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Pillai & Meng (Pillai & Meng 2016 Ann. Stat. 44,
2089-2097; p. 2091) speculated that ‘the dependence
among [random variables, rvs] can be overwhelmed
by the heaviness of their marginal tails ---’. We
give examples of statistical models that support
this speculation. While under natural conditions
the sample correlation of regularly varying (RV)
rvs converges to a generally random limit, this
limit is zero when the rvs are the reciprocals
of powers greater than one of arbitrarily (but
imperfectly) positively or negatively correlated
normals. Surprisingly, the sample correlation of
these RV rvs multiplied by the sample size has a
limiting distribution on the negative half-line. We
show that the asymptotic scaling of Taylor’s Law
(a power-law variance function) for RV rvs is, up to
a constant, the same for independent and identically
distributed observations as for reciprocals of powers
greater than one of arbitrarily (but imperfectly)
positively correlated normals, whether those powers
are the same or different. The correlations and
heterogeneity do not affect the asymptotic scaling. We
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analyse the sample kurtosis of heavy-tailed data similarly. We show that the least-squares
estimator of the slope in a linear model with heavy-tailed predictor and noise unexpectedly
converges much faster than when they have finite variances.

1. Introduction

(@) Motivations

This work has a practical motivation and a theoretical motivation. Both are driven by the need to
cope with exceptionally large events such as outbreaks of human, animal and plant diseases;
earth events like cyclones, tsunamis, earthquakes, volcanoes, fires, droughts and floods; and
extreme fluctuations in finance, insurance, trade, production and employment, among others.
Both motivations are enabled by the on-going development since the work of Paul Lévy in 1924
of a systematic theory of random events with infinite mean [1-3]

For example, one practical motivation is the need to understand the effect of heavy-tailed
data on an empirical regularity called Taylor’s Law (TL) or Taylor’s power law in the biological
sciences, and fluctuation scaling in the physical sciences. TL asserts that the sample variance is
approximately proportional to some power of the sample mean in a set of samples. Explicitly, for
some constants a > 0 and b, both of which are independent of the sample i,

sample variance of sample i ~a x (sample mean of sample i)’,i=1,2, ...
or equivalently
log sample variance of sample i ~ log(a) + b x log(sample mean of sample i),i=1,2,...
or equivalently

sample variance of sample i )
~ai=1,2,....

(sample mean of sample i)

These specifications of TL intentionally leave vague the error model hinted at by the
approximation ~. TL is very widely confirmed in many sciences, including ecology, infectious
disease epidemiology, human demography, financial statistics, earth sciences and other physical
sciences, as reviewed by Eisler et al. [4] and Taylor [5].

In statistics, a variance function is a function that specifies how the variance is related to the
mean in a set of samples. To statisticians, TL is simply a power-law variance function. An early,
perhaps the first, occurrence of a power-law variance function in ecology appeared in Bliss [6].
From 1941 to 2017, users of TL assumed, usually without saying so, that observations were
drawn from distributions with finite mean and finite variance. At the same time, heavy-tailed
data were increasingly recognized in insurance, income distributions, earthquake magnitudes,
financial fluctuations, meteorology and other sciences. Heavy-tailed data distributions have some
or all infinite moments, such as infinite variance or infinite mean. Heavy-tailed distributions have
much greater probabilities of extremely large observations than light-tailed distributions, such as
the normal or Gaussian distribution. But samples from a heavy-tailed distribution always have
a finite sample mean and finite sample variance. It is important to know under what conditions
samples from a heavy-tailed distribution obey TL and, when TL holds, how the exponent b of
TL relates to the parameter(s) of the underlying heavy-tailed distribution. Brown et al. [7] showed
that certain random samples (sets of independently and identically distributed [iid] observations)
from heavy-tailed distributions with infinite mean obey TL. These results are greatly extended
here. In particular, we ask whether and when TL holds if observations are not iid, either because
the observations are dependent or because the observations come from different distributions.

In addition to its empirical motivation, this work has a theoretical motivation. Drton & Xiao [8]
conjectured, and proved when m = 2, a surprising and beautiful proposition subsequently proved
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for any integer m >1 by Pillai & Meng [9]. For integer m > 1, let X=(Xy,...,Xy) and Y=
(Y1,...,Yn) be independent copies of a multivariate normal vector N(0, X'), where ¥ = {oij} =0
is any m x m covariance matrix with 0ji>0,1 <j<m. Let (wy,...,wy) be weights, wj > 0,j=
1,...,m,and Ej”; (Wi = 1. Then Z‘j’ileX]- / Yj has the standard Cauchy distribution on the real line

with probability density function (pdf) 1/[z (1 + z2)]. The surprise is that the covariance matrix ¥
has no effect on the distribution of Z‘j”;l w;X;/Y.

Pillai & Meng [9, p. 2091] remarked: ‘A theoretical speculation from this unexpected result is
that for a set of random variables - - -, the dependence among them can be overwhelmed by the
heaviness of their marginal tails - - -. We invite the reader to ponder with us whether this is a
pathological phenomenon or something profound’. The present work supports the speculation
of Pillai & Meng [9] by giving multiple examples in which heavy tails outweigh correlations and
heterogeneity of distributions. Here is a preview of coming attractions.

(b) Organization of this paper

Section 2 reviews the definitions and some properties of regularly varying (RV), including heavy-
tailed, random variables (rvs), those in which the survival function or upper tail is asymptotically
a power function with negative exponent —«;, where o > 0. An important classical limit theorem
stated here is that sums of appropriately centred and normalized RV rvs converge to stable rvs
withindex « if o < 2. We illustrate the uses of this theorem by deriving the limiting stable laws that
describe the asymptotic behaviour of the sums of squared rvs and the sums of squared deviations
from the sample mean.

Section 3 analyses the asymptotic behaviour of Taylor’s Law when the observations are iid
heavy-tailed RV rvs; or when the observations are RV rvs with distinct tail indices (heterogeneity);
or when the observations are the reciprocals of powers greater than one of arbitrarily (but
imperfectly) positively or negatively dependent normals. These results provide far-reaching
generalizations of Taylor’s Law. The ratio of the sample variance to a power of the sample
mean, which is the focus of Taylor’s Law, is formally similar to the sample kurtosis, which is
the ratio of the fourth central moment to a power (the square) of the sample variance. Thus, we
use the methods developed to analyse Taylor’s Law to derive the asymptotic behaviour of the
sample kurtosis when the data are iid RV rvs. In principle, these results could be extended to
heterogeneous and dependent data.

Section 4 shows that under natural conditions the sample correlation of a pair of RV rvs
converges to a generally random limit, which we express in terms of stable laws. This limit is zero
in case the rvs are the reciprocals of powers greater than one of two arbitrarily (but imperfectly)
positively or negatively dependent normal rvs. Surprisingly, in this case the sample correlation
multiplied by the sample size has a limiting distribution that is concentrated on the negative
half-line, regardless of whether the two normals are positively or negatively dependent. These
findings support the speculation of Pillai & Meng [9].

Section 5 compares the behaviour of the least-squares estimator of » in a linear model Y =
nX + Z under two different assumptions about X and Z: first, that X and Z are heavy-tailed RV
rvs with asymptotically equivalent tails; and second, that X is heavy-tailed but the noise variable
Z is light-tailed, possibly Gaussian. In both cases the estimator converges much faster than in the
case when X and Z have finite variances. When Z is light-tailed, the sample correlation between
X and Y converges in probability to 1.

Section 6 investigates by numerical simulation how rapidly some of the correlated,
heterogeneous, RV rvs described in the preceding sections converge in distribution to their limit
rvs expressed as functions of stable laws. The examples are drawn from Taylor’s Law, bivariate
correlation, and the linear model.

For the sake of readability, §§2-5 give only a few simple proofs. Appendix A gives more
detailed mathematical background on heavy-tailed distributions and point process methods. It
then proves the major claims made regarding the limit theory for Taylor’s Law and the limit
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theory for the sample correlations of heavy-tailed data including the special example of the
reciprocals of powers greater than one of correlated normals.

2. Background on heavy tails and reqular variation

For heavy-tailed data when the population variance is infinite, the limit behaviour of the
sample mean, sample variance, extreme order statistics and related statistics, is widely studied
[1,2,10-14]. When the variance is finite, the classical central limit theorem implies that the sample
mean, centred by its mean and normalized by its standard deviation, converges to a normal
distribution. When the variance is infinite, the suitably centred and normalized partial sums
also converge in distribution when the data are regularly varying (RV), with Pareto upper tails.
So regular variation is often the starting point for modelling various statistics of univariate
heavy-tailed data.

To be specific, assume the random variable (rv) X is positive and has distribution function
F(x):=P(X < x),x > 0 and survival function F(x) := 1 — F(x) = P(X > x). We say that X (or F) is RV
with index « > 0, and we shall henceforth write F € RV (), if

F(t
im _( ») =x"% forallx>0. (2.1)
t—oo F(t)
If F satisfies (2.1), then F has a Pareto upper tail:
- L(t
Fo)=xL(0, lim 2 Z1 forallx=o0. 2.2)

t>oo L(H)

We say L(x) is a slowly varying function (at infinity). Examples of slowly varying functions are
L(x) =logx, loglogx and their reciprocals. Assumption (2.1) implies that X has finite moments
only up to order a: EXP < oo for p < o and EXP = oo for p > o From (2.2), EX* = [° P(X* > x) dx =
[ 80 x~1L(x1/*) dx, so that the finiteness of EX depends on the integrability of x~1L(x1/®) for x
large. For example, EX® = oo if L(x) is constant, whereas EX* < oo if L(x) ~ (1/log x)1+€ for some
€ > 0. Since we are interested here only in heavy-tailed distributions with infinite variance, we
shall assume that o < 2 throughout.

Let Xj,...,X, be iid with distribution F. The sum Z?:l X;, appropriately centred and
normalized, converges in distribution as the sample size n — oo. To this end, define the sequence
of normalizing constants {1, : n=1,2, ...} as the sequence of 1 — 1/n quantiles of F, i.e.

an:inf{x:F(x)zl—%}. (2.3)

If F is continuous, then F(a,) = 1/n. By replacing t with a,, in (2.1) it can be shown that

o

nP(X > a,x) = nF(ayx) —» x~% forall x> 0asn— oo (2.4)

and a,, = nl/ "‘ﬂ(n) for some slowly varying function L.1f Fis Pareto, i.e. if F (x) =x"% for x > 1, then
a, =nl/e,

A classical limit theorem [15] describes sums of heavy-tailed rvs. Let S, be a stable rv with
index « € (0, 2) and shape parameter § =1. When « € (0, 1), S, takes only non-negative real values.
When « €[1,2), S, takes negative real values, but the left tail is lighter than that of a normal
distribution. When o =2, S, is normally distributed.

Define
by=0fora <1 and b, =E[X1{x<,,]forae[l,2). (2.5)
Then
! d
a1 > (Xt = by) > Sa, (2.6)
t=1

where 4 denotes ‘converges in distribution to’. For « € (1,2), b, can be replaced by the (finite)
mean EX.
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Example 2.1 (sums of squares). Because X? € RV(«/2), applying (2.6) to the sums of squares
gives, for any « € (0,2),

n
23 2L 5, asn— occ. 2.7)
t=1

The sum of squared deviations from the sample mean X, =n"1 Y"i_1 X; has the same limit:

n
a,” Z(Xt — X2 4 Sas2 asn— oo. (2.8)
t=1

The convergences in (2.6) and (2.8) are joint, i.e.

n

n
(u,,l D Xe = ba),a,> Y (X — Xn)z) 4 (Sw,Sajz) asn— oc. (2.9)
t=1 t=1

The remarkable feature of this example is that the limit rvs on the right sides of (2.7) and (2.8)
are identical. To give insight into why subtracting the sample mean in (2.8) makes no difference
to the limit rv, we offer a brief proof. For the remainder of this article, for the sake of readability,
we shall defer many detailed proofs to appendix A. For example, the nature of the dependence
between S, and S, > and the proof of (2.9) are given in theorem A.3.

Proof of (2.8). The sum of squared deviations from the sample mean on the left of (2.8)
decomposes into

n n n 2
3,2y (X = Xp) =a,2 Y Xy —bp)* —n! (a,;l > X - bn)) . (2.10)
t=1 t=1 t=1

By virtue of (2.6), the second term on the right converges to zero in probability. Since a3 =
n+2/¢[2(n), it follows that a2 > n'*€ for some small € > 0 and all 1 large. Moreover, since for o > 1,
by — EX and for a = 1, by, is slowly varying [15], nb, /a2 — 0 and by, /a, — 0. Using these facts and
expanding the first term on the right of (2.10) gives

n n n
a,2 > XF = 2a, bua, Y (Xp — by) — 10, 2b% =a,2 > XF + 2, baOp(1) — nay, b3
t=1 t=1 t=1

n
=023 X2+ 0p(1),
t=1

from which (2.8) is immediate. |

3. Heavy tails, Taylor's Law and kurtosis

(a) Taylor’s Law with iid heavy-tailed data

If the RV heavy-tailed iid rvs Xj,..., X, have tail index o <1, then the centring constants are
by, =0 and the population mean and population variance are infinite. In one of its many forms, TL
considers the ratio of the sample variance divided by a power b, 0 < b < oo, of the sample mean,

_ n~! Z?:1(Xt - Xn)z

W = (3.1)
n XZ
The order of the numerator is 7~ 1a2 while the order of the denominator is n~Ya!. For W, to

converge in distribution, the order of the numerator and denominator must match, which requires
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that

2—«
_ao) o
For this b,
1 d Sa/2
o s .

where L(n) is as defined for a, following (2.4). The numerator S, /> and the denominator Sg are
dependent, and the dependence is described explicitly in theorem A.3. Brown et al. [7] obtained
expression (3.2) for b and some of the moments of the limiting distribution.

(b) Taylor’s Law with heterogeneous heavy-tailed data

In the previous subsection, the heavy-tailed observations {X;} are assumed to be iid. Here we
analyse independent data (or rvs) that are heterogeneous, i.e. not identically distributed.

Suppose that the observations are independent but come from two rvs U and V, where U e
RV(a) with @ € (0,1) and V is dominated by U in the sense that

P(V > x)

meo as x — oo. (3.4)

Further assume that the data Xj,...,X,, consist of a random number v, <n of observations
L . L P

distributed as U and #n — v, of observations distributed as V, where v,/n — p € (0,1] as n — oo.

Here — means ‘converges in probability to’. This formulation can be interpreted quite generally:

V could represent a union of several pooled rvs, each with tails lighter than the tail of U. Letting
a, be the 1 — 1/n quantile of Fyy, it is easy to show that

n—vy
ZXt—u ZUt-FLZ 1 Z Vi
[np] [n(1-p)]
1let+a > Vitop(D).
t=1

Since P(V > x) = o(P(U > x)) for x large, the argument in the proof of theorem 4.1 in appendix A(c)
can be used to show that

[n(l —p)l

Z v Zo.

If f(x), g(x) are real-valued functions of real x and g(x) > 0 for all sufficiently large x, then f(x) ~
g(x) means limy_, o, f(x)/g(x) = 1. Then, on the other hand,

[np] [np]
a,! Z Ui = —a Z U
[np]

oy 2 Ui

—>p1/“5a.

A similar result holds for the sample variance so that the convergence in distribution for TL in
(3.3) also holds for such non-identically distributed data. The dependence between numerator
Se/2 and the denominator SY, is described explicitly in theorem A.3.
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(c) Taylor's Law with correlated heavy-tailed data

Here we suppose the observations (or rvs) are pairwise correlated and identically distributed.
We shall show that the scaling exponent b in TL remains the same as (3.2), but the limit
changes. Specifically, let Ny, N1, . .. be iid standard normal rvs and let 0 < p < 1. Let Z; = ,/pNp +
V1=pN;, i=1,2,.... Then for i=1,..., each Z; is normal, EZ; =0, Var(Z;) =1, and for i #j>
1,Cov(Z;,Zj)=p. Let 0 < <1 and define X;:= 1/(Zl.2)1/(2°‘), i=1,2,.... Define W, in terms of
X;asin (3.1) and b as in (3.2). Then

1/2(1-a))
W, 2 557/(2 [(1 —p)exp {%Nz}] ) (3.5)
where S, /5, S, are non-negative stable rvs given in (A 10) and (A 11) with tail indices «/2,a €
(0,1), respectively, and shape parameter § =1, and N is a standard normal rv independent of S, >
and S,. As previously, the numerator S,/ and the denominator S, are dependent because I in
(A 10) is the same as [ in (A 11), foreachj=1,.. ..

To prove (3.5), it is enough to prove that for every fixed real z, if Z;:=/pz + /1 — pN;,

i=1,2,..., then
o 1/(1-a))
[(1 — p)exp {mz H . (3.6)

To prove (3.6), we observe that X1, Xy, . .. are iid (because they are conditional on fixed z) and

2
P(Xq > t)N\/;(l — p)fl/zexp {—2(1/0_ p)zz} % as t— oo.

In particular, the tail of X is multiplied by the factor of

Wi

S
_d) othZ

o

h(p)= (1~ p)""exp {— A p)zzi

in comparison with the case p =0 in §3(a). That means that, in the limit, every term F[l/ “in both

Sa/2 and Sy ends up being multiplied by /(p)'/%. Therefore, the numerator in the limit in (3.3)
gets multiplied by (p)?/®, while the denominator gets multiplied by h(p)@—e)/(@(1-a), Doing the
arithmetic proves (3.6).

The heavy-tailed version of TL also holds widely for stationary mixing sequences. Here we
assume that {X;} is a strictly stationary time series with X; € RV(«), o € (0, 1). If the time series
satisfies the mixing and dependence conditions D and D’ in [16], then the limit theorem that
holds for TL for the iid case also holds exactly for the stationary case. This follows directly from
Davis [16, theorem 4 and its corollary]. The mixing condition D governs how fast certain events
become independent as their time separation increases. Condition D’ prohibits clustering of pairs
of nearby observations when both are large. While condition D is rather mild, condition D’ is
more restrictive.

Alternatively, in mixing stationary time series that are RV, i.e. where all the finite-dimensional
distributions are multivariate RV, the point process convergence in theorem A.1 can be extended,
but now the limit point process includes clusters of points that are linked to the Poisson points
Fl.fl/ “ [10,17]. From these point process convergence results, the limiting form of Taylor’s Law
(3.3) is a ratio of the same two stable rvs with tail indices «/2 and « in the numerator and
denominator as in (3.3), but the numerator and denominator may need to be multiplied by
different constant scale factors.

The results in §§3(b) and (c) may be combined. Explicitly, as in §3(b), suppose that U € RV («)
with « € (0,1) and U dominates V in the sense of (3.4). Assume that the data X1, ..., X}, consist of a
random number v, < 1 of observations distributed as U and n — v, observations distributed as V,

where v, /n £ p €(0,1] as n — oo. In addition, as in §3(c), suppose that the v, <1 observations X;
distributed as U satisfy X;:=1/ (Z?)l/ (22) € RV(«) and, when X;, Xj are both distributed as U, then
{Z;} are correlated standard normals with Cov(Z;, Z;) = p if i #j> 1. The n — v, of observations
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distributed as V may be arbitrarily dependent or independent. Then TL holds as described in
(3.5). We simulate this model in §6(a).

(d) Sample kurtosis

The kurtosis is often used to measure the heaviness of the tail of a distribution function. For
a random variable X with finite fourth moment and finite variance o2, the kurtosis is defined
by k =E(X — EX)*/c*. A normal random variable has kurtosis 3. A rv with « > 3 is said to be
leptokurtic, indicating tails fatter than those of a normal rv. Since we are primarily concerned
with heavy-tailed data in which the population variance is infinite, we focus our attention on the
kurtosis « as opposed to the excess kurtosis x — 3.

If a rv has infinite second moment, then the population kurtosis does not exist. Nevertheless,
given a sample Xj, ..., X;, one can still compute the sample mean X, and the sample kurtosis

PR Y BT D O MND MR {0 b O
(U~ Xn?)Y (D (X — Xn)2)”

Assume that X1, ..., X, are iid as X € RV(«) with « € (0, 2). From the argument of example 2.1
(see also theorem A.3), it follows that

(3.7)

(ﬂn 22 (=X 0t Y (X~ Xn)‘*) 2 (Suj2, Susa) (3.8)
t=1

= t=1
where S, = Z;’il 1",._1/ Y, By the continuous mapping theorem, we obtain

S
1y S 22, (3.9)

/2

By Cauchy’s inequality, the limit random variable on the right of (3.9) is bounded above by 1.
As the tails get heavier, i.e. as « | 0, the limit random variable becomes more concentrated at 1
because, for y <1,

x® N\ Wy
. -
Sy—Fll/y Fll/y2< ;) .
i=2

Since each term in the sum is bounded by 1 and I'; ~i a.s. as i — oo, it follows that S, ~ I’ 171/ Y as
y 1 0. Thus, the limit random variable on the right of (3.9) converges to 1 as « | 0.

If o € (2,4), then X has finite variance 0% but infinite fourth moment. In this case, the same
argument shows that

(3.10)

The rate of convergence, however, is roughly n!=#%L(n), where L is a slowly varying function,
which is rather slow especially as « 1 4.

4. Heavy tails and sample correlations

The correlation of a pair of rvs is defined as their covariance divided by the product of their
standard deviations. It cannot be defined for pairs of rvs with infinite variance, such as all
those in RV («) with « € (0,2). Nevertheless, the sample correlation (4.4) is a well defined rv. For
heavy-tailed time series, the sample autocorrelation can have unexpected and desirable properties
[11,12]. Here we give conditions under which the sample correlation of dependent heavy-tailed
rvs converges to zero (in probability or almost surely, depending on detailed assumptions) as the
sample size gets large.
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(a) Bivariate regular variation and asymptotic independence

We define regular variation for a pair (X,Y) of heavy-tailed rvs. Assume that X and Y are
identically distributed with RV distribution F € RV («) as in (2.1). Our results require only that their
distributions have asymptotically equivalent tails, i.e. lims_, oo P(X > 5)/P(Y > s) = C € (0, 00). We
say that X and Y are asymptotically independent if

PX>tY>1

PX>tY>t):= P =)

—0 ast— oo. (4.1)

Of course, if X and Y are independent then they are also asymptotically independent. When ¢ is
replaced by a, defined in (2.3), asymptotic independence is equivalent to

nP(X>a,,Y>a,)—0 asn— oo. (4.2)

If X and Y are not asymptotically independent, we quantify their dependence in the tails of
the distribution by assuming that there exists a measure v(-) on ([0, 00)?, B([0, 00)?)) such that, for
Axy=10,x] x [0,y] and AT, the set complement of Ay,

nP(X > apx or Y > any) =nP(a, (X, Y) € Afc,y) — v(AfC,y) asn— 0o 4.3)

for all x, y > 0 with max{x, y} > 0.

If x=0,y>0, then v(A6 y):y*“. Similarly, v(A;O):x*“. It follows that X and Y are

asymptotically independent if and only if v([x, 00) x [y,, oo0))=0forallx>0,y>0.

(b) Sample correlation of heavy-tailed data

Define the sample correlation between the pairs (X;, Y;), t=1,...,n, in the conventional way by

:,‘1:1(Xth - Xn?n)

On = - —. (4.4)
I (X = K2 S (Y — )2
Theorem 4.1. Assume the distribution of (X, Y) satisfies (4.3) and o € (0,2). Then
S
on —d> u:.= /20 asn— oo, (4.5)

/Sa/215q/2,2

where Sy /2,0, Say2,1, and Sg 22 are stable rvs with joint distribution specified in appendix A(c), (A 18)-
(A 20). Moreover,

pn—P>O as n— oo (4.6)
if and only if X and Y are asymptotically independent.

Appendix A(c) proves this result. Although the stable rvs in the numerator and denominator
of (4.5) have heavy tails, the ratio on the right of (4.5) does not have heavy tails because of self-
normalization.

When pj, £ 0, i.e. when X and Y are asymptotically independent, it is often possible to find
normalizing constants c,;, — oo such that ¢, 0, converges in distribution to a non-degenerate rv.
For example, when X and Y are independent, ¢, = nl/®L(n) for some slowly varying function
L [11,12]. Theorem 4.5 gives another example in which X and Y are the reciprocals of powers
of correlated bivariate normal rvs with mean 0 and variance 1. Such dependent X and Y are
asymptotically independent.

We now extend theorem 4.1 to the case when X and Y are RV rvs with different tail indices.
Appendix A(c) gives the proof of theorem 4.2.
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Theorem 4.2. If X € RV(a) and Y € RV(B) with 0 < o < B <2, then

o b U= SaBlatp)0
VSa/2158/2,2
where Sug /(a+p),0r Swy2,1 and Sgyo 2 are defined in (A 21), (A 19) and (A 22), respectively. If X and yB/

are asymptotically independent, then py £ 085 n— oo since then U=0as.

asn— oo, (4.7)

We give a quick and easy way to construct dependent, but asymptotically independent, rvs.

Theorem 4.3. Let U and V be two positive rvs with positive and continuous marginal densities in a
neighbourhood of zero. Suppose that in a neighbourhood of the origin, U and V have a joint density function
fuv(u,v) satisfying fuv(u,v) <a@? +v*)~%2 for some a>0 and 0 <6 < 1. Then, for any ¢ > 1 (or
a=1/ce(0,1)), X:=1/U € RV(1/c), Y:=1/V¢ e RV(1/c), X and Y are asymptotically independent,
and, for a random sample (X1, Y1), ..., (Xu, Yn) iid as (X, Y), we have p;, L 0asin (4.6).

Proof. We have

x—l/c

P(X>x)=P(1/U° > x)=P(U <x~ /%) = J fuu)du ~x"Vf3(0)  asx — oo,
0

where fi;(u) is the marginal pdf of U. It follows that X € RV(1/c). A similar argument holds for Y.
Next,

1 1 x—l/c x—l/f
P(X Y =P|-—=>x — = ,v)dud
X>xY>x) (LI” > X Ve > x) L ,[0 Sfu,v(u, v)dudv

x—l/c

x—l/c
< aJ J 2 + v?) % dudv
0 0

< 2max~@=0/e,

Dividing the right side by x~!/°f/(0) and letting x — oo, the limit becomes zero, proving (4.1).
Then theorem 4.1 entails (4.6). |

Corollary 4.4. Suppose (U, V) has a bivariate normal distribution with means 0, variances 1 and
correlation p € (—1,1). Set X:=1/|U|°, Y :=1/|V| for ¢ > 1. Then X e RV(1/c), Y e RV(1/c), and X

. . . P s
and Y are asymptotically independent with p, — 0 as n — oo. Further, py 0 as n— oo.

Theorem 4.5. Under the assumptions of corollary 4.4,

P(XY > x) ~
cr

2 /e
——————x /‘logx asx— oo.
(1—p2)l/2

Moreover,

npn —d> —R1Ry asn— oo (4.8)

where Ry and Ry are iid rvs with Ry = Sy /\/Saj2 and Sy and S p are given in (A 10) and (A 11) with
a=1/c<1.

It is curious that, regardless of p € (—1,1), np, converges in distribution to a rv that is negative
almost surely. In this situation (« < 1), the mean is infinite and the tail of the product XY is similar
to the tails of X and Y apart from a slowly varying function. The limit behaviour of the numerator
of (4.4) is governed by the product of the partial sums of the X;s and Y;s, which in view of theorem
4.5 is of smaller order. In other words, p, behaves essentially like the product of two t-statistics,
one for the X;s and one for the Y;s.

Since the mean here is infinite, it is reasonable also to define a version p, of the sample
correlation without the correction for the mean:

5= Y XiYi
= .
NONEP NI VIR
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Corollary 4.6. The assumptions of corollary 4.4 imply

n\" . d N
<logn> pn— (1= p%) 755 asn— oo, 4.9)

where S1, Sy, S3 are independent stable rvs with representations given in (A 10) and indices o equal to 1/c,
1/(2c) and 1/(2c), respectively.

Here the stable rvs in the numerator and denominator of (4.9) have heavy tails and are
independent, so the ratio on the right of (4.9) does have heavy tails. We comment after (5.5)
below on the confidence intervals implied by the similar situation there (a ratio of independent
stable rvs).

Whereas the limit rv in (4.8) is independent of the population correlation p, the limit rv in (4.9)
is scaled by a function of the population correlation p. The rate of convergence (1/log n)° is rather
fast, essentially of order n? for ¢ =2. This is much faster than the standard n1/2 rate when the
variance is finite. Corollary 4.4, theorem 4.5 and corollary 4.6 are proved in appendix A(d).

5. Heavy tailsin a linear model

Suppose X and Z are two heavy-tailed rvs and
Y=nX+2, n=>0. (5.1)

Given a sample (X1,Y1),...,(Xu, Yn) of n independent observations, what is a useful way to
estimate 7? Surprisingly, even though the data have infinite variance, the least-squares estimator
for n performs remarkably well. Specifically, the least-squares estimator is weakly consistent, as
we now show.
Assume that X and Z are independent positive rvs with distribution functions Fx and Fz,
respectively, with asymptotically equivalent tails, i.e.
Fz(s)

Slgglo [ =Ce(0,00). (5.2)

If X € RV(a), then it is elementary that

P(Y > %)

o
— C .
P(X>x)_”7 + as x — oo

Thus Y also has a heavy-tailed distribution with the same tail index «. However, if C = oo, then Y
inherits its heavy tail from the noise Z. Here we will assume C < oo.

Since the vector (X, Z) is bivariate regularly varying and since (X, Y) is a linear transformation
of (X, Z), it follows directly from Basrak et al. [18, p. 113, Proposition A.1] that (X, Y) is bivariate
RV.

The angular measure of (X, Y) in (A 5) has mass at arctan n and /2, namely,

2 1 /2
G()= Msarctann(') +

- (7)2 + 1)0(/2 +C 71/2(')~ (5.3)

< e
(> +1)*/2+C
It follows directly from theorem 4.1 that if (X3, Y1),...,(Xy, Yy) are iid observations from the
linear model (5.1) with 0 < C < oo, then p, LY U where U is given in (4.5). On the other hand,
if C=0, which would allow the noise variable Z to be light-tailed, including normal, then the
form of the limit variable U in (4.5) (see also (A 14)—(A 20)) implies that p; £ 1 as n— oo. To
see this, the distribution G in (5.3) for the angular part of the limit measure corresponds to
point mass at arctan 5. It follows now that the rvs ®; appearing in (A 18)—(A 20) are all constant
and equal to arctann with probability one. As long as n > 0, then arctann € (0,7/2) and hence
Si/zlo/(sa/Z,l Sap22)=1.
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The least-squares estimator of n minimizes Y ;1 (Y; — nXe)?. Itis given by

21 Xi Y
B
Y Xi
Plugging Y; = nX; + Z; into the summands in the numerator gives

P D1 XeZi
Y X7

Applying theorem 4.5 as in the proof of (4.5), it is easy to see that, if a, is the 1 — 1/n quantile of Fx

ﬁ:

(5.4)

and if « € (0,2), then a;, Yo XeZy £ 0, a,> Y th 4 Sa/21 as n— 0o, and hence 7 is weakly
consistent for 5 (i.e., as n — oo, ) converges in probability to n for every n > 0).

If « €(0,1) and Fy is asymptotic to a Pareto distribution Fe(x) ~Kx~®,K € (0,00) as x — oo,
then as in corollary 4.6,

1/
( 1 )/ =) ceSt agn oo, (5.5)
logn S»

where S; and S are independent stable rvs given by (A 10) with indices o and «/2, respectively.
For example, if o =1/2, then the rate of convergence of the least-squares estimate is extremely
fast, approximately of order n?, which is substantially faster than the convergence rate of order
/n when the variances of X and Z are finite. In particular, an approximate 95% confidence interval
for n, assuming C=1 and « =1/2, is (7 — cp.975(log n/n)?, i — co.025(log n/n)?), where c, is the
y-quantile of the distribution for S;/Sy. The two minus signs in the lower and upper bounds
of the confidence interval are the surprising consequence of the fact that 7 is always bigger than
n, as can be seen from (5.4), even for finite n and as n — oo. This inequality is an artifact of X and
Z being positive. The width of this confidence interval is (cg.975 — co.025)(log 1/ n)2. On the other
hand, if the variances of X and Z are finite, the width of the 95% confidence interval for n based
on the least squares estimate is 3.92(oz/ ox)n~1/2. While the difference in quantiles ¢ 975 — 0025
coming from the ratio of two independent stable rvs can be large, this potentially large width is
more than overcome by the fast rate of the scaling (log n/n)? for large n.

6. Simulations of Taylor's Law, correlations and a linear model

The purpose of this section is to investigate by numerical simulation how rapidly some of the
statistics based on dependent heterogeneous, RV rvs described in §§3-5 converge in distribution
to their limit rvs expressed as functions of stable laws.

(a) Taylor's Law with heterogeneous, dependent, heavy tails

We simulate the heterogeneous, dependent, RV rvs described in §§3(b),(c) with three different
values of the pairwise correlations p=0,0.5,0.9999 of the standard normals Z; and with
observations
Xt = (Z%)lﬁ eRV(at), t= 1,2,. Lo n

In this numerical example (figure 1), for every tenth value of f, o =0.1, and the remaining nine
of every ten values have «; =0.9. Despite having nine of every ten exponents equal to 0.9, the
numerals p=1,...,7 plotted at the location of (sample mean, sample variance) = ()_(,,,6,3) for
the three samples of each size n =107 fall along the solid line with slope b =2.1111=(2 — 0.1)/
(1 —0.1) on log-log coordinates, which is the slope in (3.2) when « = 0.1. The solid lines in figure 1
are not fitted to the markers but are calculated a priori as the bth power of the abscissa. The values
of a¢ > 0.1 have no effect on the slope because the mean and variance are determined by the largest
observations, which arise from the RV rvs with the smallest tail exponent, here 0.1.
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regularly varying tails, b =2.1111
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Figure 1. Scatterplots on loglog axes of (sample mean X,, sample variance &2) in three samples of X, := 1/(222)"/%%] ¢
RV(ct;), t =1,2,...,n of each sample size n =107, p =1,2, . . ., 7 with pairwise correlation p = 0,0.5,0.9999 (panels
(a), (b) and (c)). For example, in the left panel, the three appearances of the numeral ‘7' represent (X,, 62) in three samples
of size n = 107. The solid lines (X,)° have the same slope b = 2.11M = (2 — 0.1)/(1 — 0.1) on log—log axes, regardless of the
value of the pairwise correlation o =0, 0.5,0.9999 (panels (a), (b) and (c)). (Online version in colour.)

(b) Bivariate correlation

In §6(b), we simulate (X, Y) described in corollary 4.4 and theorem 4.5. In this case, although X
and Y are generated by arbitrarily correlated (with |p| < 1) standard normal variates, X and Y
are asymptotically independent stable laws. The purpose of these simulations is to shed light on
this question: Does the sample correlation p; (4.4) of n iid copies of (X,Y) approach its almost
sure limit, 0, or its rescaled limiting distribution (4.8) rapidly enough as n — oo that, for sample
sizes plausibly encountered in empirical applications, the limiting value or rescaled limiting
distribution are useful approximations? We ask a similar question below in §6(c), where we
simulate (X, Y) for the linear model in (5.1).

Here we generate n iid pairs (U, V) normally distributed with mean 0, variance 1, and
correlation p € (—1, +1), for sample sizes n =107,p =1, 2,3,4, and p =+0.9. From each (U, V) we
compute (X, Y):= (1/1U)?,1/|V|?). The n x 2 matrix in which each row is one (X, Y) pair of 1/2-
stable rvs constitutes one simulation. For each sample size 1, we generate s = 10* simulations. For
each simulation, we record the sample correlation p;, between the n realizations of X and the n
realizations of Y and calculate np, (the left side of (4.8)).

Figure 2 shows that the frequency histogram of the sample correlation p, changes from a
bimodal distribution with one mode at negative values and another near p,, =1 when n =10 (top
left) to a unimodal distribution to the left of 0 for large sample sizes n = 10* (bottom left).

The right side of (4.8) is —R1Ry where Ry and Rp are iid rvs with R; =54 /\/m and S,
and S, /> are given in (A 10) and (A 11) with « =1/c=1/2. To simulate each value of S, and

01900207 9Lt 705y 20igedsy/jeunol/BioBuiysiqndiraposiefos



10 000 simulations of samples of size n of (X,Y), p=0.9, =0.5

histogram of p, qqplot
)
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Figure 2. For sample sizesn =107, p =1, 2, 3, 4, we generate n iid pairs (U, V) normally distributed with mean 0, variance
1and correlation o = 4-0.9 and then (X, ¥) := (1/|UJ%,1/|V|). The n x 2 matrix in which each row is one (X, ¥) pair
constitutes one simulation. For each sample size n, we generate s = 10* simulations. For each simulation, we record the sample
correlation p, between the n realizations of X and the n realizations of Y. The left column of this figure shows the frequency
histogram of the s = 10* simulations of ,0,, for sample sizes from n = 10 (top row) to n = 10* (bottom row). The histogram
becomes increasingly concentrated on (—1, 0). The right column of this figure shows, on the ordinate with cross symbols, the
order statistics of —R;R,, the limit rv on the right side of (4.8), and, on the abscissa and in the diagonal solid line of slope 1, the
corresponding order statistics of n o, (see text for details of computation). For samples of size n = 10, the sample correlation p,
was negative in 3868 of 10 000 samples. For samples of size n = 10*, the sample correlation p, was negative in 9510 of 10 000
samples. The plots on the right include only and all the negative values of o, and the corresponding order statistics of —RsR,.
(4.8) predicts, as n — o0, that the fraction of simulations in which p, < 0 should approach 1, and that the cross symbols
markers should approach the diagonal line. The right panels support both predictions. (Online version in colour.)

its corresponding S, /2, we generate 10° iid unit exponential variates E;, compute the 10° partial
sums [} := Zle Ej,t=1,...,10%, raise each I} to the power —1/a (for Sy) or —2/a (for Sy 2), and
sum the 10° values of 1’;1/ “ or 1";2/ *. From each such pair (Sq, S¢/2) using the same values of I3,
we compute one value of Ry =Sy /,/Sa/2. An independent repetition of this procedure generates
one iid value of R, and thence one value of —R{R».

For each sample size 11, we sort the s simulated values of 11p;, (the left side of (4.8)) in increasing
order, and we sort the s simulated values of —R1R; (the right side of (4.8)) in increasing order. If
the distribution np;, approaches the distribution of —R1R, as n — oo as theorem 4.5 asserts, then
the empirical quantile-quantile plot of —R1R; on the vertical axis and np;, on the horizontal axis
should fall along a diagonal straight line of slope 1 through the origin.

However, the absolute error np, — (—R1Rz) of the approximation in (4.8) is unbounded as
n — oo because there is a non-zero (though asymptotically vanishing) probability that p, will
be near 1, which case np;, will be near n while —R;R; is negative with probability 1, so the error
could be close to n. Consequently, including positive values of p, in the quantile-quantile plots
in the right column of figure 2 would obscure the comparison of np, with —R1Ry on (—o0,0]
where asymptotically an increasing proportion of the values of p, will fall. For each sample size
n, we report the number of simulations with p, <0 in the lower right corner of each panel in
the right column of figure 2 and we restrict the quantile-quantile plot to these values and to the
corresponding order statistics of —R1R>. As (4.8) predicts, as n — oo, the fraction of simulations

01900207 9L ¥ 705 4 2014 edsi/jeuinol Bio‘Buiysignd/iaposiefor H



s = 1000 simulations of samples of size n = 104 from Y=nX+Z
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(@ X0 (b) . ‘ e
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Figure 3. Left to right, top to bottom: (a) Scatterplot on linear scales of (X, ¥), Y = X + Z with X, Z iid 1/2-stable, in a single
sample of size n = 10*. (b) Scatterplot on logarithmic scales of the same sample shown on the left. (c) Frequency histogram
of n x s =10* x 10 = 10" values of arctan(Y /X) from the pooled s simulations of samples of size n. The modal values
approximate arctan(1) on the left and 7v /2 on the right. (d) Frequency histogram of arctan(Y /X) from the 100 values of (X, )
for which the radius in polar coordinates R := (X2 ++ ¥2)/2 falls in the upper decile of all 107 values of the radius. The values of
arctan(Y /X) are more concentrated at arctan(1) and 7z /2. (Online version in colour.)

in which p, <0 approaches 1 and the order statistics of np, approach the corresponding order
statistics of —R1R».

(c) Linear model

We simulate the linear model (5.1) with slope 7 =1 under two different assumptions: (i) that the
independent variable X and the noise (or random perturbation) variable Z are iid 1/2-stable,
so that in (5.2) we have C=1; and (ii) that X is 1/2-stable and Z is standard normal, which is
light-tailed, and X and Z are independent, so that in (5.2) C=0.

Under (i), assuming X and Z are iid a-stable with « =1/2, n = C =1, the angular measure (5.3)
simplifies to

214 1
G() = mgarctanl(') + mgﬂﬂ(')

~ (0.5432¢( 7854(-) + 0.4568¢1 5708 (")

The limiting distribution of p,, given by the right side of (4.5), depends on the three stable
rvs 51/40,51/41 and Sq/45 with joint distribution specified in appendix A(c), (A 18)—(A 20). To
simulate their joint distribution, for each realization w, each I} is a cumulative sum of ¢ iid
exponential rv with parameter 1, as described in greater detail in §6(b). From (5.3), in the
limit of large 1, each ®; = arctan(1) ~ 0.7854 with probability 0.5432 and ®; = /2 ~ 1.5708 with
probability 0.4568, as calculated numerically just above. We sum the summands on the right sides
of (A 18)—(A 20) until the sums quasi-converge.
Under (ii), with @ =1/2, =1, C=0, the angular measure (5.3) simplifies to

G() = €arctan 1(-) = €0.7854(*)

and the limiting distribution of p; is a point mass at 1.

As above, n=107,p=1,2,3,4, denotes the sample size or number of realizations of (X, Y).
For each sample size 1, we simulate s = 1000 samples each with 1 copies of (X,Y) and plot the
frequency histogram of the s values of the sample correlation coefficient p;, for these s samples.
We compare this frequency histogram with the limiting distribution calculated in §5.
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sample correlation p, in s = 1000 simulations of samples of size n from Y= nX +Z
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Figure 4. Frequency histograms of the sample correlation coefficient p, of samples of (X, Y), ¥ = nX + Z when Z is 1/2-
stable (heavy-tailed) as in figure 3. We assume 1 = 1. Top to bottom: Sample sizes are (a) n =10, (b) n =10, () n = 10%,
and (d) n = 10*. Modal sample correlation coefficients are near 0 and near 1.

s = 1000 simulations of samples of size n = 10* from ¥ = nX + normal(0,1)

(@) (®)
10 o
& =
EE 2
>~
) 107 cases )
Y,X' 8887688 cases with X >0, Y >0 |
0 ) . A
0 5 10 1
X (x10'2) X>0
(c) all observations = 107 (d)  radial upper decile observations = 10°
s 15 10
& g
X 10f -
g X
2 Z 5
g g
g =
= g
(3]
0 0
-1 0 1 0.76 0.78 0.80
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Figure 5. Left to right, top to bottom: (a) Scatterplot on linear scales of (X, ¥) where ¥ = X + U with X iid 1/2-stable, U
iid standard normal. We have s = 10° samples each of size n = 10*, giving a total of n x s =10* x 10* =10’ pairs (X, ).
(b) Scatterplot on logarithmic scales of only the 8 887 329 pairs (X, ¥) where X > 0, Y > 0. The same simulations appear in (A)
and (B) but only the positive pairs are selected for (B). (c) Frequency histogram of 10’ values ofarctan(¥ /X) fromsiid simulations
of samples of size n. The modal values centre on arctan(1) = 7r /4 ~ 0.7854. (d) Frequency histogram of arctan(¥ /X) from the
10° values of (X, ¥) for which the radius in polar coordinates R := (X2 + ¥2)'/2 falls in the upper decile of all 10 values. The
values are more concentrated at arctan(1). (Online version in colour.)
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n medianheavyZ rangeheavyZ medianlightZ rangelightZ

10 0.8254 1.3622 0.99981 0.36106
100 0.68704 1.0494 1 0.0011082
1000 0.59068 1.0035 1 6.1644 x 1077
10 000 0.6971 1.0003 1 3.1278 x 1010

Figure 6. Column 1: sample size n. Column 2: median of the s = 1000 values of the sample correlation coefficient o, of
X, 1), Y =nX + Zwith X, Ziid1/2-stable, n = 1. The noise term is heavy—tailed. Column 3: range (highest minus lowest) of
the s = 1000 values of the sample correlation coefficient in column 2. Column 4: median of the s = 1000 values of the sample
correlation coefficient of (X, ¥), ¥ = nX + Uwith X iid 1/2-stable, Uiid standard normal, 7 = 1. The noise term s light—tailed.
Column 5: range (highest minus lowest) of the s = 1000 values of the sample correlation coefficient of the sample correlation
coefficient in column 4. With heavy-tailed noise, the sample correlation coefficient is increasingly covers the full interval [0, 1]
as sample size n increases. With light-tailed noise, the sample correlation coefficient is increasingly tightly concentrated near 1
as sample size n increases.

To simulate s samples of size n of the 1/2-stable rv X, we let each element of the n x s matrix
X be iid distributed as the reciprocal of the square of an iid standard normal. Each column of X
represents one sample of size n of X.

Under assumption (i) that X and Z are iid 1/2-stable, we also simulate s samples of size 1 of
the 1/2-stable rv Z by exactly the same procedure, independently of X. Each column of the n x s
matrix Z represents one sample of size n of Z. Then Y = nX + Z gives an 1 x s matrix containing
s samples of size n of Y according to (5.1). We assume n =1 here, so Y =X+ Z. The top row of
figure 3 shows one sample of size n = 10* under assumption (i). The modal values of arctan(Y/X)
from s iid simulations of samples of size n =10* (second row of figure 3) approximate arctan(1)
on the left and /2 on the right (lower left panel), with increasing concentration at these modal
values when the radius in polar coordinates R := (X? + Y?)1/2 falls in the upper decile of all 107
values of R (lower right panel). For samples of increasing size, the sample correlation coefficient
pn is increasingly concentrated on the interval [0, 1], with modal frequencies at the extremes
(figures 4 and 6).

Under assumption (ii) that X is 1/2-stable, Z is standard normal, and X and Z are independent,
we generate another independent 7 x s matrix X as above and an 7 x s matrix N with iid standard
normal elements N. Then Y =7X+ N =X+ N. The top row of figure 5 shows one simulated
sample of size n = 10* under assumption (ii). The top right panel shows on log-log coordinates
only the pairs (X, Y) of this sample where X >0, Y > 0. Unlike the previous case of heavy-tailed
noise, here the modal values of arctan(Y/X) from the pooled s simulations of samples of size
n=10* (lower row of figure 5) centre on and are near arctan(1) = /4 ~ 0.7854, with increasing
concentration at this modal value when the radius in polar coordinates R := (X2 + Y?)!/2 falls in
the upper decile of all 107 values of R (lower right panel). Under assumption (ii), for samples
of increasing size, the sample correlation coefficient p, is concentrated around 1, with a range
that decreases very rapidly toward O (figure 6): these results are consistent with the theory and
figure 5c,d where the histogram of arctan(Y/X) is heavily concentrated at 7 /4.
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Appendix A

(a) Heavy-tailed distributions and point process methods: background

Point process methods provide indispensable insight into limit theory for statistics arising from
heavy-tailed data. The methods have been championed by Resnick [1,2,19], and others. We will
discuss the relevant theory in the setting of §4 and leave the general formulation to the references
in Resnick [2].

Here the Euclidean space E is defined as E = (0, oo] or (0, 02\ (0,0).1 A point measure £ on E
is a non-negative integer-valued measure on the Borel o-field, B3(E), having the form

o0
E()=) ex(),
t=1
where ¢,(-) is the delta measure with unit mass at x, and x; € E. That is, for A € B(E),

1, xe€A,

=y T

We say that a point measure is Radon on E if it is finite on all compact sets.
We define the vague topology on the class M,(E) of Radon point measures in terms of the space

Ck(E) of continuous functions on E with compact support. If &, & € M, (E), then &, 5 gifand only
if for every f € Ck(E),

) = JE fdy — &(f) = Lfds.

A point process is a random element of M,(E) defined on some probability space (£2, F, P).
A Poisson point process £ is defined in terms of a Radon intensity measure p and is often called
a Poisson random measure, denoted by PRM(u) [1]. Such a point process satisfies the following
assumptions:

(i) For relatively compact A € B(E), £(A) has a Poisson distribution with mean (A).
(ii) For relatively compact and disjoint A, B € B(E), £(A) and &(B) are independent.

The Laplace functional L¢ (f) of a point process £(-) = > 121 ex, () is

[0¢]
Le(f) = Eexp(~£(f)) = E (exp {— Zf(xo}) (A1)
=1
for non-negative f € Cx(E). When £ is a PRM(u), the Laplace functional becomes [1, Sect. 5.3.2]

L;(f):exp{—JE (1—e_f) du}. (A2)

A sequence of point processes &, converges in distribution to the point process & if and only if
their respective Laplace functionals also converge, i.e.

&n 4 & if and only if Lg, (f) — Le(f) for all non-negative f € Cx(E). (A3)

A powerful result about the convergence of point processes of heavy-tailed one-dimensional
data is:

Theorem A.1. Suppose {X;} is an iid sequence of observations with distribution F € RV () as in (2.1),
and define a, by (2.3). Let {Et} be an iid sequence of unit exponential rvs, and define Iy := Zle E t=

Here E corresponds to a one-point compactification of [0, 00) or [0, 00)?> with the origin removed. Relatively compact sets
are sets bounded away from the origin, i.e. A € B(E) is relatively compact if, for some small € >0, A C {x :e <x} or in the
two-dimensional case A C {(x,y) 1€ < ||(x, )}
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1,2,.... Then the sequence of point processes Ny (-) defined on the left in (A 4) converges in distribution to
the point process N(-) defined on the right in (A 4) as n — oo:

Nu()i= 361, ()5 N == Y e v () (A4)
t=1

t=1
The limit point process N is a PRM(ax 1 dx).

This result follows directly from Resnick [1, theorem 5.3].

We recall from elementary stochastic processes that the I'}’s are points of a homogeneous
Poisson process on (0, co) with rate one. By a change of variables, the points F;l/ “ are then points
of a Poisson process with intensity measure ax=%~! dx.

To consider sample correlations between pairs of rvs, we extend regular variation to bivariate
random vectors. The nonnegative bivariate random vector (X, Y) is said to be RV if the radial
part R= (X% + YH)1/2 is RV(«) and the angular part ® = arctan(Y/X) becomes independent of R
as R — co. More precisely, if a, is the 1 — 1/n quantile of R and G is a distribution function on
[0, /2], then for all » > 0,

nP(R>ayt)—>r~* and P(O€-|R>ay) 4 G(-) asn— oo. (A5)
The limiting relations (A 5) are equivalent to
nP((@, 'R, ©) € (-,-)) = v(dr,dd) ;== ar "1 dr x G(d6) asn— oo (A6)
in polar coordinates or, in the original Euclidean coordinates,
nP@; (X, Y) e () = v(dx,dy) asn— oo, (A7)

where - represents vague convergence of measures on (0, oc]? and v(dx, dy) is the measure in
rectangular coordinates corresponding to the polar coordinate version v(dr, df).

The point process convergence that drives much of the limit theory for bivariate heavy-tailed
data is:

Theorem A.2. Suppose {(X;, Yy),t=1,2,...} is an iid sequence of observations with distribution that
satisfies (A 6) or (A 7). Then the sequence of point processes Ny (-) converges in distribution as n — oo to
a PRM(v) N(-), where

n o0
d
Nu(-):= E Sﬁgl(xhyl)(') — N(-):= E € 11/ (cos @, sin (_)l)(~) as n— oo. (A 8)
t=1 t=1

Here {©}} is an iid sequence with distribution G(d0) in (A 6) that is also independent of the sequence {I}.

The proof of this result is in Resnick [1, theorem 5.3].
The limit point process N(-) in theorem A.2 has an instructive representation. The I'}._l/ * and

©; correspond to the limit of the radial and angular parts, respectively, of the pairs 1(Xj, Y)). To
verify that N is a PRM(v), we use Laplace functionals. Specifically, by conditioning on the Poisson
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points I} and by using the independence of the ©;, we have

Ly(f) =E | exp { Vi (Fj_l/a(cos 0j,sin @j)) D
j=1

1

([T}, o 157 i) )|

=FE|exp {Zh([“j—l/a)}) , |:h(r) :=—log J[O,?T/Z] (exp{—f (r(cos 9,sin9))}G(d9))]

=1

=exp {— J (1 — exp{—h(n}ar—o1 dr}
(0,00)

=exp {— J (1 — exp{—f(x,y)})v(dx, dy)}
(0,00)

as desired.

(b) Limit theory for Taylor's Law

The following theorem describes the joint convergence of the partial sums and partial sums of
squares in example 2.1 and the limiting behaviour of Taylor’s Law.

Theorem A.3. Suppose {X;} is an iid sequence of observations with F € RV(«) as in (2.1). Define a;, by
(2.3) and by, by (2.5). Then

n n
_ _ S d
<an1 D Xi = bu),a, >y (X — xn)2> = (Sa,Sap)  asn— cc. (A9)
t=1 t=1

The limit rvs Sy and Sy > are stable and defined through the points of the point process N in theorem A.2.
Namely,

& ~1/a —1/a )
Z I—} —E[l—} 1{17_71/0151}] s lfOl 6[1,2),

Se= 17! (A 10)
>, ifae(0,1),
=
and
= —2/a
Sup= e (A11)
j=1
For « € (0,1), Taylor’s Law (3.3) follows: for b= (2 — a)/(1 — @),
-2 0o 2/
el = = ! niﬂ as n — oo. (A12)
nhsz szb(?’l) 00 —1/a b
" ( i=11; )

Proof. This is a special case of a standard result in, for example, LePage et al. [20, theorems 1
and 1], where the derivation of (2.10) from (2.8) is required. |

The representations in (A 10) and (A 11) are often referred to as the LWZ representation of a
stable distribution. Davis [16] gives the companion result when {X;} is a stationary time series
satisfying certain dependence conditions.

(c) Limit theory for the sample correlation

Proof of theorem 4.1. The condition (4.3) implies the vague convergence in (A 7). Indeed, (4.3)
implies that (A 7) holds for sets of the form Af(,y = ([0, x] x [0, y])°, which can then be extended to
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all two-dimensional Borel sets that are bounded away from (0, 0). Moreover, the constants a,, and
a, are related via

nP(R>a,)—1 and nP(R > a,) — v({(x,y): X2+ y2 >1}) asn— oo,
which implies
an ~ Y {0, y) 2 + 2 > 1))ay  asn— oo. (A13)

For 0 <€ <1 fixed, consider the function fe(x, y) = xy1{c <xy<1/¢}, Which has compact support
on E and is continuous except on a set of v measure 0. By the weak convergence of N;, to N in
theorem A.2, it follows that

n
-2
Nu(fe) =, > XeYelgeox,v,<ije)
t=1

o0
A4 N(fe) = Z F;Z/“ cos O sin ©1
=1

as n— oo. (A14)

—2/a

{e<I} ™ cos @ sin ©;<1/e}

Since I} ~ t a.s. by the strong law of large numbers, the series > 72, 1'}_2/ ¢ is summable a.s. Hence

o0
N(fo) S N(fo) =Y 177/ cos ©ysin®;  ase | 0. (A15)
t=1

Moreover, for any § > 0,

n
o 1)
P(INu(fe) — Nu(fo)l > 8) <P (ﬂnz > XeYilixy,-a2/e) > 2)
=1

n
L )
+ P (a‘rlz thytl{xtytiﬁﬁé} > 2)

t=1
=I+1II
Term I is bounded by
! 1 1
P (U {a;zxtyt > 6}) <nP (&;2x1yl > g)
t=1
n—00 1
- v (x,y):xyzg —0 ase—0. (A 16)

Hence lim,_,g limsup,,_, ., I =0. Markov’s inequality bounds term II by
11 <26~ ni 2E [lell{xlylsﬁae}] .

Next
P(XY > a2) _ nP(XY > a2)
P(X2>a%)  nP(X2>a?)

—v({(x,y):xy>1}) asn— oo,

where the limit is positive if X and Y are asymptotically dependent, or zero if X and Y are
asymptotically independent. Either way, it follows that there exists a finite positive constant C
such that, forall z > 0,

P(XY > z) < CP(X? > 2).

Consequently

=2
ay

E[XYxy<ie)| = L

=2

ay€
P(XY > z)dz < J CP(X? > z)dz = CEX* 1322
0 —="n

€
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Now from Karamata’s theorem [1, theorem 2.1], we have E(le{xzsz}) ~2/2 — a)zP(X% > 2) as
z — oo and hence for some K € (0, 00),

lim lim sup I < lim lim sup 2C8 ~'nd, 2E [le{xz 55’%6}] = lim Ke'~%/2 = 0. (A17)

e—0 pooo e—~>0 p-o0 e—0

Combining (A 14), (A 16) and (A 17), we conclude that
n d o0
Zz;z Z XYt — Sap0 = Z I’t_z/a cos ®;sin ®; as n— oo. (A 18)
t=1 t=1

Essentially, the same point process argument, although somewhat easier, can be used to show

n [o¢]
3,2y X7 4 Sapp1i =Y ;7% cos? @ asn— oo (A19)
t=1 t=1
and
n d o0
Ez;z Z Yt2 — Sqp0 = Z 1“;2/0‘ sin? ®; asn— oo, (A 20)
t=1 t=1

where the convergences in (A 18)—(A 20) are joint. Applying the continuous mapping theorem
gives (4.5).

Finally, by the form of the limit, one sees that the numerator S,/20 =0 a.s. if and only if the
angular measure concentrates at 0 and /2, which is equivalent to asymptotic independence. W

Proof of theorem 4.2. If X e RV(a) and Y € RV(B) with 0 <a <8 <2, then YP/% e RV(«a). So
replacing the condition on (X, Y) in theorem 4.1 with the assumption that (X, Y#/%) is bivariate
RV, theorem A.2 implies that the same point process convergence in (A 8) holds with Y; replaced
by Yf o, Using the same proof as for theorem 4.1 with the function f (x,y) = xy*/#1;, <xyelB<1/e)
implies the analogue of (A 18), namely,

n oo
ﬁ;l_a/ﬁ Z Xth —d> Saﬂ/(a+ﬂ)’0 = Z 1_}—1/01—1//3 cos Oy Sil’la/ﬁ ®; asn— oo. (A 21)
t=1 t=1

From the same point process result, we obtain

o0
i 2P = V2 L Spnn =Y 1T P sin2 /P 6 asn— oo (A22)
=1 =1
The remainder of the proof is identical to that for theorem 4.1. |

(d) Limit theory for correlation of heavy-tailed data from correlated normal random
variables

In this section, we prove theorem 4.5, corollaries 4.6 and 4.4.

Proof of theorem 4.5 and corollary 4.6. Recall that X:=1/|U|°,Y:=1/|V|® for some c¢>1 where
(U, V) is bivariate normal with means 0, variances 1, and correlation p € (—1,1). Let ¢(x):=
@)~ Y2 exp(—x2/2),x € (00, +0), be the standard normal pdf. It follows directly from
proposition 4.3 that

P(X > x) ~x"12¢(0) = x’l/c\/g .

Now setting a;,, = (2/7)2ne, it follows that nP(X > a,) — 1 as n — oc.
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Establishing

Pr(XY > x) ~
o

W}C_l/c logx as x — oo (A 23)

is equivalent to proving
2 1
Pr(jUV| <e)~melog (E) ase | 0. (A 24)
The probability on the left side of (A 24) can be written

1 1/2 ro0 N _ _ —
Pr(UV| <€)= (E) Lo o212 [<p (%) s (%)] dx,  (A25)

where @ is the standard normal cdf. For an upper bound, notice that the integral in the right side
of (A 25) does not exceed

. e/l — px e/l — px
2 +J|x|>e e [‘D ((1 = p2>1/2> - ( - D)2 )] dx

12 2 2¢
e (D) e
27 [x|>e€ |x|(1 - 102)1/2
since
1\1/2
ot)-ow=(5) ©-0
2
for any a < b. We conclude that

2\ 12 2 ©1
= = ZeX/2
P(|UV|<6)§<71) E+n(1—p2)1/2€J€ Z€ /2 dx.

1 1
J e ¥/2 dx ~log (7) ase |0,
c X €

fmep PUUVI<9) 2

imsu .

€10 P log(1/e) — m(1— p?)l/2
It remains to obtain a matching lower bound of the right side of (A 25). Now we use the bound,

foranya <b,

Since by L'Hopital’s rule

we conclude that

(A 26)

1\1/2
& (b) — P(a) > (E) (b—a)exp{ 5

Choose 8 =6(¢) | 0 as € | 0 such that

log (%) =0 (log <%)> ase 0. (A27)

Let M be a large number. We have by (A 25),

1 2 2¢ 1/ € 2
P(|UV|<6)Z—J e X2 T _expl-= <f+|px|) dx
27 Jemepzo © - A2 TP |72

2 1 . €2 p*x?
e Ze¥/2 - -2 19
n(l—pz)l/zeJ'EMxe exp{ 72 €lp] 5 x

> 2 ex { ! 02} JO ! dx
————¢€ - —€— —dx.
= A=)z P T e

By (A 27) we conclude that

—2max(a?, b?) }

lim su PQUV| <€) > ex
Co T elog(lje) ~w(t— A2

{-1/2M2}.

Letting M — oo provides a lower bound matching (A 26) and, hence, proves (A 23).
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The normalizing constant associated with the distribution of XY is given by a, = K(nlogn)‘,
where K = (2/7)°(1 — p2)~%/2 so that nP(XY > &,) — 1 as n — co. Note that @, /a, — co. Also, for
M > 0 fixed, large n, and all x,y > 0,

nP(XY > ayx, X > apy) < nP(X > a,M) + nP(XY > ayx, X > ayy, X < a,M)
<nP(X > ayM) + nP (Y > — M , X > any) (A 28)
11

As n — oo, the first term converges to M~1/¢, while the second term is

1 [1 1/c 1 ~ —1/c
P (11 = 1, 171 < const (22) )~ cn ) (2) 0,00,
n n

where C is a generic constant and ¢, is the joint density of (U, V). Since na,, Ve 2/7)"Y2 and
y/ay — oo as n — oo, it follows that this term goes to 0 as n — oo. Consequently, the limsup,,_,
followed by the limit as M — oo of the left side of (A 28) is 0. In other words, X and XY are
asymptotically independent. From this property [12], we have the point process convergence

n o0
d
Nii= D ity — Ni= 2[00 +€0re0 + 0oz | asn—oo, (A29)
t=1 i=1

where {I71},{I72}, and {I7 3} are iid copies of the points {I}} defined in theorem A.1.
From this point process, by the same argument as used in the proof of theorem 4.1 (see
appendix A(c)), we obtain

n n
(a;Z Z le a;z Z Yt2 Z Xtyt> Sl/(Zc) 1, Sl/(Zc) 2, Sl/c) asn— oo, (A 30)
t=1 =

where the limit rvs are independent and given by

(S1/20),1 S1/(20),2- S1/c) - (Z @ Z ;e ZF‘UC). (A 31)

Since a2 /iy = (1 — p?)°/?(n/log n)°, we have by the continuous mapping theorem

n A\ 4 2v—c/2 S1/c
— ) on—> (1 —p°) —— asn— oo, (A 32)
logn

51/(20),151/(20),2

as desired.
To prove corollary 4.6 and (4.9), we note that by theorem 4.3, X and Y are asymptotically
independent. By the earlier argument for (2.10), it follows that, as n — oo,

n n n n
_ _ - _ _ - d
<tln1 E Xy, a;,% E (Xt — Xn)?, ;! E Yy, a0, E Yy — Yn)2> = (S1/c1, 512001, S1/c2, S1/020)2) »
t=1 t=1 t=1 t=1

where Sy/¢i, S1/(20),i are given by (A 10) and (A 11) with « = 1/c and are independent for i =1, 2.
Then by the continuous mapping theorem

i Xiyia Vi
VS 0% = X2 YA (11— Vo

where R;=S51/ci/\/S1/2¢),i, i=1,2. Also, since na;zﬁn —0 as n— o0, it follows that
na, Y XY £ 0asn— . [ ]

Proof of corollary 4.4. Let0 <o <y <1,andletS € RV(y). Then for some ¢ > 0, P(S > x) ~cx™ " as
x — 00 so the assumption Fx € RV(a) implies that P(X > x)/P(S > x) — oo as x — oo. Therefore, a
constant C exists such that P(X > x) > P(S > x) for all real x > C. Therefore, P(X + C > x) > P(S > x)
for all x> C >0, while for all x <C, by definition of C we have P(X+ C>x)=1>P(5> x).
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Consequently, a constant C exists such that P(X + C > x) > P(S>x) for all xeR. That is, by
definition, X + C is stochastically larger than S, or X + C >5 S. When 0 < y <« <1, the argument
works with S and X exchanged, hence there exists a constant C > 0 such that S + C >4 X.

For the next results, we require a well-known inequality (A 34):if y € (0, 1), then for some ¢ > 0,
a y-stable rv S satisfies

P(S<e)< exp(—cey/(y_l)) ase | 0. (A 34)

We prove (A 34) here for ease of reference. For any 6 > 0, if S is y-stable, then its Laplace transform
is Eexp(—60S) =exp(—0") [7]. For any € >0, 6 > 0, using Markov’s inequality for the following
inequality, we have

P(S <€) =P > e7%) <e*“Eexp(—0S) = exp(—0” + fe). (A 35)

Now pick any a € (0,1) and set 6 =ae/=D to get —07 = —a?e?/~1) and e =ael/V-D+1 =
ae?/(r=1)_ Therefore —07 + 0e = —a? ¥/ =1) 4 qev/(r=1) — gev/(r=D(1 — g7-1). Since y € (0,1) and
ae(0,1),wehaveal™ <lorl—a’""1 <0orc:=—a(l —a""1)> 0in (A 34), which is now proved.
Let X;,i=1,2,...beiid copies of X € RV(«). We consider two cases: first that 0 < 7 < 1/«, then
that 1/ < 1t < o0.
Suppose first that 0 < 7 < 1/a. We claim that

n
n’ Z X;—> 00 as.asn— o00. (A 36)

i=1

We may and will assume that 7 > 1. Choose o < y <1/, and choose C > 0 such that X + C > S,
where S is y-stable. Let S1, Sy, . .. be iid copies of S. Then for any ¢ > 0

n n
P(n"ZX,-<t> <P(ZS,~—Cn<tn’>
i=1 i=1
n
P (Z S; 5(t+C)nf)

i=1

IA

P(n'/7$y < (t+ O)n')
=P($1 < (t+Cn~1/r=1)

<exp { _mafyr)/(lfy)}

for some ¢ = ¢(t) > 0. Therefore, for any ¢ > 0,

oo n
>op (n—f > X §t> < o0,
n=1 i=1

so by the first Borel-Cantelli lemma [21, p. 201], (A 36) holds.
Next, suppose that > 1/«a. We claim that

n
n°t ZX,- —0 as.asn— oo. (A 37)
i=1
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Choose 1/t < y < «, and choose C > 0 such that S + C >4 X, where S is a y-stable rv. Let 51, S», . ..

be iid copies of S. Then for any ¢ > 0, for all n large enough,

n n
P<n’ZXi>t) §P<ZS,-+Cn>tn’)

i=1 i=1
<P (i S; > tn;)

i=1
=P (nl/ysl > %)
=P <51 > mr;/y)

< Cnf(yffl)

for some ¢ > 0. Therefore, for any ¢ > 0,

om

oo
ZP (2m)7TZXi>t < 00,
m=1 i=1

so by the first Borel-Cantelli lemma [21, p. 201],
zm
@M in — 0 a.s.asm— oo.
i=1
Therefore, with
my = [log, n] — 0o asn— oo

we have
n 2+l
Y X< (") )X
i=1 i=1
o+l
=2 (2’”"+1)_T Z X;—0 as.asn— oo,
i=1

proving (A 37).

To prove that p, — 0 a.s. as n — oo, we pick any 8 € (c,2c) and multiply numerator N, and
denominator D, of p, by n= to get

_ n°N,
Pn = n_aDn-
It follows from (A 37) that n=°N, — 0 a.s. as n — 00, and from (A 36) that n~°D, — oo a.s. as
n — oo. Therefore, p;, — 0 a.s. as n — oo. [ |

Shapiro [22] proved a special case of our results, namely, powers of reciprocals of rvs with a
continuous density that is positive at 0 have Pareto-like tails.
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