

1 Suppression of CO₂ outgassing by gas bubbles under a hurricane

3 Jun-Hong Liang^{1,2,3}, Eric A. D'Asaro⁴, Craig L. McNeil⁴, Yalin Fan⁵, Ramsey R. Harcourt⁴,
4 Steve R. Emerson⁶, Bo Yang⁷, and Peter P. Sullivan⁸

5
6 ¹ Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge,
7 Louisiana, USA

8 ² Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana,
9 USA

10 ³ Coastal Studies Institute, Louisiana State University, Baton Rouge, Louisiana, USA

11 ⁴ Applied Physics Laboratory, University of Washington, Seattle, Washington, USA

12 ⁵ Naval Research Laboratory, Stennis Space Center, Mississippi, USA

13 ⁶ School of Oceanography, University of Washington, Seattle, Washington, USA

14 ⁷ Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA

15 ⁸ National Center for Atmospheric Research, Boulder, Colorado, USA

16 Corresponding author: Jun-Hong Liang (jliang@lsu.edu)

18 Key Points:

- 19 • Gas bubbles reduce CO₂ efflux from supersaturated water by a factor of 50 under
20 hurricane winds for the simulated conditions.
- 21 • Bubble-induced supersaturation should be included in gas flux parameterization for CO₂
22 in high wind conditions
- 23 • Parameterizations derived using O₂, N₂ and inert gases may not be accurate for CO₂ that
24 has a very different solubility.

26 Plain Language Summary

27 Carbon dioxide (CO₂) is the primary anthropogenic greenhouse gases in the atmosphere and is
28 the gas most responsible for global warming. The ocean is an important sink of anthropogenic
29 atmospheric CO₂, yet the exchange of CO₂ between the ocean and the atmosphere is not fully
30 understood. This study re-examines the exchange of CO₂ under hurricanes over the low-latitude
31 ocean, using hurricane Frances (2004) as an example. Previous studies show that hurricanes
32 significantly facilitate the outgassing of CO₂ due to the extreme wind. Those studies, however,
33 do not explicitly consider gas bubbles. Gas bubbles, entrained into the ocean when ocean wave
34 breaks, are ubiquitous under hurricanes also due to the extreme wind. While in the ocean, gas
35 bubbles not only move around under the influence of the chaotic wind-driven currents and their
36 own buoyancy, they also exchange gases with the water. Our study, using state-of-the-art
37 computer models that concurrently simulate the chaotic ocean currents, gas bubbles, and
38 dissolved gases, demonstrates that hurricane plays a significantly smaller role in the ocean-
39 atmosphere transfer of CO₂ than previously estimated.

40 Abstract

41 The role of gas bubbles on the air-sea CO₂ flux during Hurricane Frances (2004) is studied using
42 a large-eddy simulation model that couples ocean surface boundary layer turbulence, gas bubbles
43 and dissolved gases. In the subtropical surface ocean where gases are slightly supersaturated,
44 gases in bubbles can still dissolve due to hydrostatic pressure and surface tension exerted on
45 bubbles. Under the simulated conditions, the CO₂ efflux with an explicit bubble effect is less
46 than 2% of that calculated using a gas flux formula without explicit inclusion of bubble effect.
47 The use of a gas flux parameterization without bubble-induced supersaturation contributes to
48 uncertainty in the global carbon budget. The results highlight the importance of bubbles under
49 high winds even for soluble gases such as CO₂ and demonstrate that gas flux parameterization
50 derived from gases of certain solubility may not be accurate for gases of very different solubility.

51 1 Introduction

52 The transfer of carbon dioxide (CO₂) through the ocean-atmosphere interface modulates the
53 cycling of CO₂ in the earth system and influences the amount of anthropogenic CO₂, an
54 important greenhouse gas, absorbed in the ocean. It has now been qualitatively understood that
55 the ocean takes in CO₂ at the high latitudes where the surface water is cold and is undersaturated

56 in CO₂, and releases CO₂ at low latitudes where the water is warm and is supersaturated in CO₂.
57 The quantitative estimates of ocean-atmosphere CO₂ flux, however, still contain strong
58 uncertainties [e.g., *Wanninkhof et al.* 2009; *Woolf et al.* 2019], associated with errors in the data
59 used to calculate CO₂ flux including gas concentrations and wind speed, and with the functional
60 form of gas flux parameterization due to insufficient understanding of gas transfer processes
61 particularly when the ocean is rough and gas bubbles entrained during wave breaking play a key
62 role.

63 Gas bubbles alter air-sea gas exchange in two ways: First, the gas transfer rate is enhanced as
64 gases go in and out of the ocean through bubble surfaces in addition to the sea surface. Secondly,
65 gases still dissolve through bubbles at saturated and supersaturated water as gases in bubbles are
66 squeezed by water pressure and surface tension; as a result, the ocean is supersaturated when the
67 total air-sea gas flux is zero [e.g., *Woolf* 1997]. Although the enhanced gas transfer rate is
68 already (mostly implicitly) in popular gas flux parameterizations, the bubble-induced
69 supersaturation is thought to be unimportant for highly soluble gases such as CO₂ and is never
70 considered in any realistic CO₂ flux calculations. A recent observational study [*Leighton et al.*
71 2018], however, concluded that bubble-induced supersaturation is more important than
72 previously thought, implying that existing CO₂ calculations neglecting bubble-induced
73 supersaturation may overestimate (underestimate) efflux (influx). On the other hand, the
74 importance of bubble-induced supersaturation for less soluble gases such as O₂ [e.g., *Vagle et al.*
75 2010; *Bushinsky et al.* 2016; *Wang et al.* 2019], inert gases [*Stanley et al.* 2009] and their ratios
76 [e.g., *Hamme and Emerson* 2006] has already been recognized. It was also established in those
77 studies that accurate quantification of the total air-sea gas flux requires the separation of the total
78 gas flux into three components, viz., the gas flux through the ocean surface, that through bubbles
79 that completely dissolved, and that through bubbles that eventually burst at the ocean surface
80 (partially dissolved).

81 Since gas transfer rate increases with wind speed, it is plausible that gas transfer under hurricanes
82 makes a significant contribution to global CO₂ flux. Based on observational data, *Bates et al.*
83 [1998] concluded that hurricanes contribute up to half of the global CO₂ efflux. *Levy et al.*
84 [2012] noted that the gross effect of hurricanes on CO₂ efflux is much less and is about 10% of
85 the global CO₂ efflux because a considerable portion of the ocean under a hurricane path is
86 undersaturated in CO₂ and vertical mixing is anomalously weak after the passage of hurricanes.

87 Several other studies [e.g., *Bate* 2007; *Huang and Imberger* 2010] also discuss the CO₂ efflux
88 under hurricane conditions. While those studies debate the quantitative integral effect of
89 hurricanes on CO₂ efflux, they all agree that strong CO₂ outgassing occurs over surface water
90 supersaturated in CO₂ during hurricane passage due to the enhanced transfer rate associated with
91 strong winds. Gas flux estimates in most studies implicitly include bubble-enhanced transfer rate
92 but not bubble-induced supersaturation [e.g., *Wanninkhof* 1992; *Fairall et al.* 2011]. While
93 parameterizations are based on gas flux measurements, including CO₂, the data for high wind are
94 collected at high latitudes where the wind is strong but CO₂ is strongly undersaturated [e.g., *Ho*
95 *et al.* 2011; *Bell et al.* 2017]. At strongly undersaturated conditions, both the gas flux through the
96 ocean surface and that through bubbles are from the atmosphere to the ocean. It remains
97 unknown if the gas transfer formulas derived from undersaturated water, with CO₂ influx, apply
98 to supersaturated water, with CO₂ efflux.

99 The purpose of this study is to examine the effect of gas bubbles on CO₂ outgassing in
100 supersaturated waters under Hurricane Frances (2004). The study is conducted by synthesizing in
101 situ observations including gases and numerical solutions from a process model that
102 simultaneously models turbulent flows, gas bubbles, and dissolved bubbles. Section 2 describes
103 the data and the model; Section 3 presents and discusses the results; and Section 4 is a summary.

104 **2 Data and Model Description**

105 **2.1 Data**

106 Hurricane Frances (2004) was a category-4 hurricane in the northwestern Atlantic Ocean causing
107 significant damage to the Bahamas and southeastern states of the U.S. A large campaign was
108 conducted starting August 31st, 2004 to observe both sides of the air-sea interface in the path of
109 the hurricane. Details of the field campaign, instrumentation, and available data are in *Black et*
110 *al.* [2007]. For this study, the concentrations of dissolved O₂ and N₂ derived from an O₂ sensor
111 and a gas tension device on a Lagrangian float that constantly transited across the upper 40-m or
112 so of the ocean under the maximum hurricane winds are used (Fig. 1a) [*D'Asaro and McNeil*
113 2007]. Temperature and salinity from a nearby autonomous profiling Electromagnetic
114 Autonomous Profiling Explorer (EM-APEX) float [*Sanford et al.* 2011] are also used.

115 **2.2 Model**

116 **2.2.1 Model description**

117 The computer solutions are obtained using the coupled-ocean-bubble-gas model [Liang *et al.*
118 2017]. Turbulent currents under the hurricane are simulated with the National Center for
119 Atmospheric Research Large Eddy Simulation (NCAR-LES) model [e.g., *Sullivan and*
120 *McWilliams* 2010]. The evolution of gas bubbles is tracked as Lagrangian particles and the
121 concentration of dissolved gases are simulated using advection-diffusion equations. Model
122 formulation and implementation are repeated in the supporting information. The next two
123 paragraphs highlight the improvements from Liang *et al.* [2017] that are important for bubble
124 simulations.

125 Bubbles are entrained into the ocean by breaking waves. In our past studies [e.g., Liang *et al.*
126 2017], breaking wave number density is an exponential function of breaking wave speed (c) (see
127 equation 3.15 in *Sullivan et al.* 2007). The functional form is based on visual observation by
128 *Melville and Matusov* [2002]. In this study, we implemented the breaking wave front distribution
129 function ($\Lambda(c)$) from more recent infrared observations [Zappa *et al.* 2012; *Sutherland and*
130 *Melville* 2013 and 2015; *Romero* 2019] that are power-law functions of c (see supporting
131 information for details). There are more large breaking waves and less small breaking waves
132 using the current power-law distribution function than the exponential distribution function in
133 our previous studies (see Figure S1 in supporting information).

134 In addition to O_2 and N_2 that were simulated in Liang *et al.* [2017], CO_2 is also explicitly
135 simulated in the same way as in Liang *et al.* [2011]., In the model, dissolved inorganic carbon
136 ($[DIC]=[CO_3^{2-}]+[HCO_3^{2-}]+[H_2CO_3]$) and alkalinity are simulated. The partial pressure of CO_2 is
137 diagnosed by assuming equilibrium chemistry [e.g., *Sarmiento and Gruber* 2006; *Emerson and*
138 *Hedges* 2008]. Since the carbonate reaction is assumed instantaneous, our model does not have
139 the chemical enhancement effect of CO_2 exchange that is negligible at normal ocean turbulence
140 conditions [e.g., *Wanninkhof and Knox* 1996]. The use of equilibrium assumption in LES studies
141 of upper ocean CO_2 is also confirmed by Smith *et al.* [2018], who compared LES simulations
142 resolving carbonate reactions and those assuming carbonate system equilibrium and concluded
143 that explicit consideration of carbonate reaction has minimal effect on CO_2 flux.

144 **2.2.2 Model configuration**

145 The model was configured in a rectangular domain of $400\times400\times200$ m with $256\times256\times192$ grids.
146 The simulation starts on day 245.15 ($\sim 3:36$ AM Sept. 1st GMT) of 2004 when the dissolved gas

147 data are available and lasts for about 1.16 days within which the wind strengthened to its
148 maximum and weakened to about the pre-storm strength. Wind speeds at 10-m above the ocean
149 surface (U_{10}) and sea level pressure (Fig. 1b) were interpolated from the National Oceanic and
150 Atmospheric Administration/Hurricane Research Division (NOAA/HRD) real-time wind
151 analysis (H*WIND) product [Powell *et al.* 1988]. The float is located on the right flank of the
152 hurricane and the largest U_{10} over the float is greater than 52 m/s at day 0.6. Surface heat flux
153 and freshwater flux were interpolated from the hourly NCEP Climate Forecast System
154 Reanalysis (CFSR) product at a spatial resolution of $0.312^\circ \times 0.312^\circ$ [Saha *et al.* 2010]. The
155 strong wind and precipitation also lead to strong cooling flux and freshwater flux to the ocean
156 (Fig. 1c). Wave parameters, including Stokes drift, peak wave period, and wave energy to the
157 ocean, are based on the solutions of wave spectrum computed using the wind-wave model
158 WAVEWATCH III® (WWIII) [Tolman *et al.* 2009]. The WWIII model was also driven by the
159 H*WIND product. Details about the configuration of the WWIII model were described in Fan *et*
160 *al.* [2009]. The calculation of wave energy flux to the ocean follows *Fan and Hwang* [2017]. The
161 waves in the front-right quadrant of the hurricane track are higher and longer due to the
162 resonance effect caused by the movement of the storm, while those in the rear-left quadrant are
163 lower and shorter. The atmospheric fraction of gases is constant through the simulation and is
164 20.9%, 78.1% and 374 ppm for O₂, N₂ and CO₂, respectively. The value for atmospheric CO₂
165 concentration was inferred from the updated observation-based global monthly gridded sea
166 surface CO₂ and air-sea CO₂ flux product [Landschützer *et al.* 2017].

167 Initial profiles of temperature, salinity, dissolved O₂ and dissolved N₂ were set based on the
168 measurements on the floats (Figs. 2a and 2b). The initial mixed layer depth is less than 30 m.
169 Temperature is higher and salinity is lower in the mixed layer than below, as is typical of the
170 region [Sanford *et al.* 2011]. Dissolved N₂ is lowest in the mixed layer and increases with depth
171 below the mixed layer. It is about 1% supersaturated in the mixed layer. Dissolved O₂ is more
172 than 2% supersaturated in the mixed layer. In the studied region with strong surface heating and
173 sunlight, the euphotic zone is deeper than the mixed layer, leading to higher dissolved O₂ in the
174 thermocline than in the mixed layer. Dissolved O₂ is the largest at around 60 m, below which
175 dissolved O₂ decreases with depth due to remineralization. Initial profiles of dissolved inorganic
176 carbon and alkalinity (Fig. 2c) are the same as those used by *Huang and Imberger* [2010] for the
177 same storm. The profiles are based on measurement by the R/V Knorr cruise at (22.21°N,

178 66.00°W) in 1997, but are increased by 9.59 mmol/kg and 4.27 mmol/kg for DIC and alkalinity,
179 respectively, based on the observed increase in mean DIC and alkalinity in the same region and
180 between 1997 and 2004 by *Bates* [2007].

181 To understand the effect of gas bubbles, two simulations were carried out, one without gas
182 bubbles (run NB) and the other one with bubbles (run B). In the simulation without gas bubbles,
183 the total gas flux is calculated using the parameterization by *Wanninkhof* [1992] that is
184 commonly used in earth system models. In the parameterization, the enhanced gas transfer rate
185 due to bubbles is implicitly included while the bubble-induced supersaturation is neglected. In
186 the simulation with gas bubbles, gas bubbles are represented by 8 million Lagrangian particles.
187 The total gas flux is the sum of the gas flux through bubbles and the gas flux through the ocean
188 surface. The gas flux through bubbles is explicitly calculated from the bubble fields and the
189 dissolved gas fields, and the gas transfer rate through the ocean surface is calculated using the
190 formula proposed by *Goddijn-Murphy et al.* [2012] for *in situ* wind, i.e., $k_{s,660}=2.6U_{10}-5.7$.

191 **3 Results**

192 During the passage of the hurricane, the ocean surface cools by about two degrees. The cooling
193 is primarily driven by the turbulent entrainment of thermocline water. Only 10% of the total
194 cooling is caused by surface heat flux. Detailed analysis of the cold wake of the hurricane has
195 been carried out by *D'Asaro et al.* [2007]. It plays an important role in the local atmosphere-
196 ocean coupling [e.g., *D'Asaro et al.* 2007], and in the heat exchange between the surface and the
197 interior oceans [*Mei et al.* 2013]. Although there is strong freshwater flux associated with
198 precipitation during the passage of the hurricane, sea surface salinity increases (Fig 3b) due to
199 the dominant effect of entrainment of saltier thermocline water below the mixed layer. The
200 model captures the observed upper ocean response well, particularly during the strongest winds.

201 Mixed-layer dissolved O₂, dissolved N₂ and DIC all increase after the passage of the hurricane in
202 simulations with and without gas bubbles (red lines in Figs. 3c to 3e). Similar to heat and salt,
203 dissolved gas concentrations are controlled by air-sea surface gas flux and by entrainment of
204 thermocline water which has different dissolved gas concentrations. Throughout the simulated
205 period, all three gases are supersaturated with respect to their atmospheric pressure (see the
206 comparison between the solid lines and the dashed lines in Figs. 3c, 3d and 3f), so that the
207 surface flux is from the ocean to the atmosphere. The supersaturated condition is a combined

208 consequence of the initial supersaturation condition, the low atmospheric pressure during the
209 storm, the entrainment of the thermocline water immediately below the mixed layer, and the
210 mixing of waters of different temperatures. For the three gases, the effect of entrainment
211 dominates that of surface outgassing, and the mixed layer concentrations of gases increase.

212 In the simulation with bubbles, the mixed layer concentrations of all three gases increase, and are
213 larger than in the simulation without bubbles throughout the simulated period. Given that the
214 effect of bottom entrainment is the same for both simulations, the difference between the two
215 simulations is from the explicit inclusion of gas bubbles. The difference between the two
216 simulations is much more evident for O₂ and N₂ than for DIC and pCO₂. This is consistent with
217 the conclusion in *Koch et al. [2009]* that air-sea gas flux has a minimal influence on the change
218 of mixed-layer DIC under a hurricane and the decrease in pCO₂ is due to changes in mixed layer
219 temperature and salinity.

220 To better understand the role of bubbles in air-sea gas flux, especially for CO₂ flux, the total gas
221 flux between the ocean and the atmosphere, and the respective contribution from the two types of
222 bubbles and the ocean surface are presented in Figs. 4a to 4c. In the simulation without bubbles,
223 the total gas flux (black dashed lines in Figs. 4a to 4c) is from the ocean to the atmosphere for all
224 three gases due to the supersaturation of the gases. In the simulation with bubbles, the total gas
225 flux for both O₂ and N₂ (black solid lines in Figs. 4a and 4b) is from the atmosphere to the ocean,
226 in the opposite direction from the surface flux (red lines) and the total flux without bubbles
227 (black dashed lines). The gas flux through bubbles dominates the surface flux for both O₂ and
228 N₂. The fractional contribution by completely dissolved bubbles (blue lines) is larger for N₂ than
229 for O₂ because the solubility of N₂ is smaller than that of O₂.

230 With bubbles, the total gas flux of CO₂ is from the ocean to the atmosphere aside from a brief
231 period between around day 0.58 to day 0.69 when the winds are strongest (Fig. 4c). Under the
232 simulated conditions, the integrated CO₂ flux during the simulated period is still from the ocean
233 to the atmosphere but is less than 2% of the flux estimated using a parameterization without
234 explicit consideration of bubble-induced supersaturation. Except for the first 0.32 days when
235 CO₂ is more than 8% supersaturated and U₁₀<26m/s, bubbles contribute to CO₂ dissolution
236 although the gas is at least 3% supersaturated. In traditional gas flux parameterization without
237 bubble-induced supersaturation, bubbles will always contribute to gas efflux in supersaturated

238 conditions. This implies that previous studies using a traditional gas flux parameterization
239 significantly overestimates CO₂ efflux during the passage of a hurricane. Since CO₂ is the most
240 soluble among the three simulated gases, the relative contribution by bubbles to total gas flux is
241 the smallest. The effect of gas bubbles becomes evident (the black and the red lines deviate)
242 when U₁₀>30m/s. The contribution of completely dissolved bubbles is much smaller than that
243 from partially dissolved bubbles for CO₂ that is highly soluble. This is because the fraction of
244 gas that dissolves through partially dissolved (large) bubbles increases with increasing solubility
245 while the fraction of a gas through completely dissolved bubbles is determined only by the
246 atmospheric fraction of the gas.

247 While parameterizations for bubble-mediated gas flux including bubble-induced supersaturation
248 have been examined for weakly soluble gases such as inert gases [Stanley *et al.* 2009], oxygen
249 [e.g., Atamanchuk *et al.* 2020] and nitrogen [e.g., Emerson and Bushinsky 2016], they have
250 never been tested with CO₂. That is likely because all CO₂ gas flux studies are conducted at high
251 latitudes where the water is undersaturated. We compare CO₂ flux through bubbles from the LES
252 solutions with that calculated using three parameterizations, including Nicholson *et al.* [2011],
253 Liang *et al.* [2013]; and Nicholson *et al.* [2016] (denoted as N11, L13, and N16 hereafter). The
254 three parameterizations explicitly include the effect of bubble-induced supersaturation that is
255 required to predict an influx or a reduced efflux under supersaturated conditions. The
256 parameterizations also compare well with observed concentrations of a few weakly soluble gases
257 [e.g., Manning *et al.* 2016; Nicholson *et al.* 2016; Liang *et al.* 2017]. The three parameterizations
258 show different prediction skill for total gas fluxes (Figs. 4d to 4f) and the gas fluxes through
259 bubbles when compared with the LES models (Figs. 4g to 4i). Note that the three
260 parameterizations neglect wave condition as an additional parameter. Wave condition regulates
261 the distribution of breaking waves and boundary layer turbulence, thereby modulating both
262 bubble entrainment [Deike *et al.* 2017] and bubble penetration [Liang *et al.* 2012]. It was shown
263 to be important for determining gas flux [e.g., Liang *et al.* 2017] and gas transfer rate [e.g.,
264 Brumer *et al.* 2017; Deike *et al.* 2018; Esters *et al.* 2018; Reichl and Deike 2020].
265 Parameterization L13 predicts a CO₂ efflux until day 0.5 and then switches to CO₂ influx
266 afterward. The change from efflux to influx, also in the LES solutions, is associated with the
267 drastic decrease in pCO₂ due to the entrainment of subsurface water into the mixed layer. In
268 parameterizations N11 and N16, the surface efflux dominates the influx through bubbles

269 throughout the studied period. The predicted total CO₂ fluxes by the three parameterizations are
270 all much larger in magnitude than the results from the LES model (Fig. 4f). It is likely because
271 the equilibration time is much shorter for CO₂ than for N₂, O₂ and inert gases (see section 4b of
272 *Woolf and Thorpe [1991]*), As a result, in many of the partially dissolved bubbles, equilibration
273 is reached for CO₂, but not for less soluble gases such as O₂ and N₂. When generalized for CO₂,
274 parameterizations derived from weakly soluble gases assume that equilibration is not reached for
275 CO₂, therefore overestimating the flux through bubbles for CO₂ and other highly soluble gases.

276 4 Summary

277 This study shows that gas bubbles have a substantial effect on the transport of a soluble gas,
278 CO₂. The outgassing of CO₂ over supersaturated water during the passage of a hurricane is
279 smaller than previous estimates based on traditional gas flux parameterizations. The small efflux
280 is due to gas bubbles that transfer gases into the ocean even under supersaturated conditions. At
281 the right flank of Hurricane Frances (2004) close to the location of maximum winds, CO₂ efflux
282 including the effect of gas bubbles is less than 2% of that calculated using a popular gas flux
283 parameterization without bubble-induced supersaturation under the simulated conditions. These
284 results underscore the significance of previously overlooked bubble-induced supersaturation
285 conditions for CO₂, a highly soluble gas. They also demonstrate that parameterizations derived
286 using weakly soluble gases such as O₂, N₂ and inert gases are not accurate for highly soluble
287 gases such as CO₂, and vice versa.

288 This study focuses on changes in mixed layer dissolved gas concentration and air-sea gas flux
289 during the passage of a hurricane. Although the CO₂ outgassing flux is substantially smaller than
290 previous estimates, hurricanes likely still have considerable impacts on CO₂ outgassing well after
291 their passage. As shown in Fig. 3, the mixed-layer DIC concentration after the passage of the
292 hurricane is substantially higher than its pre-storm values due to interior mixing. Although pCO₂
293 is not significantly different right after the passage of the hurricane because of cooling from
294 entrainment of thermocline water, anomalous warming over the cold wake after the hurricane
295 [e.g., *Price et al. 2008*] increases pCO₂, leading to anomalous outgassing in the hurricane wake.
296 On the other hand, it is also possible that the anomalously high DIC is consumed during the
297 enhanced plankton bloom after the passage of hurricanes and is exported to the deep ocean
298 through the sinking of organic particles. Massive ocean phytoplankton blooms after the passage

299 of a hurricane are commonly observed [Lin *et al.* 2003; Walker *et al.* 2005; Liu *et al.* 2019]. The
300 study of CO₂ flux over a complete hurricane wake would require a regional or a global model
301 together with a parameterization explicitly including bubble-induced supersaturation. Our
302 ongoing efforts are to develop a parameterization including bubble-induced supersaturation for
303 CO₂, with both wind and wave as parameters. Future field campaign could focus on measuring
304 CO₂ flux over supersaturated water, those measurements should include air-side fluxes and
305 concentrations at the two sides of the ocean surface.

306 **Acknowledgments**

307 JHL was supported by the National Science Foundation (NSF) through grants OCE1945502 and
308 OCE1558317. EAD, CLM and RRH were supported by NSF through grants OCE0549887, and
309 OCE0850551 and by the Office of Naval Research through grants N00014-081-0577 and
310 N00014-081-0575. YF was funded by the Office of Naval Research under program element
311 0601153N. SRE was supported by NSF through grant OCE1558476. PPS was supported by the
312 ONR through Grant N000141410626. Computations were performed using supercomputing
313 facilities at Louisiana State University, at the Louisiana Optical Network Initiative, and at the
314 National Center for Atmospheric Research (NCAR). NCAR is sponsored by NSF. Data for the
315 figures were archived at DOI:10.5281/zenodo.3975400 (<https://zenodo.org/record/3975400>).
316 Computations were performed on supercomputing facilities at Louisiana State University,
317 through the Louisiana Optical Network Infrastructure (LONI), and at the National Center for
318 Atmospheric Research (NCAR).

319 **References**

320 Atamanchuk, D., J. Koelling, U. Send, & D. W. R. Wallace, (2020), Rapid transfer of oxygen to
321 the deep ocean mediated by bubbles. *Nature Geosci.*, **13**(3), 232-237.

322 Bates, N. R. (2007), Interannual variability of the oceanic CO₂ sink in the subtropical gyre of the
323 North Atlantic Ocean over the last 2 decades. *J. Geophys. Res.*, **112**, C09013,
324 doi:10.1029/2006JC003759.

325 Bates, N. R., A. H. Knap, and A. F. Michaels (1998), Contribution of hurricanes to local and
326 global estimates of air-sea exchange of CO₂, *Nature*, **395**, 58-61, doi:10.1038/25703.

327 Bell, T. G., Landwehr, S., Miller, S. D., Bruyn, W. J., Callaghan, A. H., Scanlon, B., et al.
328 (2017). Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO₂
329 transfer velocities at intermediate-high wind speeds. *Atmospher. Chem. Phys.*, **17(14)**, 9019-
330 9033.

331 Brumer, S. E., C. J. Zappa, B. W. Blomquist, C. W. Fairall, A. Cifuentes-Lorenzen, J. B. Edson,
332 I. M. Brooks, & B. J. Huebert, (2017). Wave-Related Reynolds number parameterizations of
333 CO₂ and DMS transfer velocities. *Geophys. Res. Lett.*, **44(19)**, 9865-9875.

334 Bushinsky, S. M., Emerson, S. R., Riser, S. C., & Swift, D. D. (2016). Accurate oxygen
335 measurements on modified Argo floats using in situ air calibrations. *Limnol. Oceanogr.*
336 *Methods*, **14(8)**, 491-505.

337 Craik, A. D. D., and S. Leibovich (1976) A rational model for Langmuir circulations, *J. Fluid*
338 *Mech.*, **73**, 401-426.

339 D'Asaro, E. A., and C. McNeil (2007), Air-sea gas exchange at extreme winds speeds measured
340 by autonomous oceanographic floats, *J. Mar. Res.*, **66**, 92-109.

341 Deane, G. B., and M. D. Stokes (2002), Scale dependence of bubble creation mechanisms in
342 breaking waves, *Nature*, **418**, 839-844.

343 Deike, L., W. K. Melville, and S. Popineta (2016), Air entrainment and bubble statistics in
344 breaking waves, *J. Fluid Mech.*, **801**, 91-129.

345 Deike, L., L. Lenain, & W. K. Melville, (2017). Air entrainment by breaking waves. *Geophys.*
346 *Res. Lett.*, **44(8)**, 3779-3787.

347 Deike, L., and W. K. Melville (2018), Gas transfer by breaking waves. *Geophys. Res. Lett.*,
348 **45(19)**, 10,482-10,492.

349 Emerson, S., and S. Bushinsky (2016), The role of bubbles during air-sea gas exchange, *J.*
350 *Geophys. Res. Oceans*, **121**, 4360-4376.

351 Emerson, S. R., and J. I. Hedges (2008), *Chemical Oceanography and the Marine Carbon Cycle*,
352 Cambridge Univ. Press, Cambridge.

353 Esters, L., S. Landwehr, G. Sutherland, T. G. Bell, K. H. Christensen, E. S. Saltzman, S. D.
354 Miller, and B. Ward (2017). Parameterizing air-sea gas transfer velocity with dissipation." *J.*
355 *Geophys. Res.-Oceans*, **122**(4), 3041-3056.

356 Fairall, C. W., M. Yang, L. Bariteau, J. B. Edson, D. Helmig, W. McGillis, S. Pezoa, J. E.
357 Hare, B. Huebert, and B. Blomquist (2011), Implementation of the coupled ocean-atmosphere
358 response experiment flux algorithm with CO₂, dimethyl sulfide, and O₃, *J. Geophys.*
359 *Res.*, 116, C00F09.

360 Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, (2009), Numerical simulations and
361 observations of surface wave fields under an extreme tropical cyclone. *J. Phys. Oceanogr.*, **39**,
362 2097-2116.

363 Fan, Y., and P. Hwang (2017), Kinetic energy flux budget across air-sea interface. *Ocean*
364 *Modell.*, **120**, 27-40.

365 Fan, Y., E. Jarosz, Z. Yu, W. Rogers, T. Jensen, and J.-H. Liang (2018). Langmuir turbulence in
366 horizontal salinity gradient. *Ocean Modell.*, **129**, 93-103.

367 Goddijn-Murphy, L., D. K. Woolf, and C. Marandino (2012), Space-based retrievals of air-sea
368 gas transfer velocities using altimeters: Calibration for dimethyl sulfide, *J. Geophys. Res.*, **117**,
369 C08028, doi:10.1029/2011JC007535.

370 Harcourt, R.R., (2015), An improved second-moment closure model of Langmuir turbulence. *J.*
371 *Phys. Oceanogr.*, **45**, 84-103.

372 Hamlington, P. E., L. P. V. Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini (2014),
373 Langmuir-submesoscale interactions: Descriptive analysis of multiscale frontal spin-down
374 simulations, *J. Phys. Oceanogr.*, **44**, 2249-2272.

375 Hamme, R., and S. Emerson (2006), Constraining bubble dynamics and mixing with dissolved
376 gases: Implications for productivity measurements by oxygen mass balance, *J. Mar. Res.*, **64**, 73-
377 95.

378 Ho, D. T., R. Wanninkhof, P. Schlosser, D. S. Ullman, D. Hebert, and K. F. Sullivan (2011),
379 Toward a universal relationship between wind speed and gas exchange: Gas transfer velocities

380 measured with $^3\text{He}/\text{SF}_6$ during the Southern Ocean Gas Exchange Experiment, *J. Geophys. Res.*,
381 116, C00F04, doi:10.1029/2010JC006854.

382 Huang, P., and J. Imberger (2010), Variation of pCO_2 in ocean surface water in response to the
383 passage of a hurricane, *J. Geophys. Res.*, **115**, C10024, doi:10.1029/2010JC006185.

384 Keeling, R. (1993), On the role of large bubbles in air-sea gas exchange and supersaturation in
385 the ocean. *J. Mar. Res.*, **51**, 237-271.

386 Koch, J., G. A. Mckinley, V. Bennington, and D. Ullman (2009), Do hurricanes cause significant
387 interannual variability in the air-sea CO_2 flux of the subtropical North Atlantic?, *Geophys. Res.*
388 *Lett.*, **36**, L07606.

389 Kukulka, T., A. J. Plueddemann, & P.P. Sullivan, (2013), Inhibited upper ocean restratification
390 in non-equilibrium swell conditions. *Geophys. Res. Lett.*, **40**, 3672-3676.

391 Lamarre, E., and W. K. Melville (1991), Air entrainment and dissipation in breaking waves,
392 *Nature*, **351**, 469-472.

393 Landschützer, P., N. Gruber and D. C. E. Bakker (2017). An updated observation-based global
394 monthly gridded sea surface pCO_2 and air-sea CO_2 flux product from 1982 through 2015 and its
395 monthly climatology (NCEI Accession 0160558). Version 2.2. NOAA National Centers for
396 Environmental Information.

397 Leifer, I., and R. K. Patro (2002), The bubble mechanism for methane transport from the shallow
398 sea bed to the surface: A review and sensitivity study, *Cont. Shelf Res.*, **22**, 2409-2428.

399 Leighton, T. G., Coles, D. G. H., White, P. R., Srokosz, M., & Woolf, D. K. (2018). Asymmetric
400 transfer of CO_2 across a broken sea surface. *Scientific Reports*, **8**(1).
401 <https://doi.org/10.1038/s41598-018-25818-6>

402 Lévy, M., M. Lengaigne, L. Bopp, E. M. Vincent, G. Madec, C. Ethé, D. Kumar, and V. V. S. S.
403 Sarma (2012), Contribution of tropical cyclones to the air-sea CO_2 flux: A global view, *Global*
404 *Biogeochem. Cycles*, **26**, GB2001, doi:10.1029/2011GB004145.

405 Liang, J.-H., J. C. McWilliams, P. P. Sullivan, and B. Baschek (2011), Modeling bubbles and
406 dissolved gases in the ocean, *J. Geophys. Res.*, **116**, C03015, doi:10.1029/2010JC006579.

407 Liang, J.-H., J. C. McWilliams, P. P. Sullivan, and B. Baschek (2012), Large eddy simulation of
408 the bubbly ocean: New insights on subsurface bubble distribution and bubble-mediated gas
409 transfer, *J. Geophys. Res.*, **117**, C04002, doi:10.1029/2011JC007766.

410 Liang, J.-H., C. Deutsch, J. C. McWilliams, B. Baschek, P. P. Sullivan, and D. Chiba (2013),
411 Parameterizing bubble-mediated air-sea gas exchange and its effect on ocean ventilation, *Global*
412 *Biogeochem. Cycles*, **27**, 894-905, doi:10.1002/gbc.20080.

413 Liang, J.-H., S. R. Emerson, E. A. D'Asaro, C. L. McNeil, R. R. Harcourt, P. P. Sullivan, B.
414 Yang, and M. F. Cronin (2017), On the role of sea-state in bubble-mediated air-sea gas flux
415 during a winter storm. *J. Geophys. Res. Oceans*, **122**, 2671-2685, <https://doi.org/10.1002/2016JC012408>.

417 Liang, J.-H., Wan, X., Rose, K. A., Sullivan, P. P., & McWilliams, J. C. (2018). Horizontal
418 dispersion of buoyant materials in the ocean surface boundary layer. *J. Phys. Oceanogr.*, **48**,
419 2103-2125.

420 Lin, I.-I., W. T. Liu, C. C. Wu, G. T. Wong, C. Hu, Z. Chen, et al. (2003). New evidence for
421 enhanced ocean primary production triggered by tropical cyclone. *Geophys. Res. Lett.*, **30(13)**,
422 1718.

423 Liu, B., E. J. D'Sa, and I. D. Joshi (2019). Floodwater impact on Galveston Bay phytoplankton
424 taxonomy, pigment composition and photo-physiological state following Hurricane Harvey from
425 field and ocean color (Sentinel-3A OLCI) observations. *Biogeosciences*, **16(9)**, 1975-2001.

426 Liu, J., J.-H. Liang, J. C. McWilliams, P. P. Sullivan, Y. Fan, & Q. Chen, (2018). Effect of
427 planetary rotation on oceanic surface boundary layer turbulence. *J. Phys. Oceanogr.*, **48**, 2057-
428 2080.

429 Manning, C. C., R. H. R. Stanley, D. P. Nicholson, and M. E. Squibb (2016), Quantifying air-sea
430 gas exchange using noble gases in a coastal upwelling zone, *IOP Conf. Ser. Earth Environ. Sci.*,
431 **35**, 012017, doi:10.1088/1755-1315/35/1/012017.

432 McWilliams, J. C., P. P. Sullivan, C. H. Moeng (1997), Langmuir turbulence in the ocean, *J.*
433 *Fluid Mech.*, **334**, 1-30.

434 Mei, W., F. Primeau, J. C. McWilliams, and C. Pasquero, 2013: Sea surface height evidence for
435 long-term warming effects of tropical cyclones on the ocean. *Proc. Natl. Acad. Sci. USA*, **110**,
436 15,207-15,210.

437 Melville, W. K., and P. Matusov (2002), Distribution of breaking waves at the ocean surface,
438 *Nature*, **417**, 58-63.

439 Melville, W. K., F. Verron, and C. J. White (2002), The velocity field under breaking waves:
440 Coherent structures and turbulence, *J. Fluid Mech.*, **454**, 203-233

441 McNeil, C., and E. D'Asaro (2007), Parameterization of air-sea gas fluxes at extreme wind
442 speeds, *J. Mar. Syst.*, **66**, 110–121.

443 Nicholson, D. P., S. R. Emerson, S. Khatiwala, and R. C. Hamme (2011), An inverse approach to
444 estimate bubble-mediated air-sea gas flux from inert gas measurements, paper presented at 6th
445 *International Symposium on Gas Transfer at Water Surfaces*, Kyoto Univ. Press, pp. 223-237.

446 Nicholson, D. P., S. Khatiwala, and P. Heimbach (2016), Noble gas tracers of ventilation during
447 deep-water formation in the Weddell Sea, *IOP Conf. Ser. Earth Environ. Sci.*, **35**(1), 012019,
448 doi:10.1088/1755-1315/35/1/012019.

449 Polton, J. A., D. M. Lewis, and S. E. Belcher (2005), The role of wave-induced Coriolis-Stokes
450 forcing on the wind-driven mixed layer. *J. Phys. Oceanogr.*, **35**, 444-457.

451 Rabe, T. J., T. Kukulka, I. Ginnis, T. Hara, B. Reichl, E. D'Asaro, R. Harcourt & P. P. Sullivan,
452 (2015) Langmuir turbulence under Hurricane Gustav. *J. Phys. Oceanogr.*, **45**, 657-677.

453 Reichl, B. G., and L. Deike (2020). Contribution of sea-state dependent bubbles to air-sea carbon
454 dioxide fluxes. *Geophys. Res. Lett.*, e2020GL087267.

455 Romero, L. (2019), Distribution of surface wave breaking fronts. *Geophys. Res. Lett.*, **46**, 10463-
456 10474.

457 Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., et al. (2010). The NCEP Climate
458 Forecast System Reanalysis. *Bull. Am. Meteorol. Soc.*, **91**(8), 1015-1058.

459 Sanford, T. B., J. F. Price, and J. B. Girton (2011), Upper ocean response to Hurricane Frances
460 (2004) observed by profiling EM-APEX floats, *J. Phys. Oceanogr.*, **41**, 1041-1056,
461 doi:10.1175/2010JPO4313.1.

462 Sarmiento, J. L., and N. Gruber (2006), *Ocean Biogeochemical Dynamics*, Princeton Univ.
463 Press, Princeton, N. J.

464 Smith, K. M., P. E. Hamlington, K. E. Niemeyer, B. Fox-Kemper, and N. S. Lovenduski (2018),
465 Effects of Langmuir turbulence on upper ocean carbonate chemistry. *J. Adv. Model. Earth Syst.*,
466 **10(12)**, 3030-3048.

467 Stanley, R. H. R., W. J. Jenkins, D. E. Lott III, and S. C. Doney (2009), Noble gas constraints on
468 air-sea gas exchange and bubble fluxes, *J. Geophys. Res.*, **114**, C11020,
469 doi:10.1029/2009JC005396.

470 Sullivan, P. P., and J. C. McWilliams (2010), Dynamics of winds and currents coupled to surface
471 waves, *Annu. Rev. Fluid Mech.*, **42**, 19-42, doi:10.1146/annurev-fluid-121108-145541.

472 Sullivan, P. P., J. C. McWilliams, and W. K. Melville (2007), Surface gravity wave effects in the
473 oceanic boundary layer: Large eddy simulation with vortex force and stochastic breakers, *J.*
474 *Fluid Mech.*, **593**, 405-452.

475 Sullivan, P. P. and E. G. Patton (2011), The effect of mesh resolution on convective boundary
476 layer statistics and structures generated by large-eddy simulation. *J. Atmos. Sci.*, **68**, 2395-2415.

477 Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville (2012), Transient evolution of
478 Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. *J. Phys.*
479 *Oceanogr.*, **42**, 1959-1980.

480 Sutherland, P., and W. K. Melville (2013), Field measurements and scaling of ocean surface
481 wave-breaking statistics, *Geophys. Res. Lett.*, **40**, 3074–3079, doi:10.1002/grl.50584.

482 Sutherland, P., and W. K. Melville (2015), Field measurements of surface and near-surface
483 turbulence in the presence of breaking waves. *J. Phys. Oceanogr.*, **45**, 943-965.

484 Suzuki, N., and B. Fox-Kemper (2016), Understanding Stokes forces in the wave-averaged
485 equations, *J. Geophys. Res. Oceans*, **121**, 3579-3596, doi:10.1002/2015JC011566.

486 Tolman, H. L., (2009). User manual and system documentation of WAVEWATCH-III version
487 3.14. NOAA/NWS/NCEP/MMAB Tech. Rep. 276, 220 pp.

488 Vagle, S., C. McNeil, and N. Steiner (2010), Upper ocean bubble measurements from the NE
489 pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and
490 oxygen, *J. Geophys. Res.*, **115**, C12054.

491 Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney (2012),
492 The form and orientation of Langmuir cells for misaligned winds and waves, *J. Geophys. Res.*,
493 117, C05001, doi:10.1029/2011JC007516.

494 Walker, N., R. R. Leben, and S. Balasubramanian, (2005), Hurricane forced upwelling and
495 chlorophyll-a enhancement within cold core cyclones in the Gulf of Mexico. *Geophys. Res. Lett.*,
496 **32**, L18610, doi:10.1029/2005GL023716.

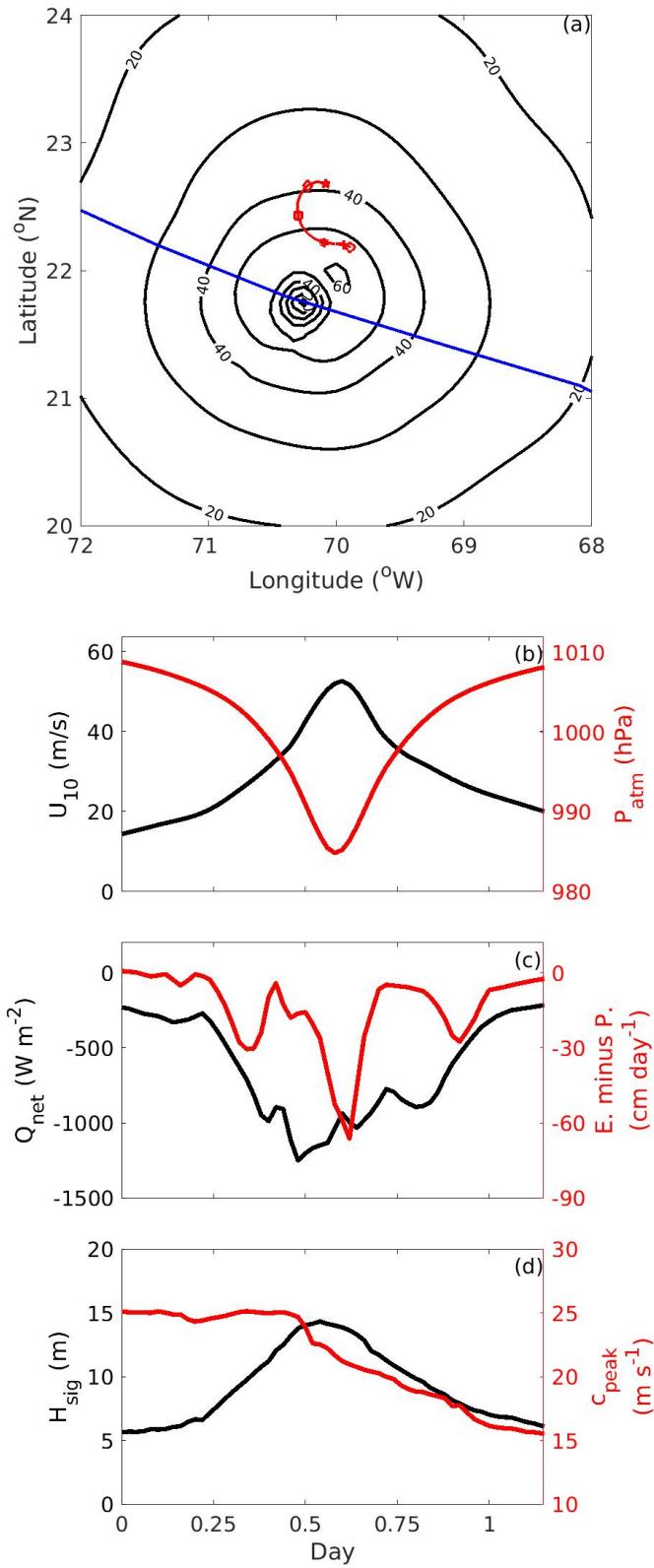
497 Wang, C., R. Pawlowicz, & A. R. Sastri, (2019), Diurnal and seasonal variability of near-surface
498 oxygen in the Strait of Georgia. *J. Geophys. Res.-Oceans*, **124**, 2418-2439.

499 Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean, *J.*
500 *Geophys. Res.*, **97(C5)**, 7373–7382, doi: 10.1029/92JC00188.

501 Wanninkhof, R., and M. Knox (1996), Chemical enhancement of CO₂ exchange in natural
502 waters, *Limnol. Oceanogr.*, **41**, 689-698.

503 Wanninkhof, R., W. E. Asher, D. T. Ho, C. Sweeney, and W. R. McGillis (2009), Advances in
504 quantifying air-sea gas exchange and environmental forcing, *Annu. Rev. Mar. Sci.*, **1**, 213-244.

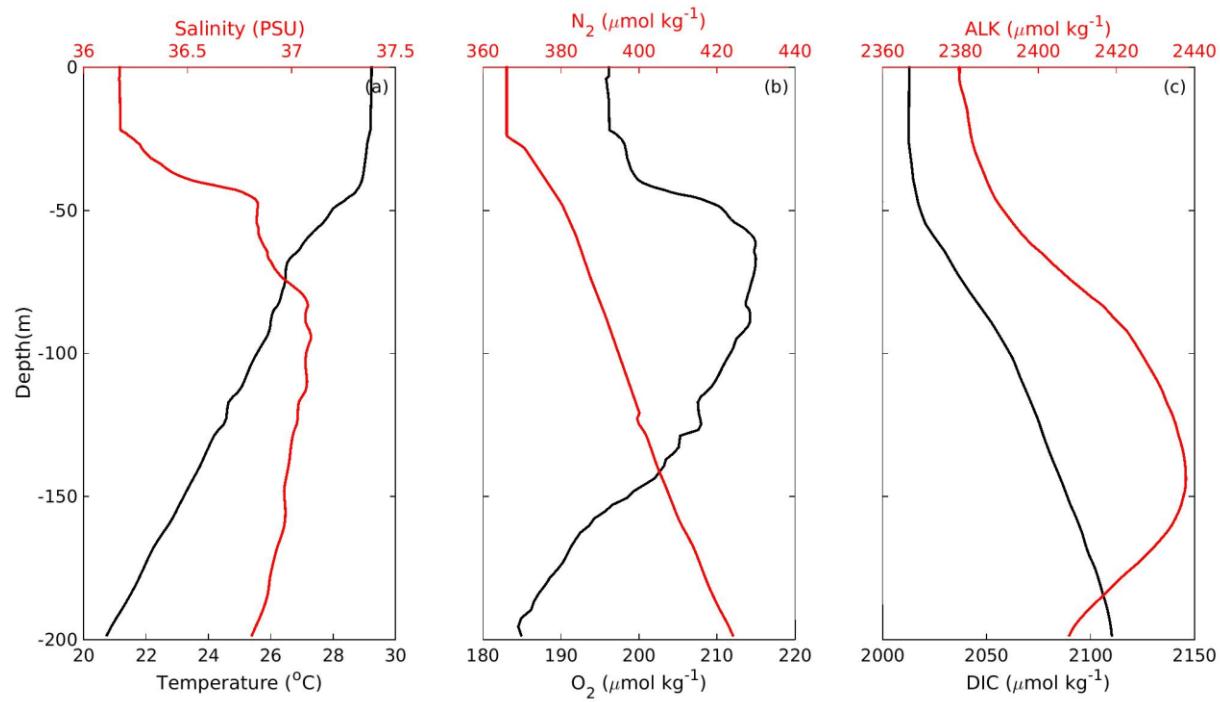
505 Wilson, J. D. (2015), Computing the flux footprint, *Boundary-Layer Meteorol.*, **156**, 1-14.


506 Woolf, D. K. (1997), Bubbles and their role in gas exchange, in *The Sea Surface and Global*
507 *Change*, edited by P. S. Liss and R. A. Duce, pp. 173–205, Cambridge Univ. Press, Cambridge.

508 Woolf, D. K., Shutler, J. D., Goddijn-Murphy, L., Watson, A. J., Chapron, B., Nightingale, P. D.,
509 et al. (2019). Key uncertainties in the recent air-sea flux of CO₂. *Global Biogeochem.*
510 *Cycles*, **33**, 1548-1563.

511 Woolf, D. K., and S. A. Thorpe (1991), Bubbles and the air-sea exchange of gases in near-
512 saturation conditions, *J. Mar. Res.*, **49**, 435-466.

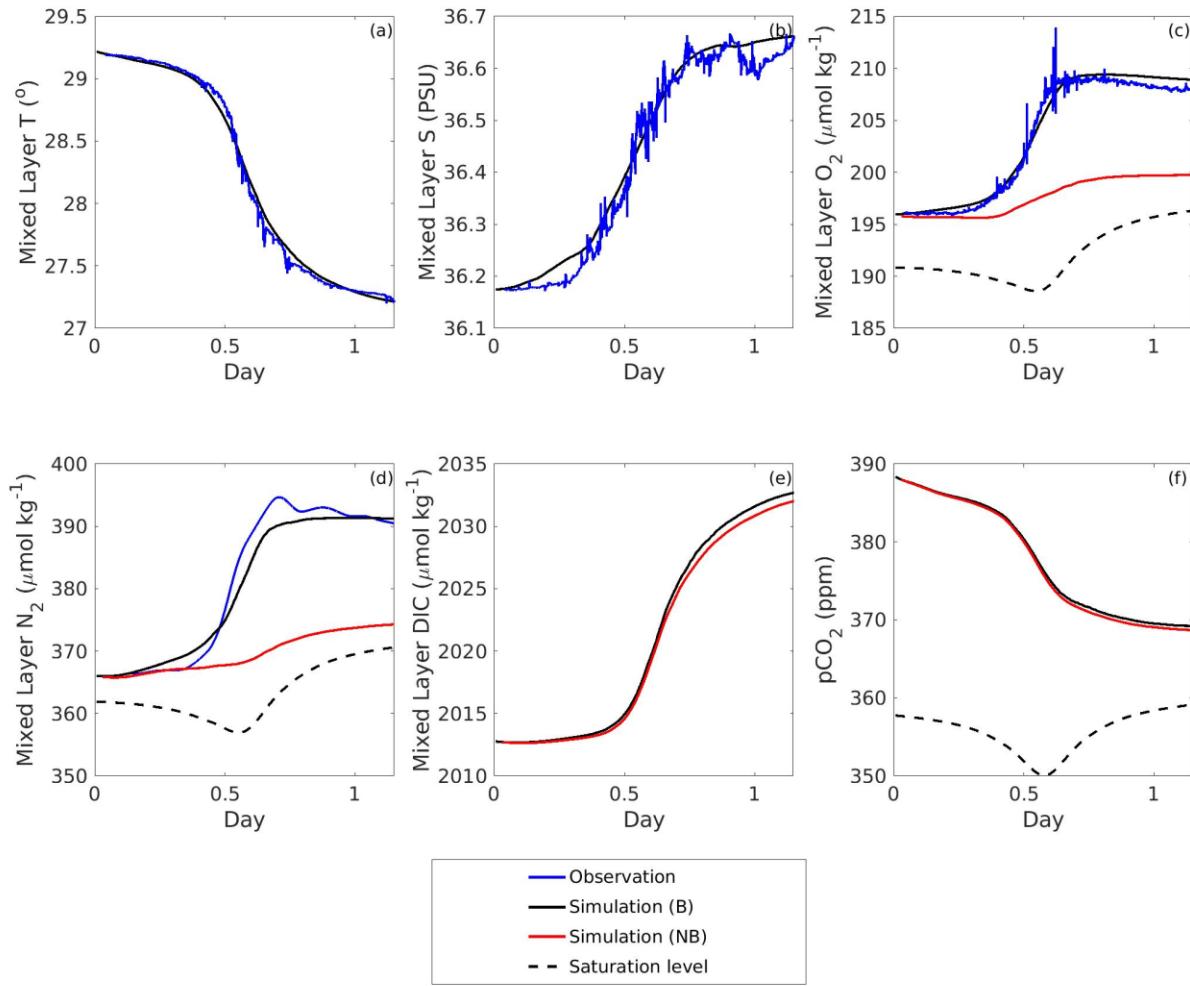
513 Zappa, C. J., M. L. Banner, H. Schultz, J. R. Gemmrich, R. P. Morison, D. A. LeBel, and T.
514 Dickey (2012), An overview of sea state conditions and air-sea fluxes during RaDyO, *J.*
515 *Geophys. Res.*, **117**, C00H19.



518 Figure 1. (a) Contours of wind speed [m/s] for Hurricane Frances (2004) at day 245.75. The blue
 519 line is the track of the hurricane. The red line is the path of the float where measurement is taken,
 520 with symbols indicating a quarter-day increment. At the location of the float, (b) 10-m wind
 521 speed (U_{10}) and sea level pressure (P_{atm}). (c) Surface heat flux (Q_{net}) and evaporation minus
 522 precipitation (E.minusP.). (d) Significant wave height (H_{sig}) and peak wave speed (c_{peak}). Time 0
 523 corresponds to day 245.15 of year 2004.

524

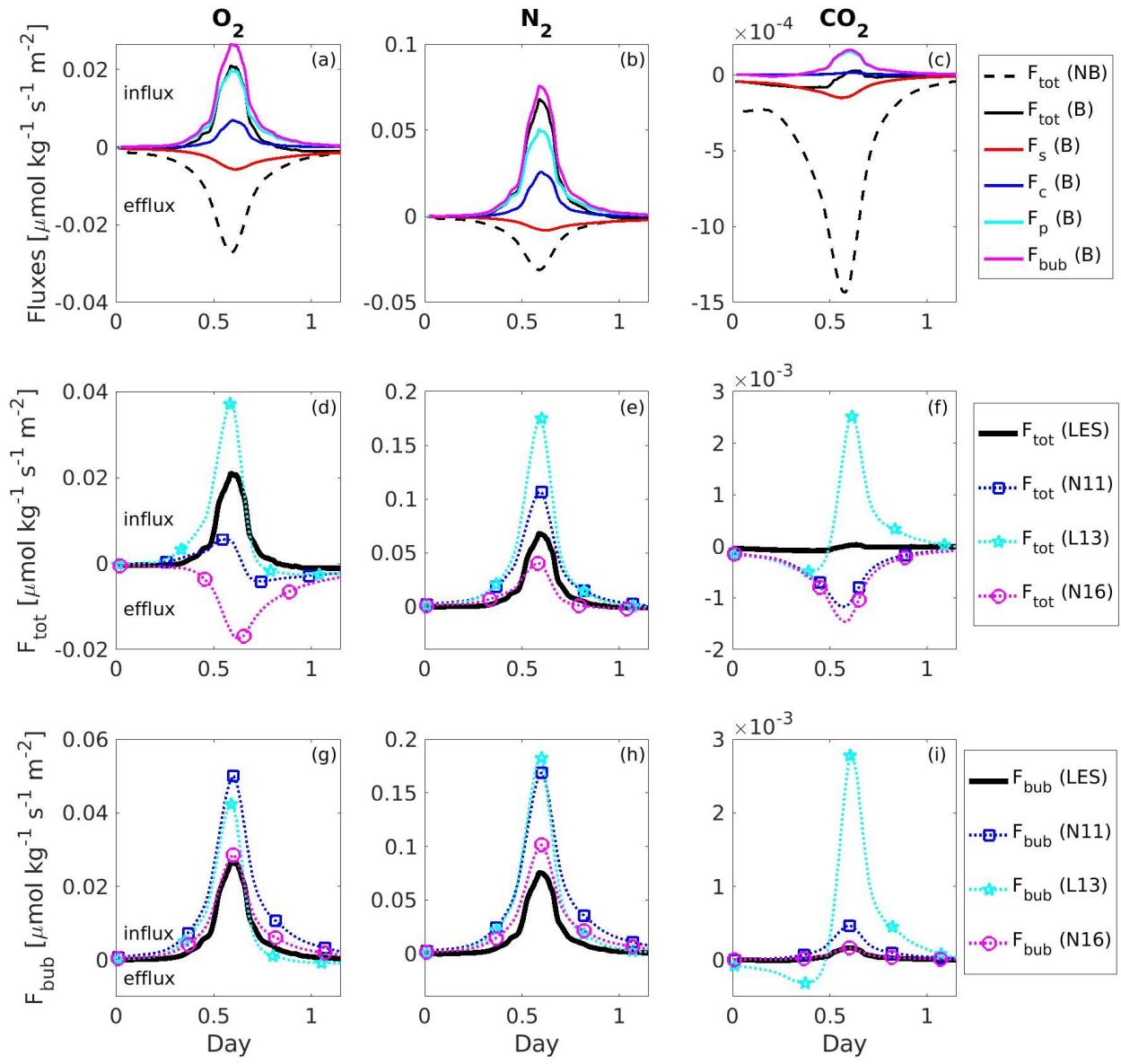
525



526

527 Figure 2. Initial profiles of (a) temperature and salinity; (b) dissolved O₂ and N₂; and (c) DIC and
 528 alkalinity.

529


530

531
532
533
534
535
536

Figure 3. The evolution of simulated and observed mixed-layer (a) temperature; (b) salinity; (c) dissolved O₂ concentration; (d) dissolved N₂ concentration; (e) DIC; and (f) pCO₂. Blue lines are from observation; black lines are from simulation with bubbles; red lines are from simulation without bubbles; and dashed lines are the saturation levels. The black line and the blue line overlaps in panels (a) and (b).

537
538
539
540
541
542
543

544

545 Figure 4. Upper row: The evolution of gas fluxes for total gas flux (F_{tot}), surface gas flux (F_s),
 546 gas flux through completely dissolved bubbles (F_c), gas flux through partially dissolved bubbles
 547 (F_p), and $F_{\text{bub}} = F_c + F_p$ in simulation without bubbles (Run NB) and with bubbles (Run B). Middle
 548 row: The comparison of F_{tot} between three parameterizations (N11: *Nicholson et al. 2011*; L13:
 549 *Liang et al. 2013*; N16: *Nicholson et al. 2016*) and LES solutions. Lower row: The comparison
 550 of F_{bub} between the three parameterizations and LES solutions. The left, middle and right
 551 columns are for O_2 , N_2 , and CO_2 , respectively. Positive means influx and negative indicates
 552 efflux.