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Abstract: In this paper we study asymptotic properties of random forests
within the framework of nonlinear time series modeling. While random
forests have been successfully applied in various fields, the theoretical justi-
fication has not been considered for their use in a time series setting. Under
mild conditions, we prove a uniform concentration inequality for regression
trees built on nonlinear autoregressive processes and, subsequently, we use
this result to prove consistency for a large class of random forests. The
results are supported by various simulations.
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1. Introduction

Random forests, originally introduced by Breiman [9], constitute an ensemble
learning algorithm for classification and regression, which produces predictions
by first growing a large number of randomized decision trees [10] and, then,
aggregates the results. Since its introduction, the algorithm has been applied
in various fields such as object recognition [27], bioinformatics [13], ecology
[11, 24] and finance [17, 20], and the evidence is strong: with very little tuning,
random forests are able to deliver a flexible tool for prediction which is fully
comparable with other state-of-the-art algorithms. In fact, Howard and Bowles
[19] claim that random forests have been the most successful general-purpose
algorithm in recent times. While many successful applications indicate the wide
applicability of random forests, only little theoretical work exists to support this
impression. Among components, which make the random forests of Breiman [9]
difficult to analyze, are the operation of bagging randomized predictors [8] as
well as the highly data-dependent partitions associated to the so-called CART
regression trees [10], which form the forest. Other types of random forests have
been proposed; see, e.g., [2, 16].

While the bagging step is often discarded in theoretical work, or replaced
by another resampling method, asymptotic results for random forests in the
(classical) nonparametric regression setting, where (X1, Y1), . . . , (XT , YT ) are
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i.i.d. observations from the model

Y = f(X) + ε, (1.1)

have been established under rather weak assumptions on the structure of the
underlying regression trees. In (1.1), f is a suitable smooth function and ε
is a mean-zero square integrable noise term which is independent of X. To
mention a few significant results in this setup, Scornet, Biau and Vert [26] prove
L2 consistency of Breiman’s random forests when f is additive (i.e., f(x) =∑p

i=1 fi(xi)) and ε is Gaussian, Wager and Walther [29] establish pointwise
consistency of similar forests with larger leaves in a high-dimensional setting,
andWager and Athey [28] prove (pointwise) asymptotic normality of a particular
random forest algorithm. Although assumptions are more restrictive, valuable
insights about performance (i.e., convergence rates) in sparse settings and lower
bounds on mean squared error were provided by [5, 6, 21]. For a nice overview
of existing theoretical work on random forests within the regression setting as
well as further references, see the survey in Biau and Scornet [7].

In some applications, particularly financial, the underlying data correspond to
observations from a time series, and the aim is to predict future values by feeding
in a number of the most recent observations to the algorithm. While the problem
is often treated precisely as in the regression setting from a practical point of
view, by forming pairs (X1, Y1), . . . , (XT , YT ) where Xt = (Yt−1, . . . , Yt−p) for
some integer p ≥ 1, things change dramatically on the theoretical side. Indeed,
observations can no longer be assumed to be i.i.d. draws from (1.1) and, instead,
the entire process (Yt)t≥1 is necessarily defined recursively by the equation

Yt = f(Xt) + εt, t ≥ 1, (1.2)

given initial data ξ = (Y0, Y−1, . . . , Y1−p). Processes satisfying (1.2) are often re-
ferred to as nonlinear autoregressive processes of order p (or, in short, NLAR(p)
processes). For further detail on these processes, see [3, 18]. In such a frame-
work, the dependence structure, across pairs (X1, Y1), . . . , (XT , YT ) as well as
between entries in Xt, is determined within the model. Consequently, in contrast
to the regression setup, it is often only appropriate to impose assumptions on
f and (εt)t≥1. In fact, even if one accepts an implicit model assumption, e.g.,
the typical assumption that Xt admits a copula density which is bounded away
from zero and infinity, it turns out to be rather restrictive. Indeed, if (Yt)t≥1 is
Gaussian and p ≥ 2, such an assumption is satisfied only if f = 0 almost every-
where. It follows that other types of assumptions and techniques are needed to
guarantee the validity of random forests in the time series setting.

In this paper we rely on the principal ideas of [29] to obtain a uniform con-
centration inequality which applies simultaneously across all regression trees
satisfying a mild condition on their minimum leaf size k, when data are gener-
ated by the NLAR(p) model (1.2). While it is required that k increases in the
sample size, the growth rate may be very slow and trees are allowed to be grown
adaptively (the partitions of the trees can be highly data-dependent). As an ap-
plication of the established concentration inequality, we prove that all random
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forests respecting a number of conditions are pointwise consistent estimators
for f when the data generating process is (1.2). The assumptions we impose
in the model (1.2) are explicit in terms of f and the distribution of (εt)t≥1,
and they are not difficult to check. For instance, all our results are applicable
if f is bounded and Lipschitz continuous, and (εt)t≥1 is an i.i.d. sequence with
ε1 having a suitably light-tailed distribution. (As pointed out in Section 2, the
assumption of f being bounded is no stronger than what is usually imposed in
the regression setting.) Our techniques rely on, among other things, the theory
of Markov processes as well as various Bernstein type concentration inequalities.
To the best of our knowledge, theoretical properties of random forests within
the framework of time series have not been fully addressed.

The paper is laid out as follows. Section 2 introduces the model as well as
the regression trees of interest and establishes uniform concentration of these
around their so-called partition-optimal counterparts (Theorem 1). In Section 3
we translate this result into a concentration inequality for random forests (Corol-
lary 1) and provide sufficient conditions ensuring that they are pointwise con-
sistent estimators of f (Theorem 2). Subsequently, we carry out a simulation
study in Section 4 which considers the performance of random forests within
the NLAR(p) model for various specifications of f . Finally, Section 5 contains
proofs of all statements as well as a number of auxiliary results.

2. Concentration of regression trees around partition-optimal
counterparts

Let (εt)t≥1 be a sequence of i.i.d. random variables with E[ε1] = 0 and E[ε21] <
∞, and fix an integer p ≥ 1. Given a vector ξ = (Y0, Y−1, . . . , Y1−p) of initial
data independent of (εt)t≥1 and a measurable function f : Rp → R, define the
process (Yt)t≥1 recursively by

Yt = f(Xt) + εt, t ≥ 1, (2.1)

where Xt := (Yt−1, . . . , Yt−p). In addition to the initial data ξ, suppose that
we have T observations Y1, . . . , YT from the model (2.1) available and that we
group them in input-output pairs,

DT = {(X1, Y1), . . . , (XT , YT )}.

The aim of this section is to establish uniform concentration inequalities for
regression trees built on DT . We start by recalling the associated concept of
recursive partitions [10], which is used to construct regression trees. Define a
sequence of partitions P1,P2, . . . by starting from P1 = {Rp} and then, for
each n ≥ 1, construct Pn+1 from Pn by replacing one set (node) A ∈ Pn by
AL := {x ∈ A : xi ≤ τ} and AR := {x ∈ A : xi > τ}, where the split direction
i ∈ {1, . . . , p} and split position τ ∈ {xi : x ∈ A} are chosen in accordance with
some set of rules. Here xi refers to the i-th entry of x ∈ R

p. In this context,
we will say that A is the parent node of AL and AR, while AL and AR are
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the child nodes of A. A given partition Λ of Rp is called recursive if Λ = Pn

for some n ≥ 1, where P1, . . . ,Pn are obtained as above. Note that the rules
determining how to choose node, direction and position of a split may depend on
the data DT as well as some injected randomness Θ. For instance, in Breiman’s
random forests a node is split as soon as it contains at least a certain number
of observations, while the position and direction are determined by maximizing
impurity decrease (or, equivalently, minimizing the total mean-corrected sum of
squares of the outputs Y over the resulting two child nodes; see also [10]), but
only over a randomly chosen subset of directions in {1, . . . , p}. To any recursive
partition Λ we define the corresponding regression tree TΛ by

TΛ(x) =
1

|{t ∈ {1, . . . , T} : Xt ∈ AΛ(x)}|

T∑
t=1

Yt1AΛ(x)(Xt), x ∈ R
p. (2.2)

Here the notation AΛ(x) is used to refer to the unique set A ∈ Λ with the
property that x ∈ A. Our interest will be on regression trees defined by k-valid
partitions (k ≥ 1). We will say that a partition Λ is k-valid, and write Λ ∈ Vk,
if Λ is recursive and each set in Λ (sometimes called a leaf of the corresponding
tree TΛ) contains at least k data points. Note that, since Λ is recursive, it can
depend on both the data DT and a random mechanism Θ, while Vk depends
only on DT . Setting a minimum number k of observations in each leaf of a tree
is default in most practical implementations of random forests. Besides, such an
assumption is natural since it ensures that Xt ∈ AΛ(x) for some t ∈ {1, . . . , T},
and this implies that the regression tree (2.2) is well-defined for all x ∈ R

p. In
this section we will be working under the following set of assumptions:

(A1) The random variable ε1 admits a density hε which is positive almost ev-
erywhere on R and, for some c ∈ (0,∞),

E[|ε1|m] ≤ m!cm−2, m = 3, 4, . . . (2.3)

Moreover, the cumulative distribution function Fε(x) =
∫ x

−∞ hε(y) dy of
ε1 satisfies

sup
x∈R

Fε(x+ τ)

Fε(x)
< ∞ (2.4)

for any τ ∈ (0,∞).
(A2) The function f in (2.1) is bounded,

M := sup
x∈Rp

|f(x)| < ∞. (2.5)

(A3) The minimum number k of data points in each leaf satisfies k/(log T )4 →
∞ as T → ∞.

In contrast to k, the quantities c, M and p will be kept fixed, and hence we
will not keep track of the dependence on these in the following results. In par-
ticular, the introduced constants can depend on c, M and p, but not on T
and k. When ε1 admits a density which is positive almost everywhere and f
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satisfies (2.5) (in particular, when (A1) and (A2) are imposed), it follows by
[3, Theorem 3.1] that the distribution of ξ can be chosen such that (Yt)t≥1 is
strictly stationary and, thus, this will be assumed throughout the paper. This
means that (X1, Y1), . . . , (XT , YT ) are identically distributed. Before turning to
the results, let us attach some comments to the assumptions stated above. The
assumption of (A1) that ε1 has a positive density is convenient, since it en-
sures that the p-th order Markov chain (Yt)t≥1 can reach any state in one time
step. In addition to strict stationarity of the chain, when combined with (A2),
the assumption ensures geometrical ergodicity as well. While it is not required
that f is bounded to prove such properties of (Yt)t≥1, we need boundedness to
apply Bernstein type inequalities for strongly mixing processes and to obtain
good estimates on the dependency between entries of the input vector X1. The
boundedness assumption (2.5) is implicitly assumed in essentially all theoretical
work on random forests as one usually assumes that the input vector is trans-
formed so that it belongs to the unit cube [0, 1]p and then requires continuity of
f on this domain. The assumption on the moments of ε1 in (2.3) implies that
ε1 is sub-exponential in the sense that

P(|ε1| > x) ≤ γ1e
−γ2x, x > 0, (2.6)

for suitably chosen γ1, γ2 ∈ (0,∞). It is a well-known assumption to impose
when proving concentration inequalities and is often needed when ε1 cannot
be assumed bounded. Among distributions satisfying (2.3) are (sub-)Gaussian
distributions, but also those with a slightly heavier tail such as the Laplace
distribution. The assumption (2.4) is used in conjunction with (2.5) to estimate
probabilities involving the input vectorX1 (see Lemma 1 for details). Ultimately,
it is an assumption on the left tail of ε1, and a sufficient condition for this to
hold is that the limit

lim
x→−∞

hε(x)

hε(x+ τ)

exists and is non-zero for all τ ∈ (0,∞). It is straightforward to verify that this,
as well, is satisfied for both Gaussian and Laplace distributions. Together with
(2.5), (2.4) ensures that we do not need to impose conditions on the copula
density of the input vector X1, as is usually done in the regression setting, and
this is convenient since such conditions can be both difficult to verify and even
rather restrictive in a time series setting. Finally, we impose (A3), which in
particular implies that k → ∞ as T → ∞. Although it is allowed that k → ∞
at a slow rate, the assumption contrasts the trees used in the random forests
of Breiman [9], where k is some fixed and often small number. On the other
hand, (A3) is very similar to assumptions imposed in most theoretical work
within the regression setting (see, e.g., [5, 26, 29]). In fact, to the best of our
knowledge, the only asymptotic result for random forests built on trees with
fixed k is [26, Theorem 2]. The logarithmic factor (log T )4 is related to the fact
that the established bound applies uniformly across all trees (see Remark 1) and
that we use a Bernstein type inequality for strongly mixing processes which is
slightly weaker than the classical one for the independent case.
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While a couple of additional assumptions are needed to establish consistency
of random forests in Section 3, (A1)–(A3) are sufficient to prove that regres-
sion trees of the form (2.2) concentrate around their so-called partition-optimal
counterparts

T ∗
Λ(x) := EΛ[Y | X ∈ AΛ(x)] (2.7)

uniformly across (x,Λ) ∈ R
p × Vk. Here (X,Y ) is a copy of (X1, Y1) which

is independent of (DT ,Θ), and EΛ denotes expectation with respect to the
conditional probability measure PΛ := P(· | DT ,Θ). Conditional on (DT ,Θ), the
set AΛ(x) is non-random and, hence, the right-hand side of (2.7) simply means
that the map A �→ E[Y | X ∈ A] is evaluated at AΛ(x). Our setting is very
similar to that of Wager and Walther [29], but besides requiring partitions to be
k-valid they impose an additional assumption that excludes too “unbalanced”
splits (see also the trees constructed in Section 3).

Theorem 1. Suppose that (A1)–(A3) are satisfied. Then there exists a constant
β ∈ (0,∞) such that

sup
(x,Λ)∈Rp×Vk

|TΛ(x)− T ∗
Λ(x)| ≤ β

(log T )2√
k

(2.8)

with probability at least 1− 4T−1 for all sufficiently large T .

Remark 1. For any given pair (x,Λ) ∈ R
p × Vk, the quantity |TΛ(x) − T ∗

Λ(x)|
is the deviation of the sample average over at least k observations from its
theoretical counterpart within a specific leaf L. Some of the leaves, which can
be obtained by varying (x,Λ), contain only k observations and for these, the
error is of order 1/

√
k. This is almost the same upper bound as in (2.8) apart

from the logarithmic factor (log T )2, which reflects the fact that the deviation
is controlled simultaneously across all feasible pairs (x,Λ) as well as the sub-
exponential tail of ε1.

Remark 2. In Theorem 1, and the remaining results of this paper, it is assumed
that one is able to select a suitable p ≥ 1 such that (2.1) is correctly specified.
If it is not possible to identify such p, one may consider a sequence of models
(indexed by T ) where p increases as more data become available. Eventually, if
(Yt)t≥1 is an NLAR(p∗) process for some p∗ ≥ 1, this will ensure that the model
is correctly specified for large samples. Under suitable assumptions, Theorem 1
can in fact be adjusted to allow for such setting by adapting the ideas of [29]
and keeping track of how constants depend on p. However, the resulting upper
bound on the uniform deviation of regression trees from their partition-optimal
counterparts seems to be rather sensitive to the value of p and, thus, effectively
demands that p increases very slowly in T . While this, at first glance, contrasts
the results of [29] where the upper bound depends on p only through a

√
log p

factor, they impose an assumption on the density of X which roughly means
that the constant ζ ∈ (0,∞) in (5.2) does not depend on p. Such an assumption,
however, appears to be rather restrictive in a time series setting.
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3. Concentration and consistency of forests

We start by translating the concentration inequality of Theorem 1 into the
framework of random forests, which are constructed by averaging a number of
trees. To this end, let Wk := {Λ ⊆ Vk : |Λ| < ∞} be the family of all finite
collections of k-valid partitions. In line with Wager and Walther [29], given an
element Λ = {Λ1, . . . ,ΛB} of Wk, the corresponding k-valid random forest HΛ

is defined as

HΛ(x) =
1

B

B∑
b=1

TΛb
(x), x ∈ R

p. (3.1)

The associated partition-optimal forest H∗
Λ is given by

H∗
Λ(x) =

1

B

B∑
b=1

T ∗
Λb
(x), x ∈ R

p.

As an immediate consequence of Theorem 1, we obtain the following concentra-
tion inequality which applies uniformly across all k-valid forests (the result is
stated without proof):

Corollary 1. Suppose that (A1)–(A3) are satisfied. Then there exists a constant
β ∈ (0,∞) such that

sup
(x,Λ)∈Rp×Wk

|HΛ(x)−H∗
Λ(x)| ≤ β

(log T )2√
k

with probability at least 1− 4T−1 for all sufficiently large T .

Note that all trees TΛ1 , . . . , TΛB
in (3.1) are based on the same data set

DT (the partitions Λ1, . . .ΛB as well as the averages within the relevant leaves
AΛ1(x), . . . , AΛB

(x) depend on DT ). In contrast, in the random forests of
Breiman [9], an initial bootstrap step is performed before growing each tree,
meaning that trees are built on a bootstrap sample from DT (with replacement)
rather than on DT itself. Once we have a concentration inequality as in The-
orem 1 (or Corollary 1) at our disposal, it is not difficult to design trees in
such a way that the corresponding random forests are consistent estimators of
f . Roughly speaking, given that f is smooth, and since each tree in a forest is
close to its partition-optimal counterpart with high probability, it is sufficient
to design the recursive partitioning scheme such that the maximal diameter of
each leaf shrinks to zero as T becomes large. Below we demonstrate how to
refine the collection of k-valid partitions Vk in a suitable way and, subsequently,
prove consistency of the corresponding forests. The construction will be similar
to those of [22, 28, 29]. We emphasize that the refinement considered here does
not result in one particular random forest estimator; rather, a number of rules
is outlined, and these will ensure consistency of any random forest estimator,
which is built in line with them. For α ∈ (0, 1/2), k ≥ 1 and m ≥ 2k, we now
define (α, k,m)-valid partitions, Vα,k,m. The first requirement for a partition Λ
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to belong to Vα,k,m is that it is recursive, meaning that Λ = Pn for some n ≥ 1
where P1, . . . ,Pn are obtained as in Section 2. The second, and last, requirement
is that the associated partitioning scheme used to obtain P1, . . . ,Pn obeys the
following rules:

(i) Any currently unsplit node with at least m data points will be split.
(ii) The probability ρi = ρi(DT ) that a given (feasible) node is split along

the i-th direction is bounded from below for all i = 1, . . . , p by a strictly
positive constant.

(iii) The split position is chosen such that each child node contains at least a
fraction α ∈ (0, 1/2) of the data points in its parent node.

(iv) All leaves of the tree contain at least k data points.

The corresponding (α, k,m)-valid forest is given by (3.1) with Λ1, . . . ,ΛB ∈
Vα,k,m. Let us now briefly address the rules outlined in (i)–(iv). Clearly, (iv)
ensures Vα,k,m ⊆ Vk, and thus (α, k,m)-valid forests form a subclass of k-valid
forests. Rule (i) controls the maximal number of observations in each leaf of
a tree, and m = 2k corresponds to a situation where one keeps splitting until
placing another split would violate (iv). In general, if m is not too large relative
to T , this condition ensures that the number of leaves becomes large and, hence,
the partition becomes fine. Concerning (ii), it ensures that, eventually, a split
will be placed along any of the p (canonical) directions of the input space R

p.
Such a condition makes sense for us when p is thought of as being fixed and
rather small, but will not be reasonable in sparse settings where p → ∞, and one
will instead design the algorithm in a way that detects important directions with
high probability. On the other hand, ρi is indeed allowed to depend onDT , so one
may use the data to identify which of the directions that are most important and
then, based on this, form the probabilities ρ1, . . . , ρp. In a time series setting, it
may be advantageous to favor splits along the first direction which corresponds
to an observation that is likely to be highly dependent with the observed value
of Y . Finally, (iii) is a balancing condition which prohibits “edge splits”. This
is a technical condition imposed to track the distribution of data points among
leaves. In theoretical work on random forests within the regression setting, it is
typical to impose assumptions similar to (i)–(iv), see [22, 28, 29]. On the other
hand, standard implementations, such as the RandomForestRegressor from the
sklearn library in Python and the ranger package in R, incorporate only (i), (ii)
and (iv).

Since consistency will be established by relying on Theorem 1, we require
that (A1)–(A3) are satisfied. Moreover, the following assumptions are imposed:

(A4) The function f in (2.1) is C-Lipschitz, i.e.,

|f(x′)− f(x)| ≤ C‖x′ − x‖ for all x, x′ ∈ R
p

with C ∈ (0,∞) being a suitable constant and ‖ · ‖ some norm on R
p.

(A5) It holds that log(T/m)/ log(α−1) → ∞ as T → ∞.
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With assumptions (A1)–(A5) in hand, we can now state the following consis-
tency result for (α, k,m)-forests applied to nonlinear autoregressive processes:

Theorem 2. Let f̂T be an (α, k,m)-forest and suppose that (A1)–(A5) are
satisfied. Then the following statements hold:

(a) f̂T is a pointwise consistent estimator of f in the sense that

f̂T (x) −→ f(x) in probability as T → ∞.

for any x ∈ R
p.

(b) f̂T (X) is a consistent estimator of the conditional mean E[Y | X] in the
sense that

f̂T (X) −→ E[Y | X] in probability as T → ∞.

Remark 3. It should be emphasized that, since consistency is obtained through
Theorem 1, the averaging effect gained by considering (3.1) rather than a sin-
gle tree is not exploited in this setting. In particular, for the regression trees to
concentrate around their partition-optimal counterparts, the number of observa-
tions in each leaf is required to approach infinity as T becomes large (cf. (A3)).
If this is not the case, averages within leaves do not converge, meaning that
individual trees will be inconsistent estimators for f . In this case, consistency
of f̂T must be caused by improved accuracy gained by averaging trees. It is
generally recognized that random forests deliver much better performance than
single trees in practice, and it has also been shown theoretically (in simplified
settings) that both the bias and variance are smaller, see [4, 15].

4. A simulation study

In this section we consider a number of different specifications of f in (2.1)
and illustrate through simulations the results of Theorem 2. In all examples,
the distribution of ε1 is assumed to have a standard Laplace distribution, so
that hε(x) = 1

2e
−|x| for x ∈ R. As already mentioned, this choice meets the

conditions imposed in (A1). To keep things simple, we consider initially p = 1
so that f is one-dimensional and (Yt)t≥1 is a first order Markov chain. Within
this setting, we choose four different specifications of f , namely

f(x) = 0.5 sign(x)min{|x|, 10}, f(x) = −2xe−0.7x2

+ 3x2e−0.95x2

,

f(x) = cos(5x)e−x2

, and f(x) = min{|x|, 0.75}min{|x|, 10}.
(4.1)

The first specification of f satisfies f(x) = 0.5x when x ∈ [−10, 10], and is
constant outside of [−10, 10], and hence the corresponding process (Yt)t≥1 is
intended to mimic the classical linear AR(1) process. Indeed, it is very unlikely
that |Yt| exceeds 10, which means that there is only little practical difference
between the two processes. The second specification is an example of an expo-
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Fig 1. Simulations of Y1, . . . , Y400 from the model (2.1) for the four different specifications
of f considered in (4.1).

nential AR model (see, e.g., [3]), while the last two specifications of f correspond
to an oscillating function and a particular spline, respectively. In Figure 1, we
have simulated a sample path Y1, . . . , Y400 for each of these specifications of f .

We consider estimation of f by a random forest f̂T across different sam-
ple sizes T and we will be using the ranger package of R with B = 500
and k = �0.04(log T )4 log log T �. To obtain diverse trees, we will use the ex-
tremely randomized trees of Geurts, Ernst and Wehenkel [16] which corre-
sponds to setting the parameters replace = FALSE, sample.fraction = 1
and splitrule = “extratrees”. Effectively, this means that split positions are
chosen at random and that we build each tree using the entire sample DT (no
initial bootstrap step). Note that, while this implementation aligns with the
(α, k,m)-valid forests treated in Section 3, α is not a prespecified parameter in
the ranger package, yet in principle its value can be implicitly determined. In
Figure 2 we compare f̂T to f on the interval [−2, 2] for each of the four differ-
ent examples of f presented in (4.1). While the plots indicate the consistency
of the random forest estimator in these examples (as should be the case), ob-
servations are in fact rather noisy, and hence the performance of the random
forest is indeed remarkable. To support this, Figure 3 shows scatter plots of the
data DT = {(Y0, Y1), . . . , (YT−1, YT )} for T = 400 and two specifications of f .
Furthermore, we note that choosing the parameter k in finite samples is not a
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Fig 2. The four specifications of f considered in (4.1) (blue) and the corresponding random

forest estimator f̂T based on sample sizes of T = 400 (green), T = 1600 (red) and T = 6400
(brown).

Fig 3. Scatter plots of the data D400 under two of the specifications of f considered in (4.1).
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Fig 4. Two of the specifications of f considered in (4.1) (blue) and the corresponding random

forest estimator f̂1600 with k = 40 (green), k = 160 (red) and k = 640 (brown).

trivial task, and the choice used above is rather arbitrary (the assumption of
(A3) concerns only its asymptotic behavior). Nevertheless, its value can have
a significant impact on performance as it controls the bias–variance tradeoff of
the estimator. While optimal tuning of k is outside the scope of this paper, we
illustrate its effect on f̂T in Figure 4 where we estimate two of the functions in
(4.1) for different values of k using a sample of size T = 1600. For comparison,
the value used for k in Figure 2 when T = 1600 was 236.

We conclude this section by indicating consistency of random forests in a
more challenging setting. In particular, we consider p = 2 and the following
choice of f :

f(x1, x2) = x1e
−0.6x2

1 − 2(x2
1e

−0.3x2
1 + x2e

−0.7x2
2) + 3x2

2e
−0.95x2

2 . (4.2)

We rely on the ranger package again with the same specifications as were used to
obtain Figure 2, but we set the additional parameter split.select.weights =
(1/2, 1/2) so that the probability of splitting along a given direction is the
same for both directions (i.e., ρ1 = ρ2 = 1/2). To evaluate its performance, we
compute the mean squared error

MSE =
1

|X |
∑
x∈X

(f̂T (x)− f(x))2 (4.3)

over the grid X := {−2,−1.75, . . . , 1.75, 2}2 for different values of T . In Figure 5,
the MSE is depicted as a function of 10−4T .

5. Proofs

It will be convenient to transform the input vector Xt = (Yt−1, . . . , Yt−p) so that
it takes values in [0, 1]p. Effectively, this can be done by applying a cumulative
distribution function

Fh(x) =

∫ x

−∞
h(y) dy, x ∈ R, (5.1)
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Fig 5. The mean squared error (4.3) of the random forest estimator f̂T as a function of
10−4T when f is given by (4.2).

with h : R → [0,∞) being a probability density which is strictly positive almost
everywhere. We extend the domain of Fh to R := R ∪ {±∞} by using the
conventions Fh(−∞) = 0 and Fh(∞) = 1, so that the mapping

ιh : (x1, . . . , xp) �−→ (Fh(x1), . . . , Fh(xp))

is one-to-one between R
p and [0, 1]p. The transformed input vector is defined

by Zt = ιh(Xt). While there are no further restrictions on the choice of h, we
will pick one that leads to good estimates on the density hZ of Z1.

Lemma 1. Suppose that (A1) and (A2) hold. Then there exists a constant
ζ ∈ (1,∞) and a probability density h : R → [0,∞), which is strictly positive
almost everywhere, such that the density hZ : [0, 1]p → [0,∞) of Z1 = ιh(X1)
satisfies

ζ−1 ≤ hZ(z) ≤ ζ (5.2)

for almost all z ∈ [0, 1]p.

Proof. By (2.4) in (A1) it holds that

ζ̄ := sup
x∈R

Fε(x+M)

Fε(x−M)
∈ (1,∞). (5.3)

It follows as well from (A1) that ε1 admits a density hε which is strictly positive
almost everywhere, and hence

h(y) :=
1− ζ̄−1

ζ̄ − ζ̄−1
hε(y +M) +

ζ̄ − 1

ζ̄ − ζ̄−1
hε(y −M), y ∈ R,

is a valid density to use for defining Zt = ιh(Xt). To show that hZ meets (5.2),
it suffices to establish that

ζ−1

p∏
i=1

zi ≤ P(Fh(Y1) ≤ z1, . . . , Fh(Yp) ≤ zp) ≤ ζ

p∏
i=1

zi (5.4)
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for all z1, . . . , zp ∈ [0, 1], where Fh is the cumulative distribution function defined
by (5.1) and ζ = ζ̄p. Since εi−M ≤ Yi ≤ εi+M by (A2), it follows immediately
from the independence of ε1, . . . , εp and the monotonicity of Fh that

p∏
i=1

Fε(F
−1
h (zi)−M) ≤ P(Fh(Y1) ≤ z1, . . . , Fh(Yp) ≤ zp) ≤

p∏
i=1

Fε(F
−1
h (zi)+M).

Consequently, we only need to show that both Fε(F
−1
h (z) + M) ≤ ζ̄z and

Fε(F
−1
h (z) − M) ≥ ζ̄−1z for an arbitrary z ∈ [0, 1]. Observe that, by (5.3)

and the definition of h, ζ̄−1Fε(x+M) ≤ Fh(x) ≤ ζ̄Fε(x−M) for all x ∈ R. In
particular, by choosing x = Fh(z)

−1 we obtain

ζ̄−1Fε(F
−1
h (z) +M) ≤ z ≤ ζ̄Fε(F

−1
h (z)−M),

and this completes the proof.

In all of the following, Zt = ιh(Xt) for some h such that (5.2) holds, and we
will be using the notation #R := |{t ∈ {1, . . . T} : Zt ∈ R}|, μ(R) := P(Z1 ∈ R),
and η(R) := E[Y1 | Z1 ∈ R] for any given measurable set R ⊆ [0, 1]p. Note that if
Λ ∈ Vk, the partition Λ̄ of Rp obtained by the exact same sequence of consecutive
splits is again a k-valid partition and

TΛ(x)− T ∗
Λ(x) = TΛ̄(x)− T ∗

Λ̄(x) (5.5)

for all x ∈ R
p. Moreover, for any x ∈ R

p we have that

TΛ̄(x)− T ∗
Λ̄(x) =

1

#L

∑
t : Zt∈L

Yt − η(L) =: GT (L), (5.6)

where L = ιh(AΛ̄(x)). Here, and in what follows, it is implicitly understood that
a sum of the form

∑
t : Zt∈R runs over {t ∈ {1, . . . , T} : Zt ∈ R}. Since A is a

leaf of a k-valid partition of Rp with respect to (X1, . . . , XT ) if and only if ιh(A)
is a leaf of a k-valid partition of [0, 1]p with respect to (Z1, . . . , ZT ), it follows
from (5.5) and (5.6) that

sup
L∈Lk

|GT (L)| = sup
(x,Λ)∈Rp×Vk

|TΛ(x)− T ∗
Λ(x)|, (5.7)

where Lk consists of all sets which are members of k-valid partitions of [0, 1]p.
In particular, it suffices to prove uniform concentration inequalities for empiri-
cal averages over rectangles in Lk. Still, there are infinitely many rectangles in
Lk, so one cannot simply analyze |GT (L)| and then rely on a union bound. We
will follow the ideas of Wager and Walther [29] who demonstrated that one only
needs to understand the concentration over a much smaller set of approximating
rectangles. In particular, we will make use of one of their results which states
that there exists a rather small collection of rectangles in [0, 1]p containing good
approximations to any non-negligible rectangle in terms of Lebesgue measure.
Since their result is more general than what is needed here (e.g., it can be used in
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situations where p → ∞), we state a rather simplified version in Theorem 3 be-
low. To avoid introducing too many non-informative constants in the following,
we introduce some convenient notation. For two sequences (at)t≥1 and (bt)t≥1

we will write at � bt if there exists a constant c ≥ 1 such that at ≤ cbt for all t.
If both at � bt and bt � at we write at � bt.

Theorem 3 (Wager and Walther [29]). Let ε � k−1/2 and w � k/T . Then
there exists a collection of rectangles Rε,w with the following two properties:

(i) For any rectangle R ⊆ [0, 1]p with Leb(R) ≥ w, one can find R−, R+ ∈
Rε,w satisfying

R− ⊆ R ⊆ R+ and e−ε Leb(R+) ≤ Leb(R) ≤ eε Leb(R−). (5.8)

(ii) The cardinality |Rε,w| of Rε,w satisfies the bound log |Rε,w| � log T .

Let ε, w ∈ (0, 1) be given as in Theorem 3. It follows that any given leaf
L ∈ Lw

k := {L ∈ Lk : Leb(L) ≥ w} can be inner ε-approximated by a rectangle
Lε
− from Rε,w in the sense of (5.8). Moreover,

sup
L∈Lw

k

|GT (L)| ≤ sup
L∈Lw

k

|η(Lε
−)− η(L)|+ sup

L∈Lw
k

|GT (L
ε
−)|

+ sup
L∈Lw

k

∣∣∣ 1

#L

∑
t : Zt∈L

Yt −
1

#Lε
−

∑
t : Zt∈Lε

−

Yt

∣∣∣. (5.9)

Thus, to obtain a concentration inequality for (5.7) it suffices to show that, for
all large T and with high probability, the three terms on the right-hand side of
the inequality (5.9) are small and Lk = Lw

k . Bounding the first term of (5.9) is
the easiest task.

Lemma 2. Suppose that (A1) and (A2) are satisfied, and let ε � k−1/2 and
w � k/T . Then

sup
L∈Lw

k

|η(Lε
−)− η(L)| ≤ 2Mζ2ε,

where ζ ∈ (1,∞) is given as in Lemma 1.

Proof. By (A2), we find for an arbitrary leaf L ∈ Lw
k that

|η(Lε
−)− η(L)| ≤ 1

μ(L)

∫
L\Lε

−

|f(ι−1
h (z))|hZ(z) dz

+
μ(L)− μ(Lε

−)

μ(L)μ(Lε
−)

∫
Lε

−

|f(ι−1
h (z))|hZ(z) dz

≤ 2M
μ(L)− μ(Lε

−)

μ(L)
.

Moreover, Lemma 1 and (5.8) imply

μ(L)− μ(Lε
−) ≤ ζ(1− e−ε)λ(L) ≤ ζ2εμ(L),

and this concludes the proof.
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The key to obtain estimates of the second and third term of (5.9), as well as
showing that Lk = Lw

k , with high probability is to establish good concentration
inequalities for the counts #L and #Lε

−, which apply across all L ∈ Lw
k . As

we will see in later proofs, by relying on Theorem 3 and ideas similar to [29,
Theorem 10 and Lemma 13], it suffices to understand the concentration of #R
across all rectangles in Rε,w of non-negligible volume. This is the motivation
for the following result, which relies on a Bernstein type inequality for strongly
mixing processes.

Lemma 3. Suppose that (A1)–(A3) are satisfied, and let ε � k−1/2 and w �
k/T . Then there exists a constant γ ∈ (0,∞) such that

sup
R∈Rε,w : μ(R)≥w

|#R− Tμ(R)|√
Tμ(R)

≤ γ log T (5.10)

with probability at least 1− T−1 for all sufficiently large T .

Proof. Note that, by a union bound, it suffices to establish that for anyR ∈ Rε,w

with μ(R) ≥ w,

P

(∣∣∣#R

T
− μ(R)

∣∣∣ > γ log T

√
μ(R)

T

)
≤ 1

|Rε,w|T
. (5.11)

To this end, observe that (Yt)t≥1 forms a stationary geometrically ergodic p-
th order Markov chain (cf. [3, Theorem 3.1]). It is well-known that any such
chain is exponentially α-mixing (see, e.g., [14, p. 89]). In particular, the t-th
α-mixing coefficient α(t) := supA∈σ(X1), B∈σ(Xt+1) |P(A ∩ B) − P(A)P(B)| of
Xt = (Yt−1, . . . , Yt−p) satisfies

logα(t) � −t, t ≥ 1. (5.12)

Moreover, the α-mixing coefficients of (1R(Zt))t≥1 are obviously bounded by
(α(t))t≥0 (which do not depend on R), and thus we can rely on a Bernstein
type inequality for strongly mixing sequences [23, Theorem 2] to establish that

logP
(∣∣∣#R

T
− μ(R)

∣∣∣ > x
)
� − x2T

ν2R + T−1 + x(log T )2
, x > 0, (5.13)

where

ν2R := Var(1R(Z1)) + 2

∞∑
t=1

|Cov(1R(Zt+1),1R(Z1))|.

It is easy to see that |Cov(1R(Zt+1),1R(Z1))| ≤ min{α(t), μ(R)}. From this
inequality and the fact that

√
α(t) ≤ μ(R) as long as t � log(T/k), which

follows from (5.12) and μ(R) � k/T , we deduce that

ν2R � μ(R)
(
1 + log(T/k) +

∞∑
t=1

√
α(t)

)
� μ(R) log T. (5.14)
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By combining this variance bound with inequality (5.13) and using that μ(R) �
1/T we get

logP
(∣∣∣#R

T
− μ(R)

∣∣∣ > x
)
� − x2T

max{μ(R) log T, x(log T )2} . (5.15)

To put it differently, we may choose a sufficiently large constant γ̄ such that for
any fixed τ ∈ (0,∞),

P

(∣∣∣#R

T
− μ(R)

∣∣∣ > x
)
≤ 1

τ
(5.16)

if

x ≥ γ̄max

{
(log T )2 log τ

T
,

√
μ(R)

T
log T log τ

}
. (5.17)

Since μ(R) � k/T , the maximum of (5.17) is equal to its last term if

k ≥ κ(log T )3 log τ

for a suitable constant κ. Moreover, if τ = |Rε,w|T , Theorem 3(ii) shows that
log τ � log T , so if k is chosen in accordance with (A3), the last term of the
maximum in (5.17) is the dominating one when T is large. Consequently, by
choosing x to be the right-hand side of (5.17) with τ = |Rε,w|T , we obtain

P

(∣∣∣#R

T
− μ(R)

∣∣∣ > γ̄

√
μ(R)

T
log T (log |Rε,w|+ log T )

)
≤ 1

|Rε,w|T
.

By using Theorem 3(ii) once again it follows that (5.11) is satisfied for a suitable
constant γ and verifies that (5.10) holds with probability at least 1 − T−1 for
all sufficiently large T .

The next result shows how the inequality (5.10) impacts the magnitude of
the third term of (5.9).

Lemma 4. Suppose that (A1)–(A3) are satisfied, and let ε = k−1/2 and w =
k/(4ζT ) where ζ ∈ (1,∞) is given as in Lemma 1. Then, the inequality (5.10)
implies

sup
L∈Lw

k

∣∣∣ 1

#L

∑
t : Zt∈L

Yt −
1

#Lε
−

∑
t : Zt∈Lε

−

Yt

∣∣∣ ≤ 6(M + max
t=1,...,T

|εt|)
ζ2 + 2γ log T√

k

for all sufficiently large T , where M is given by (2.5).

Proof. First, observe that

sup
L∈Lw

k

∣∣∣ 1

#L

∑
t : Zt∈L

Yt −
1

#Lε
−

∑
t : Zt∈Lε

−

Yt

∣∣∣
≤ 2

(
M + max

t=1,...,T
|εt|

)
sup

L∈Lw
k

#L−#Lε
−

#L
.

(5.18)
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It follows that we need to show how (5.10) implicitly restricts #L and #Lε
−.

Initially, we will argue that (5.10) implies

#L ≤ eζ
2εTμ(L) + γe

1
2 ζ

2ε log T
√

Tμ(L), (5.19)

#L ≥ Tμ(Lε
−)− γ2(log T )2

2
, (5.20)

and #Lε
− ≥ Tμ(Lε

−)− γ log T
√

Tμ(Lε
−) (5.21)

for all L ∈ Lw
k . Consider any rectangle R ⊆ [0, 1]p with μ(R) ≥ ζw, and note

that such rectangle satisfies Leb(R) ≥ w by Lemma 1. Consequently, Theo-
rem 3 implies the existence of an outer approximation R+ ⊇ R from Rε,w with
Leb(R+) ≤ eε Leb(R). The inequality (5.10) shows in particular that

#R+ − Tμ(R+)√
Tμ(R+)

≤ γ log T. (5.22)

Obviously #R+ ≥ #R, and by Lemma 1 the μ-measure of R+ is bounded in
terms of that of R as

μ(R+) ≤ μ(R) + ζ2(eε − 1)μ(R) ≤ eζ
2εμ(R).

By combining this with (5.22) we conclude that

sup
R : μ(R)≥ζw

#R− eζ
2εTμ(R)√

Tμ(R)
≤ γe

1
2 ζ

2ε log T, (5.23)

where it is implicitly understood that the supremum only runs over rectangles
in [0, 1]p. Now, if R is a rectangle with μ(R) < 2ζw, we may expand it along one
or more of the p directions to obtain a new rectangle R̃ with R ⊆ R̃ ⊆ [0, 1]p

and μ(R̃) = 2ζw. Thus, by (5.23) this means that

#R ≤
(eζ2ε

2
+

γe
1
2 ζ

2ε log T√
2k

)
k. (5.24)

By (A3), the last term in the parenthesis goes to zero and eζ
2ε goes to one as T

approaches infinity, so we establish that #R < k as long as T exceeds a certain
threshold (which does not depend on R). To put it differently, as long as T
is sufficiently large and for any rectangle R ⊆ [0, 1]p, the following implication
holds:

#R ≥ k =⇒ μ(R) ≥ 2ζw. (5.25)

Consider now any leaf L ∈ Lk. By (5.25) it must be the case that μ(L) ≥ 2ζw,
and thus (5.19) is an immediate consequence of (5.23). Moreover, the μ-measure
of the inner ε-approximation Lε

− of L is bounded from below as

μ(Lε
−) ≥ (1− ζ2(1− e−ε))μ(L) ≥ 2(1− ζ2(1− e−ε))ζw ≥ ζw, (5.26)
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where the last inequality applies as long as T is large enough. Thus, (5.21) is
implied by (5.10). In order to prove (5.20), first note that

Tμ(Lε
−) ≤ #L+ γ log T

√
Tμ(Lε

−) (5.27)

by (5.21). By dividing both sides of (5.27) with
√

Tμ(Lε
−) and using that

Tμ(Lε
−) ≥ k/4 when T is large (by (5.26)) we obtain

√
Tμ(Lε

−) ≤
2#L√

k
+ γ log T. (5.28)

Now, by using the bound (5.28) for the last term in (5.27) and rearranging
terms,

#L ≥ Tμ(Lε
−)− γ2(log T )2

1 + 2γ log T/
√
k

.

By (A3), 2γ log T/
√
k ≤ 1 when T is sufficiently large, and this proves (5.20).

Now we use (5.19)–(5.21) to bound (#L−#Lε
−)/#L uniformly across L ∈ Lw

k .
For an arbitrary leaf L ∈ Lw

k it follows by (5.19) that

(
e

1
2 ζ

2ε
√
Tμ(L) + γ log T

)2 ≥ #L+ γ2(log T )2,

and hence

eζ
2εTμ(L) ≥

(√
#L+ γ2(log T )2 − γ log T

)2
= #L+ 2γ2(log T )2 − 2γ log T

√
#L+ γ2(log T )2

≥ #L− 4γ log T
√

#L, (5.29)

where, due to (5.20), the last inequality applies as long as T exceeds a certain
threshold (which does not depend on L). Moreover, (5.20) implies√

Tμ(Lε
−) ≤

√
2#L+ γ log T ≤ 2

√
#L (5.30)

and, as in (5.26), the μ-measure of Lε
− is bounded from below as

μ(Lε
−) ≥ (1− ζ2(1− e−ε))μ(L) ≥ e−2ζ2εμ(L). (5.31)

Both (5.30) and (5.31) require that T is large. By starting from (5.21), and then
using (5.29)–(5.31), we get the estimate

#Lε
− ≥ e−2ζ2εTμ(L)− 2γ log T

√
#L ≥ e−3ζ2ε#L− 6γ log T

√
#L

for large T . Thus, for such T ,

sup
L∈Lw

k

#L−#Lε
−

#L
≤ 1− e−3ζ2ε + sup

L∈Lw
k

6γ log T√
#L

≤ 3ζ2 + 6γ log T√
k

.

In view of (5.18), this finishes the proof.
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Remark 4. Suppose that we are in the setting of Lemma 4. In its proof it is in
fact established that Lk = Lw

k when (5.10) holds and T is large. For instance,
this is an immediate consequence of (5.25).

In a similar way, we use (5.10) to bound the second term of (5.9); this is
detailed in the following lemma.

Lemma 5. Suppose that (A1)–(A3) are satisfied, and let ε = k−1/2 and w =
k/(4ζT ) where ζ ∈ (1,∞) is given as in Lemma 1. Then, the inequality (5.10)
implies

sup
L∈Lw

k

|GT (L
ε
−)| ≤

4Mγ log T√
k

+ 2 sup
R∈Rε,w : μ(R)≥ζw

1

Tμ(R)

∣∣∣ ∑
t : Zt∈R

εt

∣∣∣
+ 2 sup

R∈Rε,w : μ(R)≥ζw

∣∣ 1
T

∑
t : Zt∈R f(Xt)− E[f(X)1R(Z)]

∣∣
μ(R)

for all sufficiently large T , where M is given by (2.5).

Proof. For any given rectangle R we have the bound

|GT (R)| ≤ M
|#R− Tμ(R)|

#R
+

1

#R

∣∣∣ ∑
t : Zt∈R

εt

∣∣∣
+

T

#R

∣∣∣ 1
T

∑
t : Zt∈R

f(Xt)− E[f(X)1R(Z)]
∣∣∣. (5.32)

When (5.10) is satisfied and T is large enough, it follows from (5.26) (which
holds under (A1)–(A3)) that

R′ := {R ∈ Rε,w : μ(R) ≥ ζw} ⊇ {Lε
− : L ∈ Lw

k }. (5.33)

Moreover, for any R ∈ R′, (5.10) implies immediately that

#R ≥ Tμ(R)
(
1− 2γ log T√

k

)
≥ Tμ(R)

2
, (5.34)

and hence also that
|#R− Tμ(R)|

#R
≤ 4γ log T√

k
(5.35)

as soon as T exceeds a certain threshold (which is independent of R). By com-
bining (5.32)–(5.35) we obtain the result.

Since Rε,w is a rather small collection of sets, it is hinted by Lemmas 4 and 5
that the only missing part in order to prove Theorem 1 is to obtain bounds on

max
t=1,...,T

|εt|,
1

T

∣∣∣ ∑
t : Zt∈R

εt

∣∣∣ and
∣∣∣ 1
T

∑
t : Zt∈R

f(Xt)− E[f(X)1R(Z)]
∣∣∣

for any R ∈ Rε,w with μ(R) ≥ ζw. The first term is easy to handle, since it is
a maximum of i.i.d. random variables satisfying (2.3). The last two terms can
be handled by relying on Bernstein type inequalities for martingale differences
and strongly mixing sequences. We will go through the details below.
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Proof of Theorem 1. The proof goes by defining four events E1, E2, E3 and E4
and arguing that (i) the inequality (2.8) holds true on E1 ∩ E2 ∩ E3 ∩ E4, and
(ii) each event Ei occurs with probability at least 1− T−1. With ε = k−1/2 and
w = k/(4ζT ), ζ ∈ (1,∞) given as in Lemma 1, the events that we will consider
are the following:

E1 :=
{

sup
R∈Rε,w : μ(R)≥ζw

|#R− Tμ(R)|√
Tμ(R)

≤ γ log T
}
,

E2 :=
{

max
t=1,...,T

|εt| ≤ c1 log T
}
,

E3 :=
{

sup
R∈Rε,w : μ(R)≥ζw

1

Tμ(R)

∣∣∣ ∑
t : Zt∈R

εt

∣∣∣ ≤ c2
log T√

k

}
∪ Ec

1 ,

E4 :=
{

sup
R∈Rε,w : μ(R)≥ζw

∣∣ 1
T

∑
t : Zt∈R f(Xt)− E[f(X)1R(Z)]

∣∣
μ(R)

≤ c3
log T√

k

}
.

Here γ is the constant from Lemma 3, while c1, c2 and c3 will be introduced
during the proof. Moreover, Ec

1 refers to the complement of E1.

Proof of (i). Suppose that the event E1 ∩ E2 ∩ E3 ∩ E4 has occurred. Then, by
using (5.9) and Lemmas 2, 4 and 5, it follows that

sup
L∈Lk

|GT (L)| ≤
2Mζ2√

k
+

4Mγ log T√
k

+
2c2 log T√

k
+

2c3 log T√
k

+ 6(M + c1 log T )
ζ2 + 2γ log T√

k
.

In view of this inequality, (5.7) and Remark 4, we conclude that (2.8) is satisfied
on E1 ∩ E2 ∩ E3 ∩ E4 for a suitably chosen constant β.

Proof of (ii). The content of Lemma 3 is exactly that P(E1) ≥ 1−T−1. Since the
moments of ε1 meet (2.3), its distribution is sub-exponential and (2.6) holds.
Moreover, ε1, . . . , εT are i.i.d. random variables, so by applying a union bound
we obtain the estimate

P
(

max
t=1,...,T

|εt| > x
)
≤ γ1Te

−γ2x, x > 0.

In other words, maxt=1,...,T |εt| ≤ x with probability at least 1 − T−1 if x ≥
log(γ1T

2)/γ2, and this shows P(E2) ≥ 1− T−1 for some c1.

Next, consider any rectangle R ∈ Rε,w with μ(R) ≥ ζw and observe that
(εt1R(Zt))t≥1 is a martingale difference sequence with respect to the filtration
Ft = σ(Ys : s ≤ t). Since εt is independent of Ft−1 and its moments satisfy
(2.3),

E[|εt1R(Zt)|m | Ft−1] ≤ m!cm−21R(Zt), m ≥ 3.
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In particular, these observations show that we can rely on a Bernstein (Freed-
man) type inequality for unbounded summands to obtain

logP
( 1

T

∣∣∣ ∑
t : Zt∈R

εt

∣∣∣ > x, #R ≤ y
)
� − x2T

y/T + x
(5.36)

for any x, y > 0. Such a result can, e.g., be found in [12, Theorem 8.2.2]. Let γ
be the constant from Lemma 3, consider specifically

y = Tμ(R) + γ log T
√

Tμ(R)

and note that y ≤ 2Tμ(R) when T is large (by (A3)). By using (5.36) with this
choice of y it follows that

logP
({ 1

T

∣∣∣ ∑
t : Zt∈R

εt

∣∣∣ > x
}
∩ E1

)
� − x2T

max{μ(R), x} .

From this inequality we deduce the existence of a constant κ, such that for any
τ > 0,

P

({ 1

T

∣∣∣ ∑
t : Zt∈R

εt

∣∣∣ > x
}
∩ E1

)
≤ 1

τ
(5.37)

when

x = κmax

{
log τ

T
,

√
μ(R)

T
log τ

}
. (5.38)

The maximum in (5.38) is equal to its second term if

k ≥ 4 log τ. (5.39)

It follows from Theorem 3(ii) and (A3) that (5.39) is satisfied if τ = |Rε,w|T
and T is large, and thus (5.37) and (5.38) show that

P

({
1

T

∣∣∣ ∑
t : Zt∈R

εt

∣∣∣ > c2 log T

√
μ(R)

4T

}
∩ E1

)
≤ 1

|Rε,w|T
,

for a suitable constant c2. By rearranging terms and using that Tμ(R) ≥ k/4 it
follows that

P

({
1

Tμ(R)

∣∣∣ ∑
t : Zt∈R

εt

∣∣∣ > c2
log T√

k

}
∩ E1

)
≤ 1

|Rε,w|T
.

Consequently, by relying on a union bound over all rectangles in Rε,w, we es-
tablish that P(E3) ≥ 1− T−1.

To show P(E4) ≥ 1− T−1 we consider again an arbitrary rectangle R ∈ Rε,w

with μ(R) ≥ ζw. The sequence (f(Xt)1R(Zt))t≥1 is bounded and α-mixing, and
its associated mixing coefficients are bounded by those of (Xt)t≥1, which we will
denote by (α(t))t≥1. In particular, by (5.12) it follows that the mixing coefficients
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of (f(Xt)1R(Zt))t≥1 are bounded by an exponentially decaying sequence of
numbers with a decay rate which does not depend on R. Consequently, as in
the proof of Lemma 3, we can again rely on [23, Theorem 2] to obtain that

logP
(∣∣∣ 1

T

∑
t : Zt∈R

f(Xt)− E[f(X)1R(Z)]
∣∣∣ > x

)
� − x2T

ν2R + T−1 + x(log T )2

(5.40)
where

ν2R := Var(f(X1)1R(Z1)) + 2

∞∑
t=1

|Cov(f(Xt+1)1R(Zt+1), f(X1)1R(Z1))|.

Note that

inf{y ∈ [0,∞) : P(|f(X)|1R(Z) > y) ≤ u} ≤ M1{u≤μ(R)},

so it follows by Rio’s covariance inequality [25, Theorem 1.1] that

|Cov(f(Xt+1)1R(Zt+1), f(X1)1R(Z1))| ≤ 4M2 min{α(t), μ(R)}.

Thus, by using the same arguments as in the proof of Lemma 3 (in relation to
(5.14)) we establish ν2R � μ(R) log T , meaning that (5.40) implies

logP
(∣∣∣ 1

T

∑
t : Zt∈R

f(Xt)− E[f(X)1R(Z)]
∣∣∣ > x

)
� − x2T

max{μ(R) log T, x(log T )2} .

(5.41)

Since the right-hand side of (5.41) is the same as in (5.15), we can use the exact
same arguments to verify the existence of a constant c3 such that

P

(∣∣∣ 1
T

∑
t : Zt∈R

f(Xt)− E[f(X)1R(Z)]
∣∣∣ > c3 log T

√
μ(R)

4T

)
≤ 1

|Rε,w|T

when T exceeds a certain threshold (not depending on R). In particular,

P

(∣∣ 1
T

∑
t : Zt∈R f(Xt)− E[f(X)1R(Z)]

∣∣
μ(R)

> c3
log T√

k

)
≤ 1

|Rε,w|T

from which it follows by a union bound over rectangles in Rε,w that P(E4) ≥
1 − T−1. We have now argued that both (i) and (ii) outlined in the beginning
of the proof hold true, and hence we obtain the desired result.

We now turn to the task of proving Theorem 2. To do so, we will make use
of an auxiliary result which is presented in Lemma 6 below. In this formulation,
diam(A) := supx,x′∈A‖x′ − x‖ is the diameter of A ⊆ R

p.

Lemma 6. Suppose (A1), (A2) and (A5) are satisfied and that Λ = Λ(DT ,Θ) ∈
Vα,k,m for all T . Then, for any x ∈ R

p, diam(AΛ(x)) → 0 as T → ∞ with
probability one.
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Proof. Let us represent the rectangle AΛ(x) in Λ containing x ∈ R
p as AΛ(x) =

A1
Λ(x)× · · · ×Ap

Λ(x). Then, it suffices to show that

Leb(Ai
Λ(x)) −→ 0, T → ∞, (5.42)

with probability one for i = 1, . . . , p. To this end, imagine the tree illustrating
how Λ is obtained by the recursive partitioning scheme and consider the path
that x takes down the tree from its root to the leaf AΛ(x). Let d denote the
depth of the tree at x (i.e., x traverses exactly d − 1 nodes before it reaches
AΛ(x)), and let Al be the node containing x at depth l. In particular, (Al)l is
a decreasing sequence of sets with A1 = R

p and Ad = AΛ(x), and Al
j �= Al+1

j

for exactly one j (with the notation A = A1 × · · · ×Ap). We let Si
l = 1Al

i 	=Al+1
i

indicate whether the node containing x at depth l will be split along the i-th
direction, and τ il = min{j ∈ {τ il−1 + 1, . . . , d− 1} : Si

j = 1} the depth at which

x will experience the l-th split along the i-th direction (τ i0 ≡ 0 and, say, τ il = ∞
if the set is empty). For an illustration of these definitions, see Figure 6. By the
construction of the tree (specifically, the rules (i) and (iii) outlined in Section 3)
it holds that m ≥ Tαd−1, and hence

d ≥ 1 +
log(T/m)

log(α−1)
. (5.43)

Recall also that the tree is constructed in such a way that there exists a strictly
positive constant ρ which is a lower bound for the probability ρi of splitting
along the i-th direction at any given node. Suppose for simplicity (but without
loss of generality) that, in fact, ρi = ρ. Then, (Si

l )l≥1 is a sequence of i.i.d.
Bernoulli random variables and thus, with probability one,

n∑
l=1

Si
l −→ ∞, n → ∞.

Since the right-hand side of (5.43) tends to infinity by (A5), it follows that

|{l ∈ {1, . . . , d− 1} : τ il < ∞}| −→ ∞, T → ∞, (5.44)

almost surely. Consider an arbitrary number l ∈ {1, . . . , d−1} with τ il < ∞ and
let h be any fixed density which aligns with Lemma 1. Then

Leb(Fh(A
τ i
l +1

i ))

Leb(Fh(A
τ i
l

i ))
= 1− Leb(ιh(A

τ i
l ) \ ιh(Aτ i

l +1))

Leb(ιh(A
τ i
l ))

≤ 1− ζ−2PΛ(X ∈ Aτ i
l \Aτ i

l +1)

PΛ(X ∈ Aτ i
l )

≤ 1− ζ−2(1− PΛ(X ∈ Aτ i
l +1 | X ∈ Aτ i

l )). (5.45)

(Note that, for a given interval A ⊆ R, Fh(A) ⊆ [0, 1] refers to the image of A
under Fh.) Since the tree is grown with respect to the rule (iii),

|{t ∈ {1, . . . , T} : Xt ∈ Aτ i
l +1}|

|{t ∈ {1, . . . , T} : Xt ∈ Aτ i
l }|

≤ 1− α,
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so by a Glivenko–Cantelli theorem for ergodic processes (e.g., [1, Theorem 1])
we establish that

lim sup
T→∞

PΛ(X ∈ Aτ i
l +1 | X ∈ Aτ i

l ) ≤ 1− α (5.46)

with probability one. By combining (5.45) and (5.46) it follows that we can fix
δ ∈ (0, 1) such that, with probability one,

Leb(Fh(A
τ i
l +1

i ))

Leb(Fh(A
τ i
l

i ))
≤ 1− δ (5.47)

for all sufficiently large T . By definition, A
τ i
l−1+1

i = A
τ i
l

i , so by repeated use of
(5.47) we obtain, for any given n ∈ {1, . . . , d− 1} with τ in < ∞,

Leb(Fh(A
i
Λ(x))) ≤ Leb(Fh(A

τ i
n+1

i )) =

n∏
l=1

Leb(Fh(A
τ i
l +1

i ))

Leb(Fh(A
τ i
l−1+1

i ))
≤ (1−δ)n (5.48)

for all sufficiently large T almost surely. Thus, from (5.44) we deduce that
Leb(Fh(A

i
Λ(x))) → 0 almost surely as T → ∞, and this completes the proof.

Remark 5. While the arguments used to prove Lemma 6 are somewhat similar
to those of [22, Lemma 2], they may appear slightly more complicated. The
reason is that the proof of [22, Lemma 2] relies on an estimate of the form

|{t ∈ {1, . . . , T} : Xi
t ∈ A

τ i
n+1

i }| ≤ T (1− α)n, (5.49)

from which one immediately deduces that Leb(Fh(A
i
Λ(x))) ≤ ζ(1− α)n, which

completes the proof. (Here Xi
t = Yt−i refers to the i-th entry of Xt.) However,

the estimate (5.49) does not apply in general under the rules (i)–(iv) (of Sec-
tion 3) upon which trees are grown, and hence a few additional arguments are
needed to establish the alternative inequality (5.48).

Proof of Theorem 2. By Corollary 1,

|f̂T (x)− f(x)| ≤ max
b=1,...,B

|T ∗
Λb
(x)− f(x)|+ op(1)

and |f̂T (X)− f(X)| ≤ max
b=1,...,B

|T ∗
Λb
(X)− f(X)|+ op(1)

for suitable Λ1, . . . ,ΛB ∈ Vα,k,m. Thus, it suffices to show that T ∗
Λ(x) → f(x)

and T ∗
Λ(X) → f(X) in probability as T → ∞ when Λ ∈ Vα,k,m for all T . By

using Lemma 6 together with the inequality

|T ∗
Λ(x)− f(x)| ≤

EΛ[|f(X)− f(x)|1AΛ(x)(X)]

PΛ(X ∈ AΛ(x))
≤ C diam(AΛ(x)),

which holds by (A4), it follows that T ∗
Λ(x) → f(x) almost surely and, in partic-

ular, in probability. Here, as in the proof of Lemma 6, subscript T indicates that
we are conditioning on the randomness related to the partition Λ. The last part
follows immediately from Tonelli’s theorem as this implies that, on an event
with probability one, T ∗

Λ(x) → f(x) for (Lebesgue) almost all x ∈ R
p.
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Fig 6. An illustration of a tree with a depth of d = 4 at x. In this example τ i1 = 2 and τ i2 = 3.

Acknowledgements

This work was supported by NSF grant DMS-2015379 for Davis and by Danish
Council for Independent Research grant 9056-00011B for Nielsen. We wish to
thank the referees for their constructive comments which led to an improvement
of the manuscript.

References

[1] Adams, T. M. and Nobel, A. B. (2010). Uniform convergence of Vapnik-
Chervonenkis classes under ergodic sampling. Ann. Probab. 38 1345–1367.
MR2663629

[2] Amaratunga, D., Cabrera, J. and Lee, Y.-S. (2008). Enriched random
forests. Bioinformatics 24 2010–2014.

[3] An, H. Z. and Huang, F. C. (1996). The geometrical ergodicity of non-
linear autoregressive models. Statist. Sinica 6 943–956. MR1422412

[4] Arlot, S. and Genuer, R. (2014). Analysis of purely random forests
bias. arXiv preprint arXiv:1407.3939.

[5] Biau, G. (2012). Analysis of a random forests model. J. Mach. Learn. Res.
13 1063–1095. MR2930634

http://www.ams.org/mathscinet-getitem?mr=2663629
http://www.ams.org/mathscinet-getitem?mr=1422412
https://arxiv.org/abs/arXiv:1407.3939
http://www.ams.org/mathscinet-getitem?mr=2930634


3670 R. A. Davis and M. S. Nielsen

[6] Biau, G. and Devroye, L. (2010). On the layered nearest neighbour
estimate, the bagged nearest neighbour estimate and the random forest
method in regression and classification. J. Multivariate Anal. 101 2499–
2518. MR2719877

[7] Biau, G. and Scornet, E. (2016). A random forest guided tour. TEST
25 197–227. MR3493512

[8] Breiman, L. (1996). Bagging predictors. Machine learning 24 123–140.
[9] Breiman, L. (2001). Random forests. Machine learning 45 5–32.

MR3874153
[10] Breiman, L., Friedman, J. H.,Olshen, R. A. and Stone, C. J. (1984).

Classification and regression trees. Wadsworth Statistics/Probability Series.
Wadsworth Advanced Books and Software, Belmont, CA. MR0726392

[11] Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A.,
Hess, K. T., Gibson, J. and Lawler, J. J. (2007). Random forests
for classification in ecology. Ecology 88 2783–2792.
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