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Abstract: The bulk-edge correspondence predicts that interfaces between topological
insulators support robust currents. We prove this principle for PDEs that are periodic
away from an interface. Our approach relies on semiclassical methods. It suggests novel
perspectives for the analysis of topologically protected transport.

1. Introduction

In solid state physics, insulators are materials modeled by Hamiltonians with spec-
tral gaps. They are topologically classified through winding properties of their spectral
projections. Gluing together topologically distinct insulators generate materials with a
different electronic behavior: robust currents emerge along interfaces. Strikingly, the
existence of these currents depends on the bulk structure rather than on the interface.

This phenomenon is called the bulk-edge correspondence. It is a universal prin-
ciple that reaches beyond electronics, for instance in accoustics [YGS15], photonics
[HR07,RH08], fluid mechanics [DMV17,PDV19] and molecular physics [F19]. While
bulk and edge indices were introduced as early as [H82,TKN82,BES94], the mathe-
matical formulation of the bulk-edge correspondence started with [H93]. It has been the
object of various developments, covering Landau Hamiltonians [KRS02,EG02,KS04a,
KS04b], strongdisorder [EGS05,GS18,T14],Z2-topological insulators [GP13,ASV13],
K-theoretic aspects [BKR17,K17,BR18,B19] and periodic forcing [GT18,ST19].

In this work, we define and derive the bulk-edge correspondence for a class of PDEs
that are periodic away from the interface. The most important characteristics of our
approach is the use of microlocal techniques in a field traditionally dominated by K-
theory and functional analysis. It opens two promising perspectives:

• The quantitative analysis of topologically protected transport;
• The geometric calculation of bulk/edge indices in terms of eigenvalue crossings.
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1.1. Setting and main result. We study the Schrödinger evolution of electrons in a two-
dimensional material, i∂tψ = Pψ . The Hamiltonian P is an elliptic selfadjoint second
order differential operator on L2(R2):

P
def=

∑

|α|≤2
aα(x)Dα

x , aα(x) ∈ C∞b (R2,C), Dx
def= 1

i

∂

∂x
, α = (α1, α2) ∈ N

2.

(1.1)

The space C∞b refers to bounded functions together with all their derivatives; see
Sect. 1.5. The class (1.1) models for instance Schrödinger operators with a potential
V (x) ∈ C∞b (R2,R) and a (transverse) magnetic field ∂x1 A2 − ∂x2 A1, where A(x) ∈
C∞b (R2,R2):

− (∇R2 + i A(x)
)2 + V (x). (1.2)

It also includes the stationary form of the wave equation that appears in photonics and
meta-material realizations of topological insulators [HR07,RH08,KMT13,LWZ18]:

− divR2
(
σ(x) · ∇R2

)
, σ (x) ∈ C∞b

(
R
2, M2(C)

)
Hermitian-valued. (1.3)

In relation with solid state physics, we assume that for some L > 0, the coefficients
aα(x) behave like Z

2-periodic functions in the bulk regions x2 ≥ L and x2 ≤ −L ,
see (2.2). The periodic structures above and below the strip |x2| ≤ L may be different.
Hence, P represents the junction along |x2| ≤ L of two (potentially distinct) perfect
crystals, respectively modeled by Z

2-periodic operators

P+
def=

∑

|α|≤2
aα,+(x)D

α
x , P−

def=
∑

|α|≤2
aα,−(x)Dα

x

with smooth, Z2-periodic coefficients aα,±(x). This class covers bulk materials with
general Z2-lattice periodicity, see Sect. 2.1. See Fig. 1 for a pictorial representation
of P .

In the bulk (|x2| ≥ L), P+ and P− govern the quantum dynamics. We assume that
this region is insulating at energy λ0. Mathematically, this means

λ0 /∈ σL2(R2)(P+)
⋃

σL2(R2)(P−), (1.4)

where σL2(R2)(P±) is the spectrum of P±, see Sect. 1.5. In other words, P+ and P− block
wave-like propagation at energy λ0. Thanks to periodicity and to (1.4), the generalized
eigenspace of P+ with energy below λ0 induces a (Bloch) vector bundle E+ over the
2-torus (T2)∗ = R

2/(2πZ)2, see Sect. 4.1. The Chern integer c1(E+) is a topological
invariant of E+, associated to P+. One defines similarly E− and c1(E−) associated to P−.

While P behaves like an insulator at energy λ0 in the bulk |x2| ≥ L , it may still
support currents along the strip |x2| ≤ L . Following [KRS02,EG02,EGS05], we define
the interface conductivity as

Ie(P)
def= TrL2(R2)

(
i
[
P, f (x1)

] · g′(P)
)
, (1.5)

where f ∈ C∞(R,R) and g ∈ C∞(R,R) are such that

f (x1) =
{
1 for x1 ≥ �

0 for x1 ≤ −�
, g(λ) =

{
1 for λ ≤ λ0 − ε0
0 for λ ≥ λ0 + ε0

. (1.6)
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Fig. 1. Pictorial representation of a material covered in this work. A horizontal interface, |x2| ≤ L , with
arbitrary analytic structure, separates two distinct periodic medias (bulk), x2 ≥ L and x2 ≤ −L

In (1.6), � is an arbitrary positive number; and ε0 is any positive number such that
[λ0 − 2ε0, λ0 + 2ε0] does not intersect σL2(R2)(P−) ∪ σL2(R2)(P+).

The operator eit P · i[P, f (x1)] · e−i t P = ∂t ei t P f (x1)e−i t P measures the quantum
flux of charges from { f (x1) = 0} to { f (x1) = 1}: the current moving left to right. Since
−g′(λ) is a probability density, multiplying i[P, f (x1)] by−g′(P) and taking the trace
computes the density of current per unit energy (near λ0). In analogy with Ohm’s law,
Ie(P) is naively a (quantum) conductivity. See Fig. 2 and Sect. 2.3 for properties of
Ie(P). The main result of this work connects conductivity and topology:

Theorem 1. Let P be an elliptic selfadjoint operator of the form (1.1) equal to P+ for
x2 ≥ L and P− for x2 ≤ −L. If λ0 satisfies (1.4) then

2π · Ie(P) = c1(E+)− c1(E−). (1.7)

Theorem 1 is the bulk-edge correspondence: the bulk and edge indices are equal. The
formula (1.7) implies both quantization and topological robustness of the conductivity
Ie(P). Indeed, (1.7) shows that 2π · Ie(P) ∈ Z; and that an (even large) compact
perturbation of P preserves P+ and P−, hence the bundles E+ and E− as well as the
indices c1(E+), c1(E−) and Ie(P).

When c1(E+) 
= c1(E−), Theorem 1 shows that Ie(P) 
= 0; hence g′(P) 
= 0.
Since ε0 can be arbitrarily small in (1.6), this implies that λ0 ∈ σL2(R2)(P). Physically
speaking: the junction of two topologically distinct insulators is always a conductor.

When P = P (where Pu
def= Pu), we say that P is time-reversal invariant. In this

case, both indices in (1.7) are vanishing: Ie(P) = −Ie(P), hence Ie(P) = 0; and
the Berry curvature of E± is odd (see e.g. [D19b, §2.3]), hence c1(E±) = 0. When
P 
= P , the time-reversal invariance is broken; and Theorem 2 is non-trivial. This
includes Schrödinger operators with magnetic fields (1.2) and in meta-materials (1.3).

1.2. Strategy. The proof of Theorem 1 derives (1.7) starting from the formula (1.5) for
Ie(P). At the most conceptual level, our inspiration comes from Fedosov’s proof of the
index theorem [F70]—see also Hörmander’s account [H85, §19.3].

While our main result is not semiclassical (there is no asymptotic parameter h → 0 in
Theorem 1), a key step of the proof consists in deforming P to a semiclassical operator.
Specifically, we construct in Sect. 2.5 an h-dependent operator

Ph
def=

∑

|α|≤2
cα(hx, x)Dα

x : L2(R2) → L2(R2) (1.8)
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Fig. 2. The conductivity Ie(P) measures the flux of particles of energy ∼ λ0, moving from { f (x1) = 0}
(left) to { f (x1) = 1} (right), along the interface, |x2| ≤ L . See Fig. 1 for bulk and interface regions

which is equal to P when h|x2| ≥ 1, but whose coefficients admit a two-scale structure:
cα(x, y) ∈ C∞(R2 × T

2), T2 = R
2/Z2. Lemma 2.3 states that Ie(P) depends only

on P+ and P−; in particular, Ie(P) = Ie(Ph). The scaling (1.8) is semiclassical in the
following sense: if U (x, y) ∈ C∞(R2 × T

2) and u(x) = U (hx, x),

Phu(x) = (PhU
)
(hx, x) where Ph

def=
∑

|α|≤2
cα(x, y)(Dy + hDx )

α. (1.9)

The (leading) semiclassical symbol of Ph in x is operator-valued. It equals

P(x, ξ)
def=

∑

|α|≤2
cα(x, y)(Dy + ξ)α : L2(T2) → L2(T2). (1.10)

We emphasize that Ie(P) = Ie(Ph). Therefore, Theorem 1 reduces to a formula for a
(semiclassically scaled) index Ie(Ph). This enables us to give a semiclassical proof.

We rely on the spectral theory of two-scale operators (1.8) of Gérard–Martinez–
Sjöstrand [GMS91]. They construct a spaceH1 ⊂ S ′(R2×T

2), isomorphic to L2(R2),
such that Ph on L2(R2) and Ph on H1 are unitarily equivalent. Roughly speaking,
distributions in H1 are—up to normalization—L2(R2)-multiples of the Dirac mass on

{
(x, y) ∈ R

2 × T
2 : x = h(y + m), m ∈ Z

2
}

.

See Sect. 3.1. The equivalence between Ph and Ph realizes Ie(P) as a semiclassical
trace: we will see that

Ie(P) = Ie(Ph) = TrL2(R2)

([
Ph, f (hx1)

]
g′(Ph)

)

= TrH1

([
Ph, f (x1)

]
g′(Ph)

)
= Ie(Ph). (1.11)

Semiclassical trace expansions have a longhistory.Themost celebrated example is the
semiclassical Weyl law, see e.g. [DS99, §9], [Z12, §14] and references given there. For
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the present work, the most relevant results are due to Dimassi et al. [D93,DZ03,DD14].
For instance, [D93] shows that if ϕ ∈ C∞0 (R) satisfies

supp(ϕ)
⋂ ⋃

|x |≥M, ξ∈R2

σL2(T2)

(
P(x, ξ)

) = ∅

for some M > 0, then ϕ(Ph) is of trace-class on L2(R2) and as h → 0,

TrL2(R2)

(
ϕ(Ph)

) ∼
∑

j≥0
b j · h j−2, b0 =

∫

R2×(T2)∗
TrL2(T2)

[
ϕ
(
P(x, ξ)

)] dxdξ

(2π)2
.

(1.12)

Since Ph on L2(R2) andPh onH1 are conjugated, (1.12) also holds for TrH1

(
ϕ(Ph)

)
.

Hence, Dimassi’s result suggest that

Ie(Ph) ∼
∞∑

j=0
a j · h j−2, h → 0. (1.13)

But Ie(Ph) = Ie(P) does not depend on h. Thus, if (1.13) holds, then a j = 0 for
all j 
= 2; and a2 = Ie(P). The framework of Gérard–Martinez–Sjöstrand [GMS91]
reduces Ph to a discrete effective Hamiltonian E22(λ), realized as a pseudodifferential
operator with matrix-valued symbol, E22(x, ξ ; λ). The characteristic values/vectors of
E22(λ)—the solutions of E22(λ)u = 0—describe the spectral aspects of Ph relevant in
the computation of Ie(Ph).

Thebulk-edge correspondence for discreteHamiltonians has been analyzed in [KRS02,
EG02,EGS05]. Here we need an approach adapted to both our microlocal framework
and to characteristic value problems. Section 3.3 extends arguments from [EGS05] to
characteristic (versus eigenvalue) problems. We will eventually express Ie(P) in terms
of the asymptotics E±(ξ ; λ) of E22(x, ξ ; λ):

Ie(P) = J (E+)− J (E−),

and provide an explicit formula for J (E+) and J (E−)—see (3.36) below.
Without further considerations, recovering the Chern integers c1(E±) from J (E±)

is technically difficult. In Sect. 4, we design a specific effective Hamiltonian which
tremendously simplifies the calculation. This completes the proof of Theorem 1.

1.3. Relation to earlier work. The bulk-edge correspondence has been intensely studied
in relation to the integer quantum Hall effect, where the magnetic field is constant. We
refer to [KRS02,EG02,EGS05] for discretemodels; [KS04a,KS04b] forK-theoryproofs
in the continuum; [CG05] for properties of the edge index; and [T14] for results covering
strong disorder.

The analysis of continuous (versus discrete)models is necessarilymore sophisticated.
One reason is that a discrete system has a finitely many degrees of freedom—versus
infinitely many for continuous systems.

More importantly, there is a subtle phenomenon that can only happen in the con-
tinuous setting. For discrete Hamiltonians on �2(Z2,Cd), the Bloch eigenbundle below
sufficiently high energy is necessarily trivial: it is simply (T2)∗×C

d . This generally fails
for continuous Hamiltonians. In contrast with the discrete setting, there are sometimes
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no spectral gaps above the one containing λ0.1 Even if there were, there are no reasons
why the corresponding Bloch eigenbundles would have trivial topology—providing the
reduction to a discrete eigenvalue problem.

This generates new technical difficulties in the proof. While we still reduce our
continuousHamiltonian to a discrete system, the relevant spectral quantities are nownon-
linear eigenvalues (also called characetristic or singular values) rather than eigenvalues.
In the specific situation where the non-linear eigenvalue problem is actually linear—e.g.
if there exist topologically trivial spectral gaps of P± above that containing λ0—our
proof would simplify and resemble that of [EGS05].

Whilemost of the aforementionedbulk-edge correspondenceworks rely on functional
analysis or K-theory, our approach to Theorem 1 is fully based on PDE techniques.
It suggests a microlocal conjecture related to the quantitative aspects of transport in
topological systems. We refer to Sect. 1.4 for the corresponding discussion.

For the sake of simplicity, Theorem 1 focuses on second-order operators. The mi-
crolocal aspects of the proof generalize to all elliptic pseudodifferential operators whose
spectrum is bounded from below. The present work relies on the effective Hamiltonian
theory developed by Gérard–Martinez–Sjöstrand [GMS91]. This paper also covers con-
stant magnetic fields: A(x) = [B1x2, B2x1]� in (1.2). Consequently, we expect that our
proof extends to this case as well. There would be a technical cost: we would need to
work with magnetic translations instead of mere translations.

1.4. Perspectives. Our microlocal framework suggests exciting perspectives. In the dis-
cussion below, we assume that rk(E+) = rk(E−). We set:

n
def= rk(E+) = rk(E−).

Let Ph be the semiclassical Hamiltonian (1.9) with symbol P(x, ξ) : L2(T2) →
L2(T2), see (1.10). It does not depend on x1, see Sect. 2.5. Below, we emphasize this
independence via the notationsP(x2, ξ) = P(x, ξ) and cα(x2, y) = cα(x, y). The family{
P(x2, ξ) : ξ ∈ [0, 2π ]2} forms the Floquet decomposition (see e.g. [RS78, §16]) of

P(x2)
def=

∑

|α|≤2
cα(x2, y)D

α
y : L2(R2) → L2(R2).

For x2 sufficiently positive, P(x2) = P+ hence λ0 /∈ σL2(R2)

(
P(x2)

)
. Since rk(E+) =

n, λ0 lies precisely in the n-th gap of P(x2), which is necessarily open. Let λ1(x2, ξ) ≤
· · · ≤ λ j (x2, ξ) ≤ . . . be the eigenvalues of P(x2, ξ). Suppose for a moment that

∀(x2, ξ) ∈ R× [0, 2π ]2, λn(x2, ξ) < λn+1(x2, ξ), (1.14)

Note that the condition (1.14) is weaker than assuming that P(x2) has an open n-th
L2(R2)-gap for every x2 ∈ R. Yet, it allows for the construction of a smooth, x2-
parametrized family of (Bloch) bundles E(x2)→ (T2)∗ = R

2/(2πZ)2, whose fibers at
ξ ∈ (T2)∗ are the first n eigenspaces of P(x2, ξ). These bundles depend continuously
on x2. For x2 sufficiently positive, E(x2) = E+. We deduce that

n = rk(E+) = lim
n→+∞ rk

(
E(x2)

) = lim
n→−∞ rk

(
E(x2)

)
.

1 For instance, for magnetic Schrödinger operators (1.2), the Bethe–Sommerfeld conjecture holds [M97,
K04,PS10]: both P+ and P− have finitely many gaps. Thus, if λ0 is in the last gap of P+ or P−, then there
are no higher-energy spectral gaps.
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(x, ξ)

λ

supp(W)

λn+1(x2, ξ)

λn(x2, ξ)

2δ

μ(x2, ξ)

Fig. 3. Pictorial representation of dispersion surfaces, λn (blue) and λn+1 (red), with midpoint area of width
2δ (gray)—see (1.15). The symbol W is supported where

∣∣λn+1(x2, ξ) − λn(x2, ξ)
∣∣ ≤ 2δ, that is, where

dispersion surfaces intersect the gray area

The assumption rk(E−) = rk(E+) ensures that E(x2) = E− for x2 sufficiently negative.
Therefore the family of bundles E(x2) interpolates smoothly between E+ and E− as x2
runs through R. We deduce that when (1.14) holds, c1(E+) = c1(E−). Theorem 1 yields
Ie(P) = 0.

In other words, if Ie(P) 
= 0, then the n-th and n + 1-th dispersion surfaces must
intersect. The union of Bloch varieties

{
(x, ξ ; λ) : λ ∈ σL2

(
P(x2, ξ)

)}
must have sin-

gularities along the n-th and n + 1-th dispersion surfaces.
This observation motivates a conjecture that highlights microlocal aspects of the

bulk-edge correspondence. Introduce the midpoint

μ(x2, ξ)
def= λn(x2, ξ) + λn+1(x2, ξ)

2
. (1.15)

For δ > 0, fix G ∈ C∞
(
R
2 × (T2)∗ × R

)
with

G(x, ξ ; λ) =
{
1 for λ ≤ μ(x2, ξ)− δ

0 for λ ≥ μ(x2, ξ) + δ
.

SetW(x, ξ) = ∂λG
(
x, ξ ;P(x2, ξ)

)
. This symbol is valued in linear operators on L2(T2);

its support lies in the set

Zδ
def=
{
(x, ξ) ∈ R

2 × R
2 : ∣∣λn+1(x2, ξ)− λn(x2, ξ)

∣∣ ≤ 2δ
}

.

See Fig. 3. As δ → 0, Zδ converges to the set of eigenvalue crossings (singularities in
the Bloch variety), Z0 = {(x, ξ) : λn(x2, ξ) = λn+1(x2, ξ)}. Hence, the quantization
Wh of W(x, ξ) microlocalizes at arbitrarily small distance to Z0. It acts on the same
space H1 as Ph . As h → 0, we expect that Wh plays the role of g′(Ph) in (1.11):

Conjecture. Assume rk(E+) = rk(E−) = n. There exists δ0 > 0 such that

δ ∈ (0, δ0) ⇒ Ie(P) = TrH
([
Ph, f (x1)

] ·Wh

)
+ O(h∞).
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(x, ξ)

λ λn+1(x2, ξ)

λn(x2, ξ)

μ(x2, ξ)

2δ

supp(W) = ∅

Fig. 4. If the n-th and n-th dispersion surfaces do not intersect for all (x, ξ), then for δ small enough they do
not cross the midpoint area. The support ofW is empty

Our conjecture predicts that, in the semiclassical limit, functions that are microlo-
calized away from the wavefront set WFh(Wh) ⊂ Zδ do not contribute to Ie(P).
It suggests that a set of edge states microlocalized on Z0 controls the fundamen-
tal aspects of topological transport. They should be WKB-type solutions of a normal
form equation for P(x, ξ) near Z0—expressed as a pseudodifferential system. We refer
to [B87,GRT88,HS90,DGR02,PST03a,PST03b,DGR04,FT16] for WKB solutions in
two-scale backgrounds of the form (1.8). The work [FT16] also address Bloch bands
with non-trivial topology, most relevant here.

The fundamental role played by Z0 highlights the significance of eigenvalue cross-
ings. When Z0 = ∅—equivalently, when (1.14) holds—our conjecture is true. Indeed,
on one hand, we saw that (1.14) implies Ie(P) = 0; on the other hand, Zδ = ∅ for δ

sufficiently small, thus Wh = 0—see Fig. 4.
The simplest types of eigenvalue crossings are Dirac points. They typically appear in

honeycomb structures [FW12,BC18,FLW18,LWZ18,AFL18], but also in generic de-
formations of topological insulators [D20]. For small gap-opening perturbations and a
homogenization (rather than semiclassical) scaling, [FLW16,LWZ18] constructed gen-
uine edge states. They exhibit spectral concentration near the momentum associated to
the conical crossing.2 This provides some support for our conjecture.

In [D19a,DW19], we completed the analysis via a full identification of edge states.
These papers essentially provide a converse to [FLW16,LWZ18]: all edge states are of
the form derived there. This yields the explicit value of Ie(P);3 see also [D19b] for the
separate bulk index computation. For instance, if a weak magnetic field breaks TRS,

2π · Ie(P) = ±2 = c1(E+)− c1(E−).

The sign depends only on the orientation of the bulk magnetic field seen by Dirac point
Bloch modes. Hence [D19a,D19b,DW19] provide further support for our conjecture:
one can compute bulk/edge indices from local quantities associated to crossings.

2 These are however not concentrated in position. This seems to be a feature of the homogenization—rather
than semiclassical—scaling.

3 In [D19a,DW19], we defined the edge index as a spectral flow. Modulo a factor 2π , it equals (1.5)—see
e.g. [ASV13, Proposition 3].
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Amore sophisticated case concerns eigenvalue crossings arising along a topologically
non-trivial loop. For a 1D model built up from [FLW17,DFW18], we computed the
bulk/edge indices as the winding number of a function from this loop to C \ {0} [D18].
This result also corroborates our conjecture.

1.5. Notations.

• C
+ denotes the upper half-plane {λ ∈ C : Im λ > 0}.

• T
2 is the two-torus R2/Z2. We use the notations T2∗ = (T2)∗ = R

2/(2πZ)2 for
its dual.

• C∞b (R2) denotes smooth functions with bounded derivatives at any order; S(R2)

denotes the Schwartz class.
• P is the original Hamiltonian. It has bulk modeled by periodic operators P+ and P−

which have a spectral gap [λ0 − 2ε, λ0 + 2ε] centered at λ0, see Sect. 2.1.
• Ph is a two-scale deformation of P that preserves P+ and P−, see Sect. 2.5.
• Ph is a semiclassical operator that is unitarily equivalent to Ph . It acts on a space

H1 ⊂ S ′(R2 × T
2). It has semiclassical symbol P(x, ξ) acting on L2(T2), see

Sect. 3.2. For ±x2 ≥ 1, it equals P±(ξ), see (3.35).
• Q, Qh , Qh , Q(x, ξ) and Q±(ξ) are respectively equal to ψ(P), ψ(Ph), ψ(P),

ψ
(
P(x, ξ)

)
and ψ

(
P±(ξ)

)
, where ψ satisfies (2.6).

• Ie(P) is the edge index of P , eventually denoted I(P−, P+). Its definition requires
two functions f and g, see Sect. 2.1. For convenience, we will use Je(P) =
−i · Ie(P) past Sect. 2.1.
• g̃ is an almost analytic extension of g;  is a bounded neighborhood of supp(g̃);

and ′ ⊂  satisfies (3.10).
• The real part of an operator T is the selfadjoint operator Re(T ) = T+T ∗

2 .
• The spectrum of a (potentially unbounded) operator T on a Hilbert space H is

denoted σH(T ).
• If u1, . . . , un are vectors, [u1, . . . , un] denotes the subspace Cu1 ⊕ · · · ⊕ Cun .
• Given an order function m and a ∈ S(m), the (classical) Weyl quantization of a

is Op(a) ∈ �(m) (see Sect. 2.3) and the semiclassical Weyl quantization of a is
Oph(a) ∈ �h(m) (see Sect. 3.1).

• Wewill use functional spacesH1 andH2 defined in [GMS91], associated to classes
of symbols S( jk)(m) and operators �

( jk)
h (m), see Sect. 3.1.4.

• E± are vector bundles over (T2)∗, associated to P± and λ0. They have Chern number
c1(E±), see Sect. 4.1.

• dλ denotes a one-dimensional line element in C and dm(λ) denotes the Lebesgue
measure on C.

• We use the notation ± when a statement is true for both + and −. For instance,
“±u(x) ≥ 0 or ∓v(x) = 0" means both “u(x) ≥ 0
or −v(x) ≥ 0" and “−u(x) ≥ 0 or v(x) ≥ 0".

• In some statements, we use the exponent −∞ to express that the statement holds
for any exponent s < 0.
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2. The Edge Index

We review here the properties of the edge index Ie(P), owing to [KRS02,EG02,EGS05,
CG05,B19]. From Theorem 1, we anticipate that Ie(P) depends only on

�±
def= 1(−∞,λ0](P±).

This is consistent with standard results, which we recall in Sect. 2.1. We provide our
own proofs in Sect. 2.4, relying on pseudodifferential calculus (reviewed in Sect. 2.3).
They introduce the reader to the semiclassical techniques of Sect. 3.

This independence property motivates the search for a formula expressing Ie(P) in
terms of �± only: the bulk-edge correspondence. On one hand, (1.5) defines Ie(P) as
the trace of a classical (h = 1) pseudodifferential operator. On the other hand, a widely
developed area of spectral asymptotics expands semiclassical (h → 0) traces in powers
of h. This suggests to deform P to a semiclassical operator while preserving the edge
index—see Sect. 2.5.

2.1. Edge index. Let P be a partial differential operator of order 2:

P
def=

∑

|α|≤2
aα(x)Dα

x , aα(x) ∈ C∞b (R2), such that: (2.1)

(a) P is symmetric on L2(R2), i.e. 〈u, Pv〉L2 = 〈Pu, v〉L2 when u, v ∈ C∞0 (R2);

(b) P is elliptic, i.e.
∑
|α|=2 Re

(
aα(x)

)
ξα ≥ c|ξ |2 for some c > 0 and all (x, ξ);4

(c) P has Z2-periodic coefficients for |x2| ≥ L:

∃aα,±(x) ∈ C∞b (R2,C), Z
2-periodic with aα(x) =

{
aα,+(x) for x2 ≥ L
aα,−(x) for x2 ≤ −L .(2.2)

Under these conditions, P extends uniquely to a selfadjoint operator on L2(R2), with
domain H2(R2). In the regions ±x2 ≥ L , P coincides with the periodic operators

P±
def=

∑

|α|≤2
aα,±(x)Dα

x : L2(R2)→ L2(R2).

These operators have continuous spectra, see e.g. [RS78, §16].
The class of operators P of the form (2.1), satisfying (a) and (b) above, is invariant

under linear substitutions that preserve Re1. At the level of operators, linear changes
of variables are (up to a constant) unitary transforms. Hence the class (2.1) inherently
models rational interfaces between materials that are (commensurately) periodic with
respect to general Z2-lattices.

In the rest of the paper, we fix λ0 /∈ σL2(R2)(P+)
⋃

σL2(R2)(P−). The equation (P±−
λ0)u = 0 has no bounded solutions. Physically, λ0 is an insulating energy: there are no
plane waves with energy λ0 in systems modeled by P±.

In relation with solid state physics, the operator P models the junction of two per-
fect insulators along an imperfect interface |x2| ≤ L . Even though such materials are

4 Note that from (a), aα(x) = aα(x) thus the ellipticity condition is equivalent to the more standard one∑
|α|=2 aα(x)ξα ≥ c|ξ |2.
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insulating in ±x2 ≥ L , they can still support currents at energy λ0 along the interface
|x2| ≤ L . Fix ε ∈ (0, 1) with

σL2(R2)(P±) ∩ [λ0 − 2ε, λ0 + 2ε] = ∅ (2.3)

and two functions f (x1) ∈ C∞(R), g(λ) ∈ C∞(R) such that for some � > 0,

f (x1) =
{
0 for x1 ≤ −�

1 for x1 ≥ �
, g(λ) =

{
0 for λ ≥ λ0 + ε

1 for λ ≤ λ0 − ε
. (2.4)

Following [KRS02,EG02,EGS05,CG05], we introduce the conductivity at energy λ0:

Ie(P)
def= TrL2(R2)

(
i
[
P, f (x1)

] · g′(P)
)
. (2.5)

Before justifying that (2.5) is well-defined, we provide a physical interpretation of
Ie(P) as a conductivity. Using cyclicity of the trace, we observe that for all t ∈ R,

Ie(P) = TrL2(R2)

(
eit P i

[
P, f (x1)

]
e−i t P · g′(P)

)
= TrL2(R2)

(
∂eit P f (x1)e−i t P

∂t
· g′(P)

)
.

From a quantum mechanics point of view:

• ∂t ei t P f (x1)e−i t P measures the quantum flux between { f (x1) = 0} and { f (x1) =
1}, per unit time. Indeed, it is the time derivative of the Heisenberg evolution of
f (x1)—which measures the probability of a particle to sit in { f (x1) = 1}.
• The multiplication by −g′(P) and the trace yield the density of states (near energy
λ0), measured with respect to the probability density −g′(λ).

Therefore, Ie(P) measures the number of particles moving left to right per unit time
and per unit energy (near λ0). This is the quantum current along the interface, per unit
energy. Thus, one can naively intepret Ie(P) as the quantum conductivity at energy λ0.
This explains the physical significance of Ie(P). In Sect. 2.2, we will also interpret
Ie(P) as an algebraic number of traveling waves (with plus or minus count depending
on the direction of propagation): a spectral flow—see e.g. [ASV13, Proposition 3].

The definition of Ie(P) requires a standard result:

Lemma 2.1. The operator [P, f (x1)]g′(P) is trace-class on L2(R2).

While not immediately apparent on (2.5), Ie(P) is spectacularly robust. The first
property ensures independence on f :

Lemma 2.2. Ie(P) is independent of f satisfying (2.4).

The second one is independence on the nature of the interface:

Lemma 2.3. Let P1 and P2 satisfy the assumptions (a), (b) and (c) above. If P1 − P2
has coefficients supported in a strip {|x2| ≤ L ′}, then Ie(P1) = Ie(P2).

According to Lemma 2.3, Ie(P) depends only on P+ and P−. We state a last, more
subtle independence property. We will use at the end of the proof, Sect. 4. Let λ1, λ2
with λ1 + 2ε ≤ λ0 ≤ λ2 − 2ε and ψ ∈ C∞(R) a two-level rearrangement (see Fig. 5):

ψ nondecreasing and ψ(λ) =
⎧
⎨

⎩

λ1 for λ ≤ λ0 − 2ε
λ for |λ− λ0| ≤ ε

λ2 for λ ≥ λ0 + 2ε
. (2.6)
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λ0 − ε λ0 + ε

λ

λ1

λ2
ψ(λ)

Fig. 5. Pictorial representation of ψ(λ). We note that ψ(P+) and ψ(P−) have no spectrum outside {λ1, λ2}

Lemma 2.4. If ψ satisfies (2.6) then
[
ψ(P), f (x1)

]
g′ ◦ ψ(P) is of trace-class and

Ie(P) = TrL2(R2)

([
ψ(P), f (x1)

]
g′ ◦ ψ(P)

) = Ie
(
ψ(P)

)
.

From Lemma 2.4, Ie(P) = Ie
(
ψ(P)

)
. Because of Lemma 2.3, it is reasonable to

expect that Ie
(
ψ(P)

)
depends only on ψ(P±). From (2.3) and (2.6),

ψ(P±) = λ1 ·�± + λ2 · (Id −�±), �±
def= 1(−∞,λ0](P±).

Since Ie(P) does not depend on λ1, λ2, we anticipate that Ie(P) depends only on �±.
Lemma 2.1–2.4 are implicit in the literature; see e.g. [KRS02,EG02] for Lemma 2.1,

[CG05, Theorem 1] for Lemma 2.3 and [EG02, Lemma A.4] or [B19, Lemma 4.7] for
Lemma 2.4. In Sect. 2.5, we will use these results to deform P to an operator Ph that
(a) is Ze1-invariant; (b) slowly interpolates (at speed h → 0) between P+ and P−; (c)
preserves the edge index: Ie(P) = Ie(Ph).

2.2. Dynamics, spectral flow and edge index. We give here an interpretation of Ie(P)

as the signed number of independent elementary waves propagating along the interface
|x2| ≤ L .

Thanks to Lemma 2.3, Ie(P) depends only on P+ and P−. After a perturbation of P
in the strip {|x2| ≤ L}, we can assume here that P is periodic w.r.t. Ze1. In this case, for
each ζ ∈ [0, 2π ], P acts on the space

L2
ζ
def=
{
u ∈ L2

loc(R
2,C) : u(x + e1) = eiζ u(x),

∫

[0,1]×R
∣∣u(x)

∣∣2dx <∞
}

.

We denote the resulting operator by Pζ—the Floquet–Bloch decomposition of P along
Ze1. The essential spectrum of Pζ comes from large values of |x2|: we have

σL2
ζ ,ess(Pζ ) = σL2

ζ ,ess(P+,ζ )
⋃

σL2
ζ ,ess(P−,ζ ) ⊂ σL2(R2)(P+)

⋃
σL2(R2)(P−),(2.7)

where P±,ζ denote P± acting on L2
ζ . In particular, (2.7) shows that Pζ has an essential

spectral gap containing λ0.
The spectral flow of Pζ is the algebraic number of L2

ζ -eigenvalues that traverse this
gap as ζ sweeps [0, 2π ]; see [W16] for a good introduction and Fig. 6 for a pictorial
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Fig. 6. Essential (gray) and discrete (red) spectra of Pζ as functions of ζ . The spectral flow is the intersection
number of the eigenvalue curves with the energy level λ0. Here it equals 1

representation. From [ASV13, Proposition 3], 2π ·Ie(P) coincide with the spectral flow
of ζ �→ Pζ , when P is Ze1-invariant.

From a dynamical point of view, a curve of simple eigenvalues λ(ζ ) of Pζ with
λ(ζ0) = λ0 generates a wave propagating parallel to Re1, with group velocity ∂ζ λ(ζ0).
Hence, the spectral flow and Ie(P) count elementarywaves at energy λ0 that travel along
the interface |x2| ≤ L , signed according to the direction of propagation, sgn

(
∂ζ λ(ζ0)

)
.

2.3. Classical pseudodifferential operators. We review here the classical pseudodif-
ferential calculus. The results below are presented in Dimassi–Sjöstrand [DS99, §7-8]
and Zworski [Z12, §4 and §14] (set h = 1). For more specialized results, we refer to
Hörmander [H85, §18-20].

Given a(x, ξ) ∈ C∞0
(
R
2 × R

2
)
, the Weyl quantization of a is defined as

(
Op(a)u

)
(x)

def=
∫

R2×R2
eiξ(x−x ′) · a

(
x + x ′

2
, ξ

)
u(x ′) dx ′dξ

(2π)2
, u ∈ C∞0 (R2).

(2.8)

We review here key facts on pseudodifferential calculus, with an emphasis on order
functions; composition; resolvents; and trace-class properties.

2.3.1. Order functions See [Z12, §4.4] and [DS99, §7]. Let a ∈ C∞(R2×R
2). Condi-

tions so that (2.8) still defines a bounded operator on the Schwartz class S(R2,C) are
typically encoded in order functions, i.e. functions m(x, ξ) ∈ C0(R2 × R

2) with

w, w′ ∈ R
2 × R

2 ⇒ m(w) ≤ C〈w − w′〉Nm(w′).

Specifically, (2.8) defines Op(a) as a bounded operator on S(R2,C) if for some order
function m, for all α ∈ N

4 there exists Cα > 0 with

(x, ξ) ∈ R
2 × R

2 ⇒ ∣∣∂αa(x, ξ)
∣∣ ≤ Cα · m(x, ξ). (2.9)

Symbols a satisfying (2.9) form the class S(m), naturally equipped with a Frechet space
structure. We set �(m) = Op

(
S(m)

)
. Given an order function m ≥ 1, we say that

a ∈ S(m−∞) if for every s ∈ N, a ∈ S(m−s).
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Standard examples of order functions include 1, 〈x〉s and 〈ξ 〉s for any s ∈ R; here
we will also use

m j,±(x, ξ)
def=
{

1 for ±x j ≥ 0
〈x j 〉−1 for ±x j ≤ 0

. (2.10)

2.3.2. Composition of Pdos See [Z12, §4.4-4.5] and [DS99, §7]. Ifm1 andm2 are order
functions, then so is m1m2. The composition of two Pdos is a Pdo:

Op(a) ∈ �(m1), Op(b) ∈ �(m2) ⇒ Op(a)Op(b) ∈ �(m1m2).

Moreover, the symbol of Op(a)Op(b) in S(m1m2) depends continuously on (a, b) ∈
S(m1)× S(m2).

2.3.3. Resolvents See [DS99, §8]. We now turn to resolvents. Let P given by (2.1) be
elliptic and selfadjoint.We note that P ∈ �(〈ξ 〉2). For any λwith Im λ > 0, the operator
P − λ is an isomorphism from H2(R2) to L2(R2). A classical result of Beals [B77]
implies that (P − λ)−1 ∈ �

(〈ξ 〉−2):

∀λ ∈ C
+, ∃r(·; λ) ∈ S

(〈ξ 〉−2), (P − λ)−1 = Op
(
r(·; λ)

)
.

In the proofs below, we will need uniform estimates on r(·; λ) in S(1): for every
R > 0, α ∈ N

4, there exists cα,R > 0 such that5

|λ| ≤ R, Im λ > 0 ⇒ sup
(x,ξ)∈R2

∣∣∂αr(x, ξ ; λ)
∣∣ ≤ cα,R · | Im λ|−6−|α|. (2.11)

This shows that the constant Cα for r(·; λ) and m = 1 in (2.9) blow up at worst polyno-
mially in | Im λ|−1 when |λ| remains bounded.

2.3.4. Trace-class properties See [DS99, §8]. Assume that m ∈ L1. Then for any a ∈
S(m), Op(a) extends to a trace class operator on L2(R2). Moreover there exists C > 0
independent of a such that6

∥∥Op(a)
∥∥
Tr ≤ C |m|L1 · sup

|α|≤5
Cα,

where the constants Cα are those of (2.9).

5 The power 6 is specific to the dimension n = 2; in general it is 2n + 2.
6 The number 5 is specific to n = 2; in general it is 2n + 1.
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2.3.5. Functional calculus See [Z12, §3.1 and §14.3] and [DS99, §8]. An almost ana-
lytic extension of ρ(λ) ∈ C∞0 (R) is a function ρ̃(λ) ∈ C∞0 (C+) such that

ρ̃
∣∣
R
= ρ; and ∂λρ̃(λ) = O

(| Im λ|∞) as Im λ→ 0.

Almost analytic extensions always exist; and if ρ̃ is an almost analytic extension of
ρ then ∂λρ̃ is an almost analytic extension of ρ′. We emphasize that almost analytic
extensions are not analytic. Almost analytic extensions allow nonetheless for integral
representations: for every z ∈ C,

ρ(z) =
∫

C+

∂ρ̃(λ)

∂λ
· (z − λ)−1 · dm(λ)

π
. (2.12)

The identity (2.12) leads to a functional calculus developed in terms of resolvents.
If T is a (possibly unbounded) selfadjoint operator then

∥∥(T − λ)−1
∥∥ ≤ | Im λ|−1. In

particular we can express ρ(T ) as an absolutely convergent integral:

ρ(T ) =
∫

C+

∂ρ̃(λ)

∂λ
· (T − λ)−1 · dm(λ)

π
. (2.13)

While the functional calculus based on (2.13) goes back to Dyn’kin [D75], its popular
use in the semiclassical literature seems to start with [HS89]; see [HS90,SZ91,D93] for
subsequent developments.

2.4. Proofs of Lemma 2.1–2.4. For convenience, starting now we will use:

Je(P)
def= −iIe(P) = TrL2(R2)

([
P, f (x1)

]
g′(P)

)
.

Proof of Lemma 2.1. 1. We need to show that [P, f (x1)]g′(P) is of trace-class on
L2(R2). Our strategy is to show that [P, f (x1)]g′(P) is a Pdo whose symbol decays
sufficiently fast. We first focus on the term

[
P, f (x1)

] = (1− f (x1)
)
P f (x1)− f (x1)P

(
1− f (x1)

)
.

We observe that f (x1) ∈ �(m∞1,+) and 1 − f (x1) ∈ �(m∞1,−), where m1,± are the
order functions defined in (2.10). The Weyl symbol of P belongs to S

(〈ξ 〉2). Since
m1,+m1,− = 〈x1〉−1, we deduce from the composition theorem (Sect. 2.3.2):

[
P, f (x1)

] ∈ �
(
〈ξ 〉2〈x1〉−∞

)
. (2.14)

2. Fix s ∈ N. We focus on g′(P). Let ρ(λ) ∈ C∞0 (R,C) such that

λ ∈ σL2(R2)(P) ⇒ ρ′(λ) = g′(λ)(λ + i)s . (2.15)

Note that ρ exists: (2.15) specifies ρ′ on σL2(R2)(P), which is bounded below; and it
suffices to arrange so that ρ′ integrates to 0 on R. Let χ̃±(x2) ∈ C∞(R, [0, 1]) with

χ̃+(x2) =
{
0 for x2 ≤ −1
1 for x2 ≥ 1 , χ̃− = 1− χ̃+. (2.16)
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Since χ̃+ + χ̃− = 1, we have

g′(P) =
∑

±
χ̃±(x2)g

′(P) =
∑

±
χ̃±(x2)ρ

′(P)(P + i)−s .

Moreover, P± has no spectrum in the support of g′; since σL2(R2)(P±) ⊂ σL2(R2)(P),
(2.15) implies that ρ′(P±) = 0 and

g′(P) =
∑

±
χ̃±(x2)

(
ρ′(P)− ρ′(P±)

)
(P + i)−s . (2.17)

Let ρ̃ be an almost analytic extension of ρ. Then ∂λρ̃ is an almost analytic extension
of ρ′. We write (2.17) using the Helffer–Sjöstrand formula (2.13):

g′(P) =
∑

±

∫

C+

∂2ρ̃(λ)

∂λ∂λ
· χ̃±(x2)

(
(P − λ)−1 − (P± − λ)−1

) · dm(λ)

π
· (P + i)−s

=
∑

±

∫

C+

∂2ρ̃(λ, λ)

∂λ∂λ
· χ̃±(x2)(P − λ)−1(P± − P)(P± − λ)−1 · dm(λ)

π
· (P + i)−s .

(2.18)

3. We now observe that χ̃±(x2) ∈ �(ms
2,±) and that P± − P ∈ �(ms

2,∓〈ξ 〉2).
Moreover (P − λ)−1 and (P± − λ)−1 are in �(1), with symbolic bounds blowing
up at worst polynomially in | Im λ|−1, see (2.11). Since ∂2

λλ
ρ̃(λ) = O(| Im λ|∞) and

m2,+m2,− = 〈x2〉−1, we deduce from the composition theorem (Sect. 2.3.2):

∂2ρ̃(λ)

∂λ∂λ
· χ̃±(x2)(P − λ)−1(P± − P)(P± − λ)−1 ∈ �

(
〈x2〉−s〈ξ 〉2

)
,

uniformly in λ.We integrate this identity onC+ andmultiply by (P+i)−s (which belongs
to �(〈ξ 〉−2s), see Sect. 2.3.3). We deduce from (2.18):

∀s ∈ N, g′(P) ∈ �
(
〈x2〉−s〈ξ 〉2−2s

)
, i.e. g′(P) ∈ �

(〈x2〉−∞〈ξ 〉−∞
)
. (2.19)

4. We combine (2.14) and (2.19) to obtain

[P, F(x1)]g′(P) ∈ �
(〈x1〉−∞〈x2〉−∞〈ξ 〉−∞

) = �
(〈x〉−∞〈ξ 〉−∞) . (2.20)

Hence [P, F(x1)]g′(P) is of trace-class, see Sect. 2.3.4. ��
Proof of Lemma 2.2. It suffices to show that if f0(x1) ∈ C∞0 (R) then

TrL2(R2)

([P, f0(x1)]g′(P)
) = 0.

We have f0 ∈ �
(〈x1〉−∞

)
. Using (2.19), we deduce that both P f0(x1)g′(P) and

f0(x1)Pg′(P) are in �
(〈x〉−∞〈ξ 〉−∞). Hence both are trace-class.

If A, B are two operators such that AB and BA are trace, then AB and BA have
the same discrete spectrum apart from 0. By Lidskii’s theorem, Tr(AB) = Tr(BA). We
deduce that:

0 = TrL2(R2)

(
P f0(x1)g

′(P)
)− TrL2(R2)

(
f0(x1)g

′(P)P
) = TrL2(R2)

([P, f0(x1)]g′(P)
)
.

This completes the proof. ��
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As in [CG05], the proof of Lemma 2.3 requires a preliminary result.

Lemma 2.5. Let P1 and P2 satisfying (a), (b) and (c) in Sect. 2.1, and such that P1− P2
vanishes outside a compact set. Then Je(P1) = Je(P2).

Proof. 1. Let s, ρ as in the proof of Lemma 2.1 so that for j = 1, 2,

[Pj , f (x1)]g′(Pj ) =
∫

C+

∂2ρ̃(λ)

∂λ∂λ
· [Pj , f (x1)](Pj − λ)−1 · dm(λ)

π
· (Pj + i)−s .

(2.21)

Our goal is to write the difference of (2.21) for j = 1, 2 in terms of commutators of
trace-class operators. This will produce a vanishing trace and complete the proof.

2. We integrate (2.21) by parts w.r.t. λ:

[Pj , f (x1)]g′(Pj ) = −
∫

C+

∂ρ̃(λ)

∂λ
· [Pj , f (x1)

]
(Pj − λ)−2 · dm(λ)

π
· (Pj + i)−s .

We permute
[
Pj , f (x1)

]
with one of the terms (Pj − λ)−1. This allows us to write

[Pj , f (x1)]g′(Pj ) = −
∫

C+
A j (λ) · dm(λ)

π
, (2.22)

where A j (λ)
def= ∂λρ̃(λ)

(
Bj (λ) + C j (λ)

)
, with:

Bj (λ)
def= −(Pj − λ)−1[Pj , f (x1)](Pj − λ)−1 · (Pj + i)−s

=
[
(Pj − λ)−1, f (x1)

]
· (Pj + i)−s =

[
(Pj − λ)−1, f (x1)(Pj + i)−s

]
;

C j (λ)
def=
[
(Pj − λ)−1, [Pj , f (x1)]

]
(Pj − λ)−1 · (Pj + i)−s

=
[
(Pj − λ)−1, [Pj , f (x1)](Pj − λ)−1(Pj + i)−s

]
.

3. We use the resolvent identity and Leibniz’s formula to get

(P1 + i)−s − (P2 + i)−s =
∑

s1+s2=s−1

s1!2s2!2
(s − 1)! (P1 + i)−s1−1(P2 − P1)(P2 + i)−s2−1.

It follows that

B1(λ)− B2(λ) =
[
(P1 − λ)−1(P2 − P1)(P2 − λ)−1, f (x1)(P1 + i)−s

]

+

⎡

⎣(P2 − λ)−1, f (x1)
∑

s1+s2=s−1

s1!2s2!2
(s − 1)! (P1 + i)−s1−1(P2 − P1)(P2 + i)−s2−1

⎤

⎦ .

Similarly, we find that C1(λ)− C2(λ) is equal to

[
(P1 − λ)−1(P2 − P1)(P2 − λ)−1, [P1, f (x1)](P1 − λ)−1(P1 + i)−s

]

+
[
(P2 − λ)−1, [P1 − P2, f (x1)](P1 − λ)−1(P1 + i)−s

]
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+
[
(P2 − λ)−1, [P2, f (x1)](P1 − λ)−1(P2 − P1)(P2 − λ)−1(P1 + i)−s

]

+

⎡

⎣(P2 − λ)−1, [P2, f (x1)](P1 − λ)−1
∑

s1+s2=s−1

s1!2s2!2
(s − 1)! (P1 + i)−s1−1(P2 − P1)(P2 + i)−s2−1

⎤

⎦ .

4. The expressions of Step 3 allow us to expand A1(λ) − A2(λ) as a finite sum of
commutators

∑
k

[
Dk(λ), Ek(λ)

]
with the following property. For each k, Dk(λ)Ek(λ)

and Ek(λ)Dk(λ) are finite products of precisely one of each factor ∂λρ̃(λ) and P1− P2;
at most three factors among (Pj − λ)−1; one factor of the form f (x1) or [Pj , f (x1)];
and s or s + 1 factors of the form (Pj + i)−1.

We note that P−Q ∈ �(〈x〉−1〈ξ 〉2); that (Pj + i)−1 ∈ �
(〈ξ 〉−2); that (Pj −λ)−1 ∈

�(1) with symbolic bounds blowing up polynomially as Im λ → 0—see (2.11); and
that ∂λρ̃(λ) ∈ O(| Im λ|∞). Therefore we deduce that for any s ∈ N,

Dk(λ)Ek(λ), Ek(λ)Dk(λ) ∈ �
(〈x〉−s〈ξ 〉−2s+4),

uniformly in λ. In particular both Dk(λ)Ek(λ) and Ek(λ)Dk(λ) are trace class. We
deduce that A1(λ) − A2(λ) is (uniformly in λ) trace class with vanishing trace. The
formula (2.22) completes the proof. ��
Proof of Lemma 2.3. 1. In comparison with Lemma 2.5, the operator P1 − P2 vanishes
now in a (non-compact) strip |x2| ≤ L ′. We prove lemma 2.3 using Lemma 2.5 and an
approximation argument.

Fix ε > 0, χ(x) ∈ C∞0 (R2,R) equal to 1 for |x | ≤ 1 and P3 = Re
(
P1 +χ(εx)(P2−

P1)
)
, where we recall that Re(T ) = T ∗+T

2 . We note that P3 is an elliptic selfadjoint
operator of order 2, equal to P1 outside a compact set. From Lemma 2.5, Je(P1) =
Je(P3) thus

Je(P2)− Je(P1) = Je(P2)− Je(P3).

2. Let s, ρ as in the proof of Lemma 2.1. We write for j = 2, 3:

[Pj , f (x1)]g′(Pj ) =
∫

C+

∂2ρ̃(λ)

∂λ∂λ
· [Pj , f (x1)](Pj − λ)−1 · (Pj + i)−s · dm(λ)

π
.

We observe that

[P2, f (x1)](P2 − λ)−1 · (P2 + i)−s − [P3, f (x1)](P3 − λ)−1 · (P3 + i)−s

= [P2 − P3, f (x1)](P2 − λ)−1 · (P2 + i)−s

+ [P3, f (x1)](P2 − λ)−1(P3 − P2)(P3 − λ)−1 · (P3 + i)−s

+ [P3, f (x1)](P2 − λ)−1 ·
∑

s=s2+s3

s2!2s3!2
(s − 1)! (P2 + i)−s2−1(P3 − P2)(P3 + i)−s3−1.

(2.23)

3. The bounds that we prove below are all uniform as ε → 0. We observe that

P3 − P2 = Re
(
(χ(εx)− 1

)
(P2 − P1)

)
.

This vanishes when |x | ≤ ε−1. In particular, P3 − P2 ∈ ε〈x1〉 · �(〈ξ 〉2) with uniform
symbolic bounds as ε → 0.
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Since [P3 − P2, f ] and [P3, f ] are in �(〈x1〉−∞〈ξ 〉2), we deduce from (2.23) that

1

ε

(
[P2, f (x1)](P2 − λ)−1 · (P2 + i)−s − [P3, f (x1)](P3 − λ)−1 · (P3 + i)−s

)

is in �
(〈ξ 〉4−2s). The symbolic bounds blow up polynomially as Im λ→ 0. Thus

[P2, f (x1)]g′(P2)− [P3, f (x1)]g′(P3) ∈ ε ·�(〈ξ 〉−∞). (2.24)

4. From (2.20), we also have [Pj , f (x1)]g′(Pj ) ∈ �(〈ξ 〉−∞〈x〉−∞). We deduce that
(2.24) belongs to �(〈ξ 〉−∞〈x〉−∞). Interpolating at the symbolic level, we get

[P2, f (x1)]g′(P2)− [P3, f (x1)]g′(P3) ∈ ε1/2 ·�(〈ξ 〉−∞〈x〉−∞).
In particular, [P2, f (x1)]g′(P2) − [P3, f (x1)]g′(P3) is of trace-class and its trace is
O(ε1/2). We conclude that

Je(P1)− Je(P2) = O(ε1/2)

for every ε ∈ (0, 1); this completes the proof. ��
Proof of Lemma 2.4. 1. From the properties of ψ , g′ ◦ ψ = g′. Moreover, since the
spectrumof P is boundedbelow, there existsϕ(λ) ∈ C∞0 (R) such thatψ(P) = λ2+ϕ(P)

and ψ ′(P) = ϕ′(P). It follows that

[
ψ(P), f (x1)

]
g′ ◦ ψ(P) = [ϕ(P), f (x1)

]
g′(P). (2.25)

We use the Helffer–Sjöstrand formula to write

ϕ(P) =
∫

C+

∂ϕ̃(λ)

∂λ
· (P − λ)−1 · dm(λ)

π
. (2.26)

Since (P − λ)−1 ∈ �(1) with bounds blowing up polynomially with | Im λ|−1, ϕ(P) ∈
�(1). As for (2.14),

[
ϕ(P), f (x1)

] ∈ �(〈x1〉−∞). From (2.19), g′(P) ∈ �
(〈x2〉−∞

〈ξ 〉−∞). We deduce from (2.25) that

[
ψ(P), f (x1)

]
g′ ◦ ψ(P) ∈ �

(〈x〉−∞〈ξ 〉−∞) .

Hence
[
ψ(P), f (x1)

]
g′ ◦ψ(P) is of trace-class andJe

(
ψ(P)

)
is properly defined, with

Je
(
ψ(P)

) = TrL2(R2)

([
ϕ(P), f (x1)

]
g′(P)

)
.

2. Because of (2.26),

[ϕ(P), f (x1)]g′(P) =
∫

C+

∂ϕ̃(λ)

∂λ
·
[
(P − λ)−1, f (x1)

]
g′(P) · dm(λ)

π

= −
∫

C+

∂ϕ̃(λ)

∂λ
· (P − λ)−1

[
P, f (x1)

]
(P − λ)−1g′(P) · dm(λ)

π
.

(2.27)
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Recall that g′(P) ∈ �
(〈x2〉−∞〈ξ 〉−∞

)
; (P − λ)−1 ∈ �(1) (with bounds blowing

up polynomially in | Im λ|−1); and [ f (x1), P] ∈ �
(〈x1〉−∞〈ξ 〉2

)
. Since ∂λϕ̃(λ) =

O(| Im λ|∞), we deduce that

∂ϕ̃(λ)

∂λ
[ f (x1), P] (P − λ)−1g′(P) ∈ �

(〈x〉−∞〈ξ 〉−∞) ,

uniformly in λ. Thus we can trace (2.27) and permute trace and integral. We can also
move (P − λ)−1 cyclically from the left to the right. We end up with

Je
(
ψ(P)

) = −
∫

C+

∂ϕ̃(λ)

∂λ
· TrL2(R2)

(
(P − λ)−1

[
P, f (x1)

]
(P − λ)−1g′(P)

) · dm(λ)

π

= −
∫

C+

∂ϕ̃(λ)

∂λ
· TrL2(R2)

([
P, f (x1)

]
(P − λ)−2g′(P)

) · dm(λ)

π
. (2.28)

We observe that (P − λ)−2 = ∂λ(P − λ)−1. We integrate (2.28) w.r.t. λ:

Je
(
ψ(P)

) =
∫

C+

∂2ϕ̃(λ)

∂λ∂λ
· TrL2(R2)

([
P, f (x1)

]
(P − λ)−1g′(P)

) dm(λ)

π
.

We permute trace and integral once again and end up with

Je(P) = TrL2(R2)

([P, f (x1)]ϕ′(P)g′(P)
)
. (2.29)

This completes the proof because ϕ′(P) = ψ ′(P) and ψ ′(λ) = 1 on the support of g′:
the RHS of (2.29) is Je(P). ��

2.5. Deformation to a semiclassical operator. We recall that Re(T ) = T+T ∗
2 . Let

χ+(x2), χ−(x2) ∈ C∞(R) and χ0(x2) ∈ C∞0 (R) such that

χ+(x2) =
{
1 for x2 ≥ 2
0 for x2 ≤ 1 , χ+(x2) =

{
1 for x2 ≤ −2
0 for x2 ≥ −1 , χ0 = 1− χ− − χ+.

See Fig. 7. Given h > 0, we introduce

Ph
def= Re

( ∑

|α|≤2
bα(hx, x)Dα

x

)
+ Re

(
χ0(hx2)P0

)
, where

bα(x, y)
def= χ+(x2)aα,+(y) + χ−(x2)aα,−(y), P0

def= −� + |λ0| + 2. (2.30)

The operator Ph is a symmetric differential operator of order 2. Below, we write

Ph =
∑

|α|≤2
cα(hx, x)Dα

x ,

rather than (2.30). The coefficients cα(hx, x) have a two-scale structure: cα(x, y) ∈
C∞b (R2×T2). As a function of x and y, cα(x, y) depends polynomially on h; in particular
it is uniformly bounded as h → 0.

The coefficients bα(hx, x) are equal to aα,±(x) for ±x2 ≥ 2. This implies that

cα(x, y) =
{
aα,+(y) for x2 ≥ 2
aα,−(y) for x2 ≤ −2 .
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χ−(x2) χ+(x2)χ0(x2)

−2 2−1 1

x2

1

Fig. 7. Graphs of χ−, χ0 and χ+

In other words, Ph is equal to P outside |hx2| ≤ 2. We similarly observe that if u
has support in {|hx2| ≤ 1} then Phu = P0u. Since σL2(R2)(P0) = [|λ0| + 2,∞), P0
heuristically behaves as a barrier between P+ and P− at energies below |λ0| + 2. This
can be ignored in Sect. 3. It will play a role in Sect. 4.

Finally, we observe that Ph is elliptic. This proves that Ph satisfies the assumptions
of Sect. 2.1. From Lemmas 2.2 and 2.3,

Je(P) = Je(Ph) = TrL2(R2)

([
Ph, f (hx1)

]
g′(Ph)

)
. (2.31)

The key observation is that Ph is, in an appropriate sense, a semiclassical operator. We
give here a formal explanation andwe postpone the rigorous version [GMS91] to Sect. 3.
Let U (x, y) ∈ C∞(R2 × T

2) and set u(x) = U (hx, x). Then

Phu(x) = (PhU
)
(x, hx) where Ph

def=
∑

|α|≤2
cα(x, y)(Dy + hDx )

α. (2.32)

The operatorPh is semiclassical in x with operator valued-symbolP(x, ξ)+O(h), where

P(x, ξ)
def=

∑

|α|≤2
cα(x, y)(Dy + ξ)α + O(h).

3. Semiclassical Deformation and Effective Hamiltonian

In the rest of the paper, we compute Je(P) using the operator Ph defined in (2.30). To
emphasize that Je(P) depends only on P+ and P−, we write below

Je(P−, P+)
def= Je(P).

Operators Ph of the form (2.30) first appeared in solid state physics in the 70’s. The
firstmathematicalworks constructedWKBquasimodes [B87,GRT88].Here, a key paper
is Gérard–Martinez–Sjötrand [GMS91]. It establishes a unitary equivalence between Ph
acting on L2(R2) and Ph—see (2.32)—acting on7

H1
def=
{ ∑

m∈Z2

v(x)δ(x − hy + hm), v ∈ L2(R2)

}
⊂ S ′

(
R
2 × T

2
)

.

7 This space is denoted L0 in [GMS91] and [DS99, §13]. It is canonically identified with L2(R2), see
Sect. 3.1.4.
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This equivalence yield a semiclassical formula for the edge index: from (2.31),

Je(P−, P+) = TrL2(R2)

([
Ph, f (x1)

]
g′(Ph)

) = TrH1

([
Ph, f (x1)

]
g′(Ph)

)
. (3.1)

Another important advance of [GMS91] is the construction of an effective Hamiltonian
E22(λ) for Ph . This provides a discrete non-linear eigenvalue problem whose solutions
are precisely the eigenvalues of Ph (within a given spectral window).

Dimassi et al. [D93,DZ03,DD14] used [GMS91] to provide various semiclassical
trace expansions for operators in the form (2.30), see for instance (1.12). In principle,
the coefficients b j in (1.12) can be expressed from semiclassical symbols. We expect a
similar expansion here:

TrH1

([
Ph, f (x1)

]
g′(Ph)

) ∼
∑

j≥0
a j · h j−2 as h → 0, (3.2)

with coefficients a j computable via symbolic calculus. However, (3.1) indicates that
(3.2) does not depend on h. Hence all terms a j , j 
= 2 in the expansion (3.2) must
vanish and a2 = Je(P−, P+).

From the technical point of view, Sect. 3 is closer to [GMS91,D93] than to previous
papers on the bulk-edge correspondence. As in [D93], we will pose a Grushin prob-
lem and construct a discrete (finite difference) effective Hamiltonian with non-linear
eigenvalues, which describe accurately Ph near energy λ0.

We will use symbolic calculus to derive a formula for a2. Specifically, we will adapt
calculations of Elgart–Graf–Schenker [EGS05] from the eigenvalue setting to the non-
linear eigenvalue setting. This will prove that Je(P−, P+) is (up to summation) a double
semiclassical commutator. This proves a0 = a1 = 0; and allows us to compute a2 in
terms of the leading symbol of the effective Hamiltonian, E22(x, ξ ; λ)—see Theorem
2. An algebraic manipulation reduces the formula for a2 to an integral involving only
asymptotics of E±(ξ ; λ) of E22(x, ξ ; λ) as x2 →±∞—see Theorem 3.

We will connect E±(ξ ; λ) to Chern numbers in Sect. 4, completing the proof of The-
orem 1.

3.1. Semiclassical calculus. Westart this sectionwith a reviewof semiclassical calculus.
While pseudodifferential calculus purely measures regularity, semiclassical calculus
allows for the quantitative study of frequencies of order h−1, h → 0. The textbooks
[DS99,Z12] provide excellent introductions. The results below are exposed in [DS99,
§7-8 and §13]; see also [Z12, §4 and §13].

We say that a symbol a(x, ξ) ∈ C∞(R2 × R
2) (implicitly depending on h) belongs

to S(m) if (2.9) holds with bounds Cα uniform in h ∈ (0, 1]. We then define

(
Oph(a)u

)
(x)

def= 1

(2πh)2

∫

R2×R2
ei

ξ
h (x−x ′)a

(
x + x ′

2
, ξ

)
u(x ′)dx ′dξ, u ∈ C∞0 (R2).

Such operators have bounded extensions on S(R2) and we denote the corresponding
class by �h(m) = Oph

(
S(m)

)
. In the sequel, we will allow for symbols valued in

Hilbert spaces, typically Cd or L2(T2).
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3.1.1. Composition See [DS99, §7] and [Z12, §4.3-4.4]. If a ∈ S(m1) and b ∈ S(m2)

then Oph(a)Oph(b) ∈ �h(m1m2). We denote its symbol by a#b. One clear advantage
of semiclassical over pseudodifferential calculus is the composition formula: for any K ,

a#b(x, ξ) =
K∑

k=0

i khk

k!
(
Dξ Dx ′ − Dx Dξ ′

2

)k (
a(x, ξ)b(x ′, ξ ′)

)
∣∣∣∣∣x ′=x
ξ ′=ξ

+ OS(m1m2)

(
hK+1

)
.

It implies that a#b(x, ξ) depends only of a and b locally near (x, ξ), modulo a small
remainder, O(h∞). We will use the explicit expansion only for K = 0 and K = 1:

• Oph(a)Oph(b) has symbol ab + OS(m1m2)(h);
• [Oph(a),Oph(b)

]
has symbol8

h

2i

({a, b} − {b, a}) + OS(m1m2)

(
h2
)

, where {a, b} def=
2∑

j=1

∂a

∂ξ j

∂b

∂x j
− ∂a

∂x j

∂b

∂ξ j
.

From the composition formula, if a(x, ξ) ∈ S(1) satisfies infR2×R2

∣∣a(x, ξ)
∣∣ > 0

then Oph(a) is invertible for h sufficiently small. The semiclassical version of a theorem
of Beals [B77] implies that its inverse is in �h(1).

3.1.2. Resolvents and functional calculus See [DS99, §8]. Let a ∈ S(1) be Hermitian-
valued. For every λ ∈ C

+, (Oph(a)− λ)−1 is in �h(1). This follows from the semiclas-
sical Beal’s theorem due to Helffer–Sjöstrand [HS89, §2.3]; see also [DS99, Proposition
8.3] and [Z12, Theorem 8.3].

If r(·; λ) ∈ S(1) is such that Oph
(
r(·, λ)

) = (Oph(a) − λ)−1, then for any R > 0,
the following estimates hold uniformly for λ ∈ D(0, R) and h ∈ (0, 1]:

r(·; λ) = (a − λ)−1 + OS(1)

(
h · | Im λ|−8

)
;

sup
(x,ξ)∈R2

∣∣∂αr(x, ξ ; λ)
∣∣ ≤ cα,R ·max

(
1,

h1/2

| Im λ|
)5

· | Im λ|−|α|−1. (3.3)

We refer to [DS99, Proposition 8.6]. Using the estimates (3.3) and the Helffer–Sjöstrand
formula (2.12), we can develop the functional calculus of selfadjoint semiclassical op-
erators. If ϕ(λ) ∈ C∞0 (R), then ϕ

(
Oph(a)

) ∈ �h(1) and its symbol is

ϕ
(
a(x, ξ)

)
+ OS(1)(h).

3.1.3. Trace class See [DS99, §8]. Similarly to Sect. 2.3.5, if m is an order function in
L1 then operators in �h(m) are trace-class. Moreover, there exists C > 0 such that for
any a ∈ S(m):9

∥∥Oph(a)
∥∥
Tr ≤ Ch−2 · |m|L1 · sup

|α|≤5
Cα (3.4)

where the constants Cα are those of (2.9).

8 This reduces to h
i {a, b} when a or b is scalar-valued; however most operators considered below will be

matrix and operator-valued.
9 The numbers 2 and 5 are specific to dimension n = 2; in general they are n and 2n + 1, respectively.
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3.1.4. Periodic and equivariant classes See [DS99, §13]. We will need to consider
classes of operator-valued symbols satisfying certain (pseudo-)periodic conditions. Fix
d ∈ N. We introduce:

• The class S(22)(m) ⊂ S(m) of symbols a(x, ξ) ∈ C∞
(
R
2×R

2, Md(C)
)
such that

a(x, ξ + 2kπ) = a(x, ξ), k ∈ Z
2;

• Theclass S(12)(m) ⊂ S(m)of symbols R(x, ξ) ∈ C∞
(
R
2 × R

2,B
(
C
d , L2(T2)

))
—

i.e. with values in linear operators from C
d to L2(T2)—such that

R(x, ξ + 2kπ) = e−2ikπy · R(x, ξ), k ∈ Z
2;

• The class S(21)(m) of adjoints of symbols in S(12)(m);
• The class S(11)(m) ⊂ S(m) of symbolsW(x, ξ) ∈ C∞

(
R
2×R

2,B
(
L2(T2)

))
with

W(x, ξ + 2kπ) = e−2ikπy ·W(x, ξ) · e2ikπy, k ∈ Z
2. (3.5)

We let �
( jk)
h (m) = Oph

(
S( jk)(m)

)
be the corresponding operator classes; we observe

that P(x, ξ) ∈ �
(11)
h

(〈ξ 〉2). Because of the (pseudo-)periodic conditions, if m decays

with ξ then �
( jk)
h (m) = {0}. The order function m may nonetheless decay with x .

The classes �
( jk)
h (m) appear in relation with the effective Hamiltonian method of

[GMS91]. From the general theory of Pdos, they act on tempered distributions; for
instance, operators in �

(11)
h (m) act on S ′(R2 × T

2). The pseudo-periodic conditions
yield additional mapping properties. If m is uniformly bounded in x , then operators in
�

( jk)
h (m) map H j toHk , where

H1 =
{ ∑

m∈Z2

v(x)δ(x − hy + hm), v ∈ L2(
R
2)
}
⊂ S ′

(
R
2 × T

2
)

,

H2
def=
{ ∑

m∈Z2

vmδ(x − hm), v ∈ �2
(
Z
2,Cd)

}
⊂ S ′

(
R
2,Cd

)
. (3.6)

The space H2 is naturally isomorphic to �2(Z2,Cd). Similarly, H1 is isomorphic to
L2(R2). Indeed, for any v(x) ∈ L2(R2),

∫

T2

∑

m∈Z2

v(x)δ(x − hy + hm) · h2dy = v(x),

where equality holds in the sense of distributions on R2.
A consequence is that Ph acts onH1. In this sense, the elements ofH1 identify with

the two-scale functions U (hy, y) considered in Sect. 2.5: in (3.6), the Dirac masses
constrain x = hy modulo (hZ)2.

A result due toDimassi [D93, §1]—and fundamental here—asserts ifa ∈ S(22)
(〈x〉−3)

then Oph(a) is of trace-class on H2 and10

TrH2

(
Oph(a)

) = 1

(2πh)2

∫

R2×T2∗
a(x, ξ) dxdξ + O(h∞). (3.7)

10 Strictly speaking, [D93, Remark 1.3a] and [DS99, Lemma 13.29] are stated for symbols in S(22)(1) that
are compactly supported in x ; the proof applies (with no change) to rapidly decaying symbols.
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3.1.5. Grushin problem Here we recall basic properties of Grushin problems; see for
instance [DS99, §13] and [SZ07] for various applications and discussion of terminology.
Assume Q : H1 → H1, R12 : H2 → H1 and R21 : H2 → H1 are three operators such
that for λ in a open neighborhood of C, the operator

[
Q − λ R12
R21 0

]
: H1 ⊕H2 → H1 ⊕H2

is invertible. We write the inverse as
[
Q − λ R12
R21 0

]−1
=
[
E11(λ) E12(λ)

E21(λ) E22(λ)

]
. (3.8)

Then the operators E jk(λ) depend analytically on λ. Moreover, Q − λ is invertible on
H1 if and only if E22(λ) is invertible on H2; and

(Q − λ)−1 = E11(λ)− E12(λ)E22(λ)−1E21(λ),

E22(λ)−1 = −R21(Q − λ)−1R12. (3.9)

3.2. Review of the effective Hamiltonian method. In the sequel,  is a bounded neigh-
borhood in C+ of supp(g̃) ∩ C

+, and ′ ⊂  is a neighborhood of supp(g̃) with

′ ∩ R ⊂ [λ0 − ε, λ0 + ε]. (3.10)

We set λ+ = sup{2|λ| : λ ∈ }.
The idea behind the effective Hamiltonian method is to produce a non-linear eigen-

value problem for a discrete Hamiltonian, that describe accurately low-energy spectral
aspects of Ph . We follow the construction of [GMS91]. It consists in finding d ∈ N and
a pseudodifferential operator R12 : H1 → H2 with adjoint R21 : H2 → H1 such that

[
Ph − λ R12
R21 0

]
: H1 ⊕H2 → H1 ⊕H2

is invertible for all λ in . We refer to [DS99, §13] for a comprehensive presentation.
Following Gérard–Martinez–Sjöstrand [GMS91], there exist d ∈ N and ϕ1(y, ξ),

. . . , ϕd(y, ξ) ∈ C∞(R2 × R
2), satisfying

ϕ j (y + �, ξ + 2πk) = e−2iπky · ϕ j (y, ξ); 〈
ϕm(·, ξ), ϕn(·, ξ)

〉
L2(T2)

= δnm (3.11)

for every (k, �) ∈ Z
2 × Z

2; and such that for all (x, ξ) ∈ R
2 × R

2,

u ∈ [ϕ1(·, ξ), . . . , ϕd(·, ξ)
]⊥ ⇒ 〈(

P(x, ξ)− λ+)u, u
〉
L2(T2)

≥ 3|u|2L2(T2)
. (3.12)

The functionsϕ j were initially constructed in [HS90,Theorem3.1]; see also [GMS91,
Proposition 2.1] and [DS99, Appendix]. Their existence follows essentially from an
ellipticity argument: 〈P(x, ξ)u, u〉L2(T2) is large compared to |u|2

L2(T2)
for sufficiently

high-frequency functions. Thus, d needs to be large enough so that the condition in
(3.12) excludes low-frequency functions.
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For technical reasons, we prefer to work with the operator Qh = ψ(Ph), where ψ

satisfies (2.6). We note that Je(P−, P+) = Je(Ph) = Je
(
ψ(Ph)

)
, see Lemmas 2.3 and

2.4. Using the unitary equivalence between Ph and Ph , we deduce:

Je(P−, P+) = TrH1

([
Qh, f (x1)

]
g′(Qh)

)
.

The operator Qh is in �
(11)
h (1) and its leading symbol is the bounded operator

Q(x, ξ) = ψ
(
P(x, ξ)

) : L2(T2) → L2(T2),

because ψ(Ph) = λ2 + ϕ(Ph) for some ϕ(λ) ∈ C∞0 (R); and because of Sect. 3.1.2. We
now extend (3.12) to Q(x, ξ) = ψ

(
P(x, ξ)

)
.

Lemma 3.1. If (3.12) holds then there exists λ2 ≥ λ0 + 2ε and ψ satisfying (2.6) such
that for every (x, ξ) ∈ R

2 × R
2,

u ∈ [ϕ1(·, ξ), . . . , ϕd(·, ξ)
]⊥ ⇒ 〈(

ψ
(
P(x, ξ)

)− λ+
)
u, u

〉
L2(T2)

≥ |u|2L2(T2)
.

(3.13)

Proof. 1. We note that Q(x, ξ) ∈ S(11)(1). In particular, it satisfies the pseudoperiodic
condition (3.5). Moreover, P(x, ξ) depends on x only if x is within a compact set K .
Therefore, it suffices to prove (3.13) for (x, ξ) ∈ K × [0, 2π ]2.

Fix (x, ξ) ∈ K×[0, 2π ]2 andu ∈ H2(T2).We splitu = u1+u2 whereu2 = �(ξ)u ∈
L2(T2) is the projection of u to

[
ϕ1(·, ξ), . . . , ϕd(·, ξ)

]
. In particular u1 ∈ H2(T2)

satisfies the assumption of (3.12) and we have

〈(
P(x, ξ)− λ+

)
u, u

〉
L2(T2)

=
2∑

j,k=1

〈(
P(x, ξ)− λ+

)
u j , uk

〉
L2(T2)

≥ 3|u1|2L2(T2)
− 2 |P(x, ξ)u2|L2(T2) · 3|u1|L2(T2) −

∣∣(P(x, ξ)− λ
)
u2
∣∣
L2(T2)

· |u2|L2(T2).

The span
[
ϕ1(·, ξ), . . . , ϕd(·, ξ)

]
is of course finite dimensional. Thus there exists a

constant C ≥ 1 uniform in (x, ξ) ∈ K × [0, 2π ]2 such that
∣∣P(x, ξ)u2

∣∣
L2(T2)

+
∣∣(P(x, ξ)− λ

)
u2
∣∣
L2(T2)

≤ C |u2|L2(T2).

We deduce that
〈(
P(x, ξ)− λ+

)
u, u

〉
L2(T2)

≥ |u1|2L2(T2)
− 2C2|u2|2L2(T2)

≥ |u|2L2(T2)
− 3C2|u2|2L2(T2)

= |u|2L2(T2)
− 3C2|�(ξ)u|2L2(T2)

. (3.14)

3. Fix λ2 = 3C2 +1+λ+. We split u = u− +u+ where u− = 1(−∞,λ2)

(
P(x, ξ)

)
u and

u+ = 1[λ2,∞)

(
P(x, ξ)

)
u. Note that by elliptic regularity, u− ∈ H2(T2). If ψ satisfies

(2.6), then we have
〈(
ψ
(
P(x, ξ)

)− λ+
)
u, u

〉
L2(T2)

≥ 〈(P(x, ξ)− λ+
)
u−, u−

〉
L2(T2)

+
(
λ2 − λ+

)|u+|2.
We obtain from (3.14):

〈(
ψ
(
P(x, ξ)

)− λ+
)
u, u

〉
L2(T2)

≥ |u−|2L2(T2)
− 3C2|�(ξ)u−|2L2(T2)

+
(
λ2 − λ+

)|u+|2L2(T2)
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≥ |u|2L2(T2)
− 3C2|�(ξ)u|2L2(T2)

+
(
λ2 − λ+ − 1

)|u+|2L2(T2)
− 3C2|�(ξ)u+|2L2(T2)

.

Since λ2 = 3C2 + 1 + λ+, we obtain
〈(
ψ
(
P(x, ξ)

)− λ+
)
u, u

〉
L2(T2)

≥ |u|2L2(T2)
− 3C2|�(ξ)u|2L2(T2)

.

This completes the proof: �(ξ)u = 0 if u satisfies the condition of (3.13). ��
In the rest of the paper we assume given ϕ1, . . . ϕd satisfying (3.11) and (3.12); and

we fix ψ such that (3.13) holds. Introduce

R12(ξ)t
def=
∑

j

t j · ϕ j (y, ξ); (
R21(ξ)u

)
j
def= 〈ϕ j (·, ξ), u〉L2(T2). (3.15)

The symbols R12(ξ) and R21(ξ) are respectively in S(12)(1) and S(21)(1).
A general argument based on (3.13)—see e.g. [DS99, Appendix 13.A]—implies that

[
Q(x, ξ)− λ R12(ξ)

R21(ξ) 0

]
: L2(T2)⊕ C

d → L2(T2)⊕ C
d (3.16)

is invertible for all (x, ξ) ∈ R
2×R

2 and λ ∈ D(0, |λ+|). Note that this disk contains .
The operator

[
Qh − λ R12
R21 0

]
: H1 ⊕H2 → H1 ⊕H2 (3.17)

is a bloc-by-bloc semiclassical operator, with blocs in �
( jk)
h (1). Its leading symbol is

(3.16), which is invertible. Hence (3.17) is invertible; and its inverse is a semiclassical
operator acting on the same space. We write it in the form

[
Qh − λ R12
R21 0

]−1
=
[
E11(λ) E21(λ)

E21(λ) E22(λ)

]
, where E jk(λ) ∈ �

( jk)
h (1).

3.3. Reduction. We combine the Helffer–Sjöstrand formula with the effective Hamilto-
nian expression (3.9) for (Qh − λ)−1. This gives

g′(Qh) =
∫

C+

∂2 g̃(λ)

∂λ∂λ
· (Qh − λ)−1 · dm(λ)

π

=
∫

C+

∂2 g̃(λ)

∂λ∂λ
·
(
E11(λ)− E12(λ)E22(λ)−1E21(λ)

)
· dm(λ)

π

This integral splits in two parts, one of them involving E11(λ). This term is holomorphic
in , which is a neighborhood of supp(g̃) in C+. An integration by parts with respect to
λ removes E11(λ) and we end up with:

g′(Qh) = −
∫

C+

∂2g̃(λ)

∂λ∂λ
· E12(λ)E22(λ)−1E21(λ) · dm(λ)

π
. (3.18)
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Let �0(x1) ∈ C∞0 (R) such that �0(x1) = 1 on [−1, 1]; define
�(x) = �0(x1)�0(x2) (3.19)

We insert � in (3.18) to write Je(P−, P+) = TrH1(T� + T1−�), where

T�
def= −

∫

C+

∂2 g̃(λ)

∂λ∂λ
· [Qh, f (x1)

] · E12(λ)E22(λ)−1�(x)E21(λ) · dm(λ)

π
.

Lemma 3.2. The operator T1−� is of trace-class on H1 and ‖T1−�‖Tr = O(h∞).

Proof. 1. Let χ±(x2) ∈ C∞(R) satisfying (2.16). We define Qh,± = ψ(Ph,±), where
Ph,± are the asymptotic Hamiltonians of Ph :

Ph,±
def=

∑

|α|≤2
aα,±(y)(Dx + hDy)

α.

Then we have

(Qh − λ)−1 =
∑

±
χ±(x2)(Qh,± − λ)−1

+
∑

±
χ±(x2)(Qh,± − λ)−1(Qh −Qh,±)(Qh − λ)−1.

The term (Qh,± − λ)−1 is analytic for λ ∈ ′. Recall that ψ(Ph) = λ2 + ϕ(Ph), where
ϕ(λ) ∈ C∞0 (R). Arguing as in Steps 3–4 in the proof of Lemma 2.1, we see that

Qh −Qh,± = ϕ(Ph)− ϕ(Ph,±) ∈ �
(11)
h

(
m∞2,∓

)
.

Moreover χ±(x2) ∈ �
(11)
h (m∞2,±). We deduce that (Qh−λ)−1 is a sum of two terms: the

first one is analytic in λ ∈ ′; the second one belongs to �
(11)
h (〈x2〉−∞), with bounds

blowing up at worst polynomially in | Im λ|−1—see (2.11).
2.Werecall that E22(λ)−1 = −R21(Qh−λ)−1R12.Hence E22(λ)−1 = T1(λ)+T2(λ),

with T1(λ) is analytic in λ ∈ ′; and T2(λ) in �
(22)
h

(〈x2〉−∞
)
:

T1(λ)
def= −

∑

±
R21 · χ±(x2)(Qh,± − λ)−1 · R12,

T2(λ)
def= −

∑

±
R21 · χ±(x2)(Qh,± − λ)−1(Qh −Qh,±)(Qh − λ)−1 · R12.

(3.20)

Pairings of analytic terms with almost-analytic functions vanish. Therefore,

T1−� =
∫

C+

∂2 g̃(λ)

∂λ∂λ
· [Qh, f (x1)

] · E12(λ)T2(λ)
(
1−�(x)

)
E21(λ) · dm(λ)

π
. (3.21)

3. As in (2.14), [Qh, f (x1)] ∈ �
(11)
h

(〈x1〉−∞
)
. We deduce that for any s ∈ N,

[
Qh, f (x1)

]
E12(λ) = [Qh, f (x1)

]
E12(λ)〈x1〉s · 〈x1〉−s ∈ �

(12)
h (1) ·�(22)

h

(〈x1〉−s
)
, (3.22)
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with uniform bounds as | Im λ| → 0.
As in (2.19), T2(λ) ∈ �

(22)
h

(〈x2〉−∞
)
, with bounds blowing up polynomially with

| Im λ|−1. Combining with (3.22), we deduce that for any s ∈ N,
[
Qh, f (x1)

] · E12(λ)T2(λ)
(
1−�(x)

) ∈ �
(12)
h (1) ·�(22)

h

(〈x〉−s), (3.23)

with boundsblowinguppolynomiallywith | Im λ|−1. For s ≥ 3, operators in�
(22)
h

(〈x〉−s)
are trace-class on H2. Moreover, ∂λg̃(λ) = O(| Im λ|∞). We deduce from (3.21) that
T1−� is of trace-class on H1.

4.We take the trace of (3.21) and permute trace and integral. This is allowed because g
is almost analytic and the trace-class bounds onQh−Qh,± blowupatworst polynomially,
see Step 1 and (3.4). The identity (3.23) allows us to move cyclically E21(λ) from the
right to the left. We obtain

TrH1

(
T1−�

) =
∫

C+

∂2 g̃(λ)

∂λ∂λ
· TrH2

(
E21(λ)

[
Qh, f (x1)

] · E12(λ)T2(λ)
(
1−�(x)

)) · dm(λ)

π
.

We show that this trace is O(h∞) using (3.7): we prove that the symbol is O(h∞).
Fix N ∈ N. Recall that f ′ has support in [−1, 1]. We use

[Qh, f (x1)] = [ϕ(Ph), f (x1)] =
(
1− f (x1)

)
ϕ(Ph) f (x1)− f (x1)ϕ(Ph)

(
1− f (x1)

)

with the composition theorem. This shows that there exists aN ∈ S(11)
(〈x1〉−∞

)
, with

support in [−1, 1] × R
3, such that

[
Qh, f (x1)

] = Oph(aN ) + hN ·�(11)
h

(〈x1〉−∞
)
. (3.24)

Via a similar argument, there exists bN (·; λ) ∈ S(22)(〈x2〉−∞), with support in R ×
[−1, 1] × R

2 and seminorms blowing up at worst polynomially with | Im λ|−1, with
T2(λ) = Oph

(
bN (·; λ)

)
+ hN ·�(22)

h

(〈x2〉−∞
)
. (3.25)

It uses the Helffer–Sjöstrand formula for Qh − Qh,+ = ϕ(Ph) − ϕ(Ph,+); suppχ+ ⊂
[−1,+∞); and that the coefficients of Ph − Ph,+ have support in R× (−∞, 1].

We note that the (three-way) intersection of the supports of aN , bN and 1 − � is
empty. Using (3.24), (3.25) and the composition theorem, we deduce that

E21(λ)
[
Qh, f (x1)

] · E12(λ)T2(λ)
(
1−�(x)

) ∈ hN ·�(22)
h

(〈x〉−∞) (3.26)

with symbolic bounds blowing up polynomially with | Im λ|−1. In particular the H2-
trace of (3.26) is O(hN | Im λ|−αN ) for some αN > 0. This completes the proof because
∂2
λλ
g̃(λ) = O(| Im λ|∞). ��
Applying Lemma 3.2, we split

[Qh, f (x1)]g′(Qh) = T� + T1−�

where both T� and T1−� are trace-class; it proves that Je(P−, P+) = TrH1(T�) +
O(h∞).

The operator T� is an integral involving ∂2
λλ
g̃(λ) and

[
Qh, f (x1)

]
E12(λ)E22(λ)−1�(x)E21(λ). (3.27)
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We observe that �(x) ∈ �
(22)
h

(〈x〉−∞), thus it is of trace-class on H2. The other
operators in (3.27) are bounded with bounds blowing up polynomially with | Im λ|−1.
Since ∂2

λλ
g̃(λ) = O(| Im λ|∞), we can permute trace and integral in TrH1(T�). Thus,

TrH1(T�) = −
∫

C+

∂2 g̃(λ)

∂λ∂λ
· TrH1

([
Qh, f (x1)

] · E12(λ)E22(λ)−1�(x)E21(λ)
)
· dm(λ)

π
.

We move the term E21(λ) cyclically and end up with

−
∫

C+

∂2 g̃(λ)

∂λ∂λ
· TrH2

(
E21(λ)

[
Qh, f (x1)

]
E12(λ) · E22(λ)−1�(x)

)
· dm(λ)

π
.

(3.28)

To summarize, Je(P−, P+) equals (3.28) modulo O(h∞). In a sense, the next result
extends the definition (2.5) of Je(P) to non-linear eigenvalue problems (corresponding
to the non-linear dependence of E22(λ) in the spectral parameter λ, versus the linear
dependence of P − λ):

Theorem 2. For � defined in (3.19), we have

Je(P−, P+) =
∫

C+

∂2g̃(λ)

∂λ∂λ
· TrH2

([
E22(λ), f (x1)

]
E22(λ)−1�(x)

)
· d

2λ

π
+ O(h∞).

Proof. 1. The starting point is (3.28). We use the matrix identity (3.8) for the (1, 2) and
(2, 1) components. It yields

E21(λ)
[
Qh, f (x1)

]
E12(λ) = E21(λ)(Qh − λ) f (x1)E12(λ)

−E21(λ) f (x1)(Qh − λ)E12(λ)

= −E22(λ)R21 f (x1)E12(λ) + E21(λ) f (x1)R12E22(λ).

Then we use (3.8) for the (2, 2) component. This gives

E21(λ)
[
Qh, f (x1)

]
E12(λ)− E22(λ) f (x1) + f (x1)E22(λ)

−E22(λ)
[
R21, f (x1)

]
E12(λ) + E21(λ)

[
f (x1), R12

]
E22(λ)

= [ f (x1), E22(λ)
]− E22(λ)

[
R21, f (x1)

]
E12(λ) + E21(λ)

[
f (x1), R12

]
E22(λ).

We multiply on both sides by E22(λ)−1�(x) to end up with

E21(λ)
[
Qh, f (x1)

]
E12(λ)E22(λ)−1�(x) = [ f (x1), E22(λ)

]
E22(λ)−1�(x)

−E22(λ)
[
R21, f (x1)

]
E12(λ)E22(λ)−1�(x) + E21(λ)

[
f (x1), R12

]
�(x).

(3.29)

2. The function � has compact support. Therefore it induces a trace-class operator
onH2. This allows us to separately trace each term in (3.29). The third trace is

TrH2

(
E21(λ)

[
f (x1), R12

]
�(x)

)
. (3.30)

It is analytic for λ ∈ ; an integration by parts with respect to λ gets rid of it.
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3. We focus on the second trace:

TrH2

(
E22(λ)

[
R21, f (x1)

]
E12(λ)E22(λ)−1�(x)

)
. (3.31)

We move E22(λ) cyclically to the right and commute it with �(x). The term E22(λ)−1
cancels out with E22(λ), producing an analytic term. Only the commutator produces
non-analytic terms. In other words, (3.31) equals

TrH2

([
R21, f (x1)

]
E12(λ)E22(λ)−1

[
�(x), E22(λ)

])
,

modulo an analytic function.
We recall that E22(λ)−1 splits as T1(λ) + T2(λ), where T1(λ), T2(λ) are defined in

(3.20). Since T1(λ) is analytic in λ, an integration by parts w.r.t. λ replaces (3.31) by

TrH2

([
R21, f (x1)

]
E12(λ)T2(λ)

[
�(x), E22(λ)

])
.

4. Fix N ∈ N. Since � has compact support and �′ vanishes in [−1, 1]2, there exists
cN (·; λ) ∈ �

(22)
h (1)with compact support, vanishing in [−1, 1]2, analytic in λ such that

[
�(x), E22(λ)

] = Oph
(
cN (·; λ)

)
+ hN ·�(22)

h

(〈x〉−∞) . (3.32)

From (3.25), there exists bN (·; λ) ∈ S(22)(1), with support inR×[−1, 1]×R
2 and with

seminorms blowing up at worst polynomially with | Im λ|−1, such that

T2(λ) = Oph
(
bN (·; λ)

)
+ hN ·�(22)

h (1). (3.33)

Finally, there exists dN (·; λ) ∈ �
(22)
h (1) with support in [−1, 1] × R

3 such that

[
R21, f (x1)

]
E12(λ) = Oph

(
dN (·; λ)

)
+ hN ·�(22)

h (1). (3.34)

We remark that bN (·; λ), cN (·; λ) and dN (·, λ) have disjoint supports. From the
composition theorem applied to (3.32), (3.33) and (3.34) we deduce that

[
R21, f (x1)

]
E12(λ)T2(λ)

[
�(x), E22(λ)

] ∈ hN ·�(22)
h

(〈x〉−∞)

with bounds blowing up at worst polynomially with | Im λ|−1. Therefore, there exists
αN > 0 such that

TrH2

([
R21, f (x1)

]
E12(λ)T2(λ)

[
�(x), E22(λ)

]) = O

(
hN

| Im λ|αN

)
.

6.We go back to (3.29) and we recall that (3.30) is analytic. Moreover, (3.31) equals
O
(
hN | Im λ|−αN

)
modulo an analytic term. Since ∂λg̃ is almost analytic, we deduce

that for any N , Je(P−, P+) equals

−
∫

C+

∂2 g̃(λ)

∂λ∂λ
· TrH2

(
E21(λ)

[
Qh, f (x1)

]
E12(λ) · E22(λ)−1�(x)

)
· d

2λ

π
+ O(h∞)

=
∫

C+

∂2g̃(λ)

∂λ∂λ
· TrH2

([
E22(λ), f (x1)

]
E22(λ)−1�(x)

)
· d

2λ

π
+ O(hN ).

This completes the proof. ��
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We next use Theorem 2 to express Je(P−, P+) in terms of asymptotic quantities. We
first introduce the asymptotic leading symbols of the effective Hamiltonian:

E±(ξ ; λ)
def= −R21(ξ)

(
Q±(ξ)− λ

)−1
R12(ξ), where

Q±(ξ)
def= ψ

(
P±(ξ)

)
, P±(ξ)

def=
∑

|α|≤2
aα,±(y)(Dy + ξ)α. (3.35)

We define an index for E±(ξ ; λ):

J (E±) = −
∫

∂

∫

T2∗
TrCd

((
∂E±
∂ξ1

E−1±
∂
(
∂λE± · E−1±

)

∂ξ2

)
(ξ ; λ)

)
dξ

(2π)2

dλ

2iπ
,

(3.36)

where we recall that T2∗ = (T2)∗ is the two-torus R2/(2πZ)2.

Theorem 3. We have

Je(P−, P+) = J (E+)− J (E−).

Proof. 1. Theorem 2 shows that modulo lower order terms, Je(P−, P+) is equal to

∫

C+

∂2 g̃(λ)

∂λ∂λ
· TrH2

([
E22(λ), f (x1)

]
E22(λ)−1�(x)

)
· dm(λ)

π
.

We integrate by parts with respect to λ. This produces the term

∂

∂λ
TrH2

([
E22(λ), f (x1)

]
E22(λ)−1�(x)

)
= t1(λ) + t2(λ), where:

t1(λ)
def= TrH2

([
E ′22(λ), f (x1)

]
E22(λ)−1�(x)

)

t2(λ)
def= −TrH2

([
E22(λ), f (x1)

]
E22(λ)−1E ′22(λ)E22(λ)−1�(x)

)
.

In t2(λ), we commute E ′22(λ)E22(λ)−1 with �(x), then move it cyclically to the left.
This shows that t2(λ) = t3(λ) + t4(λ), where

t3(λ)
def= −TrH2

([
E22(λ), f (x1)

]
E22(λ)−1

[
E ′22(λ)E22(λ)−1,�(x)

])
,

t4(λ)
def= −TrH2

(
E ′22(λ)E22(λ)−1

[
E22(λ), f (x1)

]
E22(λ)−1�(x)

])

= TrH2

(
E ′22(λ)

[
E22(λ)−1, f (x1)

]
�(x)

)
.

In particular, t1(λ) + t4(λ) = 0 since it is the trace of trace-class commutators:

t1(λ) + t4(λ) = TrH2

([
E ′22(λ)E22(λ)−1, f (x1)

]
�(x)

)

= TrH2

([
E ′22(λ)E22(λ)−1�(x), f (x1)

]) = 0.
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We conclude that modulo O(h∞), Je(P−, P+) is equal to
∫

C+

∂ g̃(λ)

∂λ
· TrH2

([
E22(λ), f (x1)

]
E22(λ)−1

[
E ′22(λ)E22(λ)−1,�(x)

]) · dm(λ)

π
.

(3.37)

2. We use Dimassi’s formula (3.7). The equation (3.37) becomes

Je(P−, P+) =
∫

C+

∂ g̃(λ)

∂λ
·
∫

R2×T2∗
TrCd

(
σ(x, ξ ; λ)

) dxdξ

(2πh)2
· dm(λ)

π
+ O(h∞),

(3.38)

where σ(·; λ) ∈ S(22)(1) is the symbol of

[
E22(λ), f (x1)

]
E22(λ)−1

[
E ′22(λ)E22(λ)−1,�(x)

]
. (3.39)

3. Because of (3.3) and (3.9), we can write

E22(λ) = Oph
(
E(·; λ)

)
+ O

�
(22)
h (1)

(
h| Im λ|−8), where

E(x, ξ ; λ)
def= −R21(ξ)

(
Q(x, ξ)− λ

)−1
R12(ξ).

The composition theorem applied to (3.39) shows that

σ(·; λ) = h2σ0(·; λ) + OS(22)(1)

(
h3| Im λ|−16) where

σ0(x, ξ ; λ)
def=
(
1

i

{
E, f

}
E−1 · 1

i

{
∂λE · E−1,�

})
(x, ξ ; λ). (3.40)

We observe that neither σ0 not Je(P−, P+) depend on h. Hence, (3.38) reduces to a
h-independent formula:

Je(P−, P+) =
∫

C+

∂ g̃(λ)

∂λ
·
∫

R2×T2∗
TrCd

(
σ0(x, ξ ; λ)

) dxdξ

(2π)2
· dm(λ)

π
. (3.41)

4. We simplify the expression (3.40) for σ0. Recall (3.19): �(x) = �0(x1)�0(x2)
where �0 is equal to 1 on [−1, 1]. For x ∈ supp( f ′), ∂x1�(x) = �0(x2)�′0(x1) = 0.
The support of ∂x2� does not intersect the strip R× (−1, 1). Therefore we can write

supp(∂x2�) = S+ ∪ S−, S±
def= supp(∂x2�) ∩ {±x2 ≥ 1}.

For x ∈ S±, E(x, ξ ; λ) = E±(ξ ; λ). We deduce that for ±x2 > 0,

σ0(x, ξ ; λ) = −
(

∂E±
∂ξ1

E−1±
∂
(
∂λE± · E−1±

)

∂ξ2

)
(ξ ; λ) · ∂ f (x1)

∂x1

∂�(x)

∂x2
.

5. On the support of f ′, �(x) = �0(x1)�0(x2) = �0(x2). Therefore
∫

R×R±
∂ f (x1)

∂x1

∂�(x)

∂x2
dx =

∫

R±
∂�0(x2)

∂x2
dx2 = ∓1.
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It follows that

F(λ)
def=
∫

R2×T2∗
TrCd

(
σ0(x, ξ ; λ)

) dxdξ

(2π)2

=
∑

±
±
∫

T2∗
TrCd

((
∂E±
∂ξ1

E−1±
∂
(
∂λE± · E−1±

)

∂ξ2

)
(ξ ; λ)

)
dξ

(2π)2
. (3.42)

6. From (3.41) and the definition (3.42) of F ,

Je(P−, P+) =
∫

C+

∂ g̃(λ)

∂λ
· F(λ) · dm(λ)

π
. (3.43)

We remove the dependence in g̃. We observe that F is meromorphic in λ ∈ . Assume
now that λ� ∈  is a pole of F . Then there exists ξ� such that E−1+ or E−1− has a pole
at (ξ�; λ�). From (3.35), λ� ∈ σL2(T2)

(
Q+(ξ)

)∪ σL2(T2)

(
Q−(ξ)

)
. From the spectral gap

assumption, g(λ) = 1 near λ�.
We integrate (3.43) by parts with respect to λ:

Je(P−, P+) = −
∫

C+
g̃(λ) · ∂F(λ)

∂λ
· dm(λ)

π
(3.44)

where we see ∂λF as a distribution, whose singular support is within poles of F . To
simplify (3.44), we expand F as a Laurent series near the pole λ�. From the identities

(−1) j
π

∂

∂λ
(λ− λ�)

− j−1 = ∂
j
λδ(λ− λ�) on D′(C+); g( j)(λ�) =

{
1 if j = 0
0 if j ≥ 1 ,

we see that only terms of the form (λ−λ�)
−1 in the Lorenz development of F contribute

to (3.44); and more precisely,

Je(P−, P+) = −
∑

λ�

Res(F, λ�) = −
∫

∂

F(λ)
dλ

2iπ
. (3.45)

This completes the proof: (3.36) appear in the RHS of (3.45). ��

4. Relation to the Chern Index

In this section we complete the proof of Theorem 1. Despite Theorem 3, it remains quite
involved: there do not seem to be obvious formula relating the “non-linear eigenvalue
bulk index" J (E±) to the Chern number c1(E±). Instead, we first prove a concatenation
formula:

Je(P−, P+) = Je(P−, P0) + Je(P0, P+),

where P0 was defined in Sect. 2.5. This formula explicitly splits Je(P−, P+) in compo-
nents for x2 ≥ 1 and x2 ≤ −1. This allows us to pick separate effective Hamiltonians
for x2 ≤ −1 and x2 ≥ 1. Hence, Theorem 1 follows from the separate (and similar)
computation of Je(P−, P0) and Je(P0, P+).
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Theorem 3 computes Je(P0, P+) in terms of an effective Hamiltonian E22(λ). There
remains quite a bit of flexibility in the choice of E22(λ). We design an effective Hamil-
tonian Ẽ22(λ) that is suitable for the computation of Je(P0, P+). This tremendously
simplifies the derivation of 2iπ · Je(P0, P+) = c1(E+).

However Ẽ22(λ) may not be suitable for the calculation of Je(P−, P0). But the
same approach will design another suitable effective Hamiltonian and prove 2iπ ·
Je(P−, P0) = −c1(E−). This will complete the proof of Theorem 1.

4.1. Chern number. We review how to define the bulk index of P+. We recall that
λ0 /∈ σL2(R2)(P+). By Floquet–Bloch theory [RS78,K16], for any ξ ∈ R

2, λ0 /∈
σL2(T2)

(
P+(ξ)

)
, where

P+(ξ)
def=

∑

|α|≤2
aα,+(y)(Dy + ξ)α : L2(T2) → L2(T2).

Let F+ be the smooth vector bundle over R2 whose fiber at ξ ∈ R
2 is

F+(ξ)
def= Range

(
�+(ξ)

)
, �+(ξ)

def= 1(−∞,λ0]
(
P+(ξ)

)
.

For any k ∈ Z
2 and ξ ∈ R

2,

e−2ikπy P+(ξ)e2ikπy = P+(ξ + 2kπ), e−2ikπy�+(ξ)e2ikπy = �+(ξ + 2kπ), thus

k ∈ Z
2, ξ ∈ R

2 ⇒ F+(ξ + 2kπ) = e−2ikπy · F+(ξ).

These relations show that F+ → R
2 induces a bundle E+ → T

2∗, defined as

E+ def= F+/∼, where (ξ, v) ∼ (ξ ′, v′) ⇔
{
ξ − ξ ′ ∈ (2πZ)2

eiξ yv = eiξ
′yv

, (4.1)

see e.g. [P07, §2]. Another way to define E+ consists of looking at P+ on spaces of
pseudoperiodic functions, see e.g. [D19b, §2].

Complex vector bundles over T2∗ are classified by their rank and their Chern number,
c1(E+). This integer is defined by integrating a curvature on E+. Analogously to the
Gauss–Bonnet theorem, the final result does not depend on the choice of curvature: it is
a topological invariant. Taking for instance the Berry curvature [B84,S83],

c1(E+) = i

2π

∫

T2∗
TrL2(T2)

(
�+(ξ)

[
∂1�+(ξ), ∂2�+(ξ)

])
dξ.

If c1(E+) = 0, then E+ is trivial: it admits a smooth orthonormal equivariant frame—
i.e. satisfying the equivariant relation (4.1). In other words, there exist smooth functions
ϕ1(y, ξ), . . . , ϕn(y, ξ) ∈ C∞(T2 × R

2), such that for any ξ ,

E+(ξ) = [ϕ1(·, ξ), . . . , ϕn(·, ξ)
]

and

ϕ j (y, ξ + 2kπ) = e−2ikπy, k ∈ Z
2; 〈

ϕ j (·, ξ), ϕ�(·, ξ)
〉
L2(T2)

= δ jl .

We refer to [M17, §3] for the proof.
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4.2. A concatenation formula. Let ρ0(x2) ∈ C∞(R,R) be independent of x1, with

ρ0(x) =
{
0 for x2 ≤ 0
x2 for x2 ≥ 1 .

We define ρ(x) = (0, ρ0(x2)
)
and we set

P̃h
def= Re

( ∑

|α|≤2
cα(ρ(hx), x)Dα

x

)
: L2(R2)→ L2(R2)

The same arguments as Sect. 2.5 show that P̃h is a selfadjoint elliptic operator of order
2. We observe that cα(ρ(hx), x) = cα(0, x) for x2 ≤ 0; and cα(ρ(hx), x) = cα(hx, x)
for hx2 ≥ 1. Thus, the asymptotics of P̃h for hx2 ≥ 1 and hx2 ≤ 0 are respectively
P0—see (2.30)—and P+. We deduce that Je(P0, P+) = Je(P̃h).

Moreover, P̃h is unitarily equivalent to

P̃h
def= Re

( ∑

|α|≤2
cα(ρ(x), y)(Dy + hDx )

α

)
: H1 → H1.

This operator is semiclassical, with leading symbol

P̃(x, ξ)
def= Re

( ∑

|α|=2
cα(ρ(x), y)(Dy + ξ)α

)
= Re

(
P(ρ(x), ξ)

) = P
(
ρ(x), ξ

)
.

In particular, if ϕ1, . . . , ϕd satisfy (3.11) and (3.12), then they also satisfy

u ∈ [ϕ1(·, ξ), . . . , ϕd(·, ξ)
]⊥ ⇒ 〈(̃

P(x, ξ)− λ+)u, u
〉
L2(T2)

≥ 3|u|2L2(T2)
. (4.2)

Thus (a) we can construct an effective Hamiltonian Ẽ22(λ) for P̃, with leading symbol
Ẽ(x, ξ ; λ) = E

(
ρ(x), ξ ; λ); (b) we can apply Theorem 3 and get

Je(P0, P+) = J
(
Ẽ+
)− J

(
Ẽ−
)
, where

Ẽ−(ξ ; λ)
def= E(0, ξ ; λ), Ẽ+(ξ ; λ)

def= E+(ξ ; λ). (4.3)

The key point is Ẽ−(ξ ; ·) = (λ − λ2) · IdCd . Indeed, from (2.30), P(0, ξ) = (Dy +
ξ)2 + |λ0| + 2. In particular,

σL2(R2)

(
P(0, ξ)

) ⊂ [|λ0| + 2,∞).
This implies ψ

(
P(0, ξ)

) = λ2 · IdL2(T2). We deduce from (3.9) that

Ẽ−(ξ ; λ)−1 = −R21(ξ)
(
ψ
(
Q(0, ξ)

)− λ
)−1

R12(ξ) = (λ− λ2)
−1 · IdCd .

Hence Ẽ−(ξ ; ·) = (λ− λ2) · IdCd .
From (3.36), J (Ẽ−) = 0. From (4.3), J (Ẽ+) = J (E+). Therefore, Je(P0, P+) =

J (E+). The same analysis applies to the pair (P−, P0) and yields Je(P−, P0) =
−J (E−). We conclude that

Je(P−, P+) = J (E+)− J (E−) = Je(P−, P0) + J (P0, P+). (4.4)
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In Sect. 4.3 we design a good effective Hamiltonian for the pair (P0, P+). Thanks
to (4.4), it does not need to be also good for the pair (P−, P0). The choice of Sect. 4.3
tremendously simplifies the derivation of the Chern numbers in Sect. 4.4:

2iπ · Je(P0, P+) = 2iπ · J (Ẽ+
) = c1(E+).

The same argument proves 2iπ · Je(P−, P0) = −c1(E−) and ends the proof of Theo-
rem 1.

4.3. A convenient effective Hamiltonian.

Lemma 4.1. There exist ϕ1, . . . , ϕd satisfying (3.11) and (3.12) such that

∀(x, ξ) ∈ R
2, Range

(
�+(ξ)

) ⊂ [
ϕ1(ξ), . . . , ϕd(ξ)

]
. (4.5)

Proof. 1. Since the fibers of F+ have (constant) finite dimensions and are contained in
H2(T2), there exists C > 0 such that

ξ ∈ [0, 2π ]2, u ∈ F+(ξ) ⇒ |�u|L2(T2) ≤ C |u|L2(T2). (4.6)

Let ν = c1(E+). We construct u0(ξ, y) ∈ C∞(R2,T2) such that if F0 = Cu0, then
the line bundle F0 → R

2 satisfies:

(i) F0(ξ + 2kπ) = e−2ikπy · F0(ξ) when ξ ∈ R
2, k ∈ Z

2—i.e. F0 is equivariant;
(ii) The induced bundle E0 → T

2∗ (see Sect. 4.1) has Chern number −ν = −c1(E+);
(iii) F0 ∩ F+ = ∅.

In Appendix A, we prove the existence of a(ξ) ∈ C∞(R2,C2) such that the line
Ca(ξ) induces a vector bundle Ca → T

2∗, with Chern number −ν. Fix now v1(y, ξ),

v2(y, ξ) ∈ C∞(R2 × R
2) such that

v j (y + �, ξ + 2πk) = e−2iπky · v j (y, ξ), (�, k) ∈ Z
2, j = 1, 2.

Let m0 ∈ N
2 sufficiently large (in a sense specified below); and define

u0(y, ξ)
def= e2iπm0 y ·

2∑

j=1
a j (ξ) · v j (y, ξ).

Wenote that |u0|L2(T2) = 1.The bundleF0 = Cu0 overR2 is equivariant and isomorphic
to Ca → R

2. Thus it induces a bundle E0 → T
2∗ with Chern number−ν; this proves (i)

and (ii) above.
We note that |�u0|L2

0
= (2πm0)

2 + O(|m0|) for large m0. We adjust m0 so that
|�u0|L2(T2) ≥ 2C , where C appears in (4.6). Then u0(ξ) /∈ F+(ξ). This shows (iii):
F0 ∩ F+ = ∅.

From the additivity properties of Chern numbers, c1(F0 ⊕ F+) = 0. Therefore the
bundle F0⊕F+ admits a smooth equivariant frame, see e.g. [M17, §3]. Moreover, as in
(4.6), there exists C ′ > 0 such that

ξ ∈ [0, 2π ]2, u ∈ F0(ξ)⊕ F+(ξ) ⇒ |�u|L2(T2) ≤ C ′|u|L2(T2). (4.7)
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2. Fix ϕ̃1, . . . , ϕ̃D satisfying (3.11) and such that

(x, ξ) ∈ R
2, u ∈ [ϕ̃1(ξ), . . . , ϕ̃D(ξ)

]⊥ ⇒ 〈(
P(x, ξ)− λ+

)
u, u

〉
L2(T2)

≥ 3|u|2L2(T2)
.

Let ϕ0 ∈ C∞0 (R2)with support in (0, 1)2 such that�ϕ0 
≡ 0.We fix t > 0 (large enough
in a sense progressively specified below), y1, . . . , yD ∈ (0, 1)2 pairwise distinct, and
we set

ϕ j (y, ξ)
def= ϕ̃ j (y, ξ) +

∑

m∈Z
eiξmϕ0

(
t (y − y j − m)

)
.

We observe that
∣∣ϕ j (ξ) − ϕ̃ j (ξ)

∣∣
L2(T2)

= O(t−1/2): for t sufficiently large, ϕ j (ξ) is
a small perturbation of ϕ̃ j (ξ). [DS99, Proposition A.3] implies that for every (x, ξ) ∈
R
2 × R

2,

u ∈ [ϕ1(ξ), . . . , ϕD(ξ)
]⊥ ⇒ 〈(

P(x, ξ)− λ+
)
u, u

〉
L2(T2)

≥ 3|u|2L2(T2)
. (4.8)

3. Fix ξ ∈ [0, 2π ]2. Let u in
[
ϕ1(ξ), . . . , ϕD(ξ)

]
, with |u|L2(T2) ≤ 1. We write

u(y) =
D∑

j=1
a j · ϕ j (y, ξ) =

D∑

j=1
a j · ϕ̃ j (y, ξ) +

∑

m∈Z
eiξm

D∑

j=1
a j · ϕ0

(
t (y − y j − m)

)
.

(4.9)

We note that 〈u, ϕ̃ j (ξ)〉L2(T2) = a j + O(t−1/2), uniformly in u. In particular, after
increasing t , we can assume that |a j | ≤ 2. We take the Laplacian of (4.9) and bound
below the L2(T2)-norm:

|�u|L2(T2) ≥
∣∣∣∣∣∣

D∑

j=1
a j t

2 · (�ϕ0)
(
t (· − y j )

)
∣∣∣∣∣∣
L2(T2)

−
∣∣∣∣∣∣

D∑

j=1
a j�ϕ̃ j (ξ)

∣∣∣∣∣∣
L2(T2)

≥
⎛

⎝
D∑

j=1
a2j t

2 · |�ϕ0|2L2(T2)

⎞

⎠
1/2

− 2
D∑

j=1
|�ϕ̃ j (ξ)|L2(T2)

≥ t · |�ϕ0|L2(T2) · |a|CD − 2
D∑

j=1
|�ϕ̃ j (ξ)|L2(T2).

In the second line we used that for t sufficiently large and j = 1, . . . , D, the supports
of ϕ0

(
t (· − y j )

)
do not intersect.

The functions ϕ̃ j (ξ) do not depend on t . Therefore, if we pick t sufficiently large,
|�u|L2(T2) ≥ 2C ′,whereC ′ is the constant in (4.7). It follows that for all ξ ∈ [0, 2π ]2, the
vector spacesF0(ξ)⊕F+(ξ) and

[
ϕ1(ξ), . . . , ϕD(ξ)

]
are in direct sum. The equivariance

property extends this relation to all ξ ∈ R
2.

We set d = D + n + 1 and denote a smooth equivariant section of F0 ⊕ F+ by
ϕD+1, . . . , ϕd (it exists by Step 1). Then

Range
(
�+(ξ)

) = F+(ξ) ⊂ [ϕ1(ξ), . . . , ϕd(ξ)
]
.

The equation (4.8) a fortiori implies (4.5). After performing a Gram–Schmidt process
on ϕ1(ξ), . . . , ϕd(ξ), redefining these vectors if necessary, the proof is complete. ��
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4.4. Conclusion. Let ϕ1, . . . , ϕd be given by Lemma 4.1 and R12(ξ), R21(ξ) defined
according to (3.15). Because of Lemma 4.1, (4.2) holds. Lemma 3.1 implies

u ∈ [ϕ1(·, ξ), . . . , ϕd(·, ξ)
]⊥ ⇒ 〈(

Q̃(x, ξ)− λ+
)
u, u

〉
L2(T2)

≥ |u|2L2(T2)
,

where Q̃(x, ξ) = ψ
(̃
P(x, ξ)

)
. We note that for x2 sufficiently large, P̃(x, ξ) = P+(ξ).

Following Sect. 4.2, we have

Je(P0, P+) = J (E+), E+(ξ ; λ) = −R21(ξ)
(
Q+(ξ)− λ

)−1
R12(ξ), (4.10)

where Q+(ξ) = ψ
(
P+(ξ)

)
. The operator P+ has an L2(R2)-spectral gap [λ0 − 2ε, λ0 +

2ε]. Moreover, we recall that for some λ1 ≤ λ0 − 2ε, λ2 ≥ λ0 + 2ε,

ψ(λ) =
{
λ1 if λ ≤ λ0 − 2ε
λ2 if λ ≥ λ0 + 2ε .

It follows that

Q+(ξ) = ψ
(
P+(ξ)

) = λ1�+(ξ) + λ2
(
Id −�+(ξ)

)
. (4.11)

From (4.10) and (4.11), we obtain

E+(ξ ; λ)−1 = R21(ξ)

(
�+(ξ)

λ− λ1
+
Id −�+(ξ)

λ− λ2

)
R12(ξ).

Let u1(y, ξ), . . . , un(y, ξ) ∈ C∞(T2 × R
2) be an orthonormal frame of the bundle

F+ → R
2. It exists because R2 is contractible [M01, §1]. In general, this frame is not

equivariant. Because of (3.15), R21(ξ)R12(ξ) = IdCd . Moreover, (a) ϕ1(ξ), . . . , ϕd(ξ)

form an orthonormal system in L2(T2); (b) u1(ξ), . . . , un(ξ) form an orthonormal sys-
tem in L2(T2); (c)

[
u1(ξ), . . . , un(ξ)

] ⊂ [ϕ1(ξ), . . . , ϕd(ξ)
]
. Hence R21(ξ)u1(ξ), . . . ,

R21(ξ)un(ξ) form an orthonormal system in Cd . There are fundamental consequences.
First,

�1(ξ)
def= R21(ξ)�+(ξ)R12(ξ) =

n∑

j=1
R21(ξ)u j (ξ)⊗ R21(ξ)u j (ξ)

is an orthogonal projection in C
d , which depends periodically on ξ . This allows us to

define a bundle G+ → T
2∗ with fibers Range

(
�1(ξ)

) ⊂ C
d . Second, the map R12(ξ)

induces a bundle isomorphism between E+ → T
2∗ and G+ → T

2.
In particular, these two bundles have the same topology. This expresses c1(E+) using

the Berry curvature associated to �1(ξ):

c1(E+) = i

2π

∫

T2∗
TrCd

(
�1(ξ)

[
∂1�1(ξ), ∂2�2(ξ)

])
dξ. (4.12)

We now set �2(ξ) = Id −�1(ξ) and we obtain

E+(ξ ; λ)−1 = �1(ξ)

λ− λ1
+

�2(ξ)

λ− λ2
, E+(ξ ; λ) = (λ− λ1)�1(ξ) + (λ− λ2)�2(ξ).

(4.13)



2108 A. Drouot

In particular, ∂λE+ = IdCd . The formula (3.36) for J (E+) simplifies substantially:

J (E+)
def= −

∫

T2∗

∫

∂

TrCd

((
∂E+

∂ξ1
E−1+

∂
(
∂λE+ · E−1+

)

∂ξ2

)
(ξ ; λ)

)
dλ

2iπ

dξ

(2π)2

= −
∫

T2∗

∫

∂

TrCd

((
∂E+

∂ξ1
E−1+

∂E−1+

∂ξ2

)
(ξ ; λ)

)
dλ

2iπ

dξ

(2π)2
.

Thanks to (4.13),

TrCd

((
∂E+

∂ξ1
E−1+

∂E−1−
∂ξ2

)
(ξ ; λ)

)
=

∑

j,k,�=1,2

λ− λ j

(λ− λk)(λ− λ�)

·TrCd

((
∂1� j ·�k · ∂2��

)
(ξ)
)
.

We recall that ∂ encloses λ1 but not λ2. Hence, the integral
∫

∂

λ− λ j

(λ− λk)(λ− λ�)

dλ

2iπ

equals 1 if j = k = � = 1; j = 2, k = � = 1; j = k = 2, � = 1; and j = � = 2, k = 1.
It vanishes in all other cases. We deduce that

∫

∂

TrCd

((
∂E+

∂ξ1
E−1+

∂(∂λE+ · E−1+ )

∂ξ2

)
(ξ ; λ)

)
dλ

2iπ

= TrCd

((
∂1�1 ·�1 · ∂2�1 + ∂1�2 ·�1 · ∂2�1 + ∂1�2 ·�2 · ∂2�1

+∂1�2 ·�1 · ∂2�2

)
(ξ)
)
. (4.14)

The first and second term cancel out: ∂1(�1 + �2) = 0. We use ∂ j�2 = −�1 in the
third and fourth term. Thus (4.14) equals

TrCd

((
− ∂1�1 ·�2 · ∂2�1 + ∂1�1 ·�1 · ∂2�1

)
(ξ)
)
.

Since �1�2 = 0, we get ∂1�1 ·�2 = −�1∂1�2 = �1∂1�1. Thus we end up with

TrCd

((
−�1 · ∂1�1 · ∂2�1 + ∂1�1 ·�1 · ∂2�1

)
(ξ)
)

= −TrCd

(
�1(ξ)

[
∂1�1(ξ), ∂2�1(ξ)

])
.

From this identity and (4.12), we conclude that

Je(P0, P+) = J (E+) =
∫

T2∗
TrCd

(
�1(ξ)

[
∂1�1(ξ), ∂2�1(ξ)

]) dξ

(2π)2
= − i

2π
c1(E+).

In particular, 2iπ · Je(P0, P+) = c1(E+). The same procedure shows that 2iπ ·
Je(P−, P0) = −c1(E−). The formula (4.4) and Ie(P) = iJe(P) end the proof of
Theorem 1:

2iπ · Je(P−, P+) = c1(E+)− c1(E−).
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A. Appendix A

Lemma A.1. For any ν ∈ Z, there exists a(ξ) ∈ C∞(R2,C2) such that the line Ca(ξ)

is (2πZ)2-periodic in ξ ; and the vector bundle Ca → T
2∗ has Chern number −ν.

Proof. 1. Fix ε > 0, α(ξ1), β(ξ1) ∈ C∞(R,R), both 2π -periodic, with

ξ1 ∈ [−1, 1] ⇒ α(ξ1) = ξ1, β(ξ1) = 0; ξ1 ∈ [−π, π ] \ [−1, 1] ⇒ β(ξ1) > 0.

Let Mε(ξ) ∈ C∞
(
R
2, M2(C)

)
be given by

Mε(ξ)
def=
[

α(ξ1) β(ξ1) + εe−iνξ2

β(ξ1) + εeiνξ2 −α(ξ1)

]
.

For any ξ ∈ R
2, Mε(ξ) has a unique negative eigenvalue. SinceR2 is contractible [M01,

§1], Mε(ξ) admits a normalized negative-energy eigenvector aε(ξ) ∈ C∞(R2,C2).
Since Mε(ξ) is (2πZ)2-periodic, the eigenspace Caε(ξ) is (2πZ)2-periodic. Thus it
induces a vector bundle Caε → T

2∗.
2. The eigenprojector of M associated to the negative eigenvalue is

πε = Id − Mε√− det Mε

.

Thus the Berry curvature of Caε → T
2∗ is

Bε(ξ)
def= −TrC2

(
Mε√− det Mε

[
∂

∂ξ1

Mε√− det Mε

,
∂

∂ξ2

Mε√− det Mε

])
.

We observe that as ε → 0, the convergences

− det Mε = α(ξ1)
2 + |β(ξ1) + εeiνξ2 |2 → α(ξ1)

2 + β(ξ1)
2; and ∂2Mε → 0

are uniform. Moreover, for ξ1 ∈ [−1, 1], α(ξ1)
2 +β(ξ1)

2 is bounded below by a positive
constant. We deduce that Bε(ξ)→ 0 uniformly away from [−1, 1] × [−π, π ].
3. When ξ1 ∈ [−1, 1], we have

Mε(ξ)
def=
[

ξ1 εe−iνξ2

εeiνξ2 −ξ1

]
.

A direct calculation, see e.g. [D18, Lemma 6.3] shows that

Bε(ξ1) = iε2ν

2(ξ21 + ε2)3/2
,

i

2π

∫

[−1,1]×[−π,π ]
Bε(ξ)dξ →−ν.

It follows that if ε is sufficiently small, then the Chern number of Caε → T
2∗ is −ν, as

claimed. This completes the proof. ��
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