

1 **TITLE:**

2 Interactive Molecular Model Assembly with 3D Printing

3

4 **AUTHORS AND AFFILIATIONS:**

5 Elham Fazelpour¹, Christopher J. Fennell¹

6

7 ¹Department of Chemistry, Oklahoma State University, Stillwater, OK, USA

8

9 Email addresses of co-authors:

10 Elham Fazelpour (elham.fazelpour@okstate.edu)

11

12 Corresponding author:

13 Christopher J. Fennell (christopher.fennell@okstate.edu)

14

15 **KEYWORDS:**

16 3D printing, molecule, modeling, cyclohexane, structure, shape, conformer

17

18 **SUMMARY:**

19 Physical modeling of microscopic systems can bring insights that are difficult to gain by other
20 means. To facilitate the construction of physical molecular models, we demonstrate how 3D
21 printing can be used to assemble functional macroscopic models that capture qualities of
22 molecular systems in a tactile way.

23

24 **ABSTRACT:**

25 With the growth in accessibility of 3D printing, there has been a growing application of and
26 interest in additive manufacturing processes in chemical laboratories and chemical education.
27 Building on the long and successful history of physical modeling of molecular systems, we
28 present select models along with a protocol to facilitate 3D printing of molecular structures that
29 are able to do more than represent shape and connectivity. Models assembled as described
30 incorporate dynamical aspects and degrees of freedom available to saturated hydrocarbon
31 structures. As a representative example, cyclohexane was assembled from parts printed and
32 finished using different thermoplastics, and the resulting models retain their functionality at a
33 variety of scales. The resulting structures show configurational space accessibility consistent
34 with calculations and literature, and versions of these structures can be used as aids to
35 illustrate concepts that are difficult to convey in other ways. This exercise enables us to
36 evaluate successful printing protocols, make practical recommendations for assembly, and
37 outline design principles for physical modeling of molecular systems. The provided structures,
38 procedures, and results provide a foundation for individual manufacture and exploration of
39 molecular structure and dynamics with 3D printing.

40

41 **INTRODUCTION:**

42 Molecular structure building has long been a critical aspect for discovery and validation of our
43 understanding of the shape of and interactions between molecules. Physical model building
44 was a motivating aspect in the determination of the α -helix structure in proteins by Pauling et

45 al.¹ the primary clathrate hydrate structures of water,^{2,3} and the double-helix structure of DNA
46 by Watson and Crick.⁴ In James Watson's published account of the DNA structure, he details
47 many of the struggles faced in such model building, such as wrapping copper wire around
48 model carbon atoms to make phosphorus atoms, precariously delicate suspensions of atoms,
49 and making cardboard cutouts of bases while waiting on tin cutouts from the machine shop.⁵
50 Such struggles in model building have largely been remedied with computational modeling
51 augmenting or entirely supplanting physical approaches, though physical models remain an
52 essential aspect in chemical education and experimentation.⁶⁻⁹

53

54 Since around 2010, 3D printing has seen a significant growth in adoption as a tool for creative
55 design and manufacturing. This growth has been driven by competition and availability of a
56 variety of Fused-Deposition Modeling (FDM) printers from a series of new companies focused
57 on broad commercialization of the technology. With the growing accessibility, there has been a
58 concurrent growth in application of these technologies in chemistry education and
59 experimental laboratory settings.¹⁰⁻²¹ During this time period, both commercial and open
60 community repositories for 3D models, such as the NIH 3D Print Exchange,²² have made model
61 systems for 3D printing more accessible, though many of these models tend to be centered on
62 specific target molecules and provide simple static structures with an emphasis on bond
63 connectivity and type. More general atomic and molecular groups can enable more creative
64 constructions,^{12,23} and there is a need for models that can enable general structure creation
65 with tactile, dynamic, and force sensitive feedback for molecular structures.

66

67 We present here molecular model structure components that can be readily printed and
68 assembled to form dynamic molecular models of saturated hydrocarbons. The component
69 structures are part of a wider kit we have developed for extension and outreach activities for
70 our laboratory and university. The parts provided have been engineered to be printable with a
71 variety of polymer filament types on commodity FDM 3D printers. We present model results
72 using different polymers and finishing techniques from both single and dual extruder FDM
73 printers. These components are scalable, enabling model manufacturing suitable for both
74 personal investigation and demonstration in larger lecture settings.

75

76 The primary aim of this report is to aid other researchers and educators in translating chemical
77 structure details and knowledge in more physical ways with 3D printing. To this end, we
78 highlight an example application by assembling and manipulating cyclohexane at different
79 scales. Six-member ring system conformations are a core topic in introductory Organic
80 Chemistry courses,²⁴ and these conformers are a factor in the reactivity of ring and sugar
81 structures.²⁵⁻²⁷ The printed models flexibly adopt the key ring conformers,²⁴ and the force
82 needed for ring interconversion pathways can be directly explored and qualitatively evaluated
83 by hand.

84

85 **PROTOCOL:**

86 **1. Preparation of model files for 3D printing**

87

88 NOTE: The large number of 3D printers and free and commercial printing software make exact
89 directions beyond the scope of this article. General protocol process and recommendations are
90 provided here, with specific considerations given for representative models shown with the
91 Simplify3D 4.1.2 software and MakerGear M2 FDM 3D printers. Dedicated manufacturer
92 directions specific to a reader's printer and slicing software combination take precedence over
93 the provided recommendations.

94

95 1.1. Download the supplementary stereolithography (.stl) files associated with this article
96 (**Supplementary Files S1-S5**). Upload these files to the computer with the slicer program.

97

98 1.2. Import one of the C_atom_sp3, H_atom, or C-C_bond files into your slicer program. Use
99 millimeter format for the units if an option is available. In Simplify3D, either click the "Import"
100 button of the "Models" panel of the main window or select the "Import Models" command
101 under the "File" pulldown menu. Select the appropriate model file from the resulting file
102 browser.

103

104 1.2.1. Import both H_atom_dual_bottom and H_atom_dual_top for dual extruder prints of the
105 hydrogen atom. Align, group, and assign the component models to the relevant extruder based
106 on the target filament color.

107

108 1.3. Scale the imported model to the desired size. In Simplify3D, double-click either the
109 graphical model in the main display or the listed model in the "Models" panel of the main
110 window. This action opens a model editing panel that enables translation, rotation, and scaling
111 of the target model. Representative models are presented for 50%, 100%, 200%, and 320%
112 scale for all interconnecting parts.

113

114 1.3.1. Activate support structures for C_atom_sp3 models with scales greater than 100%.
115 Support structures can be used but are generally not necessary for all other models.

116

117 1.3.2. Activate a raft or brim structure for 100% and smaller scale models. Such structures
118 should not be necessary for most larger models as the flat base will have sufficient contact with
119 the bed surface to remain fixed in place. Rafts help provide a well-adhered first layer for a 3D
120 print, so if there are any difficulties in the stability of the first printed layer at any scale,
121 activating a raft structure could lead to more successful prints at the expense of the material
122 needed for the raft structure.

123

124 1.4. Duplicate models to generate an array of models as desired by selecting the "Duplicate"
125 Models" option from the "Edit" menu of Simplify3D and entering the number of model parts in
126 the resulting dialog box. Arrange the model(s) near the center of the build platform by clicking
127 the "Center and Arrange" button in the "Models" panel of the main window, or by selecting the
128 "Center and Arrange" option under the "Edit" pulldown menu. See **Figure 1** for an example
129 arrangement of six C_atom_sp3 models printed with PLA (polylactic acid).

130

131 Note: It is safest to print a single part at a time, though printing multiple small parts of the same
132 color is usually more time-efficient. The print quality of parts in arrays is often lower because of
133 the need for more filament retraction points between models. Array prints of models also have
134 an increased likelihood of failure as one fallen part during printing can interfere with the
135 printing of other parts.

136

137 [Place **Figure 1** here]

138

139 1.5. Set the appropriate model processing settings for target prints. Simplify3D has
140 selectable default processing settings for PLA, ABS, and other available thermoplastics when
141 you add a new process or edit a process by respectively clicking the "Add" or the "Edit Process
142 Settings" from the "Processes" panel of the main window. Specific adjustments and rationale
143 for the provided molecular model parts follow.

144

145 1.5.1. Set the model infill value between 15% and 25%. This will use less filament and result in
146 lighter parts, but the final assembled structures will be strong enough to survive physical
147 manipulation.

148

149 1.5.2. Use 100% infill settings for the connector regions of C-C_bond and H_atom model parts
150 if possible or as needed to increase the durability of connector tabs.

151

152 1.5.3. Choose a print layer thickness of 0.2 mm or smaller to maintain print detail.

153

154 1.5.4. Set the "First Layer Speed" to a value between 25-50% in the "Layer" tab of the process
155 settings. A slowly printed first layer will improve adhesion to the print bed and will result in
156 more successful overall 3D prints.

157

158 1.5.5. Set the printer extruder and printer bed temperatures to values recommended for the
159 chosen printer filament material. The provided temperatures are starting point
160 recommendations.

161

162 1.5.6. For C_atom_sp3 model parts, use two Outline/Perimeter Shells with an "Outside-In"
163 Outline Direction to minimize print distortion at the bottom of the sphere. These options are
164 available from the "Layer" tab of the process settings window of Simplify3D. For all other parts,
165 the "Inside-Out" Outline Direction is recommended for a cleaner surface finish.

166

167 1.5.6.1. PLA: Extruder = 215 °C. Bed = No heating.

168

169 1.5.6.2. PETG (polyethylene terephthalate glycol-modified): Extruder = 235 °C. Bed = 80 °C.

170

171 1.5.6.3. ABS (acrylonitrile butadiene styrene): Extruder = 245 °C. Bed = 110 °C.

172

173 1.5.7. If performing a dual extruder print of the aligned H_atom_dual_bottom and
174 H_atom_dual_top models, optionally turn on an "ooze shield" option. The slicer will then

175 generate a thin wall geometry around your model that will catch any dripping polymer from the
176 inactive, yet still hot, extruder tip.

177
178 1.6. Slice the model into print layers to generate a G-Code toolpath. In Simplify3D, click the
179 "Prepare to Print!" button of the main window, or select the "Prepare to Print" option under
180 the "Edit" pulldown menu.

181
182 **2. Preparation of the printer for printing of parts**

183
184 2.1. Coat the surface of the printer bed with blue painter's tape for unheated beds. Coat the
185 surface of the printer bed with blue painter's tape and an underlayer of polyimide tape for
186 heated beds.

187
188 2.2. Apply a thin layer of glue stick to the blue painter's tape. Glue stick polymer will improve
189 print adhesion to the bed surface.

190
191 2.3. Place or close a ventilated enclosure over the printer bed. An enclosure minimizes air
192 currents that can disturb print annealing.

193
194 2.3.1. PLA: Open any/all ventilation ports as rapid cooling is preferred. Turn on a bed fan
195 during printing if possible.

196
197 2.3.2. PETG: Open a limited number of ventilation ports as gradual cooling is preferred. A bed
198 fan is unnecessary during printing.

200
201 2.3.3. ABS: Open a minimum number of ventilation ports as very gradual cooling is preferred.
Turn off bed fans during printing.

202
203 **3. Finishing and assembly of model structures**

204
205 3.1. Remove parts from printer bed. In the case of heated bed prints, remove parts after the
206 bed has cooled to avoid distorting the model during separation.

207
208 3.2. Remove raft or brim structures from the base of parts if used. Rub the base of the
209 model part with medium to fine grit sandpaper to remove any remaining attached raft
210 filaments.

212
213 3.3. Sand the base of C_atom_sp3 model parts with medium (120 grit) to very fine (320 grit)
214 sandpaper to remove surface defects. Smooth the surface with the very fine grit sandpaper.
215 Polish the surface to desired finish with a polishing cloth or buffer wheel at low revolution per
216 minute setting. A Dremel tool with a 0.5-inch diameter buffer wheel set to 10,000 RPM can be
217 used for polishing, taking care to not to overly heat the print and cause surface defects.

218 3.3.1. PLA: Prints typically have a slightly glossy finish following printing as shown in the panels
219 of **Figure 2**. This finish is marred by coarse sanding, but the glossy finish can be restored with
220 polishing.

221
222 3.3.2. PETG: Prints typically have a slightly glossy finish that can be sanded and restored with
223 polishing as with PLA.

224
225 3.3.3. ABS: Prints typically have a matte or only marginally glossy finish following printing
226 (**Figure 3A**). A high-gloss finish (**Figure 3B**) can be achieved by separately dipping the parts in an
227 acetone bath for 1-2 seconds and placing them in a ventilated area until the acetone has
228 evaporated and the surface solidified, typically 12-24 hours.

229
230 CAUTION: Acetone is flammable and should be applied sparingly in a fume hood or very well-
231 ventilated area. ABS dissolves in acetone, so parts with layer separation defects due to poor
232 annealing should not be treated with liquid acetone. Acetone will enter models through such
233 defects and dissolve the model infill (**Figure 3C**). Polishing with acetone vapor is a slower
234 process that will result in a similar effect, though safety precautions should be taken given the
235 flammability of acetone.

236
237 [Place **Figure 2** here]

238 [Place **Figure 3** here]

239

240 3.4. Insert connector ends of C-C_bond and H_atom model parts into sockets on
241 C_atom_sp3 model parts according to desired bonding topology. Squeeze model parts together
242 until an audible click is heard. Once connected, the single bond should freely rotate about this
243 connection without falling apart.

244

245 NOTE: The connection fit is tight, so this may require significant force for models with scaling
246 greater than 100%. The provided parts are not intended to be separated after connecting them
247 together, but they can be separated with a very significant applied force.

248

249 NOTE: Rotation about a connected bond is a desired feature for the provided parts and models.
250 Locking rotation requires an atom model (an sp₂ hybridized carbon, for example) with a fixed
251 structure in the connection socket that inserts between the spacings of the tabs on the end of
252 the bond model.

253

254 3.5. Assemble all printed parts according to the desired molecular structure. Saturate all
255 C_atom_sp3 model parts by filling any open socket with an H_atom model part. For a ring like
256 cyclohexane, close the ring with a C-C_bond model part between C_atom_sp3 model parts.

257

258 **REPRESENTATIVE RESULTS:**

259 The protocol provided covers a variety of potential options for interactive molecular model
260 construction. As a basic and unifying example for a molecular assembly using these model
261 parts, we have chosen to assemble interactive cyclohexane structures at a variety of scales.

262 **Figure 2** shows the parts necessary for this structure: six C atoms, six C-C bonds, and twelve H
263 atoms. These specific prints were crafted using both a MakerGear M2 and a MakerGear M2
264 Dual printer. The more costly dual extruder printer enables the production of dual color
265 components, here the two-colored hydrogen atom structures with the color change at the
266 midpoint of the bond (**Figure 2A**). The mono-colored hydrogens in **Figure 2B** print in about 50-
267 60% less time due to the lack of an ooze shield structure and lack of polymer retractions in
268 switching between active extruders. The assembled cyclohexane structures (**Figure 2C**) are
269 functionally equivalent, though the dual extruder prints tend to look moderately more refined.
270

271 The PLA models in **Figure 2** have a reasonably nice finish, one that is more refined than ABS
272 models straight off the printer (**Figure 3A**). Chemical treatment of ABS models with acetone
273 gives a smooth and high gloss finish that almost gives the surface a wet look (**Figure 3B**). Such
274 finishing can be troublesome, particularly if ABS models are not annealed well. Large models
275 printed with ABS are prone to layer separation defects, this when the previous layer cools
276 before the extruder can traverse over to lay down the next layer. It is critically important for
277 large ABS prints that the environment around the heating bed of the printer maintain an even
278 and warm temperature to slow this cooling rate. If a print with a layer defect is submersed in
279 acetone, the acetone will enter the model and dissolve the interior support structure. This will
280 collapse the model from the inside as shown in **Figure 3C**.
281

282 A visually distinct appearance is secondary to functionality of the model structures. The
283 connectors were designed to enable free rotation about single bonds. To test their utility in
284 different systems, four different sets of part sizes were printed, with the carbon atom diameter
285 running from 17.5 mm, 35 mm, 70 mm, and 112 mm. The assembled cyclohexane structures
286 (**Figure 4**) were all able to flex, distort, and adopt relevant conformers in the same manner. The
287 smallest of these models was the most prone to print flaws, making this size potentially too
288 small and not recommended without tweaking the relative size of the parts. One of the primary
289 benefits to the smaller prints is the speed of printing. An array of six of the smallest carbon
290 atoms printed in around two hours, this in comparison to the 10 hours required for a single
291 carbon atom of the largest size. While slow to print, large models are potentially more effective
292 for communication in lecture settings where it would be difficult to see the motion of a small
293 structure from a distance.
294

295 [Place **Figure 4** here]
296

297 The dynamic aspect is one of the key attributes that separate these structures from other
298 printable molecular models. Since the atoms can readily rotate relative to one another, the
299 structures can be distorted to snap into the different representative conformers of
300 cyclohexane. **Figure 5** shows the chair, boat, and the transition state structure for
301 interconversion between their respective configuration spaces. This transition state point has
302 four labeled carbon atoms in a nearly planar geometry,^{24,28} the same transition state structure
303 that one achieves doing B3LYP/6-311+G(2d,p) calculations.²⁹ Following the same transition
304 state imaginary frequency motion, slightly twisting 2 up and 3 down will snap the model into

305 the boat conformer landscape, while slightly twisting 2 down and 3 up will return the structure
306 to the chair conformer.

307

308 [Place **Figure 5** here]

309

310 The state point free energy estimates (**Supplementary Table S1**) from B3LYP/6-311+G(2d,p)
311 calculations of optimized state points (**Supplementary Files S6-S9**) give a gap between the
312 twist-boat and boat conformers of 0.8 kcal/mol, which is very close to thermal energy at
313 298.15 K. This suggests that conversion between these should sample nearly freely. The gap
314 between the chair conformer and interconversion transition state is more than ten times this
315 value, indicating that the chair should be conformationally locked in comparison. This is
316 illustrated in **Figure 6**, which shows estimated average conformer energy when each carbon
317 atom location relative the ring plane is latitudinally projected onto a sphere over the course of
318 a gas phase Molecular Dynamics calculation.^{30,31} In the chair conformer on the left, the energy
319 is low when the carbon atoms are displaced above or below the ring plane, but it ramps up
320 dramatically if they displace to align with the ring plane. In the boat conformer, the conformer
321 energy is relatively low when carbons are in the ring plane (twist-boat state), and the more
322 highly displaced boat conformer is not at a drastically higher energy. These configuration
323 landscapes can be explored with the 3D printed cyclohexane models, with the chair conformer
324 only being able to locally vibrate while the boat conformer can smoothly undulate from one
325 pair of opposite carbon atoms to the next.

326

327 [Place **Figure 6** here]

328

329 **FIGURE AND TABLE LEGENDS:**

330 **Figure 1: Like-colored atoms or bonds can be printed as arrays.** To increase printing efficiency
331 at a slight cost in quality, parts of like color are readily printed in arrays. Here, six PLA carbon
332 atoms are printed together, each positioned on a small raft structure with an outlining brim
333 structure.

334

335 **Figure 2: Dual extruder prints can be more visually refined.** (A) Dual extruder model hydrogen
336 atom prints are visually more cohesive than (B) all white model hydrogen atom prints. (C) When
337 connected together to form complete cyclohexane rings, the assembled PLA models are
338 functionally identical.

339

340 **Figure 3: ABS models can be chemically processed for a glossy finish.** (A) ABS model prints
341 tend to have a more diffuse or matte appearance, but (B) after chemically treating the parts
342 with a brief dip in acetone they gain a high gloss finish. (C) If acetone enters the interior of the
343 print through layer separation defects, the acetone will dissolve the model from the inside out,
344 causing it to collapse.

345

346 **Figure 4: Models are functional at a variety of scales.** To illustrate how the models can be
347 printed for different purposes, cyclohexane models were assembled at four different scales and

348 all retain the same functionality. The carbon atoms of the largest are larger than a softball (112
349 mm diameter) while the assembled cyclohexane of the smallest could fit within a softball.

350

351 **Figure 5: Conformers of cyclohexane are fully accessible.** As the atoms can rotate about their
352 bonds, the models can adopt the sterically locked chair and more conformationally free boat
353 forms. The transition state between these forms involves four nearly coplanar carbon atoms in
354 the ring. Lightly twisting 2 up with 3 down will slip the model to the boat conformer, while
355 twisting 2 down with 3 up will return the model to the chair conformer.

356

357 **Figure 6: Model behavior matches calculations.** In the chair and boat conformer states, the
358 latitudinal displacement of carbon atoms about the ring plane over the course of a Molecular
359 Dynamics calculation can be projected onto the surface of an enclosing sphere. While the chair
360 form is most energetically stable, it is locked and can only interconvert to the inverted form by
361 passing through a high energy transition state. Both calculations and printed model flexibility
362 indicate that the boat and twist-boat conformers are separated by close to $1 k_B T$ at 298.15 K,
363 allowing nearly free latitudinal displacement of carbon atoms in this form.

364

365 **DISCUSSION:**

366 The primary aim of this study is to report a protocol for the crafting of dynamic molecular
367 models with commodity 3D printers. These printers are increasingly accessible, often even free
368 to use in libraries, schools, and other venues. Getting started involves making choices about
369 both the models to print and the materials to use and deciding from these options may require
370 some inspiration regarding what creative additive manufacturing can do for research and
371 instruction. To address these issues, we provide some practical material recommendations,
372 suggested model parts, a 3D printing protocol, and an example application, each of which
373 warrant further discussion.

374

375 There are many choices of thermoplastic for use in 3D printing. We highlight three in the
376 presented protocol as these three materials are currently the most widely available for do-it-
377 yourself 3D printing. The choice may depend on what material is supported by an available 3D
378 printer, for example many open access facilities will only print with PLA because of
379 environmental constraints. PLA is a biodegradable and compostable material that has a printing
380 protocol with mild temperature settings. Both ABS and PETG are less environmentally friendly
381 and not generally recyclable, though PETG is based on highly recyclable polyethylene
382 terephthalate (PET) and may eventually see wider spread reprocessing like PET. Sustainable
383 printing practices would involve printing few parts at a time to ensure both print quality and
384 print success, this while using as little discarded material (support structures, rafts, ooze
385 shields, etc.) as possible. PLA can be brittle, so if available, ABS and PETG thermoplastics can
386 result in prints that are more mechanically resilient and have improved layer adhesion,
387 respectively. These properties could be desirable for an interactive molecular model that will
388 see regular manipulation in a laboratory or classroom setting.

389

390 The models presented here take these considerations into account, though they are firstly
391 engineered to work together to enable dynamic molecular model construction. At the default

392 scale, they will assemble successfully into interactive molecular structures. They can readily be
393 scaled up to large models, though assembly will require more force as the connection prongs
394 are less easy to distort at larger size. In shrinking the components, a 50% reduction in size will
395 still work with minor modifications, such as shrinking the carbon atom model to 48-49% while
396 keeping the bond and hydrogen atom at 50% to enable tighter connections between parts in
397 PLA prints. Models this small are more delicate and often require raft structures to successfully
398 print, but they are still functional as dynamic molecular models.

399

400 The thermoplastic material and chosen models to print are the two most critical aspects of a 3D
401 printing protocol. The chosen thermoplastic will dictate the temperature, adhesion, annealing,
402 and finishing considerations and options. If the available 3D printer does not have a heated
403 bed, PLA is the only one of the presented thermoplastic choices that will print parts
404 reproducibly. While the provided parts are designed to reproducibly print with different
405 thermoplastics and hold up to dynamic manipulation, prints will degrade with use and crack,
406 often between print layers, when placed under increasing stress. In such situations, it is easy
407 and relatively cost effective to print a replacement part.

408

409 The dynamic functionality of molecular assemblies printed from the provided models
410 differentiates this work from other available and 3D printable models that primarily highlight
411 connectivity and bonding types. The dynamical aspects are presented in small part with the
412 example cyclohexane structure. The configuration landscape of cyclohexane is directly
413 accessible by hand using these models, and the topologies of these landscapes are in general
414 agreement with computational investigations. Much of this comes from a respect for the
415 specifics of molecular geometry and degrees of freedom in these physical modeling
416 components. In Linus Pauling's commentary on their success in discovering the structure of the
417 α -helix,¹ they claimed that their contemporaries faced difficulties coming from idealistic
418 integral assumptions and adopting "...only a rough approximation to the requirements about
419 interatomic distances, bond angles, and planarity of the conjugated amide group, as given by
420 our investigations of simpler substances." More quantitative insight along these lines requires
421 more specific detail than the considerations taken in building these model parts, but these
422 models and recommendations provide a foundation for general interactive physical
423 investigation of molecular systems. These models are an extension of 3D printable model kits
424 we have been producing for research and outreach activities for several years prior to this
425 report, and additional component parts that are compatible with both these models and the
426 described protocol are available from the authors to enable more diverse bonding
427 arrangements and dynamical action.

428

429 **ACKNOWLEDGMENTS:**

430 This work was supported by the National Science Foundation (NSF) under Grant No. CHE-
431 1847583.

432

433 **DISCLOSURES:**

434 The authors have nothing to disclose.

435

436 **REFERENCES:**

437 1 Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: Two hydrogen-
438 bonded helical configurations of the polypeptide chain. *Proceedings of the National
439 Academy of Sciences.* **37** (4), 205-211, (1951).

440 2 Claussen, W. F. Suggested Structures of Water in Inert Gas Hydrates. *The Journal of
441 Chemical Physics.* **19** (2), 259-260, (1951).

442 3 Claussen, W. F. A Second Water Structure for Inert Gas Hydrates. *The Journal of
443 Chemical Physics.* **19** (11), 1425-1426, (1951).

444 4 Watson, J. D. & Crick, F. H. C. Molecular Structure of Nucleic Acids: A Structure for
445 Deoxyribose Nucleic Acid. *Nature.* **171** (4356), 737-738, (1953).

446 5 Watson, J. D. *The double helix : a personal account of the discovery of the structure of
447 DNA.* (Weidenfeld and Nicolson, 1981).

448 6 Cademartiri, R. *et al.* A simple two-dimensional model system to study electrostatic-self-
449 assembly. *Soft Matter.* **8** (38), 9771-9791, (2012).

450 7 Reches, M., Snyder, P. W. & Whitesides, G. M. Folding of electrostatically charged
451 beads-on-a-string as an experimental realization of a theoretical model in polymer
452 science. *Proceedings of the National Academy of Sciences.* **106** (42), 17644-17649,
453 (2009).

454 8 Tricard, S. *et al.* Analog modeling of Worm-Like Chain molecules using macroscopic
455 beads-on-a-string. *Physical Chemistry Chemical Physics.* **14** (25), 9041-9046, (2012).

456 9 Tricard, S., Stan, C. A., Shakhnovich, E. I. & Whitesides, G. M. A macroscopic device
457 described by a Boltzmann-like distribution. *Soft Matter.* **9** (17), 4480-4488, (2013).

458 10 Capel, A. J., Rimington, R. P., Lewis, M. P. & Christie, S. D. R. 3D printing for chemical,
459 pharmaceutical and biological applications. *Nature Reviews Chemistry.* **2** (12), 422-436,
460 (2018).

461 11 Jones, O. A. H. & Spencer, M. J. S. A Simplified Method for the 3D Printing of Molecular
462 Models for Chemical Education. *Journal of Chemical Education.* **95** (1), 88-96, (2018).

463 12 Paukstelis, P. J. MolPrint3D: Enhanced 3D Printing of Ball-and-Stick Molecular Models.
464 *Journal of Chemical Education.* **95** (1), 169-172, (2018).

465 13 Pinger, C. W., Geiger, M. K. & Spence, D. M. Applications of 3D-Printing for Improving
466 Chemistry Education. *Journal of Chemical Education.* **97** (1), 112-117, (2020).

467 14 Robertson, M. J. & Jorgensen, W. L. Illustrating Concepts in Physical Organic Chemistry
468 with 3D Printed Orbitals. *Journal of Chemical Education.* **92** (12), 2113-2116, (2015).

469 15 Au - Da Veiga Beltrame, E. *et al.* 3D Printing of Biomolecular Models for Research and
470 Pedagogy. *JoVE.* doi:10.3791/55427 (121), e55427, (2017).

471 16 Fourches, D. & Feducia, J. Student-Guided Three-Dimensional Printing Activity in Large
472 Lecture Courses: A Practical Guideline. *Journal of Chemical Education.* **96** (2), 291-295,
473 (2019).

474 17 Rossi, S., Benaglia, M., Brenna, D., Porta, R. & Orlandi, M. Three Dimensional (3D)
475 Printing: A Straightforward, User-Friendly Protocol To Convert Virtual Chemical Models
476 to Real-Life Objects. *Journal of Chemical Education.* **92** (8), 1398-1401, (2015).

477 18 Griffith, K. M., Cataldo, R. d. & Fogarty, K. H. Do-It-Yourself: 3D Models of Hydrogenic
478 Orbitals through 3D Printing. *Journal of Chemical Education.* **93** (9), 1586-1590, (2016).

479 19 Carroll, F. A. & Blauch, D. N. 3D Printing of Molecular Models with Calculated
480 Geometries and p Orbital Isosurfaces. *Journal of Chemical Education*. **94** (7), 886-891,
481 (2017).

482 20 Van Wieren, K., Tailor, H. N., Scalfani, V. F. & Merbouh, N. Rapid Access to Multicolor
483 Three-Dimensional Printed Chemistry and Biochemistry Models Using Visualization and
484 Three-Dimensional Printing Software Programs. *Journal of Chemical Education*. **94** (7),
485 964-969, (2017).

486 21 Carroll, F. A. & Blauch, D. N. Using the Force: Three-Dimensional Printing a π -Bonding
487 Model with Embedded Magnets. *Journal of Chemical Education*. **95** (9), 1607-1611,
488 (2018).

489 22 The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints.
490 *3D Printing and Additive Manufacturing*. **1** (3), 137-140, (2014).

491 23 Penny, M. R. *et al.* Three-Dimensional Printing of a Scalable Molecular Model and
492 Orbital Kit for Organic Chemistry Teaching and Learning. *Journal of Chemical Education*.
493 **94** (9), 1265-1271, (2017).

494 24 Nelson, D. J. & Brammer, C. N. Toward Consistent Terminology for Cyclohexane
495 Conformers in Introductory Organic Chemistry. *Journal of Chemical Education*. **88** (3),
496 292-294, (2011).

497 25 Anet, F. A. L. & Bourn, A. J. R. Nuclear Magnetic Resonance Line-Shape and Double-
498 Resonance Studies of Ring Inversion in Cyclohexane-d11. *Journal of the American
499 Chemical Society*. **89** (4), 760-768, (1967).

500 26 Mayes, H. B., Broadbelt, L. J. & Beckham, G. T. How Sugars Pucker: Electronic Structure
501 Calculations Map the Kinetic Landscape of Five Biologically Paramount Monosaccharides
502 and Their Implications for Enzymatic Catalysis. *Journal of the American Chemical Society*.
503 **136** (3), 1008-1022, (2014).

504 27 Satoh, H. & Manabe, S. Design of chemical glycosyl donors: does changing ring
505 conformation influence selectivity/reactivity? *Chemical Society Reviews*. **42** (10), 4297-
506 4309, (2013).

507 28 Allinger, N. L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1
508 and V2 torsional terms. *Journal of the American Chemical Society*. **99** (25), 8127-8134,
509 (1977).

510 29 Gaussian 09 v. Revision C.01 (Gaussian, Inc., Wallingford CT, 2010).

511 30 Abraham, M. J. *et al.* GROMACS: High performance molecular simulations through
512 multi-level parallelism from laptops to supercomputers. *SoftwareX*. **1-2** 19-25, (2015).

513 31 Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and
514 testing of a general amber force field. *Journal of Computational Chemistry*. **25** (9), 1157-
515 1174, (2004).

516