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UBIQUITY OF CONICAL POINTS IN
TOPOLOGICAL INSULATORS

BY Avrexis Drovor

Asstract. — We show that generically, the degeneracies of a family of Hermitian matrices
depending on three parameters have a conical structure. Our result applies to the study of
topological phases of matter. It suggests that adiabatic deformations of two-dimensional topo-
logical insulators come generically with Dirac-like propagating currents, whose total conduc-
tivity equals the chiral number of conical points.

Résumic (Omniprésence des points de Dirac dans les isolants topologiques)

Nous montrons que les valeurs propres dégénérées de matrices dépendant de trois parametres
possédent généralement une structure conique. Nous appliquons ce résultat & I’étude des phases
topologiques de systémes quantiques. Nous montrons que les déformations adiabatiques entre
deux isolants topologiques distincts ont une conductivité globale égale au nombre chiral de
points de Dirac.
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1. INnTRODUCTION

Let € be the space of N x N Hermitian matrices; € C € consisting of matrices
with simple eigenvalues; and T? be a two-dimensional torus. Given Hy and H; in
C>(T?,&*), is there a path from Hy to Hy, that remains in C°°(T?2, £*)?

MATHEMATICAL SUBJECT CLASSIFICATION (2020). 47A13, 81Q10, 81QO05.
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508 A. Drouvor

In general, the response is no: there is a topological obstruction, related to the
eigenbundles of Hy and H;. When this obstruction is present, any path from Hy
to H; acquires degenerate eigenvalues. In this paper, we explore the shape of these
crossings. We show that generically, they exhibit a conical structure.

This result has a counterpart in topological phases of matter. When two topologi-
cally distinct insulators are adiabatically connected, it suggests that generically:

— Finitely many channels supporting chiral currents appear;

— Up to large times, these currents follow a Dirac equation and are concentrated
(in phase-space) along conical eigenvalue crossings;

— The chiral number of currents equals the Chern number difference.

This establishes a quantitative link between (a) asymmetric currents; (b) eigenvalue
crossings; and (c¢) the bulk-edge correspondence.

1.1. Genericrry or conicar points. — We first state our result in a form that applies
to topological phases of matter. We postpone the general statement to Section 1.4.

Let T? = R?/(27Z)? and Hy, H; be two elements of C*°(T?, &), with eigenvalues
M (H;(©) < -+ < A (H;(€)), repeated according to multiplicity. We assume that
for some n € [1, N — 1] and all £ € T?,

(1.1) An(Ho(€)) < Ang1(Ho(€)),  An(Hi(€)) < Ang1(Hi(9)).
Let £ be the set of smooth homotopies from Hy to Hy:
LE{H e (0,1 x T%, &) : H(0,-) = Ho, H(1,-) = H; }.

Derinrrion 1. If H € £, we say that A\, (H) and \,1+1(H) cross (or degenerate) at
Co = (s0,&0) € [0,1] x T2 if A, (H(Co)) = A1 (H (Co))-
We say that A, (H) and A,41(H) cross conically if A, (H({)) has multiplicity
precisely two; and if there exist ag € R? and Sy € M3(R) invertible such that
(1.2) { A (H(Go+¢)) = A (H()) + (a0, &) — [[Soell + o(e)
At (H(Co+€)) = M (H(G0)) + (a0, €) + [[Soe] + ofe)
Conical degeneracies correspond to tilted cones in the graphs of eigenvalues — see

Figure 1. In particular, conical crossings of A,,(H) and A,11(H) are isolated. At first,
we could think that they are rare among degeneracies: a non-empty intersection of

, c€R?® small

two surfaces is in general a curve (rather than a point). Nonetheless:

Tueorem 1. If Hy and H; are elements of C*°(T?, &) satisfying (1.1), then
L = {H € £ : all crossings of A\y(H) and \,11(H) are conical}
is a dense open subset of L.

The natural topology on £ is that induced by COO([(), 1] x T2, 8), see Section 1.7.
Results at lower regularity are also possible; our techniques typically require C2.

As a simple consequence of Theorem 1, for generic H € £, \,(H) and \,41(H)
cross at only finitely many points: conical crossings are isolated. Under a topological
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Ficure 1. (a) Eigenvalue surfaces of H(sg,-) near a conical point
(s0,&0) of H. They intersect at the vertex of a (non-isotropic) cone.
(b) Eigenvalue surfaces of H (s, ) for s # s¢ near sg. They no longer
touch.

condition on Hy and Hj, crossings must nonetheless arise. Indeed, (1.1) allows us to
define a rank-n vector bundle % over T?: the fibers are

(&) =

n

ker(Ho(€) — Xj(Ho(€))), €€ T2

j=1

We can also define ¥, associated to H;: only (1.1) is necessary to construct such vector
bundles. Hence, if there is a homotopy between Hy and H; that maintains (1.1), then
there are smooth vector bundles ¥, — T2, s € [0, 1], interpolating between ¥ and %;.
In particular, ¥ and #; would be topologically equivalent.

This restriction can be measured via the Chern number — the vector bundle analog
of the Euler characteristic. This number can take any integer value, even in the con-
text of eigenbundles — see the appendix in [Drol9c] — and characterizes the topology
when the basis is a two-torus — see e.g. [Pan07, Mon17]. Thus, ¥, and ¥] are topolog-
ically equivalent if and only if ¢1 (%)) = ¢1(#1). In particular, if Hy, H; € C*°(M, &)
satisfy (1.1) and ¢1 (%)) # ¢1(#1), then any homotopy between Hy and H; admits de-
generacies. These, according to Theorem 1, are generically all conical — see Figure 2.

1.2. CONNECTION WITH TOPOLOGICAL PHASES OF MATTER. — We review tight-binding,
translation-invariant models of insulators at an energy A\g € R. These systems are
represented by selfadjoint Hamiltonians Hy : ¢2(Z2,CN) — ¢2(7?,CN) with:

(13) [:H:07Tj] = Oa (Tjw)m = ¢m+ej§ and )‘0 ¢ J(:HO)'

In (1.3), o(Hp) denotes the £2(Z?, CV)-spectrum of Hy. Physically, A\g ¢ o(H,) means
that there is no plane-wave propagation at energy Ag.

Thanks to (1.3) and [T7, T5] = 0, we can diagonalize Hy, T} and T5 simultaneously.
The eigenvalues of Tj are i, ¢; € T* = R/(27Z). Joint eigenspaces of Ty and T

J.E.P. — M., 2021, tome 8
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Ficure 2. For each n € [1,N — 1], C*(T?, &) splits in components
distinguished by Chern numbers. If Hy and H; lie in different compo-
nents, a path joining Hy to Hy (blue) acquire crossings. Non-conical-
type degeneracies (red) are rare in C*°(T?, €).

canonically identify with CV:
2 , ,
N fer (75 — ') = {(e*™ o) mezz : o € CNY}, &= (&1,6) € T
j=

Thus, the analysis of 3y reduces to that of its Bloch transform: the T2-parametrized
family of N x N Hermitian matrices

(1.4) Ho(€) = e ™. Hy - ™, € e T2

The insulating condition Ao ¢ o(Hy) and the spectral decomposition of Hy into
{Ho(&)}eer= imply that g is never in o(Ho(€)). Thus, Hy satisfies (1.1).

A standard question in topological phases of matter is whether two materials can
be deformed to each other while maintaining their electronic properties. If JH; is
another insulator at energy A\g, with associated vector bundle ¥; of rank n, then H;
also satisfies (1.1). As explained in Section 1.1, if ¢1(¥)) # ¢1(¥1), then there are
no path {H},e0,1) connecting Ho and H; while maintaining (1.3). Physically, two
topologically distinct insulators cannot be deformed to one another without passing
by a conductor.

Theorem 1 explains quantitatively this failure. Generically, conical crossings arise
as one transitions from Hy to Hj. The quantity ¢;(¥1) — ¢1(%) is fundamental in
the analysis of interface effects between topological insulators; see e.g. [RH08, Ball9a,
Drol19c]. Below, we express it as the number of conical crossings, counted according
to chirality.

Assume that H € L and A\, (H) and A,11(H) degenerate conically at (p; and define
(Jf); = (f, f;), where (f1, f2) is an orthogonal basis of ker (), (¢o) — H((o)). We write
a Taylor expansion of the 2 x 2 matrix JH ((y + €)J* near e = 0:

3
(1.5) TH(Go+e)J* = JH((o)J* + Y (Age); - 05 + O(%),

j=1

JIEP. — M., 2021, tome 8



UBIQUITY OTF CONICAL POINTS IN TOPOLOGICAL INSULATORS b

where 01,09, 03 are the standard Pauli matrices and Ag € M5(R). Using the conical
structure, Ay is invertible — see (5.7) below. The quantity sgn(det(Ag)) is called the
chirality of the conical point. For such degeneracies, it coincides with the topological
Weyl charge defined in [MP14].

Tueorem 2. — Let H € L, such that \,(H) and Any1(H) degenerate conically pre-
cisely at C1,...,Ck. If sgn(det(Ay1)), ... sgn(det(Ak)) are the associated chiralities,
then

K
(1.6) c1(#) — e1(%) = ) _ sgn(det(Ay)).
k=1

Theorem 1 guarantees that L # @ — in fact, that L is a residual set.

1 3 RELATION WITH ADIABATIC TRANSPORT AND BULK-EDGE CORRESPONDENCE

In this section, we explain the physical consequences of Theorems 1 and 2 on
transport in adiabatic deformations of topological insulators.

Let Hp and H; be two Hamiltonians satisfying (1.3). Let {J{;}¢[0,1] be a homotopy
between Hy and Hy; extend H, by Hp for s < 0 and by H; for s > 1. For § > 0, we
define Hamiltonians Q% and 3° on ¢2 (ZQ, (CN) by
Q5 + (ch)*
—s
Both Q% and H% model a (spatial) deformation from Hy to H; transversely to Rey,
occurring at speed 6. In addition, H° is selfadjoint; and for small §, H° — Q% = O(¥)
as operators on ¢?(Z? CV).

We are interested in the adiabatic scaling: 4 — 0. This regime has an important
place in the mathematical physics literature; see e.g. [Sim83, Ber84, PST03, FT16].
It corresponds to changing Hy to H; globally (i.e., on a scale 61 >> 1) while preserv-
ing translation-invariance locally (i.e., on a scale 6~ 1/2 — note 1 <« §~1/2 < §~1).

Generically, A, (Hsn,) and Ap41(Hsn,) do not degenerate for most values of dng.
For such values, we can define the local Chern number of H? at (n1,dns): it is that
of Hsy,. The local Chern number is discontinuous at degeneracies, see Figure 3.

(L7 (Q%), = (Homot), ., m=(my,mg) €Z% H° =

In adiabatic domain-wall deformations of honeycomb structures, edge states arise
and are concentrated near Dirac points (isotropic conical points) [FLTW16, LTWZ19,
Drol19b, DW20]. At leading order, they propagate according to an emerging Dirac
operator, in the direction prescribed by chirality.

The analysis of [FLTW16, LTWZ19, Dro19b, DW20] is local in nature and would
extend beyond Dirac points. Theorem 1 shows that degeneracies are generically con-
ical. Hence, the Dirac-type propagation of edge states is universal in the adiabatic
regime. See Section 1.5 and the appendix for more details.

In analogy with [Drol9b, Drol9a, DW20], the total number of edge states, signed
according to propagation, is the sum over chiralities. From Theorem 3, it is the total
Chern number difference. Hence, (1.6) is a form of the bulk edge correspondence,
the left-hand-side playing the role of an edge index — see [Hat93, KRSB02, EGS05,

J.E.P.— M., 2021, tome 8
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1 o) =3 =959 g,
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Ficure 3. When deforming adiabatically two topological insula-
tors Hy and H;, one must pass discontinuity channels for Chern
numbers (s = s1,82). These support a signed number of currents
equal to the jump of Chern numbers.

ASBVBI13, GP13, PSB16, BKR17, Drol9c|]. While the interface between Hy and H;
has width §~!, the asymmetric transport described above concentrates in finitely
many strips of width §—1/2 (corresponding to jumps of local Chern number). This is
a much thinner region. This concentration phenomenon — valid only in the adiabatic
regime — is not captured by the bulk-edge correspondence.

1.4. GeNeraL sTATEMENT. — Theorem 1 will be the consequence of a stronger state-
ment. Let X be a smooth compact manifold of dimension 3.

Derinition 2. — If H € C*(X, &), we say that H has a degeneracy at g € X if
H(z0) admits repeated eigenvalues.

We say that this degeneracy is conical if for some n € [1, N — 1]:

(i) An(H(20)) = An+1(H(20)) and all other eigenvalues of H(x) are simple;

(ii) There exist @ C X neighborhood of zy in X, £ € C®(Q,R) and ¢q €
c> (Q, [0, oo)) with a non-degenerate critical value zero at zo such that

{ M (H(z)) = L(z) = Q(ﬂf)
)\n+1(H( ) é(li +\/

For degeneracies of precisely double multiplicity, the mere estimate (1.2) is equiv-
alent to the smooth identity (1.8); see Section 2.1. In other words, Definition 2 corre-
sponds to Definition 1, with the additional requirement (i).

(1.8) Z near .

Tueorem 3. — When dim(X) = 3, the set
(1.9) M= {H € C*(X, &) : all degeneracies of M in X are com’cal}

is dense and open in C*(X,¢&).

JIEP. — M., 2021, tome 8



UBIQUITY OTF CONICAL POINTS IN TOPOLOGICAL INSULATORS 513

According to the von Neumann-Wigner theorem [vNW29], € \ €* has codimen-
sion 3 in €. Since dim(X) = 3, the range H(X) of H has Hausdorff dimension at
most 3. Thus, generically, H(X) N (€ \ €*) has Hausdorff dimension 0; see Figure 4.
This result is closely related to various work about rarity of degenerate eigenvalues
in mathematical physics; see e.g. [Col91, Arn95, Tey99]. It is worth mentioning that
Theorem 2 applies to non-topologically trivial manifolds — as required in applications
to solid state physics. This is the technical part of the proof, see Section 3.4. For
related results valid when X is a simply connected regions, we refer to [DP12, §4].

Theorem 3 completes [vNW29]: it shows that the degeneracies of a 3-dimensional
family of matrices are conical. In particular, generic elements in C*° (X, £) have finitely
many degeneracies. As an immediate corollary with X = T3:

Cororrary 1. The degeneracies of Bloch eigenvalues of a generic Z3-invariant
Hamiltonian on (*(Z3,CN) are all conical.

-~

Ficure 4. The range H(X) C € of H has (typical) dimension 3, while
& ~ &* has codimension 3. Generically, H(X) and & \ &* intersect
transversely, along a set of dimension 0.

1.5. RELATION WITH EXISTING WORK AND PERSPECTIVES. The present work contrasts
with earlier results in tight-binding, quantum graphs, and continuous graphene mod-
els [Wal47, Col91, KP07, FW12, AFH'18, FLTW18, Leel6]. These papers use the
symmetries of the hexagonal lattice to show existence of Dirac points.

The present paper is not symmetry-driven. It is instead topology-driven: conical
points arise generically when trying to connect two topologically distinct Hamiltonian,
and no other type of degeneracies may form.

When connecting two topologically distinct Hamiltonians, asymmetric currents
appear along the interface: the celebrated edge states. Theorems 1 implies that generic
edge states of adiabatic systems on Z2? have amplitudes that, after rescaling, evolve
according to a universal Dirac-like equation:

(1.10) (D¢ — D(x2,D,))B =0, Dy=—id,,

where ID(x9,€) is a family of 2 x 2 matrices which depends linearly in x5 and &.
We refer to the appendix for a formal derivation of (1.10). A full proof would somewhat
be transverse to this work; see [FLTW16, Drol9b, ADHY19, DW20, ADH20| for

JIP — M., 2021, tome 8



514 A. Drouvor

derivations in slightly different context. See also [FKG03, FK04, Bal19b, Bal19c| for
direct work on (1.10).

This Dirac-type propagation should also appear universally in continuous systems
— see e.g. [RHO8, FLTW16, Dro19b, DW20] for honeycombs. This would require to
extend Theorem 3 to differential operators. After some relatively standard reductions,
the techniques developed here can treat systems on L?(R?) (corresponding to N = 00).
However they would yield a physically moot genericity result: it would hold within
a class much larger than differential operators. We refer to [Col91, Kucl6] for some
interesting related conjectures, and formulate our own:

Consecrure 1. The set
{V € C>(R*/Z?) : all degeneracies of Bloch eigenvalues of — Ags + Vare conical}
is dense and open in C>(R3/Z3).

1.6. Orcanization. — We start with the proof of Theorem 3. In Section 2, we prove
that M is open. This relies on the fact that conical points correspond precisely to
critical values zero of the matrix discriminant. In Section 3, we prove that M is dense.
When N = 2, this boils down to an algebraic identity combined with Sard’s theorem.
For N > 3, it relies on a reduction to the case N = 2.

Theorem 1 follows from Theorem 3, as explained in Section 4. The proof of The-
orem 2 is independent of the rest of the paper. It relies on arguments from [Drol9a]
— see Section 5. In the appendix, we explain the origin of the effective Dirac equa-
tion (1.10).

1.7. Norartions

— Given N € N, & denotes the space of N x N Hermitian matrices , &% C &
denotes matrices with simple eigenvalues; and F C € consists of matrices with at
most N — 2 distinct eigenvalues. We provide these spaces with the (Hilbertien) norm
JAJ2 = Trew (42).

— Given a smooth compact manifold X, M is the space C*(X,€); and M Cc M
consists of elements in M with only conical degeneracies — see Section 1.4. We fix a
Riemannian structure on X, with Levi-Civita connection V. The space C*(X, €) is
the closure of C*(X, &) in C°(X, &), for the norm

[Hl|ex = sup {| H ()| + [V*H(2)| : v € X}, HeM=C%(X,e).

It has a structure of Banach algebra. The space M inherits a structure of complete
metric space, with distance

o0

(1.11) d(H,H)=> 2

k=0

—x IH = Hlex

t H HeM.
1+ ||H — H|cx

— The space C>°([0,1] x T2, €) consists of Hermitian-valued smooth functions func-
tions on (0, 1) x T2, whose derivatives extend continuously to [0, 1] x T? — also provided
with the norm (1.11).

JIEP. — M., 2021, tome 8



UBIQUITY OTF CONICAL POINTS IN TOPOLOGICAL INSULATORS 5ib

— Given Hy, Hy € C®°(T?, &) satisfying (1.1), the space £ C C>([0,1] x T?, &)
consists of smooth paths connecting Hy to Hy. The space . C £ consists of paths
whose n-th and n + 1-th eigenvalues degenerate conically — see Section 1.1.

— The Hausdorff dimension of a set § is denoted dimg(8).

— The Pauli matrices are

0_10 0_01 U_O—i 0_10
o) TP ro) P i o) TP o -1
The matrices 01,032,053 form a basis of the space €y of traceless Hermitian 2 x 2

matrices.
— If z € R3 and r > 0, B(x,7) is the ball centered at  of radius r.

2. M 1s OPEN

We recall that M = C*°(X, €). In this section, we show that the set M defined
in (1.9) is open in M. In Section 2.1 we review the discriminant D(A) of a matrix A.
This is a quantity depending smoothly on the entries, whose zero set corresponds to
matrices with degeneracies.

We then identify conical degeneracies of elements of M with non-degenerate crit-
ical points of D(H). Because of the stability of such points, M is open in M — see
Section 2.2.

2.1. DISCRIMINANT AND CONICAL POINTS. The discriminant of a matrix is the (square
of the) Vandermonde determinant of the eigenvalues:

1) D) = [T = a(@) = [T () - w()”, aee.
J#k j<k
It is a symmetric polynomial in A1 (A), ..., Ax(A). Thus, by the fundamental theorem
of linear algebra, it is a polynomial in the quantities Z;nzl Aj(A)™ = Tr[A™] - see
e.g. [Macl5, §1.2]. In particular, D(A) depends smoothly on A.
The discriminant detects degenerate eigenvalues: D(A) = 0 if and only if A € €*.
In fact, it even identifies conical degeneracies.

Lemma 2.1. — H € M has a conical degeneracy at xg if and only if Do H — i.e.,
Do H(z) = D(H(z)) - has a non-degenerate critical value, zero, at xo.

Remark 2.1. — No structure — but that of a smooth manifold — is required to define
non-degenerate critical points of v € C*°(X,R). A Riemannian structure on X allows
us to consider the covariant Hessian V2u; it is a symmetric endomorphism on T'X
— see e.g. [Petl6, §2.1]. Non-degenerate critical points correspond to du(z) = 0 and
V2u(x) non-singular — see e.g. [Pet16, §5.12].

J.E.P. — M., 2021, tome 8
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Proof

(1) We assume first that H has a conical degeneracy at zo. Let A, (H(zq)) =

Anat1 (H(xo)) be the unique degenerate eigenvalue of H(xo). We write
DoH=(N\ps1(H) = N(H)*-F, FE T (@) - \(m)”.
j<k
(4,k)#(n,n+1)

Using (1.8), Do H = q - F, where ¢ € C*°(X,R) has a non-degenerate critical value
zero at xg. From general theory, the eigenvalues of Hermitian matrices are Lipschitz in
the entries — see [Ser10, Prop. 6.2] — hence a fortiori continuous. Thus F' is continuous.
Moreover, since all eigenvalues of H(x() are simple but A, (H(xo)) = Ant1 (H(mo)),
F(xz) > 0. We deduce that D o H has a non-degenerate critical value zero at xo.

(2) Now we assume that D o H has the non-degenerate critical value zero at xg.
Then there exists Q2 neighborhood of xg such that

x€Q~{ro} = DoH(zx)#0.

In particular, for z € Q \ {zo}, the eigenvalues \; (H(z)) of H(z) are simple — hence
smooth functions of x.
(3) Since D o H(zg) =0, H(zo) has at least one degenerate eigenvalue. Define

S = {j S [1,N — ].] : )‘j (H(I’())) = )\jJrl (H(xo))}
Since eigenvalues of Hermitian matrices are Lipschitz functions of the entries, there
exists C' > 0 such that (after possibly shrinking €):

(2.2) e, jesS = ‘)\](H(x)) — Ajt1 (H(a:))‘ < CHH(LI’,‘) - H(xO)H
Let J be the cardinal of S. From (2.1) and (2.2), we deduce that for some C’ > 0,
2 €Q = |DoH(x)| < C'||H(x) — H(zo) ||

Since H depends smoothly on  and D has a non-degenerate minimum at xg, we de-
duce that J < 1. This implies that H(xo) has exactly N — 1 distinct eigenvalues.
Thus, if n € [1, N — 1] is the unique integer such that A, (H(xo)) = Apt1 (H(xo)),
then for j # n,n+ 1, A\;(H) are smooth in Q.

(4) Let us fix a contour v C C enclosing A, (H(z0)) = An+1(H (20)) but no other
eigenvalue of H(xz(). After possibly shrinking Q, for x € Q, 7 enclose A, (H (x)) and
An+1(H(z)) but no other eigenvalue of H(z). Thus,

Fi(z) €Tr [/ z(z — H(m))ljz] =M (H(2)) + Apg1 (H(2))
(2.3) 7 ™

and  Fy(z) € Tr {/ 22 (z — H(x))lzd;] = )\n(H(:c))2 + /\n+1(H(x))2

are both smooth functions on €. It follows that both
g det An(H) + A (H) By

2 2
2

(2'4) ()\n+1(H) - )\n(H)) _ 215 — 2F12

4 o 4

and ¢=

are smooth functions on .

JIEP. — M., 2021, tome 8



UBIQUITY OTF CONICAL POINTS IN TOPOLOGICAL INSULATORS 517

(5) The equation (2.4) imply that A\, (H) = ¢ — \/q and A\,1(H) = £+ ,/q. Thus,
it remains to show that ¢ has a non-degenerate critical point at xy. Again, we write
DoH=q-F F< [ () - M)

i<k
(5,k)#(n,n+1)
We observe that F' is Lipschitz, with F'(0) # 0. Hence, we have
Do H(z) =q(z)(1+0(1)) near zo;
this implies
q(z) =DoH(z)  (1+0(1)).

Since D o H(z) has a non-degenerate critical point at x, so does ¢g. This completes
the proof. 0O

2.2. M 1s oren. — Here we prove that M — defined in (1.9) — is open in M. We fix
a Riemannian structure on X and consider Hessians of smooth functions on X as
symmetric endomorphisms of TX — see Remark 2.1. Define f : M x X — R by

(2.5) F(A,z) EDet[(V2(D o A))(2)]” + Do A(x).

Fixz e X and H € M. If H(x) € £*, then f(H,z) > Do H(z) > 0. If H(x) ¢ &*,
then H(x) has a conical degeneracy at z. Because of Lemma 2.1, D o H has a non-
degenerate critical point at x, thus

f(H,z) > Det[(V*(D o H))(:I:)}2 > 0.

We deduce that f(H,-) is positive on X; since X is compact, inf,cx f(H,z) > 0.
Since X is compact and f(A,-) depends only on the first two derivatives of A, there
exists a constant C' depending only on || H||c2 such that

(2.6) IBllcz <1 = [f(H + B,z) — f(H,2)| < C|Bllc=

Since infyex f(H,z) > 0, there exists €9 > 0 such that whenever ||B||c2 < &g, for
every x € X, f(H + B,z) > 0.

Hence, if |B|| < &¢ and = € X, then either:

— D(H(z)+ B(z)) >0, that is H(z) + B(z) € &*;

— or D(H(z)+ B(x)) > 0 and Det[(V2D(H + B))(x)]2 > 0.
In the latter,  is a non-degenerate critical point of D(H + B). Thus z is a conical
degeneracy of H + B. This shows that H + B € M, hence M is open in M.

3. M 1s DENSE

In this section we show that M is dense in M. When N = 2, this follows from
Sard’s theorem and the fact that D(A) is the sum of 3 = dim(X) squares depending
smoothly on A; see Section 3.1.

Two new problems arise for N > 3. Degeneracies can be more intricate: triple
eigenvalues or pairs of double eigenvalues may arise. In Section 3.2, we show that
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these are too rare to be significant in our problem. This will allow us to focus on
N x N families of matrices with at least N — 1 distinct eigenvalues.

The other obstacle is more serious: for N > 3, D(A) is the sum of at least 5 squares
—see [Dom11]. Since 5 > dim(X), the arguments of Section 3.1 do not naively extend.
The key mechanism is that degeneracies of a N x N family H € £ with at least N —1
distinct eigenvalues reduce locally to those of a 2 x 2 family. This enables us to apply
the theory of Section 3.1 in simply connected subsets of X — see [DP12, §4] for a
related analysis. Passing from these local reductions to a global result on X is the the
technical part of the proof, see Section 3.3-3.4. We recall that in solid state physics
applications, X is generally not simply connected.

3.1. Tue case N = 2. — In this section only, we assume that N = 2. This consider-
ably simplifies that proof that M is dense — and it will serve in the general situation.

Proof that M is dense when N = 2. — When N = 2, the Pauli matrices o9 = Ids, o7,
02,03 form a basis of €. If A = Z?:o a; - 0, then
(3.1) o(A) =ag=*al, D(A)=|al? wherea= [a,a2,as]"

Let H € M; we write H(x) = Z?:o h;(z) - oj. Let h = [h1, ha, h3] " and

CE{teR?:Jr e X, h(z) =t and tk(h/(z)) < 2}
={h(z):z € X, k(W (z)) < 2}.
According to Sard’s theorem, the set R? \ € is dense in R3: given € > 0, there exists
b€ R\ C with [|b]| < ¢; see e.g. [GP74, §1.7]. Set B = Z?:l bjo;; we claim that all
degeneracies of H — B are conical. Indeed from (3.1):

3

D(H(z) — B) = ||h(z) - b||* = > (hj(x) — b;)".

j=1
From Lemma 2.1, H — B can have a non-conical degeneracy at a point z € X only

if h(z) = b and rk(h'(z)) < 2. This is always excluded because b ¢ C. Since € was
arbitrary, we conclude that M is dense in M when N = 2. O

3.2. REMOVING HIGH-MULTIPLICITY DEGENERACIES. — We go back to N # 2. In this
section, we explain why we can focus our attention on family of matrices that always
have at least N — 1 distinct eigenvalues.

Lemwva 3.1, The set
gL {A € &: A has at most N — 2 distinct eigenvalues}

has Hausdorff dimension at most N> — 6.

See [AST78, §2] and [DE99, §3] for related results — but a different approach. Before
giving the proof of Lemma 3.1, we discuss its consequences. We aim to prove that M
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is dense in M: given H € M and € > 0, there exists H, € M such that d(H, H.) < 2e.
Since dim X = 3 and dimg; F < N2 — 6, the set
§={H(z)—F:z€X, FeJ}

has Hausdorff dimension at most N2 — 3; thus € \. 8 has full measure. In particular,
there exists B € £\.8 such that |B|| < &; and H(z)+ B ¢ J for every € X. That is,
H+BeC®X,ENT).

Thus, to prove that M is dense in M, we just need to show that for every H €
C™(X, &\ F), there exists H. € M with d(H, H.) < e.

Proof of Lemma 3.1
(1) We observe that F = F; U Fy, where

F1 = {A € & : A has a triple eigenvalue}, Fo=F N TF1.

Therefore, it suffices to show that F; and F» have Hausdorff dimension at most N2 —6.
(2) We observe that 1 = ®(G1, R), where G consists of Hermitian N x N matrices
of rank at most N — 3; and ®(B,\) = B+ A\. We write

(3.2) Gy = Jbog{B €&:rk(B)=j};

and we recall that the sets in the RHS of (3.2) are smooth submanifolds of &, of
dimension N? — (N — j)? — see e.g. [GP74, §1.4]. Therefore, §; is a finite union of
manifolds of dimensions up to N2 — 9. We deduce that dimsc G = N2 — 9 and
dlmg.(.'}"l == N2 — 8.

(3) The set Fy consists of matrices that have two distinct eigenvalues of multiplicity
two but no triple eigenvalues. We show that it has Hausdorff dimension at most N2 —6.
For Ay € F5, there exists a unitary N x N matrix U such that

Alde O 0
U*AgU = 0 A O )
0 0 A2ldo

where A1 # Ao and A is a diagonal matrix of size N — 4, with no diagonal coefficients
equal to A1 or As. In particular, both

A O Arlde 0
—-A d —-A
[0 A Idg] Lo [ 0 A] 2

are invertible (N — 2) x (N — 2) matrices. Therefore, there exists a neighborhood
Q C &€ of Ag such that for any C' € 0, we can write

C1 Cy D3 Do

U*AU = =
el =0 n)

where C3 — A1 and D3 — Ay are (N — 2) x (N — 2) invertible matrices.
(4) If Ry, Ro, R3 are consistently-sized matrices, with Ry invertible,

R, R *
(R ]) = wonin - minin,
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This can be seen for instance from Schur’s complement formula:

Ry Ry [ldy_2 —R{'R)| [R 0
R} R 0 Id, | [R5 R3— R3R;'Ra|’

Let Q1,09 C R be sufficiently small disjoint neighborhood of Ai, A2 such that if
p1 € Qp and py € Oy,

Dy o (A) = (C1 = i1 — C5(Cs — pa) "' Ca, Dy — pa — D3(D3 — p1z) ™' D),

from () to pairs of 2x2 Hermitian matrices, is well-defined. By (3.3), ®,,, ., (A4) = (0, 0)
if and only if A — pp and A — uo are of rank N — 2; equivalently, if and only if u

(3.3)

and po are two double eigenvalues of A.

(5) The map ® is a local submersion at Ay. Indeed, we have

M2
€1 0 0
dq)ul,#z (Ao) U0 00 U* = (61,62).
0 0 €9

We note that ®,, ,, has range in pairs of 2 x 2 Hermitian matrices, which has dimen-
sion 8. Thus, by the local submersion theorem [GP74, §4], ®,! . (0,0) is a submanifold
of & of dimension N2 — 8.
Using continuity of eigenvalues, after potentially shrinking €2, we have
FonNQ = U o, ,,0,0).
(p1,112) €21 X Q2

Since 21 x 5 has dimension 2, dimg¢(F2NQ) < N2—6. Since Q C € is a neighborhood
of an arbitrary element Ag € Fo, Fs is a countable union of sets of dimension at most
N2 — 6, thus it has dimension at most N2 — 6. ]

3.3. REMOVING BAD POINTS: PREPARATORY LEMMAS. — Because of Section 3.2, we focus
(without loss of generalities) on H € C°(X,& \ F): H has, at all points of X, at
least N —1 distinct eigenvalues. We will show in Section 3.4 that H is arbitrarily close
to M.

A naive generalization of Section 3.1 to N > 3 requires to write D(A) as a sum of
three squares depending smoothly on A € € —see (3.1). This is not possible: according
to [Doml1],* at least 5 squares are necessary; see also [Ily92, Lax98, Par02, Dom11].
In Section 3.4, we will get around by writing D(H) locally — instead of globally — as
a sum of 3 squares. The present section lays out preparatory lemmas.

Fix z, € X. According to the assumption, there exists n, € [1, N — 1] such that

M(H(ze)) <+ <A, (H(za)) S M1 (H(zw)) <o < Ay (H(zy)).

Since eigenvalues are continuous functions of the entries, there exists an open neigh-

borhood X, C X of z, such that
(34) zeX, = M(H(z))< <, (H(z)) <A1 (H(2)) < <Ay (H(z)).

After potentially shrinking X,, there exists a ball B(0,2r,) C R?, and a smooth
diffeomorphism ¢, : B(0,2r,) — X, with ¢,(0) = z,. We set Y, = ¢(B(0,r,)) C X..
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We observe that x, € Y,. Thus, the collection of open sets {Y;}.,ex covers X and
we can pass to a finite collection, associated to points z1,...,Zp.

Lemma 3.2. There exists g € (0,1) such that for all B € M with ||H — Bl|¢o < do,
for every p € [1, P],

v€X, = M(B(x)) < <Ay, (B®) < Ap41(B(@) <+ < An(B(w)).

This result is a direct consequence of (3.4) with continuity of eigenvalues in the
entries of the matrix — [Ser10, Prop. 6.2].

Given A € M, we say that x € X is a bad point of A if A has a non-conical
degeneracy at x. We let (A) be the set of bad points of A; in particular, A € M if
and only if (A) = @. Bad points are stable:

Levva 3.3, — Let A € M and Z C X be an open set such that B(A) C Z. Then
there exists no € (0,1) such that for all B € M with ||Bllc2 < no, Z(A+ B) C Z.

Proof. — Recall (2.5) and (2.6): there exists C > 0 (depending on ||A||c2) such that
1Bl <1 = |f(A+ B,2) = f(4,2)| < C||Blles,

(35) def 2
where f(A4,z) = Det[(V*(Do A))(z)]” + Do A(z).

Moreover, f(A+ B,z) =0 if and only if x € (A + B).
On the compact set X \ Z, f(A,-) > 0. From (3.5), if || B||¢= is sufficiently small,
f(A+B,-)>0o0n X \ Z. Thus Z(A + B) C Z. This completes the proof. O

3.4. Proor or Tnrorem 3. — We refer to Figure 5 for a step-by-step pictorial expla-
nation of the proof.

Proof that M is dense in M

(1) As explained in Section 3.2, to prove density of M in M, it suffices to prove
density of Ml in C*°(X,E N ). Let H € C*°(X,ENF). Fix 0 < £ < dp/4, where Jy is
given by Lemma 3.2. For each p € [0, P], we construct recursively H, € M such that

d(H,Hy) < (1—27P)e; and B(H,) C Zy, Zp = Ypy1U---UYp.

In particular, Hp will satisfy d(H, Hp) < € and #A(Hp) = @.

For p = 0, we simply take Hy = H. For p > 1, we proceed by induction: we assume
that H,_, is constructed and we want to construct H,.

(2) For & € X, let V() be the eigenspace of H,_1(z) associated to the eigenvalues
An, (Hp,l(x)) and A, 11 (Hp,l(:zc)). Since d(H, Hp—1) < &, |H—Hp_1]|co < do. Thus
Lemma 3.2 implies that for every z € X,

(36) A1 (prl(ﬂf)) << /\np (prl(l')) < Aanrl (prl(l')) << AN (prl(x)).

Because of (3.6), V() induces a rank-two vector bundle over X,,; and so does V(z)L.
Since X, is diffeomorphic to a ball in R3, V and V* are trivial vector bundles — see
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Ficure 5. The proof that M is dense
goes as follows.

(a) We first cover X by topologically
trivial open sets (here Y7, Y>,Y3) on
which the degeneracies of H reduce
to those of a 2 x 2 system.

(b) In Y7, the degenerate part of H
reduces to that of a 2x2 system. Via
the procedure of §3.1, we can pro-
duce Hy, arbitrarily close to H, with
no bad points in Y;. By Lemma 3.3,
PB(H,) is a small perturbation of
PB(H)\ Y.

(c) We repeat the procedure and
produce Hsy, arbitrarily close to Hy,
with no bad points in Y5. As bad
points are stable, %(Hz) is close
to Z(H,). In particular passing
from H; to Hs does not generate
bad points back in Y3 \ (Y2 U Y3),
and removes bad points in Ys.

(d) We get new systems Hq, Ha, Hs,
recursively constructed, arbitrarily
close to H, with no bad points in
Y1, Y1UYo N\ Y3, Y1 UY, U Y3, respec-
tively. Since Y; U Y5 U Y3 cover X,
Hj is in M and is arbitrarily close
to H.
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e.g. [Moo01, §1.3]. Therefore, they both admit unitary frames. This means that there
exists U € C*°(X,,U(N)) such that for all z € X,

(37) Hyae) =) |80 e

where

— J(z) is a 2 x 2 Hermitian matrix depending smoothly on z € X,,, with
eigenvalues A, (Hp—1(z)) and An, 41 (Hp—1(2));
— J(z)t is a (N —2) x (N — 2) Hermitian matrix depending smoothly on
x € X, with simple eigenvalues \; (Hp—1(x)), j & {np,ny + 1}.
(3) Let x € C*°(X,R) be equal to 1 on a neighborhood of Y}, with support con-
tained in X,,. Let B be a Hermitian 2 x 2 matrix and define

o) = Hyeala) 4 320 Ula) [ ] U600

We note that H, € M: y = 0 when U is not well-defined. As C*(X,R) is an algebra,

def *
[Hp — Hp—1ller < awl|Bll,  ar = CrllxUller [IXU™ (|-
Using that s + s(1 + s)~! increases on [0, 00),

oo

oo
—k_|[Hp = Hpallen okl Bll
(3.8) d(Hy, Hy 1) =Y 27F <) 2
e kZ:O L+ |[Hp — Hp—1llcx kzo 1+ o BII"

We split the sum in the RHS in two parts, depending whether oy is larger than
| B||~*/2. Since s(1 + s)~' < min(1, s), we deduce that

o _aulB] " o alBl g
P S T

ap<||BlI-1/? *axlBl ap>||Bl|=/2 L ad| B

where kp is the smallest integer such that ay > ||B||~'/2? (with kp = oo if no such
integer exist). In particular, kg — oo as || B|| — 0. Going back to (3.8), we deduce
that

(3.9) d(Hp, Hy—1) < 2(|B||'?+27%) — 0 as ||B|| — 0.
(4) Let 1o be associated to H,_1 and Z,_; by Lemma 3.3. Thanks to Section 3.1
and (3.9), we can find a Hermitian 2 X 2 matrix B with the two following conditions:
— All degeneracies of J(z) + B in X, are conical;
— d(Hp, Hy—1) < min (27P¢,1/8).
The recursion assumption d(H, H,—1) < (1-277"Y)e and d(H,, Hp—1) < 2 Pe yield
d(H, H,) < (1 —27P)e. Moreover, d(H,, H,—1) < n9/8 implies ||H, — Hy_1|[c2 < no.
From Lemma 3.3 and the recursion assumption B(H,_1) C Z,—1, B(Hp) C Zp_1.

(5) To complete the recursion, it remains to show that #(H,) C Z,; equivalently,
that H), has no bad degeneracies in Y,,. When x(z) =1 (i.e., on a neighborhood of Y},),

Jx)+B 0

(3.10) Hy() =UG) |7 | V@)
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Using (3.7), the identity (3.10) implies that when x(x) = 1, the eigenvalues of H,(x)
are: A; (Hp,l(:v)) for j # np,np +1; and A; (J(x) + B), ji=12.

From (3.6), the only possible degeneracies of H,, in {x = 1} arise from X\ (J + B)
and Ay (J + B) By definition of B, all such degeneracies are conical. Since Y, C
{x = 1}, we get B(Hp) NY, = @. This completes the recursion and the proof of
Theorem 3. ]

4. Proor or Tueorem 1

Proof'that Lis open in L. — The proof is similar to Section 2. Fix H € L; let
{¢1,. .., ¢} be the (finite) set of points of [0,1] x T2, such that A, (H) and \,41(H)
degenerate.

For each j € [1, J], let ; be a contour enclosing A, (H((;)) = A1 (H(¢;)), but no
other eigenvalue of H((;). Using continuity of eigenvalues, there exist ¢g and 79 > 0
such that for B € £ with || B||c2 < €0 and ¢ € B((j,70), 7, encloses A, (H(¢) + B(())
and An41(H(C) 4+ B(¢)) but no other eigenvalues of H({) + B(().

Without loss of generality, the balls B((;, 7o) are disjoints. For ¢ € B((;, 7o), intro-
duce, similarly to (2.3),

G, B) = [ (- 10 - B0) 55| = an B(0).
Galc.B) E | [ 210 - pO) | 5 %A B(O)”

def

G(C. B) 26a(C. B) ~ G1(C. B = (Auea (H(Q) + BO)) M (H(©) + B()))

We note that G(¢;,0) = 0 hence VEG(Cj,O) > 0, because A, (H) and A,11(H) may
only degenerate conically. The identity G' = 2G5 — G% and the Cauchy representation
of G; and G5 imply that for some C > 0 and all ¢ € 2,

[VEG(¢, B) = VEG(C,0)] < C|Blice.
Therefore, after possibly shrinking €9 and €2,
B> < €0, ¢ €2 = VEG((,B) > 0.

Thus, if A, (H(C) + B(()) = At (H(C) + B(()) for ¢ € €, then this degeneracy is
conical. Finally, after shrinking ¢, /\n(H + B) and A\j,41 (H + B) cannot degenerate
outside 2. This shows that H + B € L: L is open in £. ]
Proof that L is dense in £

(1) We show that L is dense in £. Since eigenvalues are Lipschitz functions of the

matrix entries, we deduce from (1.1) that there exists ng € (0, 1) such that for every
Teég,

Ant1(Ho(§) +T) > A (Ho(§) +T
Ans1 (H1(€) +T) > Mo (Hi(€) +T) '

~—

(4.1) IT|| < 4no, €€T? = {
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(2) Let H € £: H is smooth on (0, 1)xT?, with bounded derivatives; and connects Hy
to Hj. Seeley’s operator [See64] extends H as an element of C§°((—m, 7) x T2, €), thus
as an element of C°°(T3, &) (still denoted H).

Let x0, x1 € C§°(T1, [0,1]) with x0(0) = x1(1) = 1 and
def o

supp(xo) C (—d0,00)/(27Z), supp(xo) C (1 — 70,1+ 710)/(27Z), 710 = W

For H € C>°(T3, &), we introduce
(4.2)  H(s,&) = H(s,€) + xo(s) (Ho(§) — 3(0,€)) + x1(s) (H1(€) — H(1,€)).

We observe that H restricts to [0,1] x T? as an element of £: it varies smoothly with
(s,€) and connects Hy to Hj.

(3) Fix € > 0. Using (4.2) and that C*(T3, &) is an algebra, we have |[H —H| o <
Ci||H — H||cw for some C, > 0. As in Step 3 in Section 3.4 there exists 1 € (0,10)
with

d(H,H)<m = d(H,H)<e.
We now demand that H € M, and d(H,H) < n1; such H exist by Theorem 3. Under
these conditions, H defined by (4.2) satisfies d(H,H) < &; we claim that A, (H) and
An+1(H) can only degenerate conically in [0,1] x T2

(4) For (s,€) € (rg, 1—70) x T2, we have H(s, &) = H(s, £). Since H € M, we deduce
that A\, (H) and \,;1(H) can only degenerate conically in (rg,1 —rq) x T?.

For (s,&) € [0,70] x T?, we have

|[Ei(s, &) — Ho(€)|| < [19(s,€) — Holl + [[Ho(€) — H(0, )]
< [H(s, &) = H(0, ) + 2[[Ho(§) — H(0,8) |
<rol|Hller +26 <ro(d+ [|Hllcr) + 26 < 3.
In the last line, we used the definition of rg and the inequality § < 19 < 1. Thanks
to (4.1), we deduce that \,(H) and A, (H) cannot cross in [0,79] x T2. A similar
argument shows that they cannot cross in [1 — rg, 1] x T2

Hence, the restriction of H to [0,1] x T? is in L; and d(H,H) < e. Since £ was
arbitrary, L is dense in £. This completes the proof of Theorem 1. O

5. CHERN NUMBER DIFFERENCE

Proof of Theorem 2
(1) We start with a few notations and definitions. Let H € L. Let R be the set of
points ¢ = (s,&) € [0,1] x T? such that A, (H(¢)) < Ap41(H(C)). For ¢ € R, we can
represent the projector I, (¢) to the first n eigenspaces of H(({) as a Cauchy integral:
1 ~1
(5.1) ()= om f (- HQ)
T (C)

- 211

where 7, (¢) C C encloses A\ (H(C)), ..., A (H(¢)) but no other eigenvalue of H(().
If {s} x T? C R, then IL,(s, -) induces a vector bundle over T?: the fiber at ¢ € T? is
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Range(IL,,(s,€)). We let 8 be the set of s € [0,1] such that ¥, is not well-defined —
equivalently, § = {s € [0,1] : 3¢ € T?, (s,&) ¢ R}.
For ¢ € R, we define

(5.2) Bu(¢) = Trew (T1(€) [0, TTn (€), 9, TTn (€)) -
This is a smoothly varying function on R, that interprets as the Berry curvature. In
particular, B, (§)d¢ is a two-form; and B, (€) is additive: if ( € R and \,—1 (H(()) <
A (H(C)), then B,(¢) = Bn—1(¢) + b(¢), where:
— Bp-1(C) is associated with the projector II,_1(¢) to the first n — 1
eigenspaces of H(¢) — see (5.1), (5.2) with n replaced by n — 1;
— b(¢) is associated to the rank-one projector m(¢) to ker (A, (H(¢)) — H(¢)):

b(C) = TrCN (TF(C) [85171—(4)’ 8527T(C)]) .
For s € [0,1] \ 8, the Chern number of ¥; is the integer

() = g [ Buls 01
In Step 6, we will use the space of 2 x 2 traceless Hermitian matrices €g. This space
is equipped with the Hermitian inner product (71, T) = Tr(717%); the Pauli matrices
01,092, 03 form an orthonormal basis. If o1, 09,03 is another orthonormal basis, then
there exists U € SU(2) (unique up to multiplication by +1Ids) and € € {£1} such

that
(53) ngE'UO'kU*, 1<k<3

This is precisely the content of the isomorphism between SU(2)/{£1d2} and SO(3);
see e.g. [Sin05, §4.2]. The number € € {£1} reads as the determinant of the (orthog-
onal) matrix of the basis (71, 02,03) in the basis (01,02, 03).

(2) Since H € L, the sets [0,1] ~ R and 8 are finite. The map s — ¢1(¥;) is well-
defined on [0, 1]\ 8. Since it is integer-valued, it is locally constant on each sub-interval
of [0,1] . 8. We deduce that

c1(71) —e1(%) = lim c1(Ys,+6) — c1(¥s, —s)

(5.4)
(Bu(sx +6,6) = Bu(s, — 8,))de.

I
[\
|-

AN
04»—4

B

It remains to compute each individual summand in the RHS of (5.4). For that, we use
the techniques developed in [Drol9a, §2] — and we refer to that paper for full details.

(3) Fix s, € 8; let Z be the set of points ¢ € T? such that (s, &) ¢ R. Using that
B(({) depends smoothly on ¢ € R, we deduce that for r sufficiently small,

(5.5) /T (Bu(ss +6,6) — Bu(s, — 6,6))de

= B, (54 4+ 0,§) — Bp(sx —0,§))d§ + O(9).
Py /Mgr( (52 +0.€) = Bu(s. = 6.6))dé + O(9)
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We refer to the proof of [Drol9a, Lem. 2.1] for details. Hence, it suffices to estimate
each summand in the RHS of (5.5).

(4) Fix ¢ = (8x,&x) € Z. Since H € L, A\, (H) and A,4+1(H) degenerate conically
at (.. In particular, A, (H((x)) > An—1(H(¢4)). Therefore, IT,,_1(¢) — hence B(() —
depend smoothly on ¢ near (. Using the additivity of the Berry curvature, we get

(5'6) Bn(C*+5) = b((*“"g) +O(1)a

for € sufficiently small. We refer to the proof of [Drol9a, (2.21)] for details. It remains
to understand b(¢) near (4, hence 7(¢) and its derivatives near (,.
(5) Let {f1, f2} be an orthonormal basis of ker(H (¢.) — An (H (¢x)). We define

rer—e =[]
(

We write a Taylor development of the 2 x 2 matrix JH({)J* near (,:

3
JH(G, +e)J* = JH(C)J* + Y Bjg; + O(?).

j=1
We note that JH(C.)J* = A, (H(()) -Ids by definition of J. We write B; in the basis
of Pauli matrices: B; = Zi:o a;10r- This yields

3 3
JH(( +¢e)J* = ()\n(H((*)) + Zajogj) o+ Y ajore; + O(E2).
j=1

j.k=1

Let A, be the 3 x 3 matrix with entries a;x, 1 < 7,k < 3. From Section 3.1, the
eigenvalues of JH ((, +¢)J* are

(5.7) M (H(C)) + (ao, €) £+ |Ave| + O(e?).

On the other hand, the eigenvalues of JH ((, + ¢)J* are A, (H((i +€)) + O(e?) and
Ans1 (H (G +€)) + O(e?) — for details, see the proof of [Drol9a, (2.19)]. Since these
intersect conically, A, must be invertible.

For ¢ # 0, the matrix Z?‘,k:l a;j,0LE; has two opposite, distinct eigenvalues. Let
mo(€) be the projector to the negative eigenvalue. Then

(G +€) = 7o(€) + O([e]), V7((x +¢) = Vmo(e) + O(1),
V(G +e) = O(lel ™), Vo(Ce +€) = O(le[ ™).
We refer to the proof of [Drol9a, Lem. 2.4] for such estimates. It follows that
b(Ce +€) =bo(e) + O(le| "), where bo(e) = Tren (mo(e) [Oe, mo(e), Be,mo(€)]) -
Grouping with (5.6), we obtain B,,((x + €) = bo(g) + O(|e|™1). In particular,

/ By (s, +6,6)d = bo (0, € —5*)d£+0< / |£1£|d5)
(5.8) [€—=&x < [€—&x|<T [€—&x|<r *
= / bo(£9,£)dE + O(r).
lgl<r
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(6) Since A, is invertible, the three matrices A4; = Zi:l ajror, 1 < j < 3,
form a basis of €;. We apply the Gran—Schmidt process to (Aj, Aa, A3): there ex-
ists (01,02,03) orthonormal basis of &y and (tj5) € Ms(R) upper triangular with
positive elements on the diagonal such that A; = Eizl tik0k.

We write o) = €, - Uo,U*, where ¢, is the determinant of (&1, 02, 03) with respect
to (01,02,03) — see (5.3). In particular, €, = sgn(det(A,)). It follows that

3 3 3
Aj =€, U(Z tjkak) U*, Z AjROKE; = €4 - U( Z tjkakej)U*.
k=1 3 k=1 j.k=1
Hence, m(¢) is, up to conjugation, the projector associated to the negative eigenvalue
3
of €, - Zqu:l tikokE;.

We define more appropriate coordinates

s _hadtln& z  hizd 41l + 1336

(5.9) & = T &2 110

Using invariance of two-forms under change of coordinates, bo(€)d¢ = bo(€)d€, where
bo (6, £)d¢ is the two-form associated to the negative eigenspace of

€0 - t11 (o1 + o261 + 0352)-
This setup allows us to apply [FC13, (23)], which gives:

, 1l 0 0

~ ~ ie3(£0)3 ~ te,

bo(£6,8) = ——=—F |G| - 1] A el
2028+ +1)77 15| o 1| 2g+&+1)

o

Under the change of coordinates (5.9), the disk |£] < r gets mapped to an ellipse
centered at distance O(1) from the origin, of dimensions ~ §~1. Thus,

(5.10) /|§|< bo (£, €)d€ = /R bo(+£8, €)d€ + O(8) = Leom + O(5).

We refer to the proof of [Dro19a, Lem. 2.5] for details.
(7) Grouping (5.4), (5.5), (5.8) and (5.10), we end up with

(M) —ca(Hh) = Z € +O0(r+9) = Z sgn(det(A,)) + O(r +6).
(LER (LER
Making § — 0, we end up with
(5.11) a(N)—a(%h) = Z sgn(det(A,)) + O(r).
C+ER

Taking r sufficiently small, the term O(r) is at most 1/2. Since both sides of (5.11)
are integers, we end up with
a(N)—a(%) = Z sgn(det(A*)).
C+ER

This completes the proof. O
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APPENDIX. CONTINUOUS APPROXIMATION

Let H € £ with a conical degeneracy at (sg,&) € (0,1) x T2 and H° defined
as in (1.7). In this appendix, we derive formally the effective Dirac equation (1.10).
It describes the evolution of amplitudes to solutions of (D; — %)y = 0 that are
initially concentrated (in phase-space) near (Rey + spez, &o).

A.1. Repucrion 10 (50,&) = (0,0). — We show that H? is unitarily equivalent to
an operator with a conical degeneracy at (0,0). Define

ffs(f) :Hso+s(£+£0), ﬁsfso(f—fo) :Hs(£)7

and JTCS, 5‘5, F3 relative to I;T, according to (1.4) and (1.7).
For m € Z?, set £ = m — [6so|ea, where [§1so] stands for the integer part of
5 1sg. For ¢ € £2(Z%,CN), we have:

Gt (35) (0) = €0 - (S50, -0,0) (0
_ [ Giterere a6) -
_/Tze EH0 L Hs, o0 (6)0(6) (2r)?

_ i€l | gy _e)de—g) - L
_/Tze H(smfso(f £O)¢(£ 50) (27‘r)2

= [ Ha T 0(6) - s = (27 ().
T2 ™

This means that UQ3U* = Q°%, where
Up(m) = (e“0°¢) (m — [0 solea), U*p(m) = €™ - ¢(m + [§~sole2).
This implies UHU* = H: HO and HO are unitarily equivalent.
A.2. ErrecTIVE EQUATION. — Since H¢ (&) has a conical degeneracy at (sg,&p), there

exists f1, fo € CV satisfying (1.5). As § — 0, we derive (formally) the leading asymp-
totics of H%¢ = Q%¢ + O(6), where

2
(A1) ¢(m) =™ " aj(soe2 +/*m)f; € £2(2%,CY), o€ C(R?,CN).

j=1

After rescaling, ¢ is semiclassically (scale §) localized near (Rej +spea, &y). We write
(A.1) as ¢ ~ U*yp, where p(m) = 23:1 a;(6Y2m) f; = J*a(6'/?m), and J : CN — C?
is the operator of (1.5). Using a Riemann sum argument, we observe that as 6 — 0,

5- @(51/26) = J* <(5 Z e—iél/zgma(él/Qm)>
(A.Z) meZz?

~ ( /]R 2 e—iﬁza(az)dm) — J*a(9).
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Thanks to Section A.1, we have H¢p = HOU*p = U*f}:f‘;cp. Now, we compute 5(‘%0:

s ((}T(‘S(p) (m) ~ (Q‘s(p) (m) = (jf(5m2<p) (m) = /1r2 et ﬁ6m2 o) - (2655)2
_ / ei51/2§m - Hs,, (51/2§)¢(51/25) . %,
- 2 (2m)?

where we made the substitution & — §'/2€. Since ¢ is spectrally concentrated near 0,
it is reasonable to replace the integration domain in (A.3) to R2. Using (A.2), we get

26 - i6Y/2em 12y pearey 98
(A4) (3%) (m = [ e (5120076
The identity (1.5) allows us to expand Hg,,, (61/2€)J* as
(A5) Him, (6"/2€)J" ~ J* (Eo + 6% - D(6"/my, €)),

where ID(s, &) is a family of 2 x 2 matrices depending linearly on (s, &), and Ej is the
energy of the conical crossing. Plugging (A.5) into (A.4), we obtain

H ~ J* i61/2em 1/2 1/2 ~ d¢
(Hp) (m) = J /R2€6 ¢ ‘(E0+5/ﬁ(é/mz,ﬁ))a(g)-(%)Z

= J*(Eo + 8"/ D) (6" *m),

where 1) = IP(x2, D,) is a Dirac operator. Since ¢(m) = J*a(6'/?m), this means
that J* approximately intertwines between HO and Ey + 621D, for adiabatic data.
Up to a phase and a time-rescaling, the equations Dy — Ey — 6%/21) and D, — Ip
are equivalent. Using the above intertwining, we conclude that (D; — 3%)y) = 0 has
approximate solutions whose asymptotics are slow linear combinations of f; and fs:

2
¢ Pottéom) N 5 (51124 spen + 8/2m) f,

=1

with amplitudes ; (¢, z) solving the Dirac equation (1.10): (D; — )3 = 0.
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