selection. Although discussed here in the context of a Gaussian 
error, we further emphasize that, for more general cases, the user can 
provide a custom non-Gaussian log-likelihood function. 

In the following sections, the capabilities of the Inference module 
will be illustrated on the dynamics computational model presented in 
Section 2 (dyn_model_infce RunModel object). The data D used for 
inference consists of a displacement time-series of total duration 40 s, 
sampled at 50 Hz. This data was generated synthetically from a Bouc- 
Wen model with k = 1 cN/cm, r0 = 2.5 cm, δ = 0.9, n = 3, and small 
viscous damping, thus introducing some modeling error since the model 
used for inference assumes no damping. 5% root-mean-square (RMS) 
Gaussian noise was also added to the data to simulate measurement 
noise. The vector of parameters to be estimated is thus X = [k, r0, δ, n], 
with prior defined as follows (shown in Fig. 11): 
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The InferenceModel object is then created as: 

where variance_noise is assumed to be known as 5% of the RMS 
of the data. Using this InferenceModel object, we now turn our 
attention to parameter estimation for the model. 

4.2. Parameter estimation 

Parameter estimation techniques aim to determine the parameters 
governing a computational model based on observed noisy data, and 
quantify uncertainties associated with these parameters due to mea
surement errors. The interested reader is referred to e.g. [45] for a 
thorough introduction to parameter estimation using frequentist and 
Bayesian approaches. In this section, we describe the two forms of 
parameter estimation available in UQpy: maximum likelihood estima
tion and Bayesian parameter estimation. 

4.2.1. Maximum likelihood estimation: the MLEstimation class 
In a frequentist approach, the parameter value that makes the 

measured data most likely is the maximum likelihood estimate: 

xML = argmaxX p(D|x). (6) 

In UQpy, the MLEstimation class of the Inference module 
computes this maximum likelihood (ML) estimate. The MLEstimation 
class operates on an InferenceModel object (described above) and a 
data vector to maximize the likelihood function using a specified opti
mizer (default is scipy.optimize.minimize). The user can also 
leverage advanced global optimization functions by providing an opti
mizer function as input optimizer to the MLEstimation class. The 
reader is referred to the UQpy documentation [32] for details about the 

requirements of this optimizer function; the example that follows le
verages the basin-hopping global optimization scheme (see scipy. 
optimize.basinhopping). 

To obtain the maximum likelihood parameter estimates for the dy
namics problem previously presented, an MLEstimation object is 
created as follows: 

where niter_success is an input parameter of the scipy. 
optimize.basinhopping function. The optimization procedure is 
instantiated by providing an initial guess x0 to the run method2 as 
follows: 

The values of the fitted parameters and the value of the maximum log 
likelihood are stored as attributes of the object, ml_estimator.mle 
and ml_estimator.max_log_like respectively. For this example, 
the MLE is given by: 

4.2.2. Bayesian parameter estimation: the 
BayesParameterEstimation class 

In the Bayesian paradigm, parameters are treated as random vari
ables with associated pdfs that represent the state of knowledge about 
that parameter. The prior pdf p(X) incorporates information available to 

Fig. 4. Structural fire engineering example: Top – simply supported beam with uniform load and elevated temperature. Bottom from left to right – sample tem
perature histories defined by parametric fire curves, temperature-dependence of the yield strength and Young’s modulus, and temperature-dependent elastic 
perfectly plastic stress-strain relations. 

2 For all inference classes, if x0 (or nsamples in Bayesian estimation) is 
provided when creating the object, the ml_estimation is directly called 
when instantiating the object. 
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the user prior to observing data. It is updated upon observing data D 
using Bayes’ theorem to yield the posterior pdf as: 

p(X|D) =
p(D|X)p(X)

p(D)
. (7) 

In UQpy, the BayesParameterEstimation class draws samples 
from the posterior pdf using MCMC or IS by calling an MCMC or IS class 
from the SampleMethods module. The BayesParameter

Estimation class leverages the InferenceModel object and a data 
vector to compute the scaled posterior (numerator of Eq. (7)), and uses 
this in the specified sampling_class (IS or an MCMC subclass, i.e. MH, 
Stretch, …) to draw samples from the posterior. For the model 
considered herein, the BayesParameterEstimation object is 
created as follows: 

where seed and scale are inputs to the Stretch class. In this 
example, the affine-invariant ensemble sampler with stretch moves is 
utilized for MCMC, starting with 16 walkers initially drawn in a region 
near the ML estimate. 

Samples from the posterior are drawn by calling the run method as 
follows: 

which simply calls the run method of the MCMC (or IS) sampler. The 
user can thus continue drawing new samples by calling the run method 
several times. 

Outputs of the class BayesParameterEstimation are samples 
from the posterior pdf (weighted samples in the case of IS). Results of the 
Bayesian estimation for the dynamics model are shown in Fig. 11, 
highlighting the uncertainties in the model parameters inferred from the 
data. 

4.3. Model selection 

4.3.1. Problem statement 
Model selection refers to the task of statistically selecting a model 

from a set of candidate models, given some data. In the following, the 
noisy data previously described is used to identify the ‘correct’ dynamics 
equation governing the SDOF system from noisy displacement data. The 
candidate models are:  

• a linear model governed by a stiffness parameter k [cN/cm] and 
viscous damping parameter c [cN/m]3 ;  

• an elastic-perfectly plastic model, parameterized by X = {k, zp, c}

where k is the stiffness parameter, zp [cm] is the yield displacement, 
and c is the damping coefficient;  

• a Bouc-Wen model of hysteresis without damping as previously 
described, parameterized by X = {k, r0, δ, n}. 

Model selection can be performed by minimizing a chosen infor
mation theoretic criterion, or in a Bayesian fashion by computing the 

posterior probability of each candidate model. The interested reader is 
referred to e.g. [61] for more theory and applications in stochastic dy
namics. UQpy supports both approaches for model selection, however in 
its current version the Bayesian model selection class uses a simplistic 
formula for computation of the model evidence, which needs to be 
improved upon to yield more reliable results. For the problem presented 
herein, only the information theoretic approach will be illustrated. 

Model selection methods in UQpy require the user to provide a list of 
candidate models, where all candidate models are objects of the 
InferenceModel class. For the problem at hand, the linear and elas
toplastic models must be defined in addition to the Bouc-Wen model 
previously studied as follows: 

4.3.2. Information theoretic model selection: the InfoModelSelection 
class 

In this approach, an information theoretic criterion is computed for 
all candidate models. The model that minimizes the chosen criterion is 
selected as the ‘best’ model given the data. UQpy implements three 
criteria – the Bayesian information criterion (BIC) [62], the Akaike in
formation criterion (AIC) [63], and the Akaike criterion with correction 
for small data sets (AICc) [64,65]. The AIC for instance is defined as: 

AIC = −2lnL̂⏟̅̅̅ ⏞⏞̅̅̅ ⏟
datafitterm

+ 2d⏟⏞⏞⏟
penaltyagainst

modelcomplexity

, (8)  

where d is the number of parameters characterizing the model and L̂ =

p(D|xML) is the maximum value of the likelihood function. 
In UQpy, this procedure is performed using the InfoModelSe

lection class. It takes as required inputs a list of InferenceModel 
objects and a data vector. The InfoModelSelection class leverages 
the MLEstimation class to perform maximum likelihood estimation 
for each model and compute L̂. Inputs to MLEstimation are provided 
to InfoModelSelection as lists of length equal to the number of 
models. For the example at hand, the InfoModelSelection object is 
created as follows: 

Creating this object also instantiates a MLEstimation object for 
each model, stored in a list selector.ml_estimators. 

The model selection procedure is performed when calling the run 
method of the InfoModelSelection object as follows: 

3 The unit cN/m is chosen for the damping parameter so as to keep all pa
rameters in the same order of magnitude. 
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The lists of output criterion values and model probabilities are stored 
as attributes selector.criterion_values and selector.prob
abilities respectively. In the present case, the results of the model 
selection procedure are as follows: 

The model that minimizes the AIC criterion is the Bouc-Wen model of 
hysteresis, which was expected as it was used to synthetically generate 
the data. This can also be qualitatively assessed by running simulations 
of the three systems with the fitted ML parameters, stored as attributes of 
the MLEstimation objects. For instance, the ML estimate of the first 
model (linear) can be accessed as: 

Fig. 12 illustrates this model comparison: the top row compares the 
simulated displacement with the noisy data while the bottom row shows 
the restoring force vs. displacement (hysteresis loops) curves for all 
three models. 

4.3.3. Bayesian model selection: the BayesModelSelection class 
UQpy also supports a Bayesian approach to model selection via its 

BayesModelSelection class. This class is structured in a similar 
fashion as the InfoModelSelection class, i.e., it leverages the 
BayesParameterEstimation class to perform Bayesian parameter 
estimation for all candidate models. Results of the Bayesian parameter 
estimation are then used to compute the model evidence p(D|mi) for all 
candidate models mi, along with the models’ posterior probability 
P(mi|D)∝p(D|mi)P(mi). However, careful consideration must be given to 
this evidence computation. Currently UQpy only supports computation 
of the model evidence via the harmonic mean method [66], which is 
known to yield evidence estimates with large variance. This computa
tion will be improved upon in future releases of UQpy. 

5. Probability of failure and rare-event analysis: the 
Reliability module 

Reliability refers to a system’s probability of satisfying its intended 
performance measures under a variety of uncertainties. For structural 
reliability, the system corresponds to a structure under e.g. material, 
environmental and loading uncertainty. Mathematically it is defined as 
the complement of the probability of failure Pf . In its simplest form, the 
probability of failure Pf is calculated through the performance function 
g(X), given the uncertain parameters X, as 

Pf = ℙ(g(X) ≤ 0) =

∫

{g(X)≤0}

p(x)dx, (9)  

where ℙ[⋅] is the probability measure and p(x) is the joint pdf of the 
parameters X. UQpy provides different methods for approximating the 
integral in Eq. (9) and estimating the reliability of a system. Here, we 
specifically discuss two approaches that are implemented in the 

Reliability module. The first approach, implemented in the Tay
lorSeries class, is based on a Taylor series expansion of the limit 
surface, g(X) = 0 and includes two methods: the first order reliability 
method (FORM) and the second order reliability methods (SORM) 
[67–71]. The second approach is the simulation-based subset simulation 
method [47] implemented in the SubsetSimulation class. Note that 
other reliability analysis methods are available in UQpy, but these are 
not exclusive to the Reliability module. Various classes in the 
SampleMethods class can be used for Monte Carlo simulation-based 
reliability analysis, including for example the IS class for importance 
sampling. Additionally, surrogate-model based approaches such as the 
AKMCS class for adaptive Kriging in the SampleMethods module can be 
used to estimate Pf . This is discussed further in Section 6.2. 

The Reliability module is illustrated using the structural fire 
example described in Section 2.3. Again, the fire load density is modeled 
as a uniformly distributed random variable X1 on the range 50–450 MJ/ 
m2 and the yield strength at room temperature is modeled as a normally 
distributed random variable X2 with a mean value of 250 MPa and a 
coefficient of variation of 7%, (standard deviation = 17.5 MPa). Failure 
occurs when the deflection at the midpoint of the beam exceeds the 
maximum allowable deflection, Pf = ℙ(g(X) ≤ 0), i.e., the model com
putes the performance function g(X) = dm(X1,X2) − da, where X = [X1,

X2] is the vector of the two uncorrelated random variables. The reference 
solution for the probability of failure is calculated using MCS (see Sec
tion 3.1.1) to be Pf = 3.3%. Note that a high probability of failure is 
selected for ease of illustration. The reliability analysis methods illus
trated here are capable of solving problems with much smaller proba
bility of failure. 

5.1. Expansion-based reliability analysis: the TaylorSeries class 

The TaylorSeries class is used to approximate the performance 
function g(U) through its Taylor series expansion, where U ∼ 𝒩 (0, I), 
locally at the design point U★ defined as the point of maximum proba
bility along the limit surface g(U) = 0. More specifically, the base 
TaylorSeries class possesses two sub-classes, FORM and SORM, that 
construct first-order and second-order expansions respectively. For 
brevity, we discuss only FORM and note that the application of SORM 
follows directly. In FORM, the performance function is approximated by 

g(U) ≈ g(U★) + ∇g(U★)(U − U★)
⊤

, (10)  

where ∇g(U★) is the gradient of g(U) evaluated at U★. The probability 
failure is given by Pf ,form = Φ( − βHL), where Φ(⋅) is the standard normal 
cumulative distribution function and βHL = ||U★|| is the norm of the 
design point known as the Hasofer-Lind reliability index [72,69,71]. 

The FORM is assumed to operate on standard normal random vari
ables, which means that a nonlinear iso-probabilistic transformation 
from the physical variables X ∼ p(x) to uncorrelated standard normal 
random variables U ∼ 𝒩 (0, I) is required. In UQpy this transformation is 
performed with the Nataf class in the Transformations module (for 
details see Appendix D). Moreover, the evaluation of the necessary 
gradients of the model (RunModel object) are performed using a central 
finite difference approximation. 

A FORM object contains the the probability distribution models of the 
random parameters as objects of the Distribution class and the 
computational model as an object of the RunModel class, and is 
instantiated as follows: 
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The specific definitions of dists and abaqus_sfe_model are 
presented in Sections 3.1.1 and 2.3, respectively. After instantiating the 
FORM class, the run method is called to execute FORM starting at a 
specified seed point in the parameter space (seed_x) or in the uncor
related standard normal space (seed_u). If a seed is not provided, the 
algorithm will automatically start from the origin in the standard normal 
space. 

The design point for this problem was estimated to be U★ = (1.6, −

0.6), corresponding to point X★ = (429.68, 2.37e8) in the parameter 
space. The design point and the corresponding approximate limit surface 
are shown in Fig. 13. The probability of failure with FORM was found to 
be Pf = 4.2% which is close to the probability of failure estimated from 
Monte Carlo simulation (3.3%). 

5.2. Simulation-based reliability analysis: the SubsetSimulation 
class 

Subset simulation [47], is a simulation-based reliability analysis 
method that efficiently estimates small failure probabilities by 
expressing them as a product of larger, intermediate conditional prob
abilities. That is, the probability of failure Pf is expressed as: 

Pf = P(F1)
∏m−1

i=1
P(Fi+1|Fi), (11)  

where m is the number of conditional levels and, generally the proba
bility of each conditional level P(Fi+1|Fi) is reasonably large (i.e. 
O(10−1)) such that it can be statistically estimated by performing Monte 
Carlo simulations with a relatively small number of samples. The Monte 
Carlo simulations on each conditional level are conducted using various 
MCMC algorithms that condition on the samples lying in each condi
tional region, studies of which can be found in the recent literature, e.g. 
[73,74]. In UQpy, the SubsetSimulation class can employ any of the 

MCMC algorithms, in-built or custom, that are available as child classes 
of the MCMC class. This is achieved by directly passing the class and its 
relevant inputs into the SubsetSimulation object. 

To run subset simulation, it is necessary to define the model object 
using the RunModel class as before, and also to define the Distri
bution object for the probability distribution of the input parameters. 
Again, using the structural fire example, these are given as follows: 

Because subset simulation is traditionally performed using uncorre
lated standard normal random variables, the above RunModel object 
has been defined to take, as input, transformed standard normal random 
variables. Note that this is for convenience in illustration only and is not 
required. Subset simulation is then executed using the MMH class as 
follows: 

and the probability of failure is obtained from the attribute x_ss. 
pf. One execution of this code yields an estimated probability of failure 
of 3.34%. In this example, the algorithm is designed such that each 
conditional probability P(Fi) = 0.1. Therefore, the algorithm converges 
using only two levels with the samples shown in Fig. 14. 

Fig. 5. 1024 samples generated using (a) the MCS class and (b) STS class. For samples shown in blue, maximum deflection at the midspan of the beam does not 
exceed the deflection tolerance of 7.14 cm. For samples shown in red, maximum midspan deflection exceeds the deflection tolerance. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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6. Surrogate modeling and active learning 

The construction of fast-running surrogate models (aka meta-models, 
emulators, or response surfaces) is an important component of UQ. It 
enables the rapid approximation of model outputs at new parameter 
values for which a typically expensive, high fidelity physics-based 
calculation has not been performed. This facilitates UQ for both for
ward and inverse problems. Additionally, surrogate models are impor
tant for active machine learning for uncertainty analyses. 

Recognizing the importance of surrogate models, the Surrogates 
class of UQpy currently has two classes that enable surrogate model 
construction. The first is the stochastic reduced order model (SROM), 
implemented in the SROM class. SROMs, developed by Grigoriu [75], 
approximate the distribution of the output of a stochastic model by 
optimally fitting sample weights to the model evaluations. For brevity, 
the SROM class is not discussed further here. The second is the Kriging 
class, which implements Gaussian process regression or Kriging surro
gates. In the sections below, we discuss the construction of Kriging 
models with the Kriging class and their use in active learning, spe
cifically for adaptive Kriging with various learning functions and 
adaptive Monte Carlo analyses. 

6.1. Gaussian process regression/kriging: the Kriging class 

Kriging is an interpolation technique in which the interpolant is 
assumed to be the sum of a regression model and a realization of 
Gaussian random process as 

ŷ(x) = ℱ(x; β) + Z(x). (12)  

The regression model, ℱ , is a linear combination of p chosen basis 
functions having parameters βi, i = 1, …, p. The Gaussian random pro
cess, Z(x), has mean zero and covariance defined through a correlation 
matrix, ℛ(x(i),x(j); θ), having hyperparameters θ estimated from a set of 
sample training points. That is: 

ℱ(x; β) = β1f1(x) + ⋯ + βpfp(x) = f (x)
T β,

E[Z(x(i))Z(x(j))] = σ2ℛ(x(i), x(j); θ).

The regression coefficients and Gaussian process variance are estimated 
by solving a generalized-least square problem (C−1(Y − Fβ) = 0, where 
C−1 is the Cholesky decomposition of R) such that, 

β* =
(
FT R−1F

)−1FT R−1Y,

σ*2 =
1
N

(Y − Fβ*)
T R−1

(

Y − Fβ*
)

,

where F is the matrix of basis function evaluations at the training points, 

R is the correlation matrix also evaluated at the training points, and Y 
are the training data (i.e. model evaluations). For a detailed description 
refer to [76]. The Kriging hyperparameters are estimated by solving the 
maximum likelihood problem. Since the output is assumed to follow a 
multivariate Gaussian distribution (Y ∼ 𝒩 (Fβ, σ2ℛ)), the marginal 
log-likelihood can be defined as, 

log(p(Y|β*, σ*, θ)) = −
1
2

log(|R|) −
N
2

log(2πσ*2) −
N
2

. (13)  

Once the hyperparameters are known, the regression coefficients and 
process variance are updated and the Best Linear Unbiased Predictor 
(BLUP) of the model can be computed at new sample points as: 

ŷ(x) = f (x)
T β* + r(x)

T R−1(Y − Fβ*),

and the variance of the estimator is computed as: 

σ2
ŷ(x)

= σ2(1 − r(x)
T R−1r(x) + u(x)

T
(FT R−1F)

−1u(x)),

where r(x) is the correlation matrix between the new prediction point x 
and the existing training points and u(x) = FTR−1r(x) − f(x). 

To employ the Kriging class, the user first needs to define regres
sion and correlation models to initiate the object. All correlation models 
in UQpy are assumed to take a product form as: 

Rij = ℛ(x(i), x(j); θ) =
∏d

k=1
ℛk(x(i)

k − x(j)
k ; θ).

Multiple in-built regression and correlation models are available as lis
ted in Table 1. 

The Kriging class also allows for user-defined regression and cor
relation functions. These can be passed to the reg_model and 
corr_model arguments as callable functions, making extension of the 
Kriging class straightforward. The user is referred to the UQpy docu
mentation [32] for a detailed explanation. 

Here, we define a Kriging object that will be employed throughout 
this section as follows: 

where nopt controls the number of times the maximum likelihood 
problem is solved with different random starting points when the 
training is performed. 

Next, the Kriging model must be trained using the available data. 

Fig. 6. Using the MCMC and IS classes to draw samples from the Rosenbrock distribution.  
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Let {(x(1), y(1)), …, (x(N), y(N))} be the training data, where x(i) ∈ ℝd and 
y(i) ∈ ℝq for all i ∈ {1, …, N}. In this step, the Kriging.fit method is 
used to solve the maximum likelihood problem (Eq. (13)) to estimate the 
hyperparameters, θ, and the subsequent least squares fit for β and σ. 
These parameters are saved in the corr_model_params attribute and 
can be updated by subsequent calls to the fit method as additional data 
are provided. Given training data, X and Y, provided as numpy arrays or 
lists, the training is performed as follows: 

After training the surrogate model, the object can be used to 
approximate the model at new, untrained sample points. The Kriging 
class object has two methods for prediction. Kriging.predict 
returns the prediction and its standard deviation at specified sample 
points and Kriging.jacobian returns the gradient of the model at 
specified sample points. This is illustrated as follows: 

6.2. Adaptive kriging: the AKMCS class 

The previous section introduces the user to the basics of constructing 
a Kriging object, training it, and using it for prediction. Here, we 
illustrate how it can be used adaptively for various active learning 
problems. For these adaptive Kriging models, we generally adopt the 
terminology Adaptive Kriging with Monte Carlo simulation (AKMCS) 
from [77] although the methods included here are referred to in the 
literature under different names depending on the learning function that 
is employed. In the SampleMethods module, the AKMCS class provides 
five in-built learning functions, shown in Table 2, to tackle problems 
ranging from reliability analysis, to optimization and global fit. The 
AKMCS class also accepts user-defined learning functions, thus providing 
an easy way to develop new methods within this active learning context. 

The workflow of the AKMCS class is straightforward. To initialize it, 
the user provides an initial set of samples, a Distribution object to 
generate learning set of samples, the RunModel object for model 
execution, a Kriging object, and sets the relevant parameters. For 
example, to initialize AKMCS for reliability analysis of the structural fire 
finite element model in Abaqus, the commands are as follows: 

Upon initialization, the AKMCS class will execute the model at the 
provided sample points and train the Kriging object. In each iteration, 
the LHS class is used to generate nlearn random samples at which the 
learning function (learning_function) is evaluated. Based on the 
learning function evaluations, new samples are selected for model 

evaluation using the specified RunModel object. This learning process is 
carried out by calling the run method as follows: 

where nsamples is the final total number of model evaluations (not 
the number of additional model evaluations). 

Fig. 15(a) illustrates the samples generated using the AKMCS class for 
the structural fire reliability problem. The initial STS samples are shown 
in black and the AKMCS samples are shown in blue. Circles (solid and 
hollow) are used for samples with maximum displacement within the 
tolerance, i.e. safe samples, and x’s are used for samples whose 
displacement exceeds the tolerance, i.e. in the failure region. Also, the 
safe region (as defined by the Kriging model) is shaded with green and 
the failure region is shaded with red. As expected from the ‘U’ learning 
function, samples are generated close to the limit surface separating the 
failure and safe domains. Fig. 15(b) shows the probability of failure 
estimate after each sample is added compared with the probability of 
failure estimate from 10,000 MCS (i.e. 3.3%) samples. 

As previously mentioned, the AKMCS class allows the user to define 
their own learning function, thus allowing straightforward extensions of 
the existing framework. This architecture is used in various places 
withing the UQpy code, such as within the SampleMethods.LHS class 
to define novel sampling criteria, or within the Inference.Infer
enceModel class to utilize user-defined likelihood functions. This ar
chitecture can be illustrated schematically in the context of the AKMCS 
class as follows: 

Here, the user only needs to write the function associated with their 
custom learning function to accept a surrogate model (having a . 
predict method), a population of points at which to evaluate the 
learning function and other neccesary parameters. No intrusion with the 
AKMCS class is necessary. 
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6.3. Refined stratified sampling: the RSS class 

Refined stratified sampling (RSS) [43] and gradient enhanced 
refined stratified sampling (GE-RSS) [44] build upon stratified sampling 
designs to generate new samples either randomly (RSS) or based on 

variation in the model output (GE-RSS). In each of these methods, strata 
are selected from an existing stratified design and divided according to a 
specified refinement criterion. A new sample is then drawn randomly 
within the new stratum. See [43,44] for algorithmic details. 

In the SampleMethods module, the RSS class can execute either 
RSS or GE-RSS to extend the design. The RSS class has two child classes 
(i.e. RectangularRSS and VoronoiRSS), which generates samples in 
rectangular and voronoi stratification. Here, we illustrate the GE-RSS 
method as an active learning method for voronoi stratification that le
verages gradients estimated using the Kriging class. Because Vor
onoiRSS operates on stratified designs, the user must first create an 
initial VoronoiSTS object. If the user specifies only the VoronoiSTS 
object, then VoronoiRSS is initialized. If the user also specifies a 
RunModel object and a Kriging object, then GE-RSS is employed as 
follows: 

Fig. 8. True Gaussian power spectrum and the Gaussian power spectrum 
identified from the lognormal power spectrum using the Inverse

Translation class. 

Fig. 7. (a) Gaussian and non-Gaussian power spectra. (b) Sample realizations of a Gaussian stochastic processes simulated using the SRM class. (c) Sample re
alizations of a lognormal translation process simulated using the SRM and Translation classes. 

Fig. 9. Two realizations of the response of the SDOF Bouc Wen dynamics model to (a) Gaussian and (b) lognormal excitation.  
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Once the RSS class has been initiated, the user can extend the sample 
design by invoking the run method and providing the total number of 
samples (not the number of samples to add) as follows:  

An example of samples generated using the RSS class to execute 100 
samples using GE-RSS with Voronoi stratification and a Kriging surro
gate model for gradient estimation for the structural fire finite element 
model is shown in Fig. 16. Fig. 16(a) shows a 3-dimensional plot of the 
Kriging surrogate, along with the STS samples (black dots) and RSS 

Fig. 10. Overview of the Inference module.  

Fig. 11. Illustration of Bayesian parameter estimation for the Bouc-Wen model. Top: parameter prior probability densities (having independent marginals) for 
Bayesian analysis. Bottom: results of the parameter estimation for the Bouc-Wen hysteresis model from noisy displacement data. 
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Fig. 12. Comparison of three SDOF dynamical models estimated from noisy displacement data, the model responses are obtained by running a simulation with the 
ML parameter estimate. 

Fig. 13. (a) Joint probability density function for the two random variables. Illustration of the design point and the FORM limit surface in (b) the physical parameter 
space and (c) the standard normal space. 

Fig. 14. Samples drawn using the SubsetSimulation class in UQpy with 1000 samples in each level. Samples are shown in (a) the parameter space, and (b) the 
standard normal space. The red markers indicate samples in the first level and blue markers show the samples in the second level. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 
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samples (green dots). Fig. 16(b) illustrate the Voronoi stratification of 
parameter space (black boundaries represent Voronoi cells) and the 
corresponding Delaunay triangulation (orange boundaries). Notice that 
the GE-RSS method focuses samples in the region of the parameter space 
with high variation in model output. 

7. Concluding remarks 

This paper presented the UQpy software toolbox for uncertainty 
quantification (UQ) in Python. The software serves as both a user-ready 
toolbox that includes many of the latest methods for UQ in 

Table 1 
Built-in correlation and regression models for the Kriging class. Note: δk = x(i)

k − x(j)
k , ζk = min{1, θk|δk|} for cubic and spherical correlation functions and ϕk = θk|δk|

for spline correlation functions.  

Correlation model (corr_model) Regression model (reg_model) 

Name ℛk(θ, δk) Name F(x) = [f1(x), f2(x), …]

‘Exponential’ exp( − θk|δk|) ‘Constant’ f1(x) = 1  
‘Gaussian’ exp( − θkδ2

k )

‘Linear’ f1(x) = 1, f2(x) = x1, …, fd+1(x) = xd  ‘Linear’ max{0, 1 − θk|δk|}

‘Cubic’ 1 − 3ζ2
k + 2ζ3

k  

‘Spherical’ 1 − 1.5ζk + 0.5ζ3
k  

‘Quadratic’ 

f1(x) = 1, f2(x) = x1, f3(x) = x2, …,

fd+1(x) = xd, fd+2(x) = x2
1 , fd+3(x) = x1x2, …,

f2d+1(x) = x1xd, f2d+2(x) = x2
2, f2d+3(x) = x2x3, …,

f3d
(
x

)
= x2xd, …, f(d + 1)(d + 2)

2

= x2
d    

‘Spline’ 

⎧
⎪⎪⎨

⎪⎪⎩

1 − 15ϕ2
k + 30*ϕ3

k for 0 ≤ ϕk ≤ 0.2
1.25(1 − ϕk)

3 for 0.2 ≤ ϕk ≤ 1
0 for ϕk ≥ 1   

Table 2 
Existing AKMCS learning functions. Notes on notation: ŷ(x) = Kriging surrogate model; σ ŷ (x) = Kriging standard deviation; Φ(⋅) = Standard Normal CDF; ϕ(x) =

Standard Normal PDF; fmin = Current minimum value; x* = closest point to the present sample.  

Learning function Argument Objective Equation 

U-function [77] ‘U’ Reliability 
U(x) =

|ŷ(x)|

σ ŷ (x)

Weighted U-function [78] ‘Weighted- 

U’ 
Reliability 

w(x) =
maxx[p(x)] − p(x)

maxx[p(x)]
U(x)

Expected Feasibility Function  
[79] 

‘EFF’ Reliability 
EFF(x) = ŷ(x)[2Φ(

−ŷ(x)

σ ŷ (x)
) − Φ(

−σ ŷ (x) − ŷ(x)

σ ŷ (x)
) − Φ(

σ ŷ (x) − ŷ(x)

σ ŷ (x)
)] − σ ŷ (x)[2ϕ(

−ŷ(x)

σ ŷ (x)
) − ϕ(

−σ ŷ (x) − ŷ(x)

σ ŷ (x)
) −

ϕ(
σ ŷ (x) − ŷ(x)

σ ŷ (x)
)] + σ ŷ (x)[Φ(

−σ ŷ (x)ŷ(x)

σ ŷ (x)
) − Φ(

σ ŷ (x) − ŷ(x)

σ ŷ (x)
)]

Expected Improvement 
Function [80] 

‘EIF’ Optimization 
EIF(x) = (fmin − ŷ(x))Φ(

fmin − ŷ(x)

σ ŷ (x)
) + σ ŷ (x)ϕ(

fmin − ŷ(x)

σ ŷ (x)
)

Expected Improvement for 
Global Fit [81] 

‘EIGF’ Global Fit EIGF(x) = (ŷ(x) − y(x*))
2

+ σ2
ŷ
(x)

Fig. 15. (a) AKMCS samples delineating the failure and safe domains; and (b) probability of failure at each iteration of the AKMCS class.  
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computational modeling and a convenient development environment 
for Python programmers advancing the field of UQ. The paper presents 
an introduction to the software’s existing capabilities in forward prop
agation of uncertainties and sampling methods, generation of random 
processes and random fields, probabilistic inverse modeling including 

parameter estimation and model selection, reliability analysis, surrogate 
modeling, and active learning. The paper is not intended to be a 
comprehensive “deep-dive” into the software. For this, the reader is 
referred to the UQpy documentation [32]. Instead it is intended to 
highlight the structure of the code, many of its capabilities, its 

Fig. 16. (a) 3D scatter plot of the RSS samples with their model evaluations and the Kriging surrogate model, (b) Voronoi stratification (black) and Delaunay 
triangulation (orange) of the parameter space. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 3 
Current UQpy capabilities organized by Module and Class structure.  

Module Class Description Introduced 

RunModel RunModel Execute computational model 1.0.0 
Distributions See Appendix C Define distribution objects in UQpy 2.0.0 
SampleMethods AKMCS Adaptive Kriging with Monte Carlo Simulation 3.0.0  

IS Importance Sampling 1.3.0  
LHS Latin Hypercube Sampling 1.1.0  

MCMC, MH, MMH, DRAM, DREAM, Stretch Markov Chain Monte Carlo 1.1.0  
MCS Monte Carlo Sampling 1.1.0  
RSS Refined Stratified Sampling 2.0.0  

Simplex Uniform Sampling over a simplex element 2.0.0  
Strata Defines a Strata object for STS/RSS 1.0.0  
STS Stratified Sampling 1.1.0 

Transformations Correlate Induces correlation in standard normal samples 1.0.0  
Decorrelate Removes correlation in standard normal samples. 1.0.0  

Nataf Transform non-Gaussian samples to standard normal 
Transform standard normal samples to a prescribed distribution 
Calculates the distortion of the non-Gaussian correlation matrix 

Calculates the distortion of the Gaussian correlation matrix 

1.0.0 

Surrogates Kriging Gaussian Process Regression (Kriging) 2.0.0  
SROM Stochastic Reduced Order Model 1.0.0 

Reliability SubsetSimulation Subset Simulation 1.0.0  
TaylorSeries, FORM, SORM First Order Reliability Method (FORM) 

Second Order Reliability Method (SORM) 
2.0.0 

Inference BayesModelSelection Bayesian Model Selection 2.0.0  
BayesParameterEstimation Bayesian Parameter Estimation 2.0.0  

InferenceModel Model Definition for Inference 2.0.0  
InfoModelSelection Information Theoretic Model Selection (AIC/BIC) 2.0.0  

MLEstimation Maximum Likelihood Parameter Estimation 2.0.0 
StochasticProcess BSRM Bispectral Representation Method 2.0.0  

InverseTranslation Iterative Translation Approximation Method 2.0.0  
KLE Karhunen-Loéve Expansion 2.0.0  
SRM Spectral Representation Method 2.0.0  

Translation Translation Process 2.0.0 
Utilities None A collection of methods used across modules 2.0.0  

A. Olivier et al.                                                                                                                                                                                                                                  



Journal of Computational Science 47 (2020) 101204

22

applications in computational modeling, and most importantly its ca
pacity to serve as a platform for UQ methodology development in Py
thon. Emphasis is placed on the structure/architecture of the code as this 
provides the reader with valuable insights into how to develop new 
methodology within the code. In particular, the paper highlights the 
RunModel model, which serves as a generic interface to models of all 
kinds and is used to drive simulations and uncertainty analyses per
formed in UQpy. To illustrate the various capabilities, two examples are 
tracked throughout the paper and analyzed repeatedly using different 
methods. The first is a Python model solving a nonlinear structural dy
namics problem using explicit time integration. The second is a 
third-party Abaqus model solving the thermomechanical response of a 
beam structure. 

The developments presented herein relate specifically to UQpy 
Version 3, which is available for download from GitHub [10]. All the 
scripts running the various examples are provided as supplementary 
materials and can also be downloaded from GitHub [11]. 
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Table 4 
Available distributions in UQpy.  

Available distributions in UQpy 
Subclasses of DistributionContinuous1D 

Distribution Class name Parameters and default values 

Beta Beta [a, b, loc=0., scale=1.] 

a, b ∈ ℝ>0  

Cauchy Cauchy loc=0., scale=1.] 

Chi-Squared ChiSquare df, loc=0., scale=1. 

Exponential Exponential loc=0., scale=1. 

common parameterization with lambda=1/scale 

Gamma Gamma a, loc=0., scale=1. 

a ∈ ℝ>0  

Generalized Extreme Value GenExtreme c, loc=0., scale=1. 

c ∈ ℝ≥0  

Inverse Gaussian InvGauss mu, loc=0, scale=1] 

mu ∈ ℝ≥0  

Laplace Laplace loc=0., scale=1. 

Levy Levy loc=0., scale=1. 

Logistic Logistic loc=0., scale-1. 

Lognormal Lognormal s, loc=0., scale=1. 

common parameterization s=σ, scale=exp(μ)

Maxwell-Boltzmann Maxwell loc=0., scale=1. 

Normal (Gaussian) Normal loc=0., scale=1. 

loc=μ, scale=σ  
Pareto Pareto b, loc=0., scale=1. 

b ∈ ℝ≥0  

Rayleigh Rayleigh loc=0., scale=1. 

Truncated Normal TruncNorm a, b, loc=0., scale=1. 

a=

(
cliplow − μ

σ

)

, b=

(
cliphigh − μ

σ

)

loc=μ, scale=σ  
Uniform Uniform loc=0., scale=1. 

lower and upper bounds are [loc, loc+scale]  

Subclasses of DistributionDiscrete1D 
Binomial Binomial n, p, loc=0. 

n ∈ ℕ0, p ∈ [0,1]

Poisson Poisson mu, loc=0.  

Subclasses of DistributionND 
Multivariate Normal MVNormal mean, cov=1. 

Multinomial Multinomial n, p 

n ∈ ℕ0, p[i] ∈ [0, 1] and 
∑
p[i]=1   
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Appendix A. UQpy modules and classes 

A complete list of modules and classes available in Version 3.0 is provided in Table 3. 

Appendix B. UQpy extensions in progress 

UQpy is a rapidly evolving code and new components are being added continually. The following modules are currently under development, but 
are not ready for release. Note, however, that some source code can be found on the open UQpy Github repository.  

• DimensionReduction: Perform linear or nonlinear dimension reduction for high-dimensional problems. Will be released with Version 3.  
• Sensitivity: Perform global and local sensitivity analysis.  
• Collocation: Stochastic collocation methods. 

Additionally, within the existing and new modules a number of new classes and methods are under development or are anticipated in the near 
future, including the following:  

• Surrogates.PCE: Polynomial chaos expansion based surrogate models.  
• DimensionReduction.Grassmann: Grassmann manifold projection-based dimension reduction.  
• DimensionReduction.DiffusionMaps: Nonlinear dimension reduction with diffusion maps.  
• DimensionReduction.LinearBasis: Linear dimension reduction of a high-dimensional array using SVD or HO-SVD.  
• Sensitivity.Morris: Computation of sensitivity indices via the method of Morris.  
• Sensitivity.Sobol: Estimation of Sobol sensitivity indices.  
• Collocation.SparseGrid: Sparse-grid stochastic collocation.  
• Collocation.MultiElement: Multi-element stochastic collocation.  
• Collocation.Simplex: Simplex stochastic collocation.  
• SampleMethods.QMC: Quasi-Monte Carlo sampling.  
• SampleMethods.PSS: Partially stratified sampling.  
• SampleMethods.LSS: Latinized stratified sampling.  
• SampleMethods.SparseGrid: Sparse-grid structured points for numerical integration. 

These new modules and classes will further enable the implementation and development of more advanced algorithms such as adaptive stochastic 
collocation methods, dimension-reduction, and Monte Carlo sampling. Please note that the list above is subject to change in future releases. 

Appendix C. Defining probability distribution objects in UQpy: the Distributions module 

Being a largely probabilistic code, many tasks in UQpy rely on probability distributions. The Distributions module is used to define probability 
distribution objects. These objects possess various methods that allow the user to: compute the probability density function (pdf method), cumulative 
distribution function (cdf), the logarithm of the pdf (log_pdf), return the moments (moments), draw independent samples (rvs) and fit the pa
rameters of the model from data (fit). 

The Distributions module is built upon four base classes that are used to construct specific distributions via subclassing, thus allowing the user 
to easily build custom distributions that can be integrated within the existing UQpy framework. The Distribution class is the parent class to all 
distribution classes, DistributionContinuous1D and DistributionDiscrete1D are the base classes for univariate continuous and discrete 
distributions respectively, while the DistributionND class is the base class for multivariate distributions. These base classes cannot be used directly 
as a distribution, instead they define certain methods that are common to all distributions, such as the get_params and update_params methods 
that allow the user to return/update the parameters of a distribution for instance. A specific distribution is created via subclassing of the base classes – 
UQpy implements a number of well-known distributions as shown in Table 4, with parameters that adhere to those defined in the scipy.stats 
package. In order to instantiate a univariate normal distribution object for instance, the commands are as follows: 

UQpy also allows to create multivariate distributions from its marginals, potentially adding dependence via a copula, through its classes JointInd 
and JointCopula. Both these classes are subclasses of the DistributionND base class, and a user could easily create other custom classes that 
define distributions as a combination (sum, product etc.) of existing distributions. The following code instantiates a bi-variate distribution object with 
standard normal marginals and Gumbel copula dependence: 
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Its methods are called as follows:

In the statement above, the input x must be a 2D ndarray of shape (N, d), where d is the dimension of the distribution and N is the number of points 
at which to evaluate the pdf. A detailed description of the Distribution methods and their parameters can be found in UQpy’s documentation [32]. 

As previously mentioned, custom distributions can be easily built via direct subclassing of the appropriate base classes. For example, the user can 
define the distribution Rosenbrock with the pdf and log_pdf methods as follows:

The custom Rosenbrock Distribution object is then instantiated as follows:

and the pdf method can be invoked as follows:

Appendix D. Isoprobabilistic transformations: the Transformations module 

UQpy includes widely used isoprobabilistic transformations, most notably the Nataf transformation [82] to transform arbitrarily distributed 
random variables to standard normal variables. That is, given a random vector x having marginal cdfs Fi(xi), the Nataf transformation can be employed 
to map to a correlated standard normal random vector z. Similarly, the inverse Nataf transformation can be used to map from z→x. Through a linear 
transformation, z can then be mapped to an uncorrelated standard normal random vector U, and vice versa. This is illustrated as follows: 

x ∼

(

Fi

(

xi

)
⃒
⃒
⃒

i=1,…,n
, R =

[

ξij

])

↔Nataf

Inv. Nataf
z ∼ N

(

0, R0 =

[

ρij

])

↔Decorrelate

Correlate
u ∼ N

(

0, I
)

(14) 

The Nataf transformation is very useful when conducting probabilistic modeling, for example when performing reliability analysis using first and 
second order reliability methods (FORM/SORM). The mapping of the ith component of x to the normal space z is achieved through the transformation 
zi = Φ−1(Fi(xi)), where Φ(⋅) is the standard normal cumulative distribution function. The mapping from z→x results in a correlation distortion that can 
be solved through following integral: 

ξij =

∫ +∞

−∞

∫ +∞

−∞

(
xi − μi

σi

)(
xj − μj

σj

)

φ2(zi, zj, ρij)dzidzj, (15)  

where μi and σi are the mean and standard deviation of random variable xi, respectively and φ2(⋅, ⋅, ρ) is the bivariate standard normal probability 
density function with correlation coefficient ρij [57]. UQpy computes this integral numerically using a standard quadratic two-dimensional Gaus
s-Legendre integration scheme. However, the inverse expression, i.e. identifying the Gaussian correlation ρij from a known non-Gaussian correlation ξij 

in the mapping from x→z is not defined in closed-form. This inverse correlation distortion therefore requires the use of an iterative procedure. The 
Nataf class utilizes the Iterative Translation Approximation Method (ITAM) [58]. This method identifies an underlying correlated Gaussian random 
vector that, when mapped to the non-Gaussian distribution produces a non-Gaussian correlation that is as close as possible to the prescribed value 
considering the potential for Nataf incompatibility [58]. Several methods are available in the Nataf class of the Transformations module to 
perform these transformations. A Nataf object for a two-dimensional random vector x with non-Gaussian marginal distributions defined by dist1 
and dist2, is instantiated as: 
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The returned nataf_obj object computes the distorted correlation matrix in the standard normal space corr_z (estimated with the dis
tortion_x2z method with parameters beta, itam_error1 and itam_error2 that are specific to the ITAM method – see documentation [32]), if 
corr_x is given, or the distorted correlation matrix in the parameter space corr_x (estimated with the distortion_z2x method) if corr_z is 
given. After instantiating the Nataf object we can sample from the joint pdf of the random vector x with the method rvs as:

where nsamples is the number of samples to be drawn and then, transform the set x to standard normal samples using the method trans
form_x2z as:

where jacobian is the Jacobian of the transformation (returned if True). Finally, the inverse Nataf transformation, which is widely used in 
reliability analysis using FORM, can be performed with the method transform_z2x as:

in order to transform a set z of correlated standard normal samples to non-Gaussian samples x. 
The Transformations module also allows to induce or remove correlation from a standard normal vector with the classes Correlate and 

Decorrelate, respectively. A set of uncorrelated normal variables u can be made to possess correlation Rz as follows:

The correlated standard normal random vector z is obtained from u as z = H0u, where H0 is the lower-triangular Cholesky decomposition of matrix 
Rz = [ρij], such that H0H⊤

0 = R0. Similarly, correlation can be removed as follows:

The uncorrelated standard normal random vector u is obtained from z as u = H−1
0 z. 

Appendix E. Supplementary data 

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jocs.2020.101204. 
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